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Abstract 

 

We compare empirical convergence of Monte Carlo and quasi Monte Carlo estimates 

of the H-period forecasts using the Cox-Ingersoll-Ross square root diffusion model. 

The behaviour of the quasi Monte Carlo estimates in high dimensions (H = 250) using 

both Euler scheme and the Brownian bridge discretisation is analysed. We find that 

quasi Monte Carlo estimator displays much higher convergence rate compared to 

Monte Carlo regardless of the forecasting horizon (dimension) and discretisation 

method used. We show that for the Cox-Ingersoll-Ross square root diffusion model 

quasi Monte Carlo outperforms Monte Carlo without using the Brownian bridge 

technique even in high dimensions. 
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1 Introduction 
 
The square root diffusion model was initially proposed by Cox, Ingersoll and Ross 

(1985) as an interest rate model, given by a univariate continuous-time diffusion 

process 

 
( )t t tdy y dt y dWα β σ= + + t ,                                         (1) 

 

where λ > 0, μ > 0, σ > 0, and W(t) is a scalar Brownian motion. The model (1) is 

frequently used in the literature to simulate future bond prices, interest rates, or 

financial derivatives using Monte Carlo (MC) methods (Andersen et al, 2002; 

Andersen and Lund, 1997; Bacinello, 2000; Barone-Adesi and Sorwar, 2002; Broadie 

and Kaya, 2003; Gkamas, 2001; Zhang and Shu, 2003). 

 

The MC simulation is typically implemented by using Euler discretisation of the form 

( )t t t t t ty y y t y tα β σ+Δ − = + Δ + Δ ε .                                 (2) 
 
While the diffusion coefficient in the square root diffusion model does not satisfy a 

global Lipschitz condition, Higham and Mao (2005) have shown that Euler 

discretisation provide correct approximation to the first and second moments. They 

also derived a strong convergence result that justifies MC simulations using square 

root diffusion model. 

 

In this paper we are interested in the empirical convergence properties of the QMC 

methods (QMC) comparative to pseudo MC for the square root diffusion process. 

Moreover, we investigate the behaviour of the QMC estimates in high dimensions (H 

= 250) using both Euler scheme and the Brownian bridge discretisation.  

 

The paper is organised as follows. The second section describes the forecasting 

algorithm based on MC simulations from the square root diffusion model and 

describes a generalised method of moments estimation procedure for calibration of 

the model coefficients. Third section presents an empirical application to short-term 

interest rate forecasting. In the fourth section we compare the root mean square error 
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convergence rate of MC and QMC estimators. Conclusions are presented in the fifth 

section. 

 

2 Monte Carlo forecasting 
  
Consider the task of forecasting the short-term interest rate (yt) H-period ahead from 

the square root diffusion model (1). Given the starting value yT, coefficient estimates 

α̂ , β̂ , and σ̂ , along with an i.i.d. standard Gaussian vector of innovations 

1 2, , , Hε ε ε… , the values  are recursively calculated as 1 1, , ,T T Ty y y+ + +… H
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Repeating the above recursion using N independent realisations of innovations vectors 

( )(1) (1) (1)
1 2, , , Hε ε ε… , ( )(2) (2) (2)

1 2, , , Hε ε ε… , …, ( )( ) ( ) ( )
1 2, , ,N N N

Hε ε ε…  we obtain N simulated 

H-period ahead forecasts (1) (2) ( )ˆ ˆ ˆ, , , N
H H Hy y y… . The MC estimator of yH is then given by 

the average  

 
( )

1

1 ˆ
N

i
H H

i

y
N =

= y∑� .                                                  (4) 

 

The convergence rate of MC methods is O(N-1/2). It does not depend on the number of 

variables (dimensions) but it is rather low.  

 

The efficiency of MC methods is determined by the properties of random numbers. It 

is known that random number sampling is prone to clustering: for any sampling there 

are always empty areas as well as regions in which random points are wasted due to 

clustering. As new points are added randomly, they do not necessarily fill the gaps 

between already sampled points. 

 3



 

A higher rate of convergence can be obtained by using deterministic uniformly 

distributed sequences also known as low-discrepancy sequences (LDS) instead of 

pseudo-random numbers. Methods based on the usage of such sequences are known 

as QMC methods. 

 

LDS are specifically designed to place sample points as uniformly as possible. Unlike 

random numbers, successive LDS points “know” about the position of previously 

sampled points and “fill” the gaps between them. LDS are also known as quasi 

random numbers. The QMC estimator of yH  has a form similar to (4) but it this case 

 is a vector of LDS while in the case of MC, { }{ }t T
t t T N
ε =

= +

t T
t t T N
ε =

= +
 is a vector of pseudo 

random numbers. 

