Convexity techniques for BSDEs from utility indifference valuation

Martin Schweizer
Department of Mathematics
ETH Zürich

Istanbul Workshop on Mathematical Finance
18-21 May 2009
Istanbul, Turkey
20.05.2009
based on joint work with
Christoph Frei, Semyon Malamud (ETH Zürich)

The basic problem

Setup

- Starting point: Backward stochastic differential equation (BSDE)

$$
\Gamma_{s}=G-\int_{s}^{T} g\left(Z_{r}\right) d r+\int_{s}^{T} Z_{r} d B_{r}, \quad 0 \leq s \leq T
$$

with fully quadratic driver

$$
g(z)=\chi+(z+\alpha)^{\prime} \wedge^{-1}(z+\alpha) .
$$

- Data: final condition G and driver $g=(\Lambda, \alpha, \chi)$ with matrix Λ, vector α and scalar χ.
- Solution: pair (Γ, Z) with scalar Γ and vector Z; driving Brownian motion B is also vector.
- Everything happens on $(\Omega, \mathcal{F}, \nVdash, P)$.

Questions

- Main question: What happens if
- we change the probability measure P ?
- we change the filtration \mathbb{F} ?
- we change the underlying space Ω ?
- Can we somehow generate and/or exploit symmetry?
- Idea:
- Basic BSDE gives exact description of problem and solution, but often hard to solve.
- Can we replace it by simpler BSDE ?
- Can we even find another BSDE with explicit solution $\tilde{\Gamma} \ldots$?
- ... and then estimate Γ in terms of $\tilde{\Gamma}$?

Precise formulation

The BSDE

- Basic BSDE is

$$
\begin{aligned}
d \Gamma_{s} & =\left(\chi_{s}+\left(Z_{s}+\alpha_{s}\right)^{\prime} \Lambda_{s}^{-1}\left(Z_{s}+\alpha_{s}\right)\right) d s-Z_{s} d B_{s} \\
\Gamma_{T} & =G
\end{aligned}
$$

- Assumptions:
- G, Λ, α, χ are all uniformly bounded.
- \wedge has eigenvalues uniformly bounded away from $\mathbf{0}$ and ∞.
- Solution: pair (Γ, Z) with
- Γ bounded semimartingale.
- Z integrand for Brownian motion B in \mathbb{R}^{n}.
- Explicit formula: if $\Lambda=c \mathrm{I}_{n \times n}$ and $\alpha \equiv 0, \chi \equiv 0$, then

$$
\Gamma_{s}=-c \log E\left[\exp (-G / c) \mid \mathcal{F}_{s}\right]
$$

Basic results

- Basic BSDE is

$$
\begin{aligned}
d \Gamma_{s} & =\left(\chi_{s}+\left(Z_{s}+\alpha_{s}\right)^{\prime} \Lambda_{s}^{-1}\left(Z_{s}+\alpha_{s}\right)\right) d s-Z_{s} d B_{s} \\
\Gamma_{T} & =G .
\end{aligned}
$$

- Basic BSDE has unique solution (Γ, Z).
- For any solution (Γ, Z) with Γ bounded, Z is in $B M O(B)$.
- Key property: The function $(A, z) \mapsto f(A, z)=z^{\prime} A^{-1} z$ in the driver is (jointly) convex.
- Γ from solution (Γ, Z) of basic BSDE is jointly concave as a function of $(G, \Lambda, \alpha, \chi)$.
- \longrightarrow Kobylanski (2000), Mania/S (2005)

Some motivation

PDE motivation

- Start with PDE

$$
u_{s}+\frac{1}{2} \Delta u-f(\Lambda, \alpha-\nabla u)-\chi=0, \quad u(T, x)=h(x) .
$$

- Link to BSDE: solution to BSDE is $\Gamma .=u(\cdot, B$.$) ,$ $Z .=-\nabla u(\cdot, B$.$) .$
- Symmetrise: $\tilde{\Lambda}:=\frac{1}{n!} \sum_{O \in \operatorname{Perm}} O^{\prime} \Lambda O, \tilde{\alpha}:=\frac{1}{n!} \sum_{O \in \operatorname{Perm}} O^{\prime} \alpha$,

$$
\tilde{h}:=\frac{1}{n!} \sum_{O \in \text { Perm }} h \circ O
$$

- Symmetrised PDE then reads

$$
\tilde{u}_{s}+\frac{1}{2} \Delta \tilde{u}-f(\tilde{\Lambda}, \tilde{\alpha}-\nabla \tilde{u})-\chi=0, \quad \tilde{u}(T, x)=\tilde{h}(x) .
$$

- Comparison result: $\tilde{u}(0,0) \geq u(0,0)$.

