Dual Formulation of Second Order Target Problems

Jianfeng ZHANG

University of Southern California, Los Angeles
Joint with Mete SONER and Nizar TOUZI

Workshop on Mathematical Finance Istanbul, May 18-21, 2009

Outline

(1) Introduction

(2) BSDEs under singular probability measures
(3) Second Order Target Problems and Duality

- an alternative Formulation
- Relaxations
- Weak version of the Second Order Target Problem

Backward SDEs

Pardoux and Peng $(1990,1992)$: $W \operatorname{BM}$ on $(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{F}=\mathbb{F}^{W}$

- For $\xi \in \mathbb{L}^{2}, H_{t}(y, z)$ Lipschitz in $(y, z), H(0,0) \in \mathbb{H}^{2}$ the BSDE

$$
Y_{t}=-H_{t}\left(Y_{t}, Z_{t}\right) d t+Z_{t} d W_{t}, \quad Y_{1}=\xi
$$

has a unique solution $(Y, Z) \in \mathcal{S}^{2} \times \mathbb{H}^{2}$

- Moreover if $H_{t}(y, z)=h\left(t, X_{t}, y, z\right)$ and $\xi=g\left(X_{1}\right)$, where

Then $Y_{t}=V\left(t, X_{t}\right)$ for some deterministic measurable function V

- V is a viscosity solution of the semilinear PDE

Backward SDEs

Pardoux and Peng $(1990,1992)$: $W \operatorname{BM}$ on $(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{F}=\mathbb{F}^{W}$

- For $\xi \in \mathbb{L}^{2}, H_{t}(y, z)$ Lipschitz in $(y, z), H(0,0) \in \mathbb{H}^{2}$ the BSDE

$$
Y_{t}=-H_{t}\left(Y_{t}, Z_{t}\right) d t+Z_{t} d W_{t}, \quad Y_{1}=\xi
$$

has a unique solution $(Y, Z) \in \mathcal{S}^{2} \times \mathbb{H}^{2}$

- Moreover if $H_{t}(y, z)=h\left(t, X_{t}, y, z\right)$ and $\xi=g\left(X_{1}\right)$, where

$$
d X_{t}=b\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d W_{t}
$$

Then $Y_{t}=V\left(t, X_{t}\right)$ for some deterministic measurable function V

- V is a viscosity solution of the semilinear PDE

$$
\partial_{t} V+\frac{1}{2} \sigma^{2} D^{2} V+b D V+h(t, x, V, \sigma D V)=0, \quad V(1, x)=g(x)
$$

Forward-Backward SDEs

- Antonelli (1993), Ma-Protter-Yong (1994), Hu-Peng (1995), Yong (1997), Peng-Wu (1999), Pardoux-Tang (1999), Delarue (2002), Z. (2006), …

$$
\begin{aligned}
& X_{t}=x+\int_{0}^{t} b\left(s, X_{s}, Y_{s}, Z_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}, Y_{s}, Z_{s}\right) d W_{s} \\
& Y_{t}=g\left(X_{T}\right)+\int_{t}^{T} h\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{aligned}
$$

- Together with other conditions, if the coefficients are
deterministic and $\sigma=\sigma(t, x, y)$, then $Y_{t}=V\left(t, X_{t}\right)$ where V is a viscosity solution of the quasi-linear PDE

Forward-Backward SDEs

- Antonelli (1993), Ma-Protter-Yong (1994), Hu-Peng (1995), Yong (1997), Peng-Wu (1999), Pardoux-Tang (1999), Delarue (2002), Z. (2006), …

$$
\begin{aligned}
& X_{t}=x+\int_{0}^{t} b\left(s, X_{s}, Y_{s}, Z_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}, Y_{s}, Z_{s}\right) d W_{s} \\
& Y_{t}=g\left(X_{T}\right)+\int_{t}^{T} h\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}
\end{aligned}
$$

- Together with other conditions, if the coefficients are deterministic and $\sigma=\sigma(t, x, y)$, then $Y_{t}=V\left(t, X_{t}\right)$ where V is a viscosity solution of the quasi-linear PDE

$$
\begin{aligned}
\partial_{t} V & +\frac{1}{2} \sigma^{2}(t, x, V) D^{2} V \\
& +b(t, x, V, \sigma D V) D V+h(t, x, V, \sigma D V)=0
\end{aligned}
$$

Second Order Backward SDEs

Cheridito, Soner, Touzi and Victoir (2007) :

- 2BSDE :

$$
\begin{equation*}
d Y_{t}=H_{t}\left(Y_{t}, Z_{t}, \Gamma_{t}\right) d t+Z_{t} \circ d W_{t}, \quad Y_{1}=\xi \tag{1}
\end{equation*}
$$

where

$$
Z_{t} \circ d W_{t}=Z_{t} d W_{t}+\frac{1}{2} d\langle Z, W\rangle_{t}=Z_{t} d W_{t}+\frac{1}{2} \Gamma_{t} d t
$$

is the Fisk-Stratonovich stochastic integration.

