Dual Formulation of Second Order Target Problems

Jianfeng ZHANG

University of Southern California, Los Angeles

Joint with Mete SONER and Nizar TOUZI

Workshop on Mathematical Finance
Istanbul, May 18-21, 2009
Outline

1. Introduction

2. BSDEs under singular probability measures

3. Second Order Target Problems and Duality
 - an alternative Formulation
 - Relaxations
 - Weak version of the Second Order Target Problem
Backward SDEs

Pardoux and Peng (1990, 1992): W BM on \((\Omega, \mathcal{F}, \mathbb{P}), \mathbb{F} = \mathbb{F}^W\)

- For \(\xi \in \mathbb{L}^2\), \(H_t(y, z)\) Lipschitz in \((y, z)\), \(H(0, 0) \in \mathbb{H}^2\) the BSDE

\[
Y_t = -H_t(Y_t, Z_t)dt + Z_t dW_t, \quad Y_1 = \xi
\]

has a unique solution \((Y, Z) \in \mathcal{S}^2 \times \mathbb{H}^2\)

- Moreover if \(H_t(y, z) = h(t, X_t, y, z)\) and \(\xi = g(X_1)\), where

\[
dX_t = b(t, X_t)dt + \sigma(t, X_t)dW_t
\]

Then \(Y_t = V(t, X_t)\) for some deterministic measurable function \(V\)

- \(V\) is a viscosity solution of the semilinear PDE

\[
\partial_t V + \frac{1}{2} \sigma^2 D^2 V + bDV + h(t, x, V, \sigma DV) = 0, \quad V(1, x) = g(x).
\]
Introduction
BSDEs under singular probability measures
Second Order Target Problems and Duality

Backward SDEs

Pardoux and Peng (1990, 1992): \(
\mathcal{W} \text{ BM on } (\Omega, \mathcal{F}, \mathbb{P}), \mathcal{F} = \mathcal{F}^\mathcal{W}
\)

- For \(\xi \in \mathbb{L}^2\), \(H_t(y, z)\) Lipschitz in \((y, z)\), \(H(0, 0) \in \mathbb{H}^2\) the BSDE

\[
Y_t = -H_t(Y_t, Z_t)dt + Z_t dW_t, \quad Y_1 = \xi
\]

has a unique solution \((Y, Z) \in \mathcal{S}^2 \times \mathbb{H}^2\)

- Moreover if \(H_t(y, z) = h(t, X_t, y, z)\) and \(\xi = g(X_1)\), where

\[
dX_t = b(t, X_t)dt + \sigma(t, X_t)dW_t
\]

Then \(Y_t = V(t, X_t)\) for some deterministic measurable function \(V\)

- \(V\) is a viscosity solution of the semilinear PDE

\[
\partial_t V + \frac{1}{2}\sigma^2 D^2 V + bDV + h(t, x, V, \sigma DV) = 0, \quad V(1, x) = g(x).
\]
Forward-Backward SDEs

\[X_t = x + \int_0^t b(s, X_s, Y_s, Z_s) ds + \int_0^t \sigma(s, X_s, Y_s, Z_s) dW_s, \]

\[Y_t = g(X_T) + \int_t^T h(s, X_s, Y_s, Z_s) ds - \int_t^T Z_s dW_s \]

- Together with other conditions, if the coefficients are deterministic and \(\sigma = \sigma(t, x, y) \), then \(Y_t = V(t, X_t) \) where \(V \) is a viscosity solution of the quasi-linear PDE

\[\partial_t V + \frac{1}{2} \sigma^2(t, x, V) D^2 V + b(t, x, V, \sigma DV)DV + h(t, x, V, \sigma DV) = 0, \]
Forward-Backward SDEs

\[
X_t = x + \int_0^t b(s, X_s, Y_s, Z_s)ds + \int_0^t \sigma(s, X_s, Y_s, Z_s)dW_s,
\]

\[
Y_t = g(X_T) + \int_t^T h(s, X_s, Y_s, Z_s)ds - \int_t^T Z_s dW_s
\]

