CONTRACTING FOR OPTIMAL INVESTMENT WITH RISK CONTROL

L. C. G. Rogers

Statistical Laboratory, University of Cambridge

Overview

- Optimal investment under constraint on law of wealth
- First best contract
- Second best contract
- Robust contract
- Law-invariant coherent risk measures.

Wealth dynamics:

$$dw_t = rw_t dt + \theta_t (\sigma dW_t + (\mu - r)dt), \quad w_t \ge 0,$$

Wealth dynamics:

$$dw_t = rw_t dt + \theta_t (\sigma dW_t + (\mu - r)dt), \quad w_t \ge 0,$$

with objective

 $\max EU(w_T)$

where U is increasing, strictly concave.

Wealth dynamics:

$$dw_t = rw_t dt + \theta_t (\sigma dW_t + (\mu - r)dt), \quad w_t \ge 0,$$

with objective

 $\max EU(w_T)$

where U is increasing, strictly concave. State-price density process ($\kappa\equiv\sigma^{-1}(\mu-r)$)

 $d\zeta_t = \zeta_t (-rdt - \kappa \cdot dW_t), \quad \zeta_0 = 1.$

Easy to show that $\zeta_t w_t$ is a (local) martingale;

Wealth dynamics:

$$dw_t = rw_t dt + \theta_t (\sigma dW_t + (\mu - r)dt), \quad w_t \ge 0,$$

with objective

 $\max EU(w_T)$

where U is increasing, strictly concave. State-price density process ($\kappa\equiv\sigma^{-1}(\mu-r)$)

$$d\zeta_t = \zeta_t (-rdt - \kappa \cdot dW_t), \quad \zeta_0 = 1.$$

Easy to show that $\zeta_t w_t$ is a (local) martingale; and any $X \in L^1(\mathcal{F}_T)$ with $E[\zeta_T X] = w_0$ can be achieved,

Wealth dynamics:

$$dw_t = rw_t dt + \theta_t (\sigma dW_t + (\mu - r)dt), \quad w_t \ge 0,$$

with objective

 $\max EU(w_T)$

where U is increasing, strictly concave. State-price density process ($\kappa\equiv\sigma^{-1}(\mu-r)$)

 $d\zeta_t = \zeta_t (-rdt - \kappa \cdot dW_t), \quad \zeta_0 = 1.$

Easy to show that $\zeta_t w_t$ is a (local) martingale; and any $X \in L^1(\mathcal{F}_T)$ with $E[\zeta_T X] = w_0$ can be achieved, by representing $E[\zeta_T X|\mathcal{F}_t]$ as a stochastic integral.

Wealth dynamics:

$$dw_t = rw_t dt + \theta_t (\sigma dW_t + (\mu - r)dt), \quad w_t \ge 0,$$

with objective

 $\max EU(w_T)$

where U is increasing, strictly concave. State-price density process ($\kappa\equiv\sigma^{-1}(\mu-r)$)

 $d\zeta_t = \zeta_t (-rdt - \kappa \cdot dW_t), \quad \zeta_0 = 1.$

Easy to show that $\zeta_t w_t$ is a (local) martingale; and any $X \in L^1(\mathcal{F}_T)$ with $E[\zeta_T X] = w_0$ can be achieved, by representing $E[\zeta_T X|\mathcal{F}_t]$ as a stochastic integral. So if investor wants to $\max EU(w_T)$ for given w_0 , the Lagrangian problem is

 $\max E\big[U(w_T) + \lambda(w_0 - \zeta_T w_T) \big].$

Wealth dynamics:

$$dw_t = rw_t dt + \theta_t (\sigma dW_t + (\mu - r)dt), \quad w_t \ge 0,$$

with objective

 $\max EU(w_T)$

where U is increasing, strictly concave. State-price density process ($\kappa\equiv\sigma^{-1}(\mu-r)$)

 $d\zeta_t = \zeta_t (-rdt - \kappa \cdot dW_t), \quad \zeta_0 = 1.$

Easy to show that $\zeta_t w_t$ is a (local) martingale; and any $X \in L^1(\mathcal{F}_T)$ with $E[\zeta_T X] = w_0$ can be achieved, by representing $E[\zeta_T X|\mathcal{F}_t]$ as a stochastic integral. So if investor wants to $\max EU(w_T)$ for given w_0 , the Lagrangian problem is

$$\max E\big[U(w_T) + \lambda(w_0 - \zeta_T w_T) \big].$$

Solution is easy:

 $U'(w_T) = \lambda \zeta_T$

where λ is chosen to match the budget constraint.

Investor wants to $\max EU(w_T)$ subject to some constraint on the law of w_T ;

Investor wants to $\max EU(w_T)$ subject to some constraint on the law of w_T ; so he has to choose a law for w_T .

Investor wants to $\max EU(w_T)$ subject to some constraint on the law of w_T ; so he has to choose a law for w_T . If we want a given law for w_T , cheapest is to take $w_T = \psi(\zeta_T)$ for some decreasing ψ .