- If $H_{t}=h\left(t, W_{t}, Y_{t}, Z_{t}, \Gamma_{t}\right)$ and $\xi=g\left(W_{1}\right)$, then $Y_{t}=V\left(t, W_{t}\right)$, where V is associated with the fully nonlinear PDE

$$
\partial_{t} V+h\left(t, x, V, D V, D^{2} V\right)=0 \quad \text { and } \quad V(1, x)=g(x)
$$

Second Order Backward SDEs

Cheridito, Soner, Touzi and Victoir (2007) :

- 2BSDE :

$$
\begin{equation*}
d Y_{t}=H_{t}\left(Y_{t}, Z_{t}, \Gamma_{t}\right) d t+Z_{t} \circ d W_{t}, \quad Y_{1}=\xi \tag{1}
\end{equation*}
$$

where

$$
Z_{t} \circ d W_{t}=Z_{t} d W_{t}+\frac{1}{2} d\langle Z, W\rangle_{t}=Z_{t} d W_{t}+\frac{1}{2} \Gamma_{t} d t
$$

is the Fisk-Stratonovich stochastic integration.

- If $H_{t}=h\left(t, W_{t}, Y_{t}, Z_{t}, \Gamma_{t}\right)$ and $\xi=g\left(W_{1}\right)$, then $Y_{t}=V\left(t, W_{t}\right)$, where V is associated with the fully nonlinear PDE :

$$
\begin{equation*}
\partial_{t} V+h\left(t, x, V, D V, D^{2} V\right)=0 \quad \text { and } \quad V(1, x)=g(x) \tag{2}
\end{equation*}
$$

Motivation from Probabilistic Numerical Methods

Bally and Pagès (2003), Z. (2004), Bouchard and Touzi (2004), Gobet, Lemor and Warin (2005), \cdots, Fahim, Touzi and Warin (2009)

$$
\begin{aligned}
\hat{Y}_{t_{n}}^{n} & =g\left(X_{t_{n}}^{n}\right) \text { and for } 1 \leq i \leq n: \\
\hat{Y}_{t_{i-1}}^{n} & =\hat{\boldsymbol{E}}_{i-1}^{n}\left[\hat{Y}_{t_{i}}^{n}\right]+\Delta t_{i} f\left(t_{i}, X_{t_{i-1}}^{n}, \hat{Y}_{t_{i-1}}^{n}, \hat{Z}_{t_{i-1}}^{n}, \hat{\Gamma}_{t_{i-1}}^{n}\right) \\
\hat{Z}_{t_{i-1}}^{n} & =\hat{\boldsymbol{E}}_{i-1}^{n}\left[\hat{Y}_{t_{i}}^{n} \frac{\Delta W_{t_{i}}}{\Delta t_{i}}\right] \\
\hat{\Gamma}_{t_{i-1}}^{n} & =\hat{\boldsymbol{E}}_{i-1}^{n}\left[\hat{Y}_{t_{i}}^{n} \frac{\left|\Delta W_{t_{i}}\right|^{2}-\Delta t_{i}}{\left|\Delta t_{i}\right|^{2}}\right]
\end{aligned}
$$

More motivations

Motivation from finance

- Hedging under Gamma constraints (Soner and Touzi 1999, Cheridito, Soner and Touzi 2005)
- Hedging under liquidity cost in the Cetin-Jarrow-Protter model (Cetin, Sonet and Touzi 2006)
- Uncertain volatility models (Denis and Martini 2006)

Peng's G-expectation

Wellposedness of 2BSDEs

Cheridito, Soner, Touzi and Victoir (2007) : In Markov case only

- Existence : if the PDE (2) has a smooth solution, then

$$
Y_{t}=V\left(t, W_{t}\right), \quad Z_{t}=D V\left(t, W_{t}\right), \quad \Gamma_{t}=D^{2} V\left(t, W_{t}\right)
$$

- Uniqueness: Second Order Stochastic Target Problem

$$
V(t, x):=\inf \left\{y: Y_{1}^{y, Z} \geq g\left(W_{1}\right) \text { for some } Z \in \mathcal{Z}\right\}
$$

Under certain conditions, in particular if the comparison principle for viscosity solution of PDE (2) holds, then V is the viscosity solution of the PDE (2). Consequently, 2BSDE (1) has a unique solution in class \mathcal{Z}.

