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Overview

• Optimal investment under constraint on law of wealth

• First best contract

• Second best contract

• Robust contract

• Law-invariant coherent risk measures.
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Investing in a complete Brownian market.
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Investing in a complete Brownian market.

Wealth dynamics:

dwt = rwtdt+ θt(σdWt + (µ− r)dt), wt ≥ 0,
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Investing in a complete Brownian market.

Wealth dynamics:

dwt = rwtdt+ θt(σdWt + (µ− r)dt), wt ≥ 0,

with objective

maxEU(wT )

where U is increasing, strictly concave.
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Investing in a complete Brownian market.

Wealth dynamics:

dwt = rwtdt+ θt(σdWt + (µ− r)dt), wt ≥ 0,

with objective

maxEU(wT )

where U is increasing, strictly concave. State-price density process

(κ ≡ σ−1(µ− r))

dζt = ζt(−rdt− κ · dWt), ζ0 = 1.

Easy to show that ζtwt is a (local) martingale;
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Investing in a complete Brownian market.

Wealth dynamics:

dwt = rwtdt+ θt(σdWt + (µ− r)dt), wt ≥ 0,

with objective

maxEU(wT )

where U is increasing, strictly concave. State-price density process

(κ ≡ σ−1(µ− r))

dζt = ζt(−rdt− κ · dWt), ζ0 = 1.

Easy to show that ζtwt is a (local) martingale; and any X ∈ L1(FT ) with

E[ ζTX] = w0 can be achieved,
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Investing in a complete Brownian market.

Wealth dynamics:

dwt = rwtdt+ θt(σdWt + (µ− r)dt), wt ≥ 0,

with objective

maxEU(wT )

where U is increasing, strictly concave. State-price density process

(κ ≡ σ−1(µ− r))

dζt = ζt(−rdt− κ · dWt), ζ0 = 1.

Easy to show that ζtwt is a (local) martingale; and any X ∈ L1(FT ) with

E[ ζTX] = w0 can be achieved, by representing E[ζTX|Ft] as a stochastic
integral.
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Investing in a complete Brownian market.

Wealth dynamics:

dwt = rwtdt+ θt(σdWt + (µ− r)dt), wt ≥ 0,

with objective

maxEU(wT )

where U is increasing, strictly concave. State-price density process

(κ ≡ σ−1(µ− r))

dζt = ζt(−rdt− κ · dWt), ζ0 = 1.

Easy to show that ζtwt is a (local) martingale; and any X ∈ L1(FT ) with

E[ ζTX] = w0 can be achieved, by representing E[ζTX|Ft] as a stochastic
integral. So if investor wants to maxEU(wT ) for given w0, the Lagrangian

problem is

maxE
ˆ

U(wT ) + λ(w0 − ζTwT )
˜

.
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Investing in a complete Brownian market.

Wealth dynamics:

dwt = rwtdt+ θt(σdWt + (µ− r)dt), wt ≥ 0,

with objective

maxEU(wT )

where U is increasing, strictly concave. State-price density process

(κ ≡ σ−1(µ− r))

dζt = ζt(−rdt− κ · dWt), ζ0 = 1.

Easy to show that ζtwt is a (local) martingale; and any X ∈ L1(FT ) with

E[ ζTX] = w0 can be achieved, by representing E[ζTX|Ft] as a stochastic
integral. So if investor wants to maxEU(wT ) for given w0, the Lagrangian

problem is

maxE
ˆ

U(wT ) + λ(w0 − ζTwT )
˜

.

Solution is easy:

U ′(wT ) = λζT

where λ is chosen to match the budget constraint.
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Investing under constraints on the law of wT .
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Investing under constraints on the law of wT .

Investor wants to maxEU(wT ) subject to some constraint on the law of wT ;
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Investing under constraints on the law of wT .

Investor wants to maxEU(wT ) subject to some constraint on the law of wT ; so

he has to choose a law for wT .
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Investing under constraints on the law of wT .

Investor wants to maxEU(wT ) subject to some constraint on the law of wT ; so

he has to choose a law for wT . If we want a given law for wT , cheapest is to

take wT = ψ(ζT ) for some decreasing ψ.
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Investing under constraints on the law of wT .