Argument

- Replace x by $O x$ and compute to get

$$
f(\Lambda, \alpha-O \nabla u(s, O x))=f\left(O^{\prime} \wedge O, O^{\prime} \alpha-\nabla u(s, O x)\right)
$$

- Symmetrised function $\bar{u}(s, x):=\frac{1}{n!} \sum_{O \in \operatorname{Perm}} u(s, O x)$ solves

$$
\begin{array}{r}
\bar{u}_{s}(s, x)+\frac{1}{2} \Delta \bar{u}(s, x)-\chi-\frac{1}{n!} \sum_{O \in \operatorname{Perm}} f\left(O^{\prime} \wedge O, O^{\prime} \alpha-\nabla u(s, O x)\right)=0 \\
\bar{u}(T, x)=\tilde{h}(x)
\end{array}
$$

- By joint convexity of f,

$$
\frac{1}{n!} \sum_{O \in \operatorname{Perm}} f\left(O^{\prime} \wedge O, O^{\prime} \alpha-\nabla u(s, O x)\right) \geq f(\tilde{\Lambda}, \tilde{\alpha}-\nabla \bar{u}(s, x))
$$

- So $\tilde{u}(0,0) \geq \bar{u}(0,0)=u(0,0)$.

Changing basics of BSDEs

Changing the measure

Setup and notations

- Key idea: parametric family of measures via Girsanov.
- Parameters for measure change are from suitable space \mathcal{K} of processes κ (integrability conditions):
- $d P^{\kappa}=\mathcal{E}\left(-\int \kappa d B\right) d P$.
- $B^{\kappa}=B+\int \kappa_{s} d s$ is P^{κ}-Brownian motion.
- Auxiliary variables

$$
\begin{aligned}
G^{\kappa} & :=G-\int_{0}^{T}\left(\chi_{s}+\frac{1}{2} \kappa_{s}^{\prime} \Lambda_{s} \kappa_{s}\right) d s-\int_{0}^{T}\left(\alpha_{s}+\Lambda_{s} \kappa_{s}\right) d B_{s} \\
& =G-\int_{0}^{T} \chi_{s} d s-\int_{0}^{T} \alpha_{s} d B_{s}-\int_{0}^{T} \kappa_{s} d B_{s}-\frac{1}{2} \int_{0}^{T} \kappa_{s}^{\prime} \Lambda_{s} \kappa_{s} d s .
\end{aligned}
$$

- Important quantities: $\delta^{\text {max }}:=\sup _{0 \leq s \leq T}\left\|\max \operatorname{spec}\left(\Lambda_{s}\right)\right\|_{\infty}$,

$$
\delta^{\min }:=\inf _{0 \leq s \leq T} \frac{1}{\left\|\operatorname{maxspec}\left(\Lambda_{s}^{-1}\right)\right\|_{\infty}}
$$

Varying the measure

- Theorem 1:

$$
\begin{aligned}
\Gamma_{t} & =-\underset{\kappa \in \mathcal{K}}{\operatorname{ess} \sup } \log E_{P^{\kappa}}\left[\exp \left(-G_{t}^{\kappa} / \delta_{t}^{\max }\right) \mid \mathcal{F}_{t}\right]^{\delta_{t}^{\max }} \\
& =-\underset{\kappa \in \mathcal{K}}{\operatorname{ess} \inf } \log E_{P^{\kappa}}\left[\exp \left(-G_{t}^{\kappa} / \delta_{t}^{\min }\right) \mid \mathcal{F}_{t}\right]_{t}^{\delta_{t i n}^{\min }}
\end{aligned}
$$

and for every $\kappa \in \mathcal{K}$,

$$
\Gamma_{t}=\left.\log E_{P^{\kappa}}\left[\exp \left(-G_{t}^{\kappa} / \delta\right) \mid \mathcal{F}_{t}\right]^{\delta}\right|_{\delta=\delta_{t}^{\kappa, G}}
$$

for some \mathcal{F}_{t}-measurable $\delta_{t}^{\kappa, G}$ with values in $\left[\delta_{t}^{\min }, \delta_{t}^{\max }\right]$.