- Together with other conditions, if the coefficients are deterministic and \(\sigma = \sigma(t, x, y) \), then \(Y_t = V(t, X_t) \) where \(V \) is a viscosity solution of the quasi-linear PDE

\[
\partial_t V + \frac{1}{2} \sigma^2(t, x, V) D^2 V + b(t, x, V, \sigma D V) D V + h(t, x, V, \sigma D V) = 0,
\]
Second Order Backward SDEs

Cheridito, Soner, Touzi and Victoir (2007):

- 2BSDE:

\[dY_t = H_t(Y_t, Z_t, \Gamma_t)dt + Z_t \circ dW_t, \quad Y_1 = \xi \] \quad (1)

where

\[Z_t \circ dW_t = Z_t dW_t + \frac{1}{2} d\langle Z, W \rangle_t = Z_t dW_t + \frac{1}{2} \Gamma_t dt \]

is the Fisk-Stratonovich stochastic integration.

- If \(H_t = h(t, W_t, Y_t, Z_t, \Gamma_t) \) and \(\xi = g(W_1) \), then \(Y_t = V(t, W_t) \), where \(V \) is associated with the fully nonlinear PDE:

\[\partial_t V + h(t, x, V, DV, D^2 V) = 0 \quad \text{and} \quad V(1, x) = g(x). \] \quad (2)
Second Order Backward SDEs

Cheridito, Soner, Touzi and Victoir (2007):

- 2BSDE:

\[dY_t = H_t(Y_t, Z_t, \Gamma_t)dt + Z_t \circ dW_t, \quad Y_1 = \xi \quad (1) \]

where

\[Z_t \circ dW_t = Z_t dW_t + \frac{1}{2} d\langle Z, W \rangle_t = Z_t dW_t + \frac{1}{2} \Gamma_t dt \]

is the Fisk-Stratonovich stochastic integration.

- If \(H_t = h(t, W_t, Y_t, Z_t, \Gamma_t) \) and \(\xi = g(W_1) \), then \(Y_t = V(t, W_t) \),

where \(V \) is associated with the fully nonlinear PDE:

\[\partial_t V + h(t, x, V, D V, D^2 V) = 0 \quad \text{and} \quad V(1, x) = g(x). \quad (2) \]
Motivation from Probabilistic Numerical Methods

\[
\hat{Y}_{t_n} = g(X_{t_n}) \quad \text{and for } 1 \leq i \leq n:
\]
\[
\hat{Y}_{t_{i-1}} = \hat{E}_{i-1} \left[\hat{Y}_{t_i} + \Delta t_i \ f \left(t_i, X_{t_{i-1}}, \hat{Y}_{t_{i-1}}, \hat{Z}_{t_{i-1}}, \hat{\Gamma}_{t_{i-1}} \right) \right]
\]
\[
\hat{Z}_{t_{i-1}} = \hat{E}_{i-1} \left[\hat{Y}_{t_i} \frac{\Delta W_{t_i}}{\Delta t_i} \right]
\]
\[
\hat{\Gamma}_{t_{i-1}} = \hat{E}_{i-1} \left[\hat{Y}_{t_i} \frac{\Delta W_{t_i}^2 - \Delta t_i}{|\Delta t_i|^2} \right]
\]
More motivations

Motivation from finance

- Hedging under Gamma constraints (Soner and Touzi 1999, Cheridito, Soner and Touzi 2005)
- Hedging under liquidity cost in the Cetin-Jarrow-Protter model (Cetin, Sonet and Touzi 2006)
- Uncertain volatility models (Denis and Martini 2006)

Peng’s G–expectation
Cheridito, Soner, Touzi and Victoir (2007) : In Markov case only