Investor wants to maxEU(wT ) subject to some constraint on the law of wT ; so

he has to choose a law for wT . If we want a given law for wT , cheapest is to

take wT = ψ(ζT ) for some decreasing ψ. So the investor’s problem is to find

decreasing ψ to maxE[U(ψ(ζT ))] subject to

E[ ζTψ(ζT ) ] = w0

and other constraints on the law of wT .
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Investing under constraints on the law of wT .

Investor wants to maxEU(wT ) subject to some constraint on the law of wT ; so

he has to choose a law for wT . If we want a given law for wT , cheapest is to

take wT = ψ(ζT ) for some decreasing ψ. So the investor’s problem is to find

decreasing ψ to maxE[U(ψ(ζT ))] subject to

E[ ζTψ(ζT ) ] = w0

and other constraints on the law of wT . Knowing ψ, define a utility u by

(u′)−1(x) = ψ(x);
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Investing under constraints on the law of wT .

Investor wants to maxEU(wT ) subject to some constraint on the law of wT ; so

he has to choose a law for wT . If we want a given law for wT , cheapest is to

take wT = ψ(ζT ) for some decreasing ψ. So the investor’s problem is to find

decreasing ψ to maxE[U(ψ(ζT ))] subject to

E[ ζTψ(ζT ) ] = w0

and other constraints on the law of wT . Knowing ψ, define a utility u by

(u′)−1(x) = ψ(x);

then an unconstrained investor with initial wealth w0 and maximizing Eu(wT ) will

choose wT = ψ(ζT ).
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Investing under constraints on the law of wT .

Investor wants to maxEU(wT ) subject to some constraint on the law of wT ; so

he has to choose a law for wT . If we want a given law for wT , cheapest is to

take wT = ψ(ζT ) for some decreasing ψ. So the investor’s problem is to find

decreasing ψ to maxE[U(ψ(ζT ))] subject to

E[ ζTψ(ζT ) ] = w0

and other constraints on the law of wT . Knowing ψ, define a utility u by

(u′)−1(x) = ψ(x);

then an unconstrained investor with initial wealth w0 and maximizing Eu(wT ) will

choose wT = ψ(ζT ).

Need

lim
z→∞

ψ(z) = 0;
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Investing under constraints on the law of wT .

Investor wants to maxEU(wT ) subject to some constraint on the law of wT ; so

he has to choose a law for wT . If we want a given law for wT , cheapest is to

take wT = ψ(ζT ) for some decreasing ψ. So the investor’s problem is to find

decreasing ψ to maxE[U(ψ(ζT ))] subject to

E[ ζTψ(ζT ) ] = w0

and other constraints on the law of wT . Knowing ψ, define a utility u by

(u′)−1(x) = ψ(x);

then an unconstrained investor with initial wealth w0 and maximizing Eu(wT ) will

choose wT = ψ(ζT ).

Need

lim
z→∞

ψ(z) = 0;

no real loss of generality assuming this.
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Principal-agent problems.
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Principal-agent problems.

• Principal (head of desk) has utility UP
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Principal-agent problems.

• Principal (head of desk) has utility UP

• Agent (trader) has utility UA.
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Principal-agent problems.

• Principal (head of desk) has utility UP

• Agent (trader) has utility UA.

• Agent trades in market over [0, T ], achieves wealth wT at time T .
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Principal-agent problems.

• Principal (head of desk) has utility UP

• Agent (trader) has utility UA.

• Agent trades in market over [0, T ], achieves wealth wT at time T .

• Principal rewards him with wages ϕ(wT ).
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Principal-agent problems.

• Principal (head of desk) has utility UP

• Agent (trader) has utility UA.

• Agent trades in market over [0, T ], achieves wealth wT at time T .

• Principal rewards him with wages ϕ(wT ).

How should ϕ be chosen?
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Principal-agent problems.

• Principal (head of desk) has utility UP

• Agent (trader) has utility UA.

• Agent trades in market over [0, T ], achieves wealth wT at time T .

• Principal rewards him with wages ϕ(wT ).

How should ϕ be chosen?

We shall suppose that

UP (0) = UA(0) = 0, U ′
P (0) < ∞.
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Principal-agent problems.

• Principal (head of desk) has utility UP

• Agent (trader) has utility UA.

• Agent trades in market over [0, T ], achieves wealth wT at time T .

• Principal rewards him with wages ϕ(wT ).

How should ϕ be chosen?

We shall suppose that

UP (0) = UA(0) = 0, U ′
P (0) < ∞.