- Comments:

- Quasi-explicit structural formula via interpolation.
- Upper and lower bounds for Γ_{t} via choices of κ.
- Key quantities are extremal eigenvalues of Λ.

Outline of proof 1

- Explicitly, $\Gamma^{\delta, \kappa}:=-\log E_{P^{\kappa}}[\exp (-\cdot / \delta) \mid \nVdash]^{\delta}$ has dynamics

$$
d \Gamma^{\delta, \kappa}=\frac{1}{2 \delta}\left|Z^{\delta, \kappa}\right|^{2} d t-Z^{\delta, \kappa} d B^{\kappa}
$$

- Under P^{κ}, Γ has dynamics

$$
\begin{aligned}
d \Gamma= & \frac{1}{2}(Z+\alpha+\Lambda \kappa)^{\prime} \Lambda^{-1}(Z+\alpha+\Lambda \kappa) d t \\
& +\left(\chi-\kappa^{\prime} \alpha-\frac{1}{2} \kappa^{\prime} \wedge \kappa\right) d t-Z d B^{\kappa},
\end{aligned}
$$

and first $d t$-term is, by estimating eigenvalues,

$$
\geq \frac{1}{2 \delta^{\max }}|Z+\alpha+\Lambda \kappa|^{2} d t
$$

- Rewrite

$$
\begin{aligned}
-Z d B^{\kappa}= & -(Z+\alpha+\Lambda \kappa) d B^{\kappa}+(\alpha+\Lambda \kappa) d B^{\kappa} \\
= & -(Z+\alpha+\Lambda \kappa) d B^{\kappa}+(\alpha+\Lambda \kappa) d B \\
& +\left(\alpha^{\prime} \kappa+\kappa^{\prime} \Lambda \kappa\right) d t .
\end{aligned}
$$

Outline of proof 2

- Put things together to obtain

$$
\begin{aligned}
d \Gamma \geq & \frac{1}{2 \delta^{\max }}|Z+\alpha+\Lambda \kappa|^{2} d t-(Z+\alpha+\Lambda \kappa) d B^{\kappa} \\
& +\left(\chi+\frac{1}{2} \kappa^{\prime} \Lambda \kappa\right) d t+(\alpha+\Lambda \kappa) d B
\end{aligned}
$$

- Recall $d \Gamma^{\delta, \kappa}=\frac{1}{2 \delta}\left|Z^{\delta, \kappa}\right|^{2} d t-Z^{\delta, \kappa} d B^{\kappa}$.
- Final value of original Γ is $\Gamma_{T}=G$. Using for BSDE inequality instead final value

$$
G-\int_{t}^{T}\left(\left(\chi_{s}+\frac{1}{2} \kappa_{s}^{\prime} \Lambda_{s} \kappa_{s}\right) d s+\left(\alpha_{s}+\Lambda_{s} \kappa_{s}\right) d B_{s}\right)=G_{t}^{\kappa}
$$

therefore gives $\Gamma_{t} \leq \Gamma_{t}^{\delta^{\text {max }}, \kappa}$ from BSDE comparison.

- Equality for choice of κ with $Z+\alpha+\Lambda \kappa=0$.

Changing the filtration

Setup and notations

- Key idea: split space into subspaces with $n=\bar{n}+\underline{n}$. Then project on upper half.
- Brownian motion $B=(\bar{B}, \underline{B})$ in $\mathbb{R}^{n}=\mathbb{R}^{\bar{n}} \times \mathbb{R}^{n}$.
- Filtrations $\mathbb{F}=\mathbb{F}^{B}, \overline{\mathscr{F}}=\mathbb{F}^{\bar{B}}, \underline{\mathscr{F}}=\mathbb{F}^{\underline{B}}$.
- Generators g, \bar{g} with $f(A, z)=z^{\prime} A^{-1} z$ and $\bar{f}(\bar{A}, \bar{z})=\bar{z}^{\prime} \bar{A}^{-1} \bar{z}$, where \bar{A} is the upper left $\bar{n} \times \bar{n}$ corner of A.
- Final values G and $\bar{G}=E\left[G \mid \overline{\mathcal{F}}_{T}\right]$.
- BSDEs