- **Existence** : if the PDE (2) has a smooth solution, then

 \[Y_t = V(t, W_t), \quad Z_t = D V(t, W_t), \quad \Gamma_t = D^2 V(t, W_t). \]

- **Uniqueness** : Second Order Stochastic Target Problem

 \[V(t, x) := \inf \left\{ y : Y_t^{y, Z} \geq g(W_1) \text{ for some } Z \in \mathcal{Z} \right\} \]

Under certain conditions, in particular if the comparison principle for viscosity solution of PDE (2) holds, then \(V \) is the viscosity solution of the PDE (2). Consequently, 2BSDE (1) has a unique solution in class \(\mathcal{Z} \).
The admissibility set \(Z \) in CSTV

Definition \(Z \in \mathcal{Z} \) if it is of the form

\[
Z_t = \sum_{n=0}^{N-1} z_n 1_{\{t < \tau_{n+1}\}} + \int_0^t \alpha_s ds + \int_0^t \Gamma_s dW_s
\]

- \((\tau_n)\) is a \(\nearrow \) seq. of stop. times, \(z_n \) are \(\mathcal{F}_{\tau_n} \)-measurable, \(\|N\|_{\infty} < \infty \)
- \(Z_t \) and \(\Gamma_t \) are \(L_{\infty} \)-bounded up to some polynomial of \(X_t \)
- \(\Gamma_t = \Gamma_0 + \int_0^t a_s ds + \int_0^t \xi_s dW_s, \; 0 \leq t \leq T \), and

\[
\|\alpha\|_{B,b} + \|a\|_{B,b} + \|\xi\|_{B,2} < \infty, \quad \|\phi\|_{B,b} := \sup_{0 \leq t \leq T} \frac{|\phi_r|}{1 + X_t^B} \}
\]

\(\mathbb{I} \)
"Theorem" If the following linear 2BSDE with constant coefficients has only zero solution in \mathbb{L}^2, then, under very mild conditions, uniqueness holds for the general non-Markovian 2BSDE (1) in essentially \mathbb{L}^2 space:

$$dY_t = -c \Gamma_t dt + Z_t \circ dW_t, \quad Y_1 = 0.$$ (3)
"Theorem" If the following linear 2BSDE with constant coefficients has only zero solution in \mathbb{L}^2, then, under very mild conditions, uniqueness holds for the general non-Markovian 2BSDE (1) in essentially \mathbb{L}^2 space:

$$dY_t = -c\Gamma_t dt + Z_t \circ dW_t, \quad Y_1 = 0.$$ (3)

• Unfortunately, unless $c = \frac{1}{2}$, the 2BSDE (3) has nonzero solutions in \mathbb{L}^2!
Outline

1. Introduction

2. BSDEs under singular probability measures

3. Second Order Target Problems and Duality
 - an alternative Formulation
 - Relaxations
 - Weak version of the Second Order Target Problem
Motivation

Consider BSDE:

\[Y_t = g(W_1) + \int_t^1 h(s, W_s, Y_s, Z_s) ds - \int_t^1 Z_s dW_s \]

and PDE:

\[\partial_t V + \frac{1}{2} D^2 V + h(t, x, V, D V) = 0, \quad V(1, x) = g(x) \]

- If \(h(t, x, y, z) = \sup_{u \in U} [u z - f(t, x, y, u)] \), then \(V = \sup_u V^u \), where

\[\partial_t V^u + \frac{1}{2} D^2 V^u + u D V^u - f(t, x, V^u, u) = 0, \quad V^u(1, x) = g(x) \]

- Consequently, \(Y_0 = \sup Y_0^u \) where

\[
\begin{align*}
X_t^u &= \int_0^t u_s ds + W_t; \\
Y_t^u &= g(X_1^u) - \int_t^1 f(s, X_s^u, Y_s^u, u_s) ds - \int_t^1 Z_s^u dW_s.
\end{align*}
\]