The principal has already determined his optimal terminal wealth w∗
T = ψ(ζT ),

and now he wants the total terminal wealth X generated to satisfy

Z ≡ X − Y ≡ X − ϕ(X) = w∗
T = ψ(ζT ).
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Principal-agent problems.

• Principal (head of desk) has utility UP

• Agent (trader) has utility UA.

• Agent trades in market over [0, T ], achieves wealth wT at time T .

• Principal rewards him with wages ϕ(wT ).

How should ϕ be chosen?

We shall suppose that

UP (0) = UA(0) = 0, U ′
P (0) < ∞.

The principal has already determined his optimal terminal wealth w∗
T = ψ(ζT ),

and now he wants the total terminal wealth X generated to satisfy

Z ≡ X − Y ≡ X − ϕ(X) = w∗
T = ψ(ζT ).

Of course, generating terminal wealth X will cost more than w0;
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Principal-agent problems.

• Principal (head of desk) has utility UP

• Agent (trader) has utility UA.

• Agent trades in market over [0, T ], achieves wealth wT at time T .

• Principal rewards him with wages ϕ(wT ).

How should ϕ be chosen?

We shall suppose that

UP (0) = UA(0) = 0, U ′
P (0) < ∞.

The principal has already determined his optimal terminal wealth w∗
T = ψ(ζT ),

and now he wants the total terminal wealth X generated to satisfy

Z ≡ X − Y ≡ X − ϕ(X) = w∗
T = ψ(ζT ).

Of course, generating terminal wealth X will cost more than w0; the principal

wants to hire the agent for as little as possible, subject to the participation

constraint of the agent:

EUA(ϕ(X)) ≥ u
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First best solution.
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First best solution.

Cheapest way to give agent his reservation utility level is by taking

U ′
A(Y ) ≡ U ′

A(ϕ(X)) = νζT

for ν > 0 chosen to satisfy participation constraint.
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First best solution.

Cheapest way to give agent his reservation utility level is by taking

U ′
A(Y ) ≡ U ′

A(ϕ(X)) = νζT

for ν > 0 chosen to satisfy participation constraint. Wage schedule defined via

(U ′
A ◦ IA = id)

Y = IA(νζT ) = ϕ(ψ(ζT ) + IA(νζT ))
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First best solution.

Cheapest way to give agent his reservation utility level is by taking

U ′
A(Y ) ≡ U ′

A(ϕ(X)) = νζT

for ν > 0 chosen to satisfy participation constraint. Wage schedule defined via

(U ′
A ◦ IA = id)

Y = IA(νζT ) = ϕ(ψ(ζT ) + IA(νζT ))

Obtain the Borch rule
u′(Z)

U ′
A

(Y )
= constant

for the derived utility u.
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First best solution.

Cheapest way to give agent his reservation utility level is by taking

U ′
A(Y ) ≡ U ′

A(ϕ(X)) = νζT

for ν > 0 chosen to satisfy participation constraint. Wage schedule defined via

(U ′
A ◦ IA = id)

Y = IA(νζT ) = ϕ(ψ(ζT ) + IA(νζT ))

Obtain the Borch rule
u′(Z)

U ′
A

(Y )
= constant

for the derived utility u.

First best is a rather unrealistic solution concept ...
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Second best solution.
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Second best solution.

The agent is given the wage schedule ϕ, the initial wealth, and then maximises

E UA(ϕ(X)) subject to EζTX = w0.
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Second best solution.

The agent is given the wage schedule ϕ, the initial wealth, and then maximises

E UA(ϕ(X)) subject to EζTX = w0.

Writing v ≡ UA ◦ ϕ, the agent will produce

v′(X) = γζT .
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Second best solution.

The agent is given the wage schedule ϕ, the initial wealth, and then maximises

E UA(ϕ(X)) subject to EζTX = w0.

Writing v ≡ UA ◦ ϕ, the agent will produce

v′(X) = γζT .

The criterion that the principal should receive Z = ψ(ζT ) = X − ϕ(X) now

becomes

X − ϕ(X) = X − U−1
A

(v(X)) = ψ(ζT ) = ψ

„

v′(X)

γ

«

.
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Second best solution.

The agent is given the wage schedule ϕ, the initial wealth, and then maximises

E UA(ϕ(X)) subject to EζTX = w0.

Writing v ≡ UA ◦ ϕ, the agent will produce

v′(X) = γζT .