$$
d \Gamma_{s}=\left(\chi_{s}+f\left(\Lambda_{s}, Z_{s}+\alpha_{s}\right)\right) d s-Z_{s} d B_{s}, \quad \Gamma_{T}=G
$$

and

$$
d \check{\Gamma}_{s}=\left(\chi_{s}^{o}+\bar{f}\left(\bar{\Lambda}_{s}^{o}, \check{Z}_{s}+\bar{\alpha}_{s}^{o}\right)\right) d s-\check{Z}_{s} d \bar{B}_{s}, \quad \check{\Gamma}_{T}=\bar{G} .
$$

- Superscript ${ }^{\circ}$ for optional projection under P on \bar{F}.

Shrinking the filtration

- Theorem 2: For the solutions (Γ, Z) and $(\check{\Gamma}, \check{Z})$ of the BSDEs

$$
d \Gamma_{s}=\left(\chi_{s}+f\left(\Lambda_{s}, Z_{s}+\alpha_{s}\right)\right) d s-Z_{s} d B_{s}, \quad \Gamma_{T}=G
$$

and

$$
d \check{\Gamma}_{s}=\left(\chi_{s}^{o}+\bar{f}\left(\bar{\Lambda}_{s}^{o}, \check{Z}_{s}+\bar{\alpha}_{s}^{o}\right)\right) d s-\check{Z}_{s} d \bar{B}_{s}, \quad \check{\Gamma}_{T}=\bar{G} .
$$

we have

$$
\Gamma^{\circ} \leq \check{\Gamma}
$$

- Comments:
- Jensen-type inequality for our class of BSDEs.
- In simplest case, $\Gamma_{0}=-c \log E[\exp (-G / c)]$ and

$$
\check{\Gamma}_{0}=-c \log E[\exp (-\bar{G} / c)], \text { with } \bar{G}=E\left[G \mid \overline{\mathcal{F}}_{T}\right] .
$$

Outline of proof

- (Γ, Z) solves BSDE

$$
d \Gamma_{s}=\left(\chi_{s}+f\left(\Lambda_{s}, Z_{s}+\alpha_{s}\right)\right) d s-Z_{s} d B_{s}, \quad \Gamma_{T}=G
$$

- Projecting on filtration \bar{F} gives

$$
d \Gamma_{s}^{o}=\left(\chi_{s}^{o}+f\left(\Lambda_{s}, Z_{s}+\alpha_{s}\right)\right)^{o} d s-Z_{s}^{\circ} d \bar{B}_{s}, \quad \Gamma_{T}^{\circ}=\bar{G}
$$

- Convexity of f yields

$$
\left(f\left(\Lambda_{s}, Z_{s}+\alpha_{s}\right)\right)^{o} \geq f\left(\Lambda_{s}^{o}, Z_{s}^{o}+\alpha_{s}^{o}\right)
$$

and $f(A, z) \geq \bar{f}(\bar{A}, \bar{z})$.

- ($\check{\Gamma}, \check{Z})$ solves BSDE

$$
d \check{\Gamma}_{s}=\left(\chi_{s}^{o}+\bar{f}\left(\bar{\Lambda}_{s}^{o}, \check{Z}_{s}+\bar{\alpha}_{s}^{o}\right)\right) d s-\check{Z}_{s} d \bar{B}_{s}, \quad \check{\Gamma}_{T}=\bar{G},
$$

- Result follows from BSDE comparison theorem.

Changing the

underlying space

Setup and notations

- Key idea: normal distribution is rotation-invariant; so can transform Brownian increments without doing harm.
- $\Omega=C\left([0, T] ; \mathbb{R}^{n}\right)$ Wiener space with Wiener measure P.
- For $u \in \mathbf{O}(n)$ and fixed t, define transformation on Ω by

$$
U_{t}(g)(s):= \begin{cases}\omega(s) & \text { for } s \leq t \\ \omega(t)+u(g \omega(s)-\omega(t)) & \text { for } s>t\end{cases}
$$

(rotate increments after time t by u).