- Drift control, and \(P^u := P \circ (X^u)^{-1} \) is equivalent to \(P \).
Consider
2BSDE : \(Y_t = g(W_1) + \int_t^1 h(s, W_s, Y_s, Z_s, \Gamma_s) ds - \int_t^1 Z_s \circ dW_s \)
and PDE : \(\partial_t V + h(t, x, V, D V, D^2 V) = 0, \quad V(1, x) = g(x) \)

• If \(h(t, x, y, z, \gamma) = \sup_{a \in A} \left[\frac{1}{2} a \gamma - f(t, x, y, z, a) \right] \), then \(V = \sup_a V^a \),
where
\(\partial_t V^a + \frac{1}{2} a D^2 V^a - f(t, x, V^a, D V^a, a) = 0, \quad V^a(1, x) = g(x) \)

• Consequently, \(Y_0 = \sup_a Y^a_0 \), where
\(X^a_t = \int_0^t a^{1/2}_s dW_s; \)
\(Y^a_t = g(X^a_1) - \int_t^1 f(s, X^a_s, Y^a_s, Z^a_s, a_s) ds - \int_t^1 Z^a_s dX^a_s. \)

• Volatility control, and \(P^a := P \circ (X^a)^{-1} \) are mutually singular for different \(a \).
General Framework

- $\Omega := C([0,1])$, B the canonical process, \mathbb{P}_0 the Wiener measure, $\mathcal{F} := \{\mathcal{F}_t\}_{0 \leq t \leq 1}$ the filtration generated by B
- $\mathcal{F}^+ := \{\mathcal{F}_t^+\}_{0 \leq t \leq 1}$
- $\overline{\mathcal{A}}$: set of all \mathcal{F}–adapted process a satisfying $a \leq a_t(\omega) \leq \overline{a}$, $dt \times d\mathbb{P}_0$ – a.s. for some $\overline{a} \geq a > 0$
- $\mathbb{P}^a := \mathbb{P}_0 \circ (X^a)^{-1}$, measure induced by X^a:
 \[X^a_t := \int_0^1 a_s^{1/2} dB_s, \ 0 \leq t \leq 1, \ \mathbb{P}_0$ – a.s. \]

\mathbb{P}^a and $\mathbb{P}^{a'}$ are mutually singular for different a and a' in $\overline{\mathcal{A}}$.

Definition (Deni and Martini) We say a property holds quasi-surely, abbreviated as q.s., if it holds \mathbb{P}^a–a.s. for all $a \in \overline{\mathcal{A}}$.

Jianfeng ZHANG | Dual Formulation of Second Order Target Problems
stochastic integration under \((\mathbb{P}^a, \mathbb{F}^+), a \in \bar{A}\)

• Note that \(\mathbb{F}^+\) is right continuous, but not complete, and thus does not satisfy the usual hypotheses.

• For any \(Y \in \mathcal{H}^0(\mathbb{P}, \mathbb{F}^\mathbb{P})\), there exists unique \(\tilde{Y} \in \mathcal{H}^0(\mathbb{P}, \mathbb{F}^+)\) such that \(\tilde{Y}\) and \(Y\) are \(\mathbb{P}\)-modifications.

• For \(Z \in \mathcal{H}^2(\mathbb{P}^a, \mathbb{F}^a)\), let \(Y_t := \int_0^t Z_s dB_s\) is well defined in the standard sense

 • There exists a unique \(\tilde{Y} \in \mathcal{S}^2(\mathbb{P}^a, \mathbb{F}^+)\) which is \(\mathbb{P}^a\)-indistinguishable from \(Y\)

 • For \(Z \in \mathcal{H}^2(\mathbb{P}^a, \mathbb{F}^+) \subset \mathcal{H}^2(\mathbb{P}^a, \mathbb{F}^a)\), \(Y_t := \int_0^t Z_s dB_s\) is well defined as a process in \(\mathcal{S}^2(\mathbb{P}^a, \mathbb{F}^+)\).
Lemma For any $\xi \in L^2(\mathbb{P}^a, \mathcal{F}_1)$, there exists a unique process $Z^a \in H^2(\mathbb{P}^a, \mathbb{F}^+)$ such that $\xi = \mathbb{E}^a[\xi] + \int_0^1 Z^a_t dB_t$, \mathbb{P}^a-a.s.