The criterion that the principal should receive Z = ψ(ζT ) = X − ϕ(X) now

becomes

X − ϕ(X) = X − U−1
A

(v(X)) = ψ(ζT ) = ψ

„

v′(X)

γ

«

.

This is an ODE for v !
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Second best solution.

The agent is given the wage schedule ϕ, the initial wealth, and then maximises

E UA(ϕ(X)) subject to EζTX = w0.

Writing v ≡ UA ◦ ϕ, the agent will produce

v′(X) = γζT .

The criterion that the principal should receive Z = ψ(ζT ) = X − ϕ(X) now

becomes

X − ϕ(X) = X − U−1
A

(v(X)) = ψ(ζT ) = ψ

„

v′(X)

γ

«

.

This is an ODE for v ! Because of the assumptions on UP , z̄ ≡ inf{z : ψ(z) = 0}
is finite;
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Second best solution.

The agent is given the wage schedule ϕ, the initial wealth, and then maximises

E UA(ϕ(X)) subject to EζTX = w0.

Writing v ≡ UA ◦ ϕ, the agent will produce

v′(X) = γζT .

The criterion that the principal should receive Z = ψ(ζT ) = X − ϕ(X) now

becomes

X − ϕ(X) = X − U−1
A

(v(X)) = ψ(ζT ) = ψ

„

v′(X)

γ

«

.

This is an ODE for v ! Because of the assumptions on UP , z̄ ≡ inf{z : ψ(z) = 0}
is finite; so we solve with the boundary conditions

v(0) = 0, v′(0) = γz̄
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Robust solution.
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Robust solution.

Write a contract such that the objectives of principal and agent are the SAME !
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Robust solution.

Write a contract such that the objectives of principal and agent are the SAME !

An obvious way to do this is to set

UA(ϕ(X))

γ
= u(X − ϕ(X))

for some γ > 0.
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Robust solution.

Write a contract such that the objectives of principal and agent are the SAME !

An obvious way to do this is to set

UA(ϕ(X))

γ
= u(X − ϕ(X))

for some γ > 0. (Assume that Ua is onto R
+ to be safe).
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Robust solution.

Write a contract such that the objectives of principal and agent are the SAME !

An obvious way to do this is to set

UA(ϕ(X))

γ
= u(X − ϕ(X))

for some γ > 0. (Assume that Ua is onto R
+ to be safe).

It can be shown that v ≡ UA ◦ ϕ is strictly increasing and concave if UA and u
are.
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Robust solution.

Write a contract such that the objectives of principal and agent are the SAME !

An obvious way to do this is to set

UA(ϕ(X))

γ
= u(X − ϕ(X))

for some γ > 0. (Assume that Ua is onto R
+ to be safe).

It can be shown that v ≡ UA ◦ ϕ is strictly increasing and concave if UA and u
are. The agent solves in the usual way, and γ is adjusted so that participation

constraint just holds.
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Robust solution.

Write a contract such that the objectives of principal and agent are the SAME !

An obvious way to do this is to set

UA(ϕ(X))

γ
= u(X − ϕ(X))

for some γ > 0. (Assume that Ua is onto R
+ to be safe).

It can be shown that v ≡ UA ◦ ϕ is strictly increasing and concave if UA and u
are. The agent solves in the usual way, and γ is adjusted so that participation

constraint just holds. Here we have

X − ϕ(X) = u−1

„

v(X)

γ

«

;
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Robust solution.

Write a contract such that the objectives of principal and agent are the SAME !

An obvious way to do this is to set

UA(ϕ(X))

γ
= u(X − ϕ(X))

for some γ > 0. (Assume that Ua is onto R
+ to be safe).

It can be shown that v ≡ UA ◦ ϕ is strictly increasing and concave if UA and u
are. The agent solves in the usual way, and γ is adjusted so that participation

constraint just holds. Here we have

X − ϕ(X) = u−1

„

v(X)

γ

«

;

from the second best solution we have

X − ϕ(X) = (u′)−1

„

v′(X)

γ

«

.
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Law-invariant coherent risk measures.
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Law-invariant coherent risk measures.

These are

ρ(X) = sup{ρµ(X) : µ ∈ M},

whereM is a collection of probability measures on [0, 1],
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Law-invariant coherent risk measures.