The admissibility set \mathbb{Z} in CSTV

Definition $\quad Z \in \mathcal{Z}$ if it is of the form

$$
Z_{t}=\sum_{n=0}^{N-1} z_{n} \mathbf{1}_{\left\{t<\tau_{n+1}\right\}}+\int_{0}^{t} \alpha_{s} d s+\int_{0}^{t} \Gamma_{s} d W_{s}
$$

- $\left(\tau_{n}\right)$ is an \nearrow seq. of stop. times, z_{n} are $\mathcal{F}_{\tau_{n}}-$ measurable, $\|N\|_{\infty}<\infty$
- Z_{t} and Γ_{t} are \mathbb{L}^{∞}-bounded up to some polynomial of X_{t}
- $\Gamma_{t}=\Gamma_{0}+\int_{0}^{t} a_{s} d s+\int_{0}^{t} \xi_{s} d W_{s}, 0 \leq t \leq T$, and

$$
\|\alpha\|_{B, b}+\|a\|_{B, b}+\|\xi\|_{B, 2}<\infty, \quad\|\phi\|_{B, b}:=\left\|\sup _{0 \leq t \leq T} \frac{\left|\phi_{r}\right|}{1+X_{t}^{B}}\right\|_{\mathbb{L}^{b}}
$$

Uniqueness in larger class

"Theorem" If the following linear 2BSDE with constant coefficients has only zero solution in \mathbb{L}^{2}, then, under very mild conditions, uniqueness holds for the general non-Markovian 2BSDE (1) in essentially \mathbb{L}^{2} space :

$$
\begin{equation*}
d Y_{t}=-c \Gamma_{t} d t+Z_{t} \circ d W_{t}, \quad Y_{1}=0 \tag{3}
\end{equation*}
$$

Uniqueness in larger class

"Theorem" If the following linear 2BSDE with constant coefficients has only zero solution in \mathbb{L}^{2}, then, under very mild conditions, uniqueness holds for the general non-Markovian 2BSDE (1) in essentially \mathbb{L}^{2} space :

$$
\begin{equation*}
d Y_{t}=-c \Gamma_{t} d t+Z_{t} \circ d W_{t}, \quad Y_{1}=0 \tag{3}
\end{equation*}
$$

- Unfortunately, unless $c=\frac{1}{2}$, the 2BSDE (3) has nonzero solutions in \mathbb{L}^{2} !

Outline

(1) Introduction
(2) BSDEs under singular probability measures
(3) Second Order Target Problems and Duality

- an alternative Formulation
- Relaxations
- Weak version of the Second Order Target Problem

Motivation

Consider BSDE : $\quad Y_{t}=g\left(W_{1}\right)+\int_{t}^{1} h\left(s, W_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{1} Z_{s} d W_{s}$ and PDE : $\quad \partial_{t} V+\frac{1}{2} D^{2} V+h(t, x, V, D V)=0, \quad V(1, x)=g(x)$

- If $h(t, x, y, z)=\sup _{u \in U}[u z-f(t, x, y, u)]$, then $V=\sup _{u} V^{u}$, where $\partial_{t} V^{u}+\frac{1}{2} D^{2} V^{u}+u D V^{u}-f\left(t, x, V^{u}, u\right)=0, \quad V^{u}(1, x)=g(x)$
- Consequently, $Y_{0}=\sup Y_{0}^{u}$ where

$$
\begin{aligned}
X_{t}^{u} & =\int_{0}^{t} u_{s} d s+W_{t} \\
Y_{t}^{u} & =g\left(X_{1}^{u}\right)-\int_{t}^{1} f\left(s, X_{s}^{u}, Y_{s}^{u}, u_{s}\right) d s-\int_{t}^{1} Z_{s}^{u} d W_{s}
\end{aligned}
$$

- Drift control, and $P^{u}:=P \circ\left(X^{u}\right)^{-1}$ is equivalent to P.

Motivation (cont)

Consider 2BSDE : $Y_{t}=g\left(W_{1}\right)+\int_{t}^{1} h\left(s, W_{s}, Y_{s}, Z_{s}, \Gamma_{s}\right) d s-\int_{t}^{1} Z_{s} \circ d W_{s}$ and PDE : $\partial_{t} V+h\left(t, x, V, D V, D^{2} V\right)=0, \quad V(1, x)=g(x)$

- If $h(t, x, y, z, \gamma)=\sup _{a \in A}\left[\frac{1}{2} a \gamma-f(t, x, y, z, a)\right]$, then $V=\sup _{a} V^{a}$, where

$$
\partial_{t} V^{a}+\frac{1}{2} a D^{2} V^{a}-f\left(t, x, V^{a}, D V^{a}, a\right)=0, \quad V^{a}(1, x)=g(x)
$$