- Since a is invertible, $(\mathbb{P}^X^a)\mathbb{P}_0 = \mathbb{F}\mathbb{P}_0$. Then $a_t = a_t(B.), B_t = \beta_t(X^a), dt \times d\mathbb{P}_0$-a.s. for some measurable a, β

- Denote $W_t^a := \beta_t(B.), \tilde{a}_t := a_t(W^a)$. Then

$$(\mathbb{P}_0, B, X^a, a) = (\mathbb{P}^a, W^a, B, \tilde{a}) \text{ in distribution.}$$

- Since $d\langle X^a \rangle_t = a_t dt, \mathbb{P}_0$-a.s., we have $d\langle B \rangle_t = \tilde{a}_t dt, \mathbb{P}^a$-a.s.
Under standard assumptions:

- there is a unique solution $X \in \mathcal{S}^2(\mathbb{P}^a, \mathbb{F}^+)$ to the SDE

$$X^a_t = x + \int_0^t b_s(X^a_s)ds + \int_0^t \sigma_s(X^a_s)dB_s, \quad \mathbb{P}^a \text{ a.s.}$$

- there is a unique solution $(Y^a, Z^a) \in \mathcal{S}^2(\mathbb{P}^a, \mathbb{F}^+) \times \mathcal{H}^2(\mathbb{P}^a, \mathbb{F}^+)$ to the Backward SDE

$$Y^a_t = \xi + \int_t^T f_s(Y^a_s, Z^a_s)ds - \int_t^T Z^a_s dB_s$$

Moreover, usual comparison and stability statement also hold true.
Lemma (Karandikar) Let X, M be two \mathcal{F}^+-adapted càd-làg processes q.s. with M a \mathbb{P}^a—semimartingale for every $a \in \overline{A}$. Then there exists a càd-làg process N such that $N_t = \int_0^t X_s - dM_s$, \mathbb{P}^a—a.s. for every $a \in \overline{A}$.

Corollary Assume M is \mathcal{F}^+-adapted and càd-làg q.s. and is \mathbb{P}^a—semimartingale for every $a \in \overline{A}$. Then there exists a càd-làg process X such that $X_t = \langle M, B \rangle_t$, \mathbb{P}^a—a.s. for every $a \in \overline{A}$. In particular, $\langle B \rangle$ can be defined q.s. and there exists a process \hat{a} such that

$$d\langle B \rangle_t = \hat{a}_t dt = \tilde{a}_t dt,$$ \mathbb{P}^a — a.s. for every $a \in \overline{A}$

(Define $X_t := M_t B_t - \int_0^t M_s dB_s - \int_0^t B_s dM_s$)
Outline

1. Introduction

2. BSDEs under singular probability measures

3. Second Order Target Problems and Duality
 - an alternative Formulation
 - Relaxations
 - Weak version of the Second Order Target Problem
Nonlinearity and spaces

• $H_t(\omega, y, z, \gamma) : \Omega \times [0, 1] \times \mathbb{R}^3 \to \mathbb{R} \cup \{\infty\}$ is a given $\mathcal{P} \otimes \mathcal{B}(\mathbb{R}^3)$–measurable map, continuous with respect to the γ–component. Define

\[F_t(\omega, y, z, a) := \sup_{\gamma \in \mathbb{R}} \left\{ \frac{1}{2} a \gamma - H_t(\omega, y, z, \gamma) \right\}, \quad a \in \mathbb{R}^+ \quad (4) \]