These are

ρ(X) = sup{ρµ(X) : µ ∈ M},

whereM is a collection of probability measures on [0, 1],

ρµ(X) ≡
Z

ρa(X) µ(da),
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Law-invariant coherent risk measures.

These are

ρ(X) = sup{ρµ(X) : µ ∈ M},

whereM is a collection of probability measures on [0, 1],

ρµ(X) ≡
Z

ρa(X) µ(da),

and

ρa(X) ≡ −a−1E[X : X ≤ F−1
X

(a)] = −E[X|X ≤ F−1
X

(a)] = −a−1

Z a

0
F−1
X

(x) dx.
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Law-invariant coherent risk measures.

These are

ρ(X) = sup{ρµ(X) : µ ∈ M},

whereM is a collection of probability measures on [0, 1],

ρµ(X) ≡
Z

ρa(X) µ(da),

and

ρa(X) ≡ −a−1E[X : X ≤ F−1
X

(a)] = −E[X|X ≤ F−1
X

(a)] = −a−1

Z a

0
F−1
X

(x) dx.

If X = ψ(ζ) ≡ ψ(ζT ), ψ decreasing, then F−1
X

(a) = ψ(F−1
ζ

(1 − a)).
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Law-invariant coherent risk measures.

These are

ρ(X) = sup{ρµ(X) : µ ∈ M},

whereM is a collection of probability measures on [0, 1],

ρµ(X) ≡
Z

ρa(X) µ(da),

and

ρa(X) ≡ −a−1E[X : X ≤ F−1
X

(a)] = −E[X|X ≤ F−1
X

(a)] = −a−1

Z a

0
F−1
X

(x) dx.

If X = ψ(ζ) ≡ ψ(ζT ), ψ decreasing, then F−1
X

(a) = ψ(F−1
ζ

(1 − a)). Hence

ρa(X) = −a−1

Z a

0
F−1
X

(x) dx = −a−1

Z 1

1−a
ψ(F−1

ζ
(y)) dy = −a−1

Z ∞

F
−1

ζ
(1−a)

ψ(z) Fζ(dz)
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Law-invariant coherent risk measures.

These are

ρ(X) = sup{ρµ(X) : µ ∈ M},

whereM is a collection of probability measures on [0, 1],

ρµ(X) ≡
Z

ρa(X) µ(da),

and

ρa(X) ≡ −a−1E[X : X ≤ F−1
X

(a)] = −E[X|X ≤ F−1
X

(a)] = −a−1

Z a

0
F−1
X

(x) dx.

If X = ψ(ζ) ≡ ψ(ζT ), ψ decreasing, then F−1
X

(a) = ψ(F−1
ζ

(1 − a)). Hence

ρa(X) = −a−1

Z a

0
F−1
X

(x) dx = −a−1

Z 1

1−a
ψ(F−1

ζ
(y)) dy = −a−1

Z ∞

F
−1

ζ
(1−a)

ψ(z) Fζ(dz)

and

ρµ(X) = −
Z

ψ(z)

Z 1

1−Fζ(z)
a−1 µ(da)

ff

Fζ(dz)

= −E[ψ(ζ)gµ(ζ)]

for some non-negative increasing gµ.
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The optimization problem.

max
ψ↓

EU(ψ(ζT )), w0 = E[ζTψ(ζT )], E[ψ(ζT )gµ(ζT )] ≥ b ∀µ ∈ M

where

gµ(z) =

Z 1

1−Fζ(z)
a−1 µ(da).

CONTRACTING FOR OPTIMAL INVESTMENT WITH RISK CONTROL – p. 10/17



The optimization problem.

max
ψ↓

EU(ψ(ζT )), w0 = E[ζTψ(ζT )], E[ψ(ζT )gµ(ζT )] ≥ b ∀µ ∈ M

where

gµ(z) =

Z 1

1−Fζ(z)
a−1 µ(da).

Suppose M = {µ1, . . . , µn}, gi ≡ gµi , and µi({0, 1}) = 0.
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L(ψ, z) ≡ E

»

U(ψ(ζ)) + λ(w0 − ζψ(ζ)) +
n

X

i=1

αi{ψ(ζ)gi(ζ) − bi − zi}
–

= E

»

U(ψ(ζ)) − ψ(ζ)
˘

λζ −
n

X

i=1

αi gi(ζ)
¯

− α · (z + b)

–

+ λw0.
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Dual-feasibility: α ≥ 0,
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»

U(ψ(ζ)) − ψ(ζ)
˘

λζ −
n

X

i=1

αi gi(ζ)
¯

− α · (z + b)

–

+ λw0.