- Consequently, $Y_{0}=\sup _{a} Y_{0}^{a}$, where

$$
\begin{aligned}
& X_{t}^{a}=\int_{0}^{t} a_{s}^{1 / 2} d W_{s} \\
& Y_{t}^{a}=g\left(X_{1}^{a}\right)-\int_{t}^{1} f\left(s, X_{s}^{a}, Y_{s}^{a}, Z_{s}^{a}, a_{s}\right) d s-\int_{t}^{1} Z_{s}^{a} d X_{s}^{a} .
\end{aligned}
$$

- Volatility control, and $P^{a}:=P \circ\left(X^{a}\right)^{-1}$ are mutually singular for different a.

General Framework

- $\Omega:=C([0,1]), B$ the canonical process, \mathbb{P}_{0} the Wiener measure, $\mathbb{F}:=\left\{\mathcal{F}_{t}\right\}_{0 \leq t \leq 1}$ the filtration generated by B
- $\mathbb{F}^{+}:=\left\{\mathcal{F}_{t+}\right\}_{0 \leq t \leq 1}$
- $\overline{\mathcal{A}}$: set of all \mathbb{F}-adapted process a satisfying

$$
\underline{a} \leq a_{t}(\omega) \leq \bar{a}, \quad d t \times d \mathbb{P}_{0}-\text { a.s. for some } \bar{a} \geq \underline{a}>0
$$

$\bullet \mathbb{P}^{a}:=\mathbb{P}_{0} \circ\left(X^{a}\right)^{-1}$, measure induced by X^{a} :

$$
X_{t}^{a}:=\int_{0}^{t} a_{s}^{1 / 2} d B_{s}, 0 \leq t \leq 1, \quad \mathbb{P}_{0}-\text { a.s. }
$$

\mathbb{P}^{a} and $\mathbb{P}^{a^{\prime}}$ are mutually singular for different a and a^{\prime} in $\overline{\mathcal{A}}$.
Definition (Deni and Martini) We say a property holds quasi-surely, abbreviated as q.s., if it holds $\mathbb{P}^{a}-$ a.s. for all $a \in \overline{\mathcal{A}}$.

stochastic integration under $\left(\mathbb{P}^{a}, \mathbb{F}^{+}\right), a \in \overline{\mathcal{A}}$

- Note that \mathbb{F}^{+}is right continuous, but not complete, and thus does not satisfy the usual hypotheses.
- For any $\underset{\tilde{Y}}{Y} \in \mathcal{H}^{0}\left(\mathbb{P}, \mathbb{F}^{\mathbb{P}}\right)$, there exists unique $\tilde{Y} \in \mathcal{H}^{0}\left(\mathbb{P}, \mathbb{F}^{+}\right)$ such that \tilde{Y} and Y are \mathbb{P}-modifications.
- For $Z \in \mathcal{H}^{2}\left(\mathbb{P}^{a}, \mathbb{F}^{a}\right)$, let $Y_{t}:=\int_{0}^{t} Z_{s} d B_{s}$ is well defined in the standard sense
- There exists a unique $\tilde{Y} \in \mathcal{S}^{2}\left(\mathbb{P}^{a}, \mathbb{F}^{+}\right)$which is \mathbb{P}^{a}-indistinguishable from Y
- For $Z \in \mathcal{H}^{2}\left(\mathbb{P}^{a}, \mathbb{F}^{+}\right) \subset \mathcal{H}^{2}\left(\mathbb{P}^{a}, \mathbb{F}^{a}\right), Y_{t}:=\int_{0}^{t} Z_{s} d B_{s}$ is well defined as a process in $\mathcal{S}^{2}\left(\mathbb{P}^{a}, \mathbb{F}^{+}\right)$.

Martingale representation under $\mathbb{P}^{a}, a \in \overline{\mathcal{A}}$

Lemma For any $\xi \in \mathbb{L}^{2}\left(\mathbb{P}^{a}, \mathcal{F}_{1}\right)$, there exists a unique process $Z^{a} \in \mathcal{H}^{2}\left(\mathbb{P}^{a}, \mathbb{F}^{+}\right)$such that $\xi=\boldsymbol{E}^{a}[\xi]+\int_{0}^{1} Z_{t}^{a} d B_{t}, \mathbb{P}^{a}-$ a.s.