Investor wants to $\max EU(w_T)$ subject to some constraint on the law of w_T ; so he has to choose a law for w_T . If we want a given law for w_T , cheapest is to take $w_T = \psi(\zeta_T)$ for some decreasing ψ . So the investor's problem is to find decreasing ψ to $\max E[U(\psi(\zeta_T))]$ subject to

$$E[\zeta_T \psi(\zeta_T)] = w_0$$

and other constraints on the law of w_T .

Investor wants to $\max EU(w_T)$ subject to some constraint on the law of w_T ; so he has to choose a law for w_T . If we want a given law for w_T , cheapest is to take $w_T = \psi(\zeta_T)$ for some decreasing ψ . So the investor's problem is to find decreasing ψ to $\max E[U(\psi(\zeta_T))]$ subject to

$$E[\zeta_T \psi(\zeta_T)] = w_0$$

and other constraints on the law of w_T . Knowing ψ , define a utility u by

 $(u')^{-1}(x) = \psi(x);$

Investor wants to $\max EU(w_T)$ subject to some constraint on the law of w_T ; so he has to choose a law for w_T . If we want a given law for w_T , cheapest is to take $w_T = \psi(\zeta_T)$ for some decreasing ψ . So the investor's problem is to find decreasing ψ to $\max E[U(\psi(\zeta_T))]$ subject to

$$E[\zeta_T\psi(\zeta_T)] = w_0$$

and other constraints on the law of w_T . Knowing ψ , define a utility u by

 $(u')^{-1}(x) = \psi(x);$

then an unconstrained investor with initial wealth w_0 and maximizing $Eu(w_T)$ will choose $w_T = \psi(\zeta_T)$.

Investor wants to $\max EU(w_T)$ subject to some constraint on the law of w_T ; so he has to choose a law for w_T . If we want a given law for w_T , cheapest is to take $w_T = \psi(\zeta_T)$ for some decreasing ψ . So the investor's problem is to find decreasing ψ to $\max E[U(\psi(\zeta_T))]$ subject to

$$E[\zeta_T \psi(\zeta_T)] = w_0$$

and other constraints on the law of w_T . Knowing ψ , define a utility u by

 $(u')^{-1}(x) = \psi(x);$

then an unconstrained investor with initial wealth w_0 and maximizing $Eu(w_T)$ will choose $w_T = \psi(\zeta_T)$.

Need

$$\lim_{z \to \infty} \psi(z) = 0;$$

Investor wants to $\max EU(w_T)$ subject to some constraint on the law of w_T ; so he has to choose a law for w_T . If we want a given law for w_T , cheapest is to take $w_T = \psi(\zeta_T)$ for some decreasing ψ . So the investor's problem is to find decreasing ψ to $\max E[U(\psi(\zeta_T))]$ subject to

$$E[\zeta_T \psi(\zeta_T)] = w_0$$

and other constraints on the law of w_T . Knowing ψ , define a utility u by

 $(u')^{-1}(x) = \psi(x);$

then an unconstrained investor with initial wealth w_0 and maximizing $Eu(w_T)$ will choose $w_T = \psi(\zeta_T)$.

Need

$$\lim_{z \to \infty} \psi(z) = 0;$$

no real loss of generality assuming this.

• Principal (head of desk) has utility U_P

- Principal (head of desk) has utility U_P
- Agent (trader) has utility U_A .

- Principal (head of desk) has utility U_P
- Agent (trader) has utility U_A .
- Agent trades in market over [0, T], achieves wealth w_T at time T.

- Principal (head of desk) has utility U_P
- Agent (trader) has utility U_A .
- Agent trades in market over [0, T], achieves wealth w_T at time T.
- Principal rewards him with wages $\varphi(w_T)$.

- Principal (head of desk) has utility U_P
- Agent (trader) has utility U_A .
- Agent trades in market over [0, T], achieves wealth w_T at time T.
- Principal rewards him with wages $\varphi(w_T)$.

How should φ be chosen?

- Principal (head of desk) has utility U_P
- Agent (trader) has utility U_A .
- Agent trades in market over [0, T], achieves wealth w_T at time T.
- Principal rewards him with wages $\varphi(w_T)$.

How should φ be chosen?

We shall suppose that

 $U_P(0) = U_A(0) = 0, \quad U'_P(0) < \infty.$

- Principal (head of desk) has utility U_P
- Agent (trader) has utility U_A .
- Agent trades in market over [0, T], achieves wealth w_T at time T.
- Principal rewards him with wages $\varphi(w_T)$.

How should φ be chosen?

We shall suppose that

 $U_P(0) = U_A(0) = 0, \quad U'_P(0) < \infty.$

The principal has already determined his optimal terminal wealth $w_T^* = \psi(\zeta_T)$, and now he wants the total terminal wealth X generated to satisfy

$$Z \equiv X - Y \equiv X - \varphi(X) = w_T^* = \psi(\zeta_T).$$

- Principal (head of desk) has utility U_P
- Agent (trader) has utility U_A .
- Agent trades in market over [0, T], achieves wealth w_T at time T.
- Principal rewards him with wages $\varphi(w_T)$.