• Assume H and F are uniformly Lipschitz in (y, z)
• For simplicity, we assume $\text{Dom}(H_t) = \mathbb{R}$ as a function of γ, and $\text{Dom}(F_t) = \mathbb{R}^+$ as a function of a
• Define the spaces:

\[\hat{\mathcal{H}}^2 := \bigcap_{a \in \overline{A}} \mathcal{H}^2(\mathbb{P}^a, \mathbb{F}^+) \]

and the corresponding subsets of càd-làg, continuous, and semimartingales, ...
Definition

- For $Z \in \widehat{SM}^2$, denote by Γ the density of the quadratic covariation between Z and B:

$$d\langle Z, B \rangle_t = \Gamma_t d\langle B \rangle_t = \Gamma_t \hat{a}_t\,dt, \text{ q.s.}$$

- For $y \in \mathbb{R}$ and $Z \in \widehat{SM}^2$, let $Y_{y,Z} \in S^2$ be:

$$Y_t = y - \int_0^t H_s(Y_s, Z_s, \Gamma_s)\,ds + \int_0^t Z_s \circ dB_s, \quad t \leq 1, \text{ q.s.}$$

where $Z_s \circ dB_s = Z_s dB_s + \frac{1}{2} \Gamma_s \hat{a}_s\,ds, \text{ q.s.}$

- For an \mathcal{F}_1-measurable r.v. ξ, let

$$\mathcal{V}(\xi) := \inf \left\{ y : \exists Z \in \widehat{SM}^2 \text{ such that } Y_1^{y,Z} \geq \xi, \text{ q.s.} \right\}.$$
First Relaxation of Second Order Target Problems

Relax the connection between Z and Γ

- Note: $dY_t^{y,Z} = \frac{1}{2}[\Gamma_t \hat{a}_t - H_t(Y_t^{y,Z}, Z_t, \Gamma_t)]dt + Z_t dB_t$, q.s.

- For $Z, G \in \hat{H}^2$, define the controlled state $\bar{Y}^a := \bar{Y}^{a,y,Z,G}$:

$$d\bar{Y}_t^a = \left[\frac{1}{2} G_t \hat{a}_t - H_t(\bar{Y}_t^a, Z_t, G_t)\right] dt + Z_t dB_t, \quad \mathbb{P}^a - a.s.$$

for every $a \in \overline{A}$

- The relaxed problem is:

$$\bar{V}(\xi) := \inf \left\{ y : \exists Z, G \in \hat{H}^2, \bar{Y}_t^a \geq \xi \mathbb{P}^a - a.s. \text{ for every } a \in \overline{A} \right\}$$

- Peng's G-BSDE: for some constants $c_1 > c_0 > 0$,

$$H_t(y, z, \gamma) = \frac{1}{2}[c_1 \gamma^+ - c_0 \gamma^-] + h_t(y, z) = \frac{1}{2} \sup_{c_0 \leq a \leq c_1} a \gamma + h_t(y, z).$$
Further Relaxation of Second Order Target Problems

Second relaxation : forget Γ!

- Recall the (partial) convex conjugate of H:

$$F_t(y, z, a) := \sup_{\gamma \in \mathbb{R}} \left\{ \frac{1}{2} a \gamma - H_t(y, z, \gamma) \right\}, \quad a \in \mathbb{R}^+$$

- For $Z \in \mathcal{H}^2$, define the controlled state $\hat{Y}^a_t := \hat{Y}^a_{t,y,Z}$:

$$d \hat{Y}^a_t = F_t(\hat{Y}^a_t, Z_t, \hat{a}_t)dt + Z_t dB_t, \quad \mathbb{P}^a - a.s. \text{ for every } a \in \overline{A}$$

- The further relaxed problem is:

$$\hat{V}(\xi) := \inf \left\{ y : \exists Z \in \mathcal{H}^2, \hat{Y}^a_1 \geq \xi \quad \mathbb{P}^a - a.s. \text{ for every } a \in \overline{A} \right\}$$
A Natural dual Formulation