- Since a is invertible, $\left(\mathbb{F}^{X^{a}}\right)^{\mathbb{P}_{0}}=\mathbb{F}^{\mathbb{P}_{0}}$. Then $a_{t}=a_{t}(B),. B_{t}=\beta_{t}\left(X^{a}\right), d t \times d \mathbb{P}_{0}-$ a.s. for some measurable \mathbf{a}, β
- Denote $W_{t}^{a}:=\beta_{t}\left(B_{.}\right), \tilde{a}_{t}:=\mathbf{a}_{t}\left(W^{a}\right)$. Then

$$
\left(\mathbb{P}_{0}, B, X^{a}, a\right)=\left(\mathbb{P}^{a}, W^{a}, B, \tilde{a}\right) \text { in distribution. }
$$

- Since $d\left\langle X^{a}\right\rangle_{t}=a_{t} d t, \mathbb{P}_{0}$-a.s., we have $d\langle B\rangle_{t}=\tilde{a}_{t} d t, \mathbb{P}^{a}$-a.s.

Forward and Backward SDEs

Under standard assumptions :

- there is a unique solution $X \in \mathcal{S}^{2}\left(\mathbb{P}^{a}, \mathbb{F}^{+}\right)$to the SDE

$$
X_{t}^{a}=x+\int_{0}^{t} b_{s}\left(X_{s}^{a}\right) d s+\int_{0}^{t} \sigma_{s}\left(X_{s}^{a}\right) d B_{s}, \quad \mathbb{P}^{a}-\text { a.s. }
$$

- there is a unique solution $\left(Y^{a}, Z^{a}\right) \in \mathcal{S}^{2}\left(\mathbb{P}^{a}, \mathbb{F}^{+}\right) \times \mathcal{H}^{2}\left(\mathbb{P}^{a}, \mathbb{F}^{+}\right)$ to the Backward SDE

$$
Y_{t}^{a}=\xi+\int_{t}^{T} f_{s}\left(Y_{s}^{a}, Z_{s}^{a}\right) d s-\int_{t}^{T} Z_{s}^{a} d B_{s}
$$

Moreover, usual comparison and stability statement also hold true

Patching processes quasi-surely

Lemma (Karandikar) Let X, M be two \mathbb{F}^{+}-adapted càd-làg processes q.s. with M a \mathbb{P}^{a}-semimartingale for every $a \in \overline{\mathcal{A}}$. Then there exists a càd-làg process N such that $N_{t}=\int_{0}^{t} X_{s-} d M_{s}$, \mathbb{P}^{a}-a.s. for every $a \in \overline{\mathcal{A}}$.

Corollary Assume M is \mathbb{F}^{+}-adapted and càd-làg q.s. and is \mathbb{P}^{a}-semimartingale for every $a \in \overline{\mathcal{A}}$. Then there exists a càd-làg process X such that $X_{t}=\langle M, B\rangle_{t}, \mathbb{P}^{a}$-a.s. for every $a \in \overline{\mathcal{A}}$. In particular, $\langle B\rangle$ can be defined q.s. and there exists a process â such that

$$
d\langle B\rangle_{t}=\hat{a}_{t} d t=\tilde{a}_{t} d t, \quad \mathbb{P}^{a}-\text { a.s. for every } \quad a \in \overline{\mathcal{A}}
$$

(Define $X_{t}:=M_{t} B_{t}-\int_{0}^{t} M_{s} d B_{s}-\int_{0}^{t} B_{s} d M_{s}$)

Outline

(1) Introduction
(2) BSDEs under singular probability measures
(3) Second Order Target Problems and Duality

- an alternative Formulation
- Relaxations
- Weak version of the Second Order Target Problem

Nonlinearity and spaces

- $H_{t}(\omega, y, z, \gamma): \Omega \times[0,1] \times \mathbb{R}^{3} \rightarrow \mathbb{R} \cup\{\infty\}$ is a given $\mathcal{P} \otimes \mathcal{B}\left(\mathbb{R}^{3}\right)$-measurable map, continuous with respect to the γ-component. Define

$$
\begin{equation*}
F_{t}(\omega, y, z, a):=\sup _{\gamma \in \mathbb{R}}\left\{\frac{1}{2} a \gamma-H_{t}(\omega, y, z, \gamma)\right\}, \quad a \in \mathbb{R}^{+} \tag{4}
\end{equation*}
$$

- Assume H and F are uniformly Lipschitz in (y, z)
- For simplicity, we assume $\operatorname{Dom}\left(H_{t}\right)=\mathbb{R}$ as a function of γ, and $\operatorname{Dom}\left(F_{t}\right)=\mathbb{R}^{+}$as a function of a
- Define the spaces :

$$
\hat{\mathcal{H}}^{2}:=\bigcap_{a \in \overline{\mathcal{A}}} \mathcal{H}^{2}\left(\mathbb{P}^{a}, \mathbb{F}^{+}\right)
$$

and the corresponding subsets of càd-làg, continuous, and semimartingales, ...