- Key point: Wiener measure and transformation U_{t} commute; so
- $B^{u}:=U_{t} \circ B$ is again Brownian motion.
- $B \circ U_{t}=U_{t} \circ B$.
- $\int\left(Z \circ U_{t}\right) d B^{u}=\left(\int Z d B\right) \circ U_{t}$, i.e., stochastic integrals also "commute" with U_{t}.

Transforming Wiener space

- Theorem 3: If general BSDE

$$
\Gamma_{s}=G-\int_{s}^{T} F_{r}\left(\Gamma_{r}, Z_{r}\right) d r+\int_{s}^{T} Z_{r} d B_{r}
$$

has unique solution (Γ, Z), then transformation $\left(\Gamma \circ U_{t}, Z \circ U_{t}\right)$ is unique solution of transformed BSDE

$$
\tilde{\Gamma}_{s}=G \circ U_{t}-\int_{s}^{T}\left(F \circ U_{t}\right)_{r}\left(\tilde{\Gamma}_{r}, \tilde{Z}_{r}\right) d r+\int_{s}^{T} \tilde{Z}_{r} d\left(B \circ U_{t}\right)_{r} .
$$

In particular: Transformed solution $\left(\Gamma \circ U_{t}, Z \circ U_{t}\right)$ agrees with (Γ, Z) on $\llbracket 0, t \rrbracket$.

Averaging

- Back to our basic BSDE

$$
d \Gamma_{s}=\left(\chi_{s}+f\left(\Lambda_{s}, Z_{s}+\alpha_{s}\right)\right) d s-Z_{s} d B_{s}, \quad \Gamma_{T}=G
$$

- For finite subset \mathcal{O} of $\mathbf{O}(n)$, average parameters

$$
\begin{aligned}
& G^{\mathcal{O}}:=\frac{1}{|\mathcal{O}|} \sum_{u \in \mathcal{O}} G \circ U_{t}, \Lambda^{\mathcal{O}}:=\frac{1}{|\mathcal{O}|} \sum_{u \in \mathcal{O}} u^{\prime}\left(\Lambda \circ U_{t}\right) u, \\
& \alpha^{\mathcal{O}}:=\frac{1}{|\mathcal{O}|} \sum_{u \in \mathcal{O}} u^{\prime}\left(\alpha \circ U_{t}\right), \chi^{\mathcal{O}}:=\frac{1}{|\mathcal{O}|} \sum_{u \in \mathcal{O}} \chi \circ U_{t} .
\end{aligned}
$$

- Corollary: For solution $\left(\Gamma^{\mathcal{O}}, Z^{\mathcal{O}}\right)$ of BSDE

$$
d \tilde{\Gamma}_{s}=\left(\chi_{s}^{\mathcal{O}}+f\left(\Lambda_{s}^{\mathcal{O}}, \tilde{Z}_{s}+\alpha_{s}^{\mathcal{O}}\right)\right) d s-\tilde{Z}_{s} d B_{s}, \quad \tilde{\Gamma}_{T}=G^{\mathcal{O}}
$$

we then have

$$
\Gamma_{t} \leq \Gamma_{t}^{\mathcal{O}}
$$

Symmetrising 1

- Main messages and ideas:
- Averaging convex BSDEs increases solutions, because generator decreases by convexity.
- So averaging gives upper bounds - but how to choose good set \mathcal{O} for averaging?
- Upper bound on Γ increases with maximal eigenvalue of Λ.
- So: reduce maximal eigenvalue by making \wedge maximally symmetric ..
- ... hence choose for \mathcal{O} the permutation group Perm.
- Notations: $G^{\text {sym }}:=\frac{1}{n!} \sum_{u \in \operatorname{Perm}} G \circ U_{t}$,

$$
\alpha^{\text {sym }}:=\frac{1}{n!} \sum_{u \in \operatorname{Perm}} u^{\prime}\left(\alpha \circ U_{t}\right), \chi^{\text {sym }}:=\frac{1}{n!} \sum_{u \in \operatorname{Perm}} \chi \circ U_{t} .
$$

Symmetrising 2

- Corollary: Assume Λ is diagonal and set

$$
d_{t}:=\left\|\frac{1}{n} \sum_{j=1}^{n} \max _{u \in \operatorname{Perm}}\left(\Lambda_{s}^{j j} \circ U_{t}\right)\right\|_{\infty} .
$$

Then (upper bound from symmetrised setting)

$$
\Gamma_{t} \leq-d_{t} \log E\left[\exp \left(-G^{\text {sym }}+\int_{t}^{T} \alpha_{s}^{\text {sym }} d B_{s}+\int_{t}^{T} \chi_{s}^{\text {sym }} d s\right)^{1 / d_{t}} \mid \mathcal{F}_{t}\right] .
$$

- Idea for proof: Combine averaging result for $\mathcal{O}=$ Perm with measure change result for $\kappa \equiv 0$ and use that RHS above is (by Jensen) increasing in the argument d_{t}.

