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Review from Lecture 2

• Let S be a semimartingale modeling a risky asset price process
(so S ≥ 0)

• Assume that NFLVR holds

• Let D = (Dt)t≥0 be its cumulative cash flow of dividends

• Assume the spot interest rate r ≡ 0



• Let Xτ = the terminal payoff, or liquidation value at time τ

• The wealth of the investor at time t is given by

Wt = St +

∫ τ∧t

0
dDu + Xτ1{t≥τ}

• We assume there exists a probability measure Q ∼ P such
that W is a Q-local martingale

• A trading strategy is a vector process (πt , ηt)t≥0



• W π
0 = 0

• The Value Process V corresponding to the strategy (π, η) is
given by

V π,η
t =

∫ t

0
πudWu

• Let α > 0. A strategy π is α-admissible if V π,η
t ≥ −α. The

strategy π is admissible if it is α-admissible for some α > 0

• The Second Fundamental Theorem of Finance: A market
under H is complete if and only if for every X ∈ H there
exists a hedging strategy π such that

X = α +

∫ T

0
πsdWs

This is equivalent to there being only one equivalent
probability measure Q such that W is a Q local
martingale.



The Fundamental Price in a Complete Market
Setting

• Since markets are assumed complete, let Q ∼ P be the
unique risk neutral measure

• We define the fundamental price of the risky asset S,
denoted S?, to be the future discounted future cash flow one
expects to get, conditional on current information

• In mathematics, S? is given by

S?
t = EQ{

∫ T

t
dDs + Xτ1{τ<∞}|Ft}1{t<τ}

• The payoff at time t = ∞ does not contribute to S?



Theorem:
S?

t is well defined. Moreover,

lim
t→∞

S?
t = 0 a.s.

• Observe that W is a nonnegative Q supermartingale, so
S?

t ∈ L1(dQ), and the result follows the supermartingale
convergence theorem, and the facts that (Dt)t≥0 and Xτ are
nonnegative.

• Note that in contrast, we cannot assume that S?
t is in L1(dP)

• Corollary:

W ?
t = S?

t +

∫ t∧τ

0
dDu + Xτ1{τ≤t}

is a uniformly integrable martingale under Q, and

W ?
∞ =

∫ τ

0
dDu + Xτ1{τ<∞}



Bubbles

• A bubble is defined to be a process β = (βt)t≥0 given by

βt = St − S?
t

• Note that βt ≥ 0 for all t, a.s.

• Theorem: If there exists a non trivial bubble (ie, βt 6= 0 for
some t > 0) for the risky asset price process S, then

1. If P(τ = ∞) > 0 then β is a local martingale without
restrictions (it can even be a uniformly integrable martingale)

2. If P(τ < ∞) = 1, and β is unbounded, then β is a local
martingale, and it cannot be a uniformly integrable martingale

3. If τ is bounded, and then β must be a strict local martingale



Theorem (Bubble Decomposition)

The risky asset price admits a unique decomposition

S = S? + (β1 + β2 + β3)

where

1. β1 is a càdlàg nonnegative uniformly integrable martingale
with limt→∞ β1

t = X∞ a.s.

2. β2 is a càdlàg nonnegative NON uniformly integrable
martingale with limt→∞ β2

t = 0 a.s.

3. β3 is a càdlàg non-negative supermartingale (and strict local
martingale) such that limt→∞ E{β3

t } = 0 and limt→∞ β3
t = 0

a.s.



Examples

• We call the three types of bubbles in the decomposition
bubbles of Type 1, Type 2 and Type 3

• Example of a Type 1 bubble: Let St = 1, all t, 0 < t < ∞,
and no dividends. This is an example of fiat money

• In this case τ = ∞ a.s., and X∞ = 1, and Dt ≡ 0 all t ≥ 0.

• Therefore

S?
∞ = EQ

(∫ t∧τ

0
dDu + Xτ1{t≥τ}|Ft

)
= 0

• Hence
βt = St − S?

t = 1



A second example of a Type 1 bubble

• Let Bt = (B1
t ,B2

t ,B3
t ), the three dimensional standard

Brownian motion

• ‖ Bt ‖ is called the Bessel process;

Xt =
1

‖ Bt ‖

is known as the inverse Bessel process

• Assume there are no dividends, only the asset price. One can
show that

lim
t→∞

Xt = 0

and that X is a local martingale; indeed, X satisfies the SDE

dXt = −X 2
t dBt ; X0 = 1

where B is a Brownian motion

• Also E (X0) = 1 and limt→∞ E (Xt) = 0



Example of a Type 2 bubble

• Let τ be a stopping time with P(τ > t) > 0, for all t > 0,
and P(τ < ∞) = 1

• Let

S?
t = 1{t<τ}, payoff 1 at time τ

βt =
1− 1{τ≤t}

P(τ > t)

St = S?
t + βt

• One can show that β is a martingale which is not uniformly
integrable, and β∞ = 0

• So β is a bubble which is not uniformly integrable



Example of a Type 3 bubble
[A. Cox and D. Hobson, 2005]