Definition

- For $Z \in \widehat{\mathcal{S M}}^{2}$, denote by Γ the density of the quadratic covariation between Z and B :

$$
\begin{equation*}
d\langle Z, B\rangle_{t}=\Gamma_{t} d\langle B\rangle_{t}=\Gamma_{t} \hat{a}_{t} d t, \quad \text { q.s. } \tag{5}
\end{equation*}
$$

- For $y \in \mathbb{R}$ and $Z \in \widehat{\mathcal{S M}}^{2}$, let $Y^{y, Z} \in \mathcal{S}^{2}$ be :

$$
Y_{t}=y-\int_{0}^{t} H_{s}\left(Y_{s}, Z_{s}, \Gamma_{s}\right) d s+\int_{0}^{t} Z_{s} \circ d B_{s}, t \leq 1 \text {, q.s. }
$$

where $Z_{s} \circ d B_{s}=Z_{s} d B_{s}+\frac{1}{2} \Gamma_{s} \hat{a}_{s} d s$, q.s.

- For an \mathcal{F}_{1}-measurable r.v. ξ, let

$$
\begin{equation*}
\mathcal{V}(\xi):=\inf \left\{y: \exists Z \in \widehat{\mathcal{S M}}^{2} \text { such that } Y_{1}^{y, Z} \geq \xi \text {, q.s. }\right\} . \tag{6}
\end{equation*}
$$

First Relaxation of Second Order Target Problems

Relax the connection between Z and Γ

- Note : $d Y_{t}^{y, Z}=\frac{1}{2}\left[\Gamma_{t} \hat{a}_{t}-H_{t}\left(Y_{t}^{y, Z}, Z_{t}, \Gamma_{t}\right) d t+Z_{t} d B_{t}\right.$, q.s.
- For $Z, G \in \hat{\mathcal{H}}^{2}$, define the controlled state $\bar{Y}^{a}:=\bar{Y}^{a, y, Z, G}$:

$$
d \bar{Y}_{t}^{a}=\left[\frac{1}{2} G_{t} \hat{a}_{t}-H_{t}\left(\bar{Y}_{t}^{a}, Z_{t}, G_{t}\right)\right] d t+Z_{t} d B_{t}, \quad \mathbb{P}^{a}-\text { a.s. }
$$

for every $a \in \overline{\mathcal{A}}$

- The relaxed problem is:
$\overline{\mathcal{V}}(\xi):=\inf \left\{y: \exists Z, G \in \hat{\mathcal{H}}^{2}, \quad \bar{Y}_{1}^{a} \geq \xi \mathbb{P}^{a}-\right.$ a.s. for every $\left.a \in \overline{\mathcal{A}}\right\}$
- Peng's G-BSDE : for some constants $c_{1}>c_{0}>0$,

$$
H_{t}(y, z, \gamma)=\frac{1}{2}\left[c_{1} \gamma^{+}-c_{0} \gamma^{-}\right]+h_{t}(y, z)=\frac{1}{2} \sup _{c_{0} \leq a \leq c_{1}} a \gamma+h_{t}(y, z)
$$

Further Relaxation of Second Order Target Problems

Second relaxation : forget 「!

- Recall the (partial) convex conjugate of H :

$$
F_{t}(y, z, a):=\sup _{\gamma \in \mathbb{R}}\left\{\frac{1}{2} a \gamma-H_{t}(y, z, \gamma)\right\}, \quad a \in \mathbb{R}^{+}
$$

- For $Z \in \hat{\mathcal{H}}^{2}$, define the controlled state $\hat{Y}_{t}^{a}:=\hat{Y}_{t}^{a, y, Z}$:

$$
d \hat{Y}_{t}^{a}=F_{t}\left(\hat{Y}_{t}^{a}, Z_{t}, \hat{a}_{t}\right) d t+Z_{t} d B_{t}, \quad \mathbb{P}^{a}-\text { a.s. for every } a \in \overline{\mathcal{A}}
$$

- The further relaxed problem is :

$$
\hat{\mathcal{V}}(\xi):=\inf \left\{y: \exists Z \in \hat{\mathcal{H}}^{2}, \hat{Y}_{1}^{a} \geq \xi \mathbb{P}^{a}-\text { a.s. for every } a \in \overline{\mathcal{A}}\right\}
$$