Generalisations

- Results can be generalised to some degree:
- Can replace boundedness of G, α, χ by appropriate exponential moment conditions.
- Can relax assumption that eigenvalues of Λ are bounded away from infinity.
- Cannot relax assumption that eigenvalues of Λ are uniformly bounded away from 0 .
- Hard question: How about other (more general) generators ?

Towards finance applications

Exponential utility indifference valuation

- Given: model S for discounted asset prices, class Θ of allowed strategies, discounted payoff G.
- Wanted: valuation for G.
- Incomplete market: value depends on subjective preferences.
- Use exponential utility function $U(x)=-\exp (-\gamma x)$.
- Utility indifference value b_{t} for buying G at time t : implicitly defined by

$$
\begin{aligned}
& \underset{\theta \in \Theta}{\operatorname{ess} \sup } E\left[U\left(x_{t}+\int_{t}^{T} \theta_{u} d S_{u}\right) \mid \mathcal{F}_{t}\right] \\
& =\underset{\theta \in \Theta}{\operatorname{ess} \sup } E\left[U\left(x_{t}-b_{t}+\int_{t}^{T} \theta_{u} d S_{u}+G\right) \mid \mathcal{F}_{t}\right] .
\end{aligned}
$$

- Indifference, in terms of expected utility under optimal investment, between buying or not buying payoff.

Specific model

- Independent BMs W and W^{\perp} valued in \mathbb{R}^{m} and \mathbb{R}^{n}.
- Correlated Brownian motion

$$
d Y_{s}=R_{s} d W_{s}+\sqrt{\mathrm{I}_{n \times n}-R_{s} R_{s}^{\prime}} d W_{s}^{\perp}
$$

- Eigenvalues of $R R^{\prime}$ uniformly bounded away from 1.
- "Correlation matrix" $\Lambda=\frac{1}{\gamma}\left(\mathrm{I}_{n \times n}-R R^{\prime}\right)^{-1}$ has $\delta_{t}^{\text {min }} \geq \frac{1}{\gamma}$.
- Model for $S\left(\mathbb{R}^{m}\right.$-valued $)$ is

$$
d S_{s}^{j}=S_{s}^{j} \mu_{s}^{j} d s+\sum_{k=1}^{m} S_{s}^{j} \sigma_{s}^{j k} d W_{s}^{k}
$$

- Filtration (\mathbb{G}) generated by W, W^{\perp}.
- Notation: Sharpe ratio is $\lambda:=\sigma^{-1} \mu$.
- Everything nicely bounded...

(Wrong) BSDE for indifference value

- Well-known result: maximal expected utility

$$
V_{t}^{G}:=\underset{\pi \in \Pi}{\operatorname{ess} \sup } E\left[-\exp \left(-\gamma \int_{t}^{T} \pi_{u}^{\prime} \sigma_{u} d W_{u}-\gamma G\right) \mid \mathcal{G}_{t}\right]
$$

satisfies $V_{t}^{G}=-\exp \left(-\gamma \check{\Gamma}_{t}\right)$ with quadratic BSDE

$$
\begin{aligned}
\check{\Gamma}_{s}= & G-\int_{s}^{T}\left(\frac{\gamma}{2}\left|\check{Z}_{r}\right|^{2}-\hat{Z}_{r}^{\prime} \lambda_{r}-\frac{1}{2 \gamma}\left|\lambda_{r}\right|^{2}\right) d r \\
& +\int_{s}^{T} \hat{Z}_{r} d W_{r}+\int_{s}^{T} \check{Z}_{r} d W_{r}^{\perp} .
\end{aligned}
$$

- $\longrightarrow \mathrm{Hu} /$ Imkeller/Müller (2005)
- Unique solution, nice properties, ... -
- - but BSDE does not have general form we need!
- Problem: Only second part \bar{Z} of full vector $Z=(\hat{Z}, \check{Z})$ appears in fully quadratic form.