For $\xi \in \hat{L}^2$, $a \in \overline{A}$, denote $(Y^a, Z^a) \in S^2(\mathbb{P}^a, \mathbb{F}^+) \times \mathcal{H}^2(\mathbb{P}^a, \mathbb{F}^+)$ the solution of the BSDE under \mathbb{P}^a:

$$Y^a_t = \xi - \int_t^1 F_s(Y^a_s, Z^a_s, \hat{a}_s)ds - \int_t^1 Z^a_s dB_t, \quad \mathbb{P}^a - \text{a.s.}$$

and define the natural dual problem:

$$v(\xi) := \sup_{a \in \overline{A}} Y^a_0$$

- For all these problem, we have the obvious relation:

$$V(\xi) \geq \bar{V}(\xi) \geq \hat{V}(\xi) \geq v(\xi)$$

- In the Markov case, if the corresponding PDE has a sufficiently smooth solution, we easily prove that $V(\xi) = \bar{V}(\xi) = \hat{V}(\xi) = v(\xi)$
The duality result

Assumption \(\xi = g(B_.) \) and \(F_t(y, z, a) = \phi(t, B_., y, z, a) \) for some deterministic functions \(g \) and \(\phi \) uniformly continuous w.r.t \(\omega \) + some growth conditions.

Theorem For any \(\xi \in \hat{L}^2 \), we have \(\hat{V}(\xi) = v(\xi) \), and the \(\hat{V}(\xi) \) problem has the optimal \(Z \).

Important tool: Peng’s nonlinear Doob-Meyer decomposition
Reference Probability Measures

- T_0 be a dense subset of $[0, 1]$ containing $\{0, 1\}$
- $\mathcal{A}_0 = (a^i)_{i \geq 1}$ a sequence in \bar{A} satisfying the concatenation property:

 $$a^i 1_{[0,t_0)} + a^j 1_{[t_0,1]} \in \mathcal{A}_0 \quad \text{for every} \quad i, j \geq 1 \text{ and } t_0 \in T_0 \quad (7)$$

Then, we may define ν_i, $i \geq 1$, such that

$$\sum_{i=1}^{\infty} \nu_i = 1 \quad \text{and} \quad \sum_{i=1}^{\infty} \nu_i \mathbb{E}^{\hat{P}_0} \int_0^1 a^i_t dt < \infty \quad (8)$$

For every such choice of T_0, \mathcal{A}_0, define the reference probability measure:

$$\hat{P} := \hat{P}^{\mathcal{A}_0, T_0} := \sum_{i=1}^{\infty} \nu_i \hat{P}^i.$$
• \tilde{A}_0 : set of all processes $a \in \tilde{A}$ such that, for some non-decreasing sequence $(\tau_n)_{n \geq 1} \subset T_1$ with values in T_0, such that $\inf\{n : \tau_n = 1\} < \infty$, \mathbb{P}_0–a.s.

$$a = a^i \text{ on } [\tau_n, \tau_{n+1}] \text{ for some } i \geq 1, \ dt \times \mathbb{P}_0 - \text{a.s.}$$

Proposition For any $a \in \tilde{A}_0$, \mathbb{P}^a is absolutely continuous with respect to $\hat{\mathbb{P}}$.

• Note : $\hat{\mathbb{P}}$–a.s. iff \mathbb{P}^a–a.s. for all $a \in \tilde{A}_0$.
Patching processes under $\hat{\mathbb{P}}$

- Denote

$$\overline{A}_0(i, \tau) := \left\{ a \in \overline{A}_0 : a = a^i \text{ on } [0, \tilde{\tau}] \right\}$$

for some $\mathcal{T}_1 \ni \tilde{\tau} > \tau \ dt \times d\hat{\mathbb{P}}_0 - \text{a.s.}$