A Natural dual Formulation

For $\xi \in \hat{\mathbb{L}}^{2}, a \in \overline{\mathcal{A}}$, denote $\left(Y^{a}, Z^{a}\right) \in \mathcal{S}^{2}\left(\mathbb{P}^{a}, \mathbb{F}^{+}\right) \times \mathcal{H}^{2}\left(\mathbb{P}^{a}, \mathbb{F}^{+}\right)$ the solution of the BSDE under \mathbb{P}^{a} :

$$
Y_{t}^{a}=\xi-\int_{t}^{1} F_{s}\left(Y_{s}^{a}, Z_{s}^{a}, \hat{a}_{s}\right) d s-\int_{t}^{1} Z_{s}^{a} d B_{t}, \quad \mathbb{P}^{a}-\text { a.s. }
$$

and define the natural dual problem :

$$
v(\xi):=\sup _{a \in \overline{\mathcal{A}}} Y_{0}^{a}
$$

- For all these problem, we have the obvious relation :

$$
\mathcal{V}(\xi) \geq \overline{\mathcal{V}}(\xi) \geq \hat{\mathcal{V}}(\xi) \geq v(\xi)
$$

- In the Markov case, if the corresponding PDE has a sufficiently smooth solution, we easily prove that $\mathcal{V}(\xi)=\overline{\mathcal{V}}(\xi) \equiv \hat{\mathcal{V}}(\xi)=v(\xi)$

The duality result

Assumption $\xi=g(B$.$) and F_{t}(y, z, a)=\phi(t, B ., y, z, a)$ for some deterministic functions g and ϕ uniformly continuous w.r.t $\omega+$ some growth conditions

Theorem For any $\xi \in \hat{\mathbb{L}}^{2}$, we have $\hat{\mathcal{V}}(\xi)=v(\xi)$, and the $\hat{\mathcal{V}}(\xi)$ problem has the optimal Z.

Important tool : Peng's nonlinear Doob-Meyer decomposition

Reference Probability Measures

- T_{0} be a dense subset of $[0,1]$ containing $\{0,1\}$
- $\mathcal{A}_{0}=\left(a^{i}\right)_{i \geq 1}$ a sequence in $\overline{\mathcal{A}}$ satisfying the concatenation property :

$$
\begin{equation*}
a^{i} \mathbf{1}_{\left[0, t_{0}\right)}+a^{j} \mathbf{1}_{\left[t_{0}, 1\right]} \in \mathcal{A}_{0} \quad \text { for every } \quad i, j \geq 1 \text { and } t_{0} \in T_{0} \tag{7}
\end{equation*}
$$

Then, we may define $\nu_{i}, i \geq 1$, such that

$$
\begin{equation*}
\sum_{i=1}^{\infty} \nu_{i}=1 \quad \text { and } \quad \sum_{i=1}^{\infty} \nu_{i} \boldsymbol{E}^{\mathbb{P}_{0}} \int_{0}^{1} a_{t}^{i} d t<\infty \tag{8}
\end{equation*}
$$

For every such choice of T_{0}, \mathcal{A}_{0}, define the reference probability measure :

$$
\hat{\mathbb{P}}:=\hat{\mathbb{P}}^{\mathcal{A}_{0}, T_{0}}:=\sum_{i=1}^{\infty} \nu_{i} \mathbb{P}^{i}
$$

More singular probability measures dominated by $\hat{\mathbb{P}}$

- $\overline{\mathcal{A}}_{0}$: set of all processes $a \in \overline{\mathcal{A}}$ such that, for some non-decreasing sequence $\left(\tau_{n}\right)_{n \geq 1} \subset \mathcal{T}_{1}$ with values in T_{0}, such that $\inf \left\{n: \tau_{n}=1\right\}<\infty, \mathbb{P}_{0}$-a.s.

$$
a=a^{i} \quad \text { on }\left[\tau_{n}, \tau_{n+1}\right] \text { for some } i \geq 1, d t \times \mathbb{P}_{0} \text { - a.s. }
$$

Proposition For any $a \in \overline{\mathcal{A}}_{0}, \mathbb{P}^{a}$ is absolutely continuous with respect to $\hat{\mathbb{P}}$.

- Note : $\hat{\mathbb{P}}$-a.s. iff \mathbb{P}^{a}-a.s. for all $a \in \overline{\mathcal{A}}_{0}$.