Making our results applicable 1

- First approach: replace BSDE by

$$
\begin{aligned}
\check{\Gamma}_{s}^{\epsilon}= & G-\int_{s}^{T}\left(\frac{\gamma}{2}\left|\check{Z}_{r}^{\epsilon}\right|^{2}+\epsilon\left|\hat{Z}_{r}^{\epsilon}\right|-\left(\hat{Z}^{\epsilon}\right)_{r}^{\prime} \lambda_{r}-\frac{1}{2 \gamma}\left|\lambda_{r}\right|^{2}\right) d r \\
& +\int_{s}^{T} \hat{Z}_{r}^{\epsilon} d W_{r}+\int_{s}^{T} \check{Z}_{r}^{\epsilon} d W_{r}^{\perp}
\end{aligned}
$$

(note that missing fully quadratic term $\epsilon|\hat{Z}|^{2}$ has been added).

- Theorem 4: Our desired solution $\check{\Gamma}$ is given by

$$
\check{\Gamma}_{t}=-\underset{\epsilon \in(0,1]}{\operatorname{ess} \inf } \underset{\kappa \in \mathcal{K}_{(m)}^{(m)}}{\operatorname{ess} \inf } \log E_{Q^{\kappa}}\left[\exp \left(-\gamma G_{t}^{\kappa, \epsilon}\right) \mid \mathcal{G}_{t}\right]^{1 / \gamma}
$$

- Usefulness: Gives lower bounds for $\check{\Gamma}$ and hence for V^{G} by choosing suitable ϵ and κ.

Making our results applicable 2

- Special case: $\kappa=\lambda$ gives $Q^{\kappa}=\hat{P}$ (the minimal martingale measure) and

$$
\check{\Gamma}_{t} \geq-\log E_{\hat{\rho}}\left[\left.\exp \left(-\gamma G-\frac{1}{2} \int_{t}^{T}\left|\lambda_{r}\right|^{2} d r\right) \right\rvert\, \mathcal{G}_{t}\right]
$$

- \longrightarrow Zariphopoulou (2001), ...
- Remark: Can use projection results to get upper bounds for v^{G}.

Nontradable payoffs and symmetrisation 1

- Assume that
- G is \mathcal{F}_{T}^{Y}-measurable
- $\lambda=\sigma^{-1} \mu$ is Π^{Y}-predictable
- R is \mathscr{F}^{Y}-predictable
- Interpretation:
- Think of Y as nontradable factor (process).
- Payoff G only depends on factor (e.g. variance swap).
- Sharpe ratio only depends on factor (e.g. stochastic volatility model).
- Note that S and Y can have stochastic correlation via R.
- Correlations only depend on factor.
- Comment: Looks restrictive - but most literature has all parameters nonrandom and constant in time!

Nontradable payoffs and symmetrisation 2

- Key point of assumptions: obtain $V^{G}=-\exp (-\gamma \Gamma)$ with

$$
\Gamma_{s}=G-\int_{s}^{T}\left(\frac{1}{2} Z_{r}^{\prime} \Lambda_{r}^{-1} Z_{r}-Z_{r}^{\prime} R_{r} \lambda_{r}-\frac{1}{2 \gamma}\left|\lambda_{r}\right|^{2}\right) d r+\int_{s}^{T} Z_{r} d Y_{r} .
$$

- Consequences:
- Technically: Above BSDE falls now into our general framework, so can use all results and techniques.
- Economically: Everything can be expressed in factor filtration.
- In particular: can use symmetrisation estimates.
- Limitations: needs technical conditions; competing impacts.

Some references

Some references

- Barrieu/El Karoui (2009)
- Briand/Hu (2008)
- Frei/S (2008a,b)
- Hu/Imkeller/Müller (2005)
- Kobylanski (2000)
- Leung/Sircar (2008)
- Mania/S (2005)
- Morlais (2007)
- Musiela/Zariphopoulou (2004)
- Rouge/El Karoui (2000)
- Zariphopoulou (2001)
- ... (other missing links)

The end (for now ...)

Thank you for your attention!

http://www.math.ethz.ch/~mschweiz http://www.math.ethz.ch/~frei