Dual-feasibility: α ≥ 0, and

λ ≥ sup
x>0

Pn
i=1 αi gi(x)

x
.
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λ ≥ sup
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x
.

In fact, we also require limx→∞ x−1gi(x) = 0.
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U(ψ(ζ)) + λ(w0 − ζψ(ζ)) +
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X

i=1

αi{ψ(ζ)gi(ζ) − bi − zi}
–

= E

»

U(ψ(ζ)) − ψ(ζ)
˘

λζ −
n

X

i=1

αi gi(ζ)
¯

− α · (z + b)

–

+ λw0.

Dual-feasibility: α ≥ 0, and

λ ≥ sup
x>0

Pn
i=1 αi gi(x)

x
.

In fact, we also require limx→∞ x−1gi(x) = 0.

Complementary slackness: α · z = 0.
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supL = supE

»

U(ψ(ζ)) − ψ(ζ)h(ζ) − α · b
–

+ λw0

where

h(z) ≡ λz −
n

X

i=1

αi gi(z).
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supL = supE

»

U(ψ(ζ)) − ψ(ζ)h(ζ) − α · b
–

+ λw0

where

h(z) ≡ λz −
n

X

i=1

αi gi(z).

Easy if h increasing.
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supL = supE

»

U(ψ(ζ)) − ψ(ζ)h(ζ) − α · b
–

+ λw0

where

h(z) ≡ λz −
n

X

i=1

αi gi(z).

Easy if h increasing. Else, set h̃(x) ≡ h(F−1
ζ

(x)), ψ̃(x) ≡ ψ(F−1
ζ

(x)), consider

E
ˆ

U(ψ(ζ)) − ψ(ζ)h(ζ)
˜

=

Z 1

0
{U(ψ̃(x)) − ψ̃(x)h̃(x)} dx ≡ Ψ,

say.
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h(z) ≡ λz −
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X

i=1

αi gi(z).

Easy if h increasing. Else, set h̃(x) ≡ h(F−1
ζ

(x)), ψ̃(x) ≡ ψ(F−1
ζ

(x)), consider

E
ˆ

U(ψ(ζ)) − ψ(ζ)h(ζ)
˜

=

Z 1

0
{U(ψ̃(x)) − ψ̃(x)h̃(x)} dx ≡ Ψ,

say. Now set H(x) ≡
R x

0 h̃(y) dy, and let H be the greatest convex minorant of

H, which we may express as

H(x) = H(x) + η(x)

for some η ≤ 0, η(0) = η(1) = 0.
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supL = supE
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U(ψ(ζ)) − ψ(ζ)h(ζ) − α · b
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where

h(z) ≡ λz −
n

X

i=1

αi gi(z).

Easy if h increasing. Else, set h̃(x) ≡ h(F−1
ζ

(x)), ψ̃(x) ≡ ψ(F−1
ζ

(x)), consider

E
ˆ

U(ψ(ζ)) − ψ(ζ)h(ζ)
˜

=

Z 1

0
{U(ψ̃(x)) − ψ̃(x)h̃(x)} dx ≡ Ψ,

say. Now set H(x) ≡
R x

0 h̃(y) dy, and let H be the greatest convex minorant of

H, which we may express as

H(x) = H(x) + η(x)

for some η ≤ 0, η(0) = η(1) = 0. Now estimate

Ψ =

Z 1

0
{U(ψ̃(x)) − ψ̃(x)(h̃(x) + η′(x))} dx+

Z 1

0
ψ̃(x)η′(x) dx

≤
Z 1

0
Ũ(h̃(x) + η′(x)) dx+ [ψ̃(x)η(x)]10 −

Z 1

0
η(x) dψ̃(x).
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How does it look?

Take σ = 0.35, µ = 0.2, r = 0.05, T = 1, w0 = 1; u = UA(0.05) and

U(x) = fR(x+ a) − fR(a), fR(x) = x1−R/(1 −R),

where R = 0.5 for the principal, R = 0.8 for the agent, with a = 0.05 for both.
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Take σ = 0.35, µ = 0.2, r = 0.05, T = 1, w0 = 1; u = UA(0.05) and

U(x) = fR(x+ a) − fR(a), fR(x) = x1−R/(1 −R),

where R = 0.5 for the principal, R = 0.8 for the agent, with a = 0.05 for both.