How should φ be chosen?

We shall suppose that

 $U_P(0) = U_A(0) = 0, \quad U'_P(0) < \infty.$

The principal has already determined his optimal terminal wealth $w_T^* = \psi(\zeta_T)$, and now he wants the total terminal wealth X generated to satisfy

$$Z \equiv X - Y \equiv X - \varphi(X) = w_T^* = \psi(\zeta_T).$$

Of course, generating terminal wealth X will cost more than w_0 ;

- Principal (head of desk) has utility U_P
- Agent (trader) has utility U_A .
- Agent trades in market over [0, T], achieves wealth w_T at time T.
- Principal rewards him with wages $\varphi(w_T)$.

How should φ be chosen?

We shall suppose that

 $U_P(0) = U_A(0) = 0, \quad U'_P(0) < \infty.$

The principal has already determined his optimal terminal wealth $w_T^* = \psi(\zeta_T)$, and now he wants the total terminal wealth X generated to satisfy

$$Z \equiv X - Y \equiv X - \varphi(X) = w_T^* = \psi(\zeta_T).$$

Of course, generating terminal wealth X will cost more than w_0 ; the principal wants to hire the agent for as little as possible, subject to the participation constraint of the agent:

$$EU_A(\varphi(X)) \ge \underline{u}$$

Cheapest way to give agent his reservation utility level is by taking

 $U'_A(Y) \equiv U'_A(\varphi(X)) = \nu \zeta_T$

for $\nu > 0$ chosen to satisfy participation constraint.

Cheapest way to give agent his reservation utility level is by taking

 $U'_A(Y) \equiv U'_A(\varphi(X)) = \nu \zeta_T$

for $\nu>0$ chosen to satisfy participation constraint. Wage schedule defined via ($U_A' \circ I_A = id$)

$$Y = I_A(\nu\zeta_T) = \varphi(\psi(\zeta_T) + I_A(\nu\zeta_T))$$

Cheapest way to give agent his reservation utility level is by taking

 $U'_A(Y) \equiv U'_A(\varphi(X)) = \nu \zeta_T$

for $\nu > 0$ chosen to satisfy participation constraint. Wage schedule defined via $(U'_A \circ I_A = id)$

$$Y = I_A(\nu\zeta_T) = \varphi(\psi(\zeta_T) + I_A(\nu\zeta_T))$$

Obtain the Borch rule

$$\frac{u'(Z)}{U'_A(Y)} = \text{constant}$$

for the derived utility u.

Cheapest way to give agent his reservation utility level is by taking

 $U'_A(Y) \equiv U'_A(\varphi(X)) = \nu \zeta_T$

for $\nu > 0$ chosen to satisfy participation constraint. Wage schedule defined via $(U'_A \circ I_A = id)$

$$Y = I_A(\nu\zeta_T) = \varphi(\psi(\zeta_T) + I_A(\nu\zeta_T))$$

Obtain the Borch rule

$$\frac{u'(Z)}{U'_A(Y)} = \text{constant}$$

for the derived utility u.

First best is a rather unrealistic solution concept ...

Second best solution.

Second best solution.

The agent is given the wage schedule φ , the initial wealth, and then maximises

```
E U_A(\varphi(X)) subject to E\zeta_T X = w_0.
```
The agent is given the wage schedule φ , the initial wealth, and then maximises

 $E U_A(\varphi(X))$ subject to $E\zeta_T X = w_0$.

Writing $v \equiv U_A \circ \varphi$, the agent will produce

 $v'(X) = \gamma \zeta_T.$

The agent is given the wage schedule φ , the initial wealth, and then maximises

 $E U_A(\varphi(X))$ subject to $E\zeta_T X = w_0$.

Writing $v \equiv U_A \circ \varphi$, the agent will produce

 $v'(X) = \gamma \zeta_T.$

The criterion that the principal should receive $Z = \psi(\zeta_T) = X - \varphi(X)$ now becomes

$$X - \varphi(X) = X - U_A^{-1}(v(X)) = \psi(\zeta_T) = \psi\left(\frac{v'(X)}{\gamma}\right).$$

The agent is given the wage schedule φ , the initial wealth, and then maximises

 $E U_A(\varphi(X))$ subject to $E\zeta_T X = w_0$.

Writing $v \equiv U_A \circ \varphi$, the agent will produce

 $v'(X) = \gamma \zeta_T.$

The criterion that the principal should receive $Z = \psi(\zeta_T) = X - \varphi(X)$ now becomes

$$X - \varphi(X) = X - U_A^{-1}(v(X)) = \psi(\zeta_T) = \psi\left(\frac{v'(X)}{\gamma}\right).$$

This is an ODE for v !

The agent is given the wage schedule φ , the initial wealth, and then maximises

 $E U_A(\varphi(X))$ subject to $E\zeta_T X = w_0$.