• Let T be a fixed (non random) time, and define

S?
t = 1{[0,T )}(t), XT = 1

• Let the bubble be given by

βt =

∫ t

0

βu√
T − u

dBu

• Then β is a strict local martingale, with Bt = 0; define

St = S?
t + βt



Historical example of an option

• Aristotle, in his treatise Politics; Book 1, Part XI, writes of
Thales of Miletus, a pre-Socratic Greek philosopher and one
of the Seven Sages of Greece

• Thales wanted to justify his beliefs in astronomy, which
allowed him to predict (correctly, as it turned out) that there
would be a bumper olive crop harvest (Source: Walter
Schachermayer)

• According to Aristotle, Thales “gave deposits for the use of all
the olive-presses in Chios and Miletus, which he hired at a low
price because no one bid against him. When the harvest-time
came, and many were wanted all at once and of a sudden, he
let them out at any rate which he pleased, and made a
quantity of money.”



An ancient olive press used to make oil



Put-Call Parity in the Presence of Bubbles

• A Call Option has the payoff structure at the maturity time T
of (ST − K )+ and a put (K − ST )+ and a forward contract
at strike price K and maturity time T has a payoff at time T
of ST − K

• Recall that trivially

(ST − K )+ − (K − ST )+ = ST − K

• Let Ct(K ), Pt(K ), and Vt(K ) be the market prices at time t
and strike price K with common maturity time T of a call, a
put, and a forward

• Let Ct(K )?, Pt(K )?, and Vt(K )? be the fundamental prices
at time t and strike price K with common maturity time T of
a call, a put, and a forward



• The traditional approach for a complete market for put call
parity is to define the time t price of (for example) a
European call to be

EQ{(St − K )+|Ft}

and then put-call parity follows from the linearity of
conditional expectation

• The issue of whether or not market prices agree with the
conditional expectation prices is assumed to be true

• With bubbles, the market prices of calls, puts, and forwards
need not satisfy put-call parity



Example of Put-Call Parity Failing

• Let B i , 1 ≤ i ≤ 5 be five iid standard Brownian motions

• Define

M1
t = exp(B1

t − t/2)

M i
t = 1 +

∫ t

0

M i
s√

T − s
dB i

s , 2 ≤ i ≤ 5

• Consider a market with finite time horizon T

• It is complete, given M i , 1 ≤ i ≤ 5

• M1 is a uniformly integrable martingale, and the rest are strict
local martingales on [0,T ]

• Let

S?
t = sup

s≤t
M1

t ; St = S?
t + M2

t ; C (K )t = C ?(K )t + M3
t

P(K )t = P?(K )t + M4
t ; V (K )t = V ?(K )t + M5

t



• All the traded securities in the this example have bubbles

• Let δC
t , δP

t , and δF
t be the bubbles parts of the market prices

for the Call, Put, and Forward.

• Under special conditions only (the absence of bubbles) do we
have market price put-call parity:

Ct(K )− Pt(K ) = Ft(K ) if and only if δF
t = δC

t − δP
t

Ct(K )− Pt(K ) = St − K if and only if δS
t = δC

t − δP
t



Implications for Models in the Black-Scholes
Paradigm

• To take advantage of these bubbles based on the convergence
at time T , one needs only to short sell at least one asset

• Such a strategy, however, is not admissible due to possible
unbounded losses

• By the Black-Scholes paradigm we mean a continuous risky
asset price process under the now standard NFLVR structure

• The important consequence is that in the presence of bubbles,
the Black-Scholes formula need not hold

• This is because the time t market price of a call option,
Ct(K ), can differ from the price EQ{(St − K )+}



Consequence for Black-Scholes Paradigm Models

• Implied volatility from the B-S formula need not equal
historical volatility; indeed, if there is a bubble, implied
volatility should exceed historical volatility

• However, if one assumes No Dominance, then the usual
understanding of the Black-Scholes model applies

• Another issue is Merton’s No Early Exercise Theorem

• This theorem states that while an American call option with
strike price K and maturity time T has the a priori impression
of presenting more flexibility in the exercise of the option, in
reality the optimal strategy is to exercise it at maturity T .
Therefore the fair prices of an American call option and that
of a European call option are the same

• The proof of Merton’s theorem uses Jensen’s inequality and
assumes the risky asset risk neutral price process is a
martingale



Under NFLVR and continuous complete markets,
Merton’s No Early Exercise Theorem need not hold

• We give an example where No Early Exercise fails to hold

• Let Bt = (B1
t ,B2

t ,B3
t ) be a standard Brownian motion with

B0 = (1, 0, 0)

• Recall that the inverse Bessel process is

Xt =
1

‖ Bt ‖

which is a strict local martingale

• If X models a risky asset price process, then the price process
is a bubble

• (Xt)t≥0 is a uniformly integrable collection, E (X0) = 1, and
limt→∞ Xt = 0 a.s. and in L1



• If X is a risk neutral (Q) martingale, then by Jensen’s
inequality, t 7→ EQ{(Xt − K )+} is monotone increasing

• For the inverse Bessel process, with Soumik Pal, we have
shown that the prices of European calls decrease as a function
of time to expiration

• That is, for S the inverse Bessel process, the function

T 7→ E{(ST − K )+}
is monotone decreasing if K ≤ 1

2 , and otherwise it is initially
increasing and then strictly decreasing for

T ≥
(

K log
2K + 1

2K − 1

)−1

.