Aggregation

Let $X^i \in \mathcal{H}^0(\mathbb{P}^a_i)$ be a family of processes such that

$$X^i = X^j, \text{ on } [0, \tau] \ dt \times d\mathbb{P}^a_i - \text{a.s.} \ \text{whenever} \ a^j \in \overline{A}_0(i, \tau)$$

Then there is a unique process $X \in \mathcal{H}^0(\hat{\mathbb{P}})$ such that

$$X = X^i \ dt \times d\mathbb{P}^a_i - \text{a.s.}$$
Second Order Target Problem under $\hat{\mathbb{P}}$

- Define $\hat{\mathcal{L}}^2_0 := \bigcap_{i \geq 1} \mathcal{L}^2(\mathbb{P}^i, \mathcal{F}_1)$, $\hat{\mathcal{H}}^2_0 := \bigcap_{i \geq 1} \mathcal{H}^2(\mathbb{P}^i, \mathcal{F}^+)$, and $\hat{\mathcal{S}}\mathcal{M}^2_0 := \bigcap_{i \geq 1} \mathcal{S}\mathcal{M}^2(\mathbb{P}^i, \mathcal{F}^+)$

- Define the target problem and its relaxations:

$V_0(\xi) := \inf \left\{ y : Y^{Y^0, Z}_1 \geq \xi, \quad \hat{\mathbb{P}} \text{- a.s. for some } Z \in \hat{\mathcal{S}}\mathcal{M}^2_0 \right\}$

$\bar{V}_0(\xi) := \inf \left\{ y : \bar{Y}^{Y, Z, G}_1 \geq \xi, \quad \hat{\mathbb{P}} \text{- a.s. for some } Z, G \in \hat{\mathcal{H}}^2_0 \right\}$

$\hat{V}_0(\xi) := \inf \left\{ y : \hat{Y}^{Y^0, Z}_1 \geq \xi, \quad \hat{\mathbb{P}} \text{- a.s. for some } Z \in \hat{\mathcal{H}}^2_0 \right\}$

We also define the corresponding dual problem

$v_0(\xi) := \sup_{a \in \overline{\mathcal{A}}_0} Y^a_0$
The target problem and its relaxations

Theorem Under technical conditions,

\[\nu_0(\xi) = \overline{\nu}_0(\xi) = \hat{\nu}_0(\xi) = \nu_0(\xi) \]

Moreover, existence holds for the relaxed problems \(\overline{\nu}_0(\xi) \) and \(\hat{\nu}_0(\xi) \). To be specific, there exist process \(\overline{Y}, \overline{Z}, \overline{G} \) and an increasing càd-làg process \(\overline{K} \) with \(\overline{K}_0 = 0 \) such that

\[
d\overline{Y}_t = \left[\frac{1}{2} \hat{a}_t \overline{G}_t - H_t(\overline{Y}_t, \overline{Z}_t, \overline{G}_t) \right] dt + \overline{Z}_t dB_t - d\overline{K}_t, \quad \mathbb{P} - \text{a.s.}
\]

\[
\overline{Y}_0 = \overline{\nu}_0(\xi), \quad \overline{Y}_1 = \xi,
\]

- Important tool: nonlinear version of Bank-Baum result
The q.s. problem and the \hat{P}-a.s. problem

Theorem Under the continuity conditions on ξ and F, we have $\nu_0(\xi) = \nu(\xi)$. In particular, $\nu_0(\xi)$, $\hat{\nu}_0(\xi)$ and $\hat{V}_0(\xi)$ are independent from the choice of the sets A_0 and T_0.
Conclusion

- Second order stochastic target problems have a suitable formulation by allowing for model uncertainty
- From the dual formulation, we have obtained existence for the second relaxation of the target problem in the quasi-surely sense
- For the weak formulation under \(\hat{P} \), we have obtained existence for both the first and the second relaxation of the target problem
- Future work:
 (i) existence for the first relaxation of the target problem in the quasi-surely sense
 (ii) existence result for second order BSDEs q.s. and/or \(\hat{P} \)-a.s.