Writing $v \equiv U_A \circ \varphi$, the agent will produce

 $v'(X) = \gamma \zeta_T.$

The criterion that the principal should receive $Z = \psi(\zeta_T) = X - \varphi(X)$ now becomes

$$X - \varphi(X) = X - U_A^{-1}(v(X)) = \psi(\zeta_T) = \psi\left(\frac{v'(X)}{\gamma}\right).$$

This is an ODE for v! Because of the assumptions on U_P , $\bar{z} \equiv \inf\{z : \psi(z) = 0\}$ is finite;

The agent is given the wage schedule φ , the initial wealth, and then maximises

 $E U_A(\varphi(X))$ subject to $E\zeta_T X = w_0$.

Writing $v \equiv U_A \circ \varphi$, the agent will produce

$$v'(X) = \gamma \zeta_T.$$

The criterion that the principal should receive $Z = \psi(\zeta_T) = X - \varphi(X)$ now becomes

$$X - \varphi(X) = X - U_A^{-1}(v(X)) = \psi(\zeta_T) = \psi\left(\frac{v'(X)}{\gamma}\right).$$

This is an ODE for v! Because of the assumptions on U_P , $\bar{z} \equiv \inf\{z : \psi(z) = 0\}$ is finite; so we solve with the boundary conditions

 $v(0) = 0, \quad v'(0) = \gamma \bar{z}$

Write a contract such that the objectives of principal and agent are the SAME !

Write a contract such that the objectives of principal and agent are the SAME ! An obvious way to do this is to set

$$\frac{U_A(\varphi(X))}{\gamma} = u(X - \varphi(X))$$

for some $\gamma > 0$.

Write a contract such that the objectives of principal and agent are the SAME ! An obvious way to do this is to set

$$\frac{U_A(\varphi(X))}{\gamma} = u(X - \varphi(X))$$

for some $\gamma > 0$. (Assume that U_a is onto \mathbb{R}^+ to be safe).

Write a contract such that the objectives of principal and agent are the SAME ! An obvious way to do this is to set

$$\frac{U_A(\varphi(X))}{\gamma} = u(X - \varphi(X))$$

for some $\gamma > 0$. (Assume that U_a is onto \mathbb{R}^+ to be safe). It can be shown that $v \equiv U_A \circ \varphi$ is strictly increasing and concave if U_A and u are.

Write a contract such that the objectives of principal and agent are the SAME ! An obvious way to do this is to set

$$\frac{U_A(\varphi(X))}{\gamma} = u(X - \varphi(X))$$

for some $\gamma > 0$. (Assume that U_a is onto \mathbb{R}^+ to be safe).

It can be shown that $v \equiv U_A \circ \varphi$ is strictly increasing and concave if U_A and u are. The agent solves in the usual way, and γ is adjusted so that participation constraint just holds.

Write a contract such that the objectives of principal and agent are the SAME ! An obvious way to do this is to set

$$\frac{U_A(\varphi(X))}{\gamma} = u(X - \varphi(X))$$

for some $\gamma > 0$. (Assume that U_a is onto \mathbb{R}^+ to be safe).

It can be shown that $v \equiv U_A \circ \varphi$ is strictly increasing and concave if U_A and u are. The agent solves in the usual way, and γ is adjusted so that participation constraint just holds. Here we have

$$X - \varphi(X) = u^{-1} \left(\frac{v(X)}{\gamma} \right);$$

Write a contract such that the objectives of principal and agent are the SAME ! An obvious way to do this is to set

$$\frac{U_A(\varphi(X))}{\gamma} = u(X - \varphi(X))$$

for some $\gamma > 0$. (Assume that U_a is onto \mathbb{R}^+ to be safe). It can be shown that $v \equiv U_A \circ \varphi$ is strictly increasing and concave if U_A and u are. The agent solves in the usual way, and γ is adjusted so that participation constraint just holds. Here we have

$$X - \varphi(X) = u^{-1} \left(\frac{v(X)}{\gamma} \right);$$

from the second best solution we have

$$X - \varphi(X) = (u')^{-1} \left(\frac{v'(X)}{\gamma}\right).$$

These are

$$\rho(X) = \sup\{\rho^{\mu}(X) : \mu \in \mathcal{M}\},\$$

where \mathcal{M} is a collection of probability measures on [0,1],

These are

$$\rho(X) = \sup\{\rho^{\mu}(X) : \mu \in \mathcal{M}\},\$$

where \mathcal{M} is a collection of probability measures on [0,1],

$$\rho^{\mu}(X) \equiv \int \rho_a(X) \ \mu(da),$$

These are

$$\rho(X) = \sup\{\rho^{\mu}(X) : \mu \in \mathcal{M}\},\$$

where \mathcal{M} is a collection of probability measures on [0,1],

$$\rho^{\mu}(X) \equiv \int \rho_a(X) \ \mu(da),$$

and

$$\rho_a(X) \equiv -a^{-1}E[X: X \le F_X^{-1}(a)] = -E[X|X \le F_X^{-1}(a)] = -a^{-1} \int_0^a F_X^{-1}(x) \, dx.$$