• A similar results holds for all continuous strict local
martingales with asymptotic behavior similar to that of the
inverse Bessel process

• This result is intuitive in the presence of bubbles, since in a
bubble, the best strategy is to get in and out early, and not to
wait a long time to liquidate your positions



Bubble Decomposition

Theorem [Bubble Decomposition]:

St = S?
t + βt = S?

t +
(
β1

t + β2
t + β3

t

)
,

is a unique decomposition such that

• β1 ≥ 0 is a uniformly integrable martingale with
limt→∞ β1

t = X∞ a.s.

• β2 ≥ 0, is not a uniformly integrable martingale, but of
course is a local martingale and is possibly a martingale, and
limt→∞ β2

t = 0 a.s.

• β3 ≥ 0 is a strict local martingale such that limt→∞ β3
t = 0

a.s. and in L1



Why Does Short Selling Not Correct for Bubbles?

• Two reasons are proposed in the literature:

• The first is structural limitations: This is the limited ability
and/or expensive cost to borrow an asset for short sales (eg,
Duffie, Gârleanu, and Pederson [2002])

• As regards the first, in markets where short selling does not
exist (especially the third world), there do not seem to be
more bubbles

• The second is the risk the short seller takes that the price will
continue to go up (the danger of trying to predict a bubble)

• In mathematics this translates into admissibility violations



Two Problems with Complete Markets and Bubbles

• What is nice is that the risk neutral measure Q is unique, and
we therefore have a unique fundamental price

• An undesirable property is the impossibility of bubble birth:
A nonnegative local martingale cannot spring up after being
zero; once a nonnegative local martingale reaches zero, it
sticks at zero forever after

• The biggest problem is that while bubbles make sense in
complete markets under NFLVR, bubbles do not exist under
No Dominance. This is serious, because we will see later we
need No Dominance to establish fundamental put-call parity

• Theorem: Under No Dominance, Type 2 and Type 3 bubbles
do not exist in a complete market (with NFLVR)



Proof that Bubbles Do Not Exist in Complete
Markets under ND

• Theorem: Under No Dominance, Type 2 and Type 3 bubbles
do not exist in a complete market (with NFLVR)

• Proof: For Type 2 and Type 3 bubbles, β∞ = 0. Let W be
the wealth process corresponding to the risky asset price
process S

• There exist hedging processes π1 and π2 such that

W ?
t = W ?

0 +

∫ t

0
π1

udWu

βt = β0 +

∫ t

0
π2

udWu

• Let η1 and η2 make π1 and π2 self-financing, so that both π1

and π2 are admissible



• We have two ways to generate W

• The first way is buy and hold

• The second way is to follow π1, obtaining W ?

• The cost of the first position is W0 ≥ W ?
0 , with W0 > W ?

0 if
there is a non-trivial bubble

• That means that π1 dominates the buy and hold strategy,
which violates No Dominance; so β cannot exist.



• We conclude: bubbles exist in a complete market under
NFLVR [Lowenstein and Willard, Cox and Hobson], but
cannot be born after time t = 0, create a Black-Scholes
paradox, and violate put-call parity.

• Bubbles do not exist in a complete market under No
Dominance, which is stronger than NFLVR

• The non existence of bubbles under ND solves the
Black-Scholes paradigm paradox, for example

• What happens in incomplete markets? In incomplete
markets under No Dominance the argument showing bubbles
do not exist, no longer applies



Do Bubbles Exist in Incomplete Markets?

• To discuss bubbles in incomplete markets, we need to decide
what we mean by a fundamental price, since there is an
infinite choice of risk neutral measures

• There are five basic methods to choose such a measure

• The first is Utility Indifference Pricing: Risk Neutral prices
span an interval on the real line, and choosing the right price
depends on the utility function of preferences of the agent
selling the contingent claim



• The Egocentric Method: Simply choose one arbitrarily

• The Convenience Method: Choose a risk neutral measure
that gives the price process mathematically nice properties: for
example, makes it a Markov process, or even a Lévy process

• The Canonical Method: Find a reasonable criterion (eg,
minimal variance of the error, minimal distance to the
historical measure in a distance one chooses, minimal entropy)
and let it determine the risk neutral measure

• The Ostrich Method: Prove results under a risk neutral
measure already chosen; that is, you do not specify it, but
pretend someone else has done so already

• All of these methods assume that, once chosen, the risk
neutral measure is fixed and and never changes

• In our next lecture, we will discuss a different method to
choose the risk neutral measure, and allow it to change from
one choice to another, and study bubbles in incomplete
markets



Ben Bernanke and the Federal Reserve



End of Lecture 3
Thank you for your

attention