Patching processes under $\hat{\mathbb{P}}$

- Denote

$$
\begin{aligned}
\overline{\mathcal{A}}_{0}(i, \tau):= & \left\{a \in \overline{\mathcal{A}}_{0}: a=a^{i} \text { on }[0, \tilde{\tau}]\right. \\
& \text { for some } \left.\mathcal{T}_{1} \ni \tilde{\tau}>\tau d t \times d \mathbb{P}_{0}-\text { a.s. }\right\} .
\end{aligned}
$$

Aggregation Let $X^{i} \in \mathcal{H}^{0}\left(\mathbb{P}^{a_{i}}\right)$ be a family of processes such that

$$
X^{i}=X^{j}, \text { on }[0, \tau] d t \times d \mathbb{P}^{a_{i}}-\text { a.s. whenever } \quad a^{j} \in \overline{\mathcal{A}}_{0}(i, \tau)
$$

Then there is a unique process $X \in \mathcal{H}^{0}(\hat{\mathbb{P}})$ such that

$$
X=X^{i} \quad d t \times d \mathbb{P}^{a_{i}}-\text { a.s. }
$$

Second Order Target Problem under $\widehat{\mathbb{P}}$

- Define $\hat{\mathbb{I}}_{0}^{2}:=\bigcap_{i \geq 1} \mathbb{L}^{2}\left(\mathbb{P}^{i}, \mathcal{F}_{1}\right), \hat{\mathcal{H}}_{0}^{2}:=\bigcap_{i \geq 1} \mathcal{H}^{2}\left(\mathbb{P}^{i}, \mathbb{F}^{+}\right)$, and $\widehat{\mathcal{S M}}_{0}^{2}:=\bigcap_{i \geq 1} \mathcal{S M}^{2}\left(\mathbb{P}^{i}, \mathbb{F}^{+}\right)$
- Define the target problem and its relaxations :
$\mathcal{V}_{0}(\xi):=\inf \left\{y: Y_{1}^{y, Z} \geq \xi, \hat{\mathbb{P}}-\right.$ a.s. for for some $\left.Z \in \widehat{\mathcal{S M}}_{0}^{2}\right\}$.
$\overline{\mathcal{V}}_{0}(\xi):=\inf \left\{y: \bar{Y}_{1}^{y, Z, G} \geq \xi, \hat{\mathbb{P}}-\right.$ a.s. for for some $\left.Z, G \in \hat{\mathcal{H}}_{0}^{2}\right\}$
$\hat{\mathcal{V}}_{0}(\xi):=\inf \left\{y: \hat{Y}_{1}^{y, z} \geq \xi, \hat{\mathbb{P}}-\right.$ a.s. for for some $\left.Z \in \hat{\mathcal{H}}_{0}^{2}\right\}$
We also define the corresponding dual problem

$$
v_{0}(\xi):=\sup _{a \in \mathcal{A}_{0}} Y_{0}^{a}
$$

The target problem and its relaxations

Theorem Under technical conditions,

$$
\mathcal{V}_{0}(\xi)=\overline{\mathcal{V}}_{0}(\xi)=\hat{\mathcal{V}}_{0}(\xi)=v_{0}(\xi)
$$

Moreover, existence holds for the relaxed problems $\overline{\mathcal{V}}_{0}(\xi)$ and $\hat{\mathcal{V}}_{0}(\xi)$. To be specific, there exist process $\bar{Y}, \bar{Z}, \bar{G}$ and an increasing càd-làg process \bar{K} with $\bar{K}_{0}=0$ such that

$$
\begin{aligned}
& d \bar{Y}_{t}=\left[\frac{1}{2} \hat{a}_{t} \bar{G}_{t}-H_{t}\left(\bar{Y}_{t}, \bar{Z}_{t}, \bar{G}_{t}\right)\right] d t+\bar{Z}_{t} d B_{t}-d \bar{K}_{t}, \quad \hat{\mathbb{P}}-\text { a.s. } \\
& \bar{Y}_{0}=\overline{\mathcal{V}}_{0}(\xi), \quad \bar{Y}_{1}=\xi
\end{aligned}
$$

- Important tool : nonlinear version of Bank-Baum result

The q.s. problem and the $\hat{\mathbb{P}}$-a.s. problem

Theorem Under the continuity conditions on ξ and F, we have $v_{0}(\xi)=v(\xi)$. In particular, $\mathcal{V}_{0}(\xi), \overline{\mathcal{V}}_{0}(\xi)$ and $\hat{\mathcal{V}}_{0}(\xi)$ are independent from the choice of the sets \mathcal{A}_{0} and T_{0}.

Conclusion

- Second order stochastic target problems have a suitable formulation by allowing for model uncertainty
- From the dual formulation, we have obtained existence for the second relaxation of the target problem in the quasi-surely sense
- For the weak formulation under $\hat{\mathbb{P}}$, we have obtained existence for both the first and the second relaxation of the target problem
- Future work :
(i) existence for the first relaxation of the target problem in the quasi-surely sense
(ii) existence result for second order BSDEs q.s. and/or $\hat{\mathbb{P}}$-a.s.