These are

$$\rho(X) = \sup\{\rho^{\mu}(X) : \mu \in \mathcal{M}\},\$$

where \mathcal{M} is a collection of probability measures on [0, 1],

$$\rho^{\mu}(X) \equiv \int \rho_a(X) \ \mu(da),$$

and

$$\rho_a(X) \equiv -a^{-1}E[X: X \le F_X^{-1}(a)] = -E[X|X \le F_X^{-1}(a)] = -a^{-1} \int_0^a F_X^{-1}(x) \, dx.$$

If $X = \psi(\zeta) \equiv \psi(\zeta_T)$, ψ decreasing, then $F_X^{-1}(a) = \psi(F_{\zeta}^{-1}(1-a))$.

These are

$$\rho(X) = \sup\{\rho^{\mu}(X) : \mu \in \mathcal{M}\},\$$

where \mathcal{M} is a collection of probability measures on [0, 1],

$$\rho^{\mu}(X) \equiv \int \rho_a(X) \ \mu(da),$$

and

$$\rho_a(X) \equiv -a^{-1}E[X: X \le F_X^{-1}(a)] = -E[X|X \le F_X^{-1}(a)] = -a^{-1}\int_0^a F_X^{-1}(x) \, dx.$$

If $X = \psi(\zeta) \equiv \psi(\zeta_T)$, ψ decreasing, then $F_X^{-1}(a) = \psi(F_{\zeta}^{-1}(1-a))$. Hence

$$\rho_a(X) = -a^{-1} \int_0^a F_X^{-1}(x) \, dx = -a^{-1} \int_{1-a}^1 \psi(F_\zeta^{-1}(y)) \, dy = -a^{-1} \int_{F_\zeta^{-1}(1-a)}^\infty \psi(z) \, F_\zeta(dz)$$

These are

$$\rho(X) = \sup\{\rho^{\mu}(X) : \mu \in \mathcal{M}\},\$$

where \mathcal{M} is a collection of probability measures on [0, 1],

$$\rho^{\mu}(X) \equiv \int \rho_a(X) \ \mu(da),$$

and

$$\rho_a(X) \equiv -a^{-1}E[X: X \le F_X^{-1}(a)] = -E[X|X \le F_X^{-1}(a)] = -a^{-1} \int_0^a F_X^{-1}(x) \, dx.$$

If $X = \psi(\zeta) \equiv \psi(\zeta_T)$, ψ decreasing, then $F_X^{-1}(a) = \psi(F_{\zeta}^{-1}(1-a))$. Hence

$$\rho_a(X) = -a^{-1} \int_0^a F_X^{-1}(x) \, dx = -a^{-1} \int_{1-a}^1 \psi(F_\zeta^{-1}(y)) \, dy = -a^{-1} \int_{F_\zeta^{-1}(1-a)}^\infty \psi(z) \, F_\zeta(dz)$$

and

$$\rho^{\mu}(X) = -\int \psi(z) \left\{ \int_{1-F_{\zeta}(z)}^{1} a^{-1} \mu(da) \right\} F_{\zeta}(dz)$$
$$= -E[\psi(\zeta)g_{\mu}(\zeta)]$$

for some non-negative increasing g_{μ} .

$$\max_{\psi\downarrow} EU(\psi(\zeta_T)), \qquad w_0 = E[\zeta_T\psi(\zeta_T)], \quad E[\psi(\zeta_T)g_\mu(\zeta_T)] \ge b \quad \forall \mu \in \mathcal{M}$$
 where

$$g_{\mu}(z) = \int_{1-F_{\zeta}(z)}^{1} a^{-1} \mu(da).$$

 $\max_{\psi \downarrow} EU(\psi(\zeta_T)), \qquad w_0 = E[\zeta_T \psi(\zeta_T)], \quad E[\psi(\zeta_T)g_\mu(\zeta_T)] \ge b \quad \forall \mu \in \mathcal{M}$

where

$$g_{\mu}(z) = \int_{1-F_{\zeta}(z)}^{1} a^{-1} \mu(da).$$

Suppose $M = {\mu_1, ..., \mu_n}$, $g_i \equiv g_{\mu_i}$, and $\mu_i({0, 1}) = 0$.