• Example 1: µ1 = δa, b1 = 0.8, a = 0.2. Thus

g̃1(x) = a−1I{x≥1−a}.
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Take σ = 0.35, µ = 0.2, r = 0.05, T = 1, w0 = 1; u = UA(0.05) and

U(x) = fR(x+ a) − fR(a), fR(x) = x1−R/(1 −R),

where R = 0.5 for the principal, R = 0.8 for the agent, with a = 0.05 for both.

• Example 1: µ1 = δa, b1 = 0.8, a = 0.2. Thus

g̃1(x) = a−1I{x≥1−a}.

• Example 5: µ1, µ2 of the same form, a1 = 0.65, a2 = 0.05,and b1 = 1, b2 = 0.3.

µ3(dx) = 3
2

√
x dx, b3 = 0.525.
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Principal’s solution, first example
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Example 1: psi for the principal
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Contracts, first example

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.00
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0.10

0.15

0.20

0.25

EXAMPLE 1: First best (black), agent fee = 0.0376854
                   Second best (blue), agent fee = 0.0435922
                         Robust (green), agent fee = 0.0437189
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Principal’s solution, second example
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Example 5: psi for the principal
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Contracts,second example

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.00
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EXAMPLE 5: First best (black), agent fee = 0.0376854
                   Second best (blue), agent fee = 0.0445436
                         Robust (green), agent fee = 0.0446055

CONTRACTING FOR OPTIMAL INVESTMENT WITH RISK CONTROL – p. 16/17



Conclusions
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Conclusions

• Robust contract delivers the principal’s optimum, but perfectly aligns the

objectives of principal and agent;
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• Law-constrained principal cares only about the law of terminal wealth, so

can find his optimum as a decreasing function of ζT ;

CONTRACTING FOR OPTIMAL INVESTMENT WITH RISK CONTROL – p. 17/17



Conclusions

• Robust contract delivers the principal’s optimum, but perfectly aligns the

objectives of principal and agent;

• Law-constrained principal cares only about the law of terminal wealth, so

can find his optimum as a decreasing function of ζT ;

• Optimum for law-constrained principal is same as optimum for a different

unconstrained agent;

CONTRACTING FOR OPTIMAL INVESTMENT WITH RISK CONTROL – p. 17/17



Conclusions

• Robust contract delivers the principal’s optimum, but perfectly aligns the

objectives of principal and agent;

• Law-constrained principal cares only about the law of terminal wealth, so

can find his optimum as a decreasing function of ζT ;

• Optimum for law-constrained principal is same as optimum for a different

unconstrained agent;

• First best contract relates wealth produced to agent’s wage;

CONTRACTING FOR OPTIMAL INVESTMENT WITH RISK CONTROL – p. 17/17



Conclusions

• Robust contract delivers the principal’s optimum, but perfectly aligns the

objectives of principal and agent;

• Law-constrained principal cares only about the law of terminal wealth, so

can find his optimum as a decreasing function of ζT ;

• Optimum for law-constrained principal is same as optimum for a different

unconstrained agent;

• First best contract relates wealth produced to agent’s wage;

• Second best contract ensures that the unsupervised agent delivers the

principal’s risk-constrained optimum;

CONTRACTING FOR OPTIMAL INVESTMENT WITH RISK CONTROL – p. 17/17



Conclusions

• Robust contract delivers the principal’s optimum, but perfectly aligns the

objectives of principal and agent;

• Law-constrained principal cares only about the law of terminal wealth, so

can find his optimum as a decreasing function of ζT ;

• Optimum for law-constrained principal is same as optimum for a different

unconstrained agent;

• First best contract relates wealth produced to agent’s wage;

• Second best contract ensures that the unsupervised agent delivers the

principal’s risk-constrained optimum;

• For the examples studied, second-best and robust contracts very similar.

CONTRACTING FOR OPTIMAL INVESTMENT WITH RISK CONTROL – p. 17/17



Conclusions

• Robust contract delivers the principal’s optimum, but perfectly aligns the
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• Law-constrained principal cares only about the law of terminal wealth, so
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unconstrained agent;
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• Second best contract ensures that the unsupervised agent delivers the

principal’s risk-constrained optimum;
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