 $\max_{\psi \downarrow} EU(\psi(\zeta_T)), \qquad w_0 = E[\zeta_T \psi(\zeta_T)], \quad E[\psi(\zeta_T)g_\mu(\zeta_T)] \ge b \quad \forall \mu \in \mathcal{M}$

where

$$g_{\mu}(z) = \int_{1-F_{\zeta}(z)}^{1} a^{-1} \mu(da).$$

Suppose $\mathcal{M} = \{\mu_1, \dots, \mu_n\}$, $g_i \equiv g_{\mu_i}$, and $\mu_i(\{0, 1\}) = 0$. Lagrangian:

$$L(\psi, z) \equiv E \left[U(\psi(\zeta)) + \lambda(w_0 - \zeta\psi(\zeta)) + \sum_{i=1}^n \alpha_i \{\psi(\zeta)g_i(\zeta) - b_i - z_i\} \right]$$
$$= E \left[U(\psi(\zeta)) - \psi(\zeta) \{\lambda\zeta - \sum_{i=1}^n \alpha_i g_i(\zeta)\} - \alpha \cdot (z+b) \right] + \lambda w_0.$$

 $\max_{\psi \downarrow} EU(\psi(\zeta_T)), \qquad w_0 = E[\zeta_T \psi(\zeta_T)], \quad E[\psi(\zeta_T)g_\mu(\zeta_T)] \ge b \quad \forall \mu \in \mathcal{M}$

where

$$g_{\mu}(z) = \int_{1-F_{\zeta}(z)}^{1} a^{-1} \mu(da).$$

Suppose $\mathcal{M} = \{\mu_1, \dots, \mu_n\}$, $g_i \equiv g_{\mu_i}$, and $\mu_i(\{0, 1\}) = 0$. Lagrangian:

$$L(\psi, z) \equiv E \left[U(\psi(\zeta)) + \lambda(w_0 - \zeta\psi(\zeta)) + \sum_{i=1}^n \alpha_i \{\psi(\zeta)g_i(\zeta) - b_i - z_i\} \right]$$
$$= E \left[U(\psi(\zeta)) - \psi(\zeta) \{\lambda\zeta - \sum_{i=1}^n \alpha_i g_i(\zeta)\} - \alpha \cdot (z+b) \right] + \lambda w_0.$$

Dual-feasibility: $\alpha \geq 0$,

 $\max_{\psi \downarrow} EU(\psi(\zeta_T)), \qquad w_0 = E[\zeta_T \psi(\zeta_T)], \quad E[\psi(\zeta_T)g_\mu(\zeta_T)] \ge b \quad \forall \mu \in \mathcal{M}$

where

$$g_{\mu}(z) = \int_{1-F_{\zeta}(z)}^{1} a^{-1} \mu(da).$$

Suppose $\mathcal{M} = \{\mu_1, \dots, \mu_n\}$, $g_i \equiv g_{\mu_i}$, and $\mu_i(\{0, 1\}) = 0$. Lagrangian:

$$L(\psi, z) \equiv E \left[U(\psi(\zeta)) + \lambda(w_0 - \zeta\psi(\zeta)) + \sum_{i=1}^n \alpha_i \{\psi(\zeta)g_i(\zeta) - b_i - z_i\} \right]$$
$$= E \left[U(\psi(\zeta)) - \psi(\zeta) \{\lambda\zeta - \sum_{i=1}^n \alpha_i g_i(\zeta)\} - \alpha \cdot (z+b) \right] + \lambda w_0.$$

Dual-feasibility: $\alpha \ge 0$, and

$$\lambda \ge \sup_{x>0} \frac{\sum_{i=1}^{n} \alpha_i g_i(x)}{x}.$$

 $\max_{\psi \downarrow} EU(\psi(\zeta_T)), \qquad w_0 = E[\zeta_T \psi(\zeta_T)], \quad E[\psi(\zeta_T)g_\mu(\zeta_T)] \ge b \quad \forall \mu \in \mathcal{M}$

where

$$g_{\mu}(z) = \int_{1-F_{\zeta}(z)}^{1} a^{-1} \mu(da).$$

Suppose $\mathcal{M} = \{\mu_1, \dots, \mu_n\}$, $g_i \equiv g_{\mu_i}$, and $\mu_i(\{0, 1\}) = 0$. Lagrangian:

$$L(\psi, z) \equiv E \left[U(\psi(\zeta)) + \lambda(w_0 - \zeta\psi(\zeta)) + \sum_{i=1}^n \alpha_i \{\psi(\zeta)g_i(\zeta) - b_i - z_i\} \right]$$
$$= E \left[U(\psi(\zeta)) - \psi(\zeta) \{\lambda\zeta - \sum_{i=1}^n \alpha_i g_i(\zeta)\} - \alpha \cdot (z+b) \right] + \lambda w_0.$$

Dual-feasibility: $\alpha \ge 0$, and

$$\lambda \ge \sup_{x>0} \frac{\sum_{i=1}^{n} \alpha_i g_i(x)}{x}.$$

In fact, we also require $\lim_{x\to\infty} x^{-1}g_i(x) = 0$.

 $\max_{\psi \downarrow} EU(\psi(\zeta_T)), \qquad w_0 = E[\zeta_T \psi(\zeta_T)], \quad E[\psi(\zeta_T)g_\mu(\zeta_T)] \ge b \quad \forall \mu \in \mathcal{M}$

where

$$g_{\mu}(z) = \int_{1-F_{\zeta}(z)}^{1} a^{-1} \mu(da).$$

Suppose $\mathcal{M} = \{\mu_1, \dots, \mu_n\}$, $g_i \equiv g_{\mu_i}$, and $\mu_i(\{0, 1\}) = 0$. Lagrangian:

$$L(\psi, z) \equiv E \left[U(\psi(\zeta)) + \lambda(w_0 - \zeta\psi(\zeta)) + \sum_{i=1}^n \alpha_i \{\psi(\zeta)g_i(\zeta) - b_i - z_i\} \right]$$
$$= E \left[U(\psi(\zeta)) - \psi(\zeta) \{\lambda\zeta - \sum_{i=1}^n \alpha_i g_i(\zeta)\} - \alpha \cdot (z+b) \right] + \lambda w_0.$$

Dual-feasibility: $\alpha \ge 0$, and

$$\lambda \ge \sup_{x>0} \frac{\sum_{i=1}^{n} \alpha_i g_i(x)}{x}.$$

In fact, we also require $\lim_{x\to\infty} x^{-1}g_i(x) = 0$. Complementary slackness: $\alpha \cdot z = 0$.

$$\sup L = \sup E\left[U(\psi(\zeta)) - \psi(\zeta)h(\zeta) - \alpha \cdot b \right] + \lambda w_0$$

$$h(z) \equiv \lambda z - \sum_{i=1}^{n} \alpha_i g_i(z).$$

$$\sup L = \sup E\left[U(\psi(\zeta)) - \psi(\zeta)h(\zeta) - \alpha \cdot b \right] + \lambda w_0$$

$$h(z) \equiv \lambda z - \sum_{i=1}^{n} \alpha_i g_i(z).$$

Easy if h increasing.

$$\sup L = \sup E \left[U(\psi(\zeta)) - \psi(\zeta)h(\zeta) - \alpha \cdot b \right] + \lambda w_0$$

$$h(z) \equiv \lambda z - \sum_{i=1}^{n} \alpha_i g_i(z).$$

Easy if h increasing. Else, set $\tilde{h}(x) \equiv h(F_{\zeta}^{-1}(x)), \tilde{\psi}(x) \equiv \psi(F_{\zeta}^{-1}(x))$, consider

$$E\left[U(\psi(\zeta)) - \psi(\zeta)h(\zeta) \right] = \int_0^1 \left\{ U(\tilde{\psi}(x)) - \tilde{\psi}(x)\tilde{h}(x) \right\} dx \equiv \Psi,$$

say.

$$\sup L = \sup E \left[U(\psi(\zeta)) - \psi(\zeta)h(\zeta) - \alpha \cdot b \right] + \lambda w_0$$

$$h(z) \equiv \lambda z - \sum_{i=1}^{n} \alpha_i g_i(z).$$

Easy if h increasing. Else, set $\tilde{h}(x) \equiv h(F_{\zeta}^{-1}(x)), \tilde{\psi}(x) \equiv \psi(F_{\zeta}^{-1}(x))$, consider

$$E\left[U(\psi(\zeta)) - \psi(\zeta)h(\zeta) \right] = \int_0^1 \left\{ U(\tilde{\psi}(x)) - \tilde{\psi}(x)\tilde{h}(x) \right\} dx \equiv \Psi,$$

say. Now set $H(x) \equiv \int_0^x \tilde{h}(y) \, dy$, and let <u>H</u> be the greatest convex minorant of H, which we may express as

$$\underline{H}(x) = \underline{H}(x) + \eta(x)$$

for some $\eta \leq 0$, $\eta(0) = \eta(1) = 0$.

$$\sup L = \sup E\left[U(\psi(\zeta)) - \psi(\zeta)h(\zeta) - \alpha \cdot b \right] + \lambda w_0$$

$$h(z) \equiv \lambda z - \sum_{i=1}^{n} \alpha_i g_i(z).$$

Easy if h increasing. Else, set $\tilde{h}(x) \equiv h(F_{\zeta}^{-1}(x)), \tilde{\psi}(x) \equiv \psi(F_{\zeta}^{-1}(x))$, consider

$$E\left[U(\psi(\zeta)) - \psi(\zeta)h(\zeta)\right] = \int_0^1 \left\{U(\tilde{\psi}(x)) - \tilde{\psi}(x)\tilde{h}(x)\right\} dx \equiv \Psi,$$

say. Now set $H(x) \equiv \int_0^x \tilde{h}(y) \, dy$, and let <u>H</u> be the greatest convex minorant of H, which we may express as

$$\underline{H}(x) = \underline{H}(x) + \eta(x)$$

for some $\eta \leq 0$, $\eta(0) = \eta(1) = 0$. Now estimate

$$\begin{split} \Psi &= \int_0^1 \left\{ U(\tilde{\psi}(x)) - \tilde{\psi}(x) (\tilde{h}(x) + \eta'(x)) \right\} \, dx + \int_0^1 \tilde{\psi}(x) \eta'(x) \, dx \\ &\leq \int_0^1 \tilde{U}(\tilde{h}(x) + \eta'(x)) \, dx + [\tilde{\psi}(x) \eta(x)]_0^1 - \int_0^1 \eta(x) \, d\tilde{\psi}(x). \end{split}$$

How does it look?

Take $\sigma = 0.35$, $\mu = 0.2$, r = 0.05, T = 1, $w_0 = 1$; $\underline{u} = U_A(0.05)$ and

$$U(x) = f_R(x+a) - f_R(a), \quad f_R(x) = x^{1-R} / (1-R),$$

where R = 0.5 for the principal, R = 0.8 for the agent, with a = 0.05 for both.

How does it look?

Take $\sigma = 0.35$, $\mu = 0.2$, r = 0.05, T = 1, $w_0 = 1$; $\underline{u} = U_A(0.05)$ and $U(x) = f_R(x+a) - f_R(a)$, $f_R(x) = x^{1-R}/(1-R)$,

 $C(x) = J_R(x + a) - J_R(a), \quad J_R(x) = x - /(1 - it),$

where R = 0.5 for the principal, R = 0.8 for the agent, with a = 0.05 for both.

• **Example 1:** $\mu_1 = \delta_a$, $b_1 = 0.8$, a = 0.2. Thus

$$\tilde{g}_1(x) = a^{-1} I_{\{x \ge 1-a\}}$$

How does it look?

Take $\sigma = 0.35$, $\mu = 0.2$, r = 0.05, T = 1, $w_0 = 1$; $\underline{u} = U_A(0.05)$ and

$$U(x) = f_R(x+a) - f_R(a), \quad f_R(x) = \frac{x^{1-R}}{(1-R)},$$

where R = 0.5 for the principal, R = 0.8 for the agent, with a = 0.05 for both.

• **Example 1:** $\mu_1 = \delta_a$, $b_1 = 0.8$, a = 0.2. Thus

$$\tilde{g}_1(x) = a^{-1} I_{\{x \ge 1-a\}}.$$

• **Example 5:** μ_1 , μ_2 of the same form, $a_1 = 0.65$, $a_2 = 0.05$, and $b_1 = 1$, $b_2 = 0.3$. $\mu_3(dx) = \frac{3}{2}\sqrt{x} dx$, $b_3 = 0.525$.

Principal's solution, first example

Contracts, first example

EXAMPLE 1: First best (black), agent fee = 0.0376854 Second best (blue), agent fee = 0.0435922 Robust (green), agent fee = 0.0437189

Principal's solution, second example

Contracts, second example

EXAMPLE 5: First best (black), agent fee = 0.0376854 Second best (blue), agent fee = 0.0445436 Robust (green), agent fee = 0.0446055

• Robust contract delivers the principal's optimum, but perfectly aligns the objectives of principal and agent;

- Robust contract delivers the principal's optimum, but perfectly aligns the objectives of principal and agent;
- Law-constrained principal cares only about the law of terminal wealth, so can find his optimum as a decreasing function of ζ_T ;

- Robust contract delivers the principal's optimum, but perfectly aligns the objectives of principal and agent;
- Law-constrained principal cares only about the law of terminal wealth, so can find his optimum as a decreasing function of ζ_T ;
- Optimum for law-constrained principal is same as optimum for a different unconstrained agent;

- Robust contract delivers the principal's optimum, but perfectly aligns the objectives of principal and agent;
- Law-constrained principal cares only about the law of terminal wealth, so can find his optimum as a decreasing function of ζ_T ;
- Optimum for law-constrained principal is same as optimum for a different unconstrained agent;
- First best contract relates wealth produced to agent's wage;

- Robust contract delivers the principal's optimum, but perfectly aligns the objectives of principal and agent;
- Law-constrained principal cares only about the law of terminal wealth, so can find his optimum as a decreasing function of ζ_T ;
- Optimum for law-constrained principal is same as optimum for a different unconstrained agent;
- First best contract relates wealth produced to agent's wage;
- Second best contract ensures that the unsupervised agent delivers the principal's risk-constrained optimum;

- Robust contract delivers the principal's optimum, but perfectly aligns the objectives of principal and agent;
- Law-constrained principal cares only about the law of terminal wealth, so can find his optimum as a decreasing function of ζ_T ;
- Optimum for law-constrained principal is same as optimum for a different unconstrained agent;
- First best contract relates wealth produced to agent's wage;
- Second best contract ensures that the unsupervised agent delivers the principal's risk-constrained optimum;
- For the examples studied, second-best and robust contracts very similar.

- Robust contract delivers the principal's optimum, but perfectly aligns the objectives of principal and agent;
- Law-constrained principal cares only about the law of terminal wealth, so can find his optimum as a decreasing function of ζ_T ;
- Optimum for law-constrained principal is same as optimum for a different unconstrained agent;
- First best contract relates wealth produced to agent's wage;
- Second best contract ensures that the unsupervised agent delivers the principal's risk-constrained optimum;
- For the examples studied, second-best and robust contracts very similar.