 

There are a few well-known and commonly used LDS. Different principles were used 

for their construction by Holton, Faure, Sobol’, Niederreiter and others. Many 

practical studies have proven that the Sobol’ LDS is in many aspects superior to other 

LDS ( see Bratley et al, 1992, Paskov et al, 1995, Sobol’, 1998). For this reason it was 

used in this work. 

 

For the best known LDS the estimate for the rate of convergence NI I→  is known to 

be . This rate of convergence is much faster than that for the MC 

method, although it depends on the dimensionality H. (see Glasserman, 2004, Jäckel, 

2003).  

(ln ) /HO N N

 

We note that the recursion given in (3) is based on the Euler scheme (2). We also 

consider the Milstein scheme which has the discretisation of the form 
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( ) 21
4 4t t t t t t ty y y t y t t 21α β σ σ ε σ+Δ

⎛ ⎞− = − − Δ + Δ ⋅ + Δ ⋅⎜ ⎟
⎝ ⎠

ε

N

.              (5) 

 
Figure 1 gives an S+ function that can be used to simulate paths 1 1, , ,T T Ty y y+ + +…  for 

either Euler (method=”euler”) or Milstein (method=”milstein”). Note that 

the vector of innovations { }  is supplied via the z argument; hence it can be 

generated either as pseudo (default) or as a quasi random sequence, which needs to be 

pre-generated and supplied in the form of a vector. 

t T
t t T N
ε =

= +

 
CIR.sim <- function(alpha, beta, sigma, y0, dt, scheme, method, N, ToReturn,  
                    index, z=rnorm(N)) 
{ 
y <- rep(NA,N); 
if(scheme=="euler") 
{ 
y[1] = y0 + alpha*(beta - y0)*dt + sigma*sqrt(y0*dt)*z[1]; 

for(i in 2:N)  
{  
y[i] = y[i-1] + alpha*(beta - y[i-1])*dt + sigma*sqrt(y[i-1]*dt)*z[i]; 
} 

} 
if(scheme=="milstein") 
{ 
y[1] = y0 + (alpha*(beta - y0) - .25*sigma)*dt + sigma*sqrt(y0*dt)*z[1]   
          + .25*(sigma^2)*dt*z[1]^2; 
 
 for(i in 2:N)  
 { 
 y[i] = y[i-1] + (alpha*(beta - y[i-1]) - .25*sigma)*dt  
                    + sigma*sqrt(y[i-1]*dt)*z[i] + .25*(sigma^2)*dt*z[i]^2; 
 } 
} 
 if(ToReturn=="last")    return(y[N]); 
 if(ToReturn=="average") return(mean(y));  
 if(ToReturn=="path")    return(y); 
} 

Figure 1. S+ code for simulating paths of square root diffusion process 
 

So far we have assumed we have the coefficient estimates α̂ , β̂ , and σ̂  available for 

simulation. In the following, we briefly describe the generalised method of moments 

(GMM) estimation procedure that can be used to obtain these estimates (see Hall, 

2005). We assume that a sample of observations is available for the 

GMM estimation.  

1 2, , , Ty y y…

 

The moment conditions we can use in GMM estimation follow from (2). In particular, 

we have [ ] 0t tE ε +Δ = , 2 2 2
t t tE y tε σ+Δ⎡ ⎤ = Δ⎣ ⎦ , [ ] 0t t tE yε +Δ = , and 2 2 2

t t t t tE y yε σ+Δ⎡ ⎤ = Δ⎣ ⎦ ty . 
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The moment conditions must satisfy the nonlinear system of equations 

[ ]( ,t tE g +Δ =w θ 0, which in this case specialises to 
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where ( )2, ,

T

t t t t t t ty y y y+Δ −Δ= −w  and ( , , , T)α β σ γ=θ .  The moment conditions (6) 

can be coded in S+ as shown in Figure 2. 

 
CIR.moments <- function(parm, data, dt) 
{ 
e.hat <- as.vector(data[,1] - (parm[1] + parm[2] * data[,2])* dt) 
m2    <- e.hat * as.vector(data[, 2]) 
m3    <- e.hat^2 - dt * parm[3] * parm[3] * (as.vector(data[, 2])) 
m4    <- m3 * data[, 2] 
cbind(e.hat, m2, m3, m4) 
} 

Figure 2. S+ code for the moment conditions of the square root diffusion model 
 

Note that we have four moment conditions and three parameters to estimate, hence θ 

is overidentified and thus the GMM objective function is given by 

, where  ( ) ( ) ( )ˆ
T TJ T g gΤ=θ θ W θ

 

( ) (
1

1 ,
T

T
t

g g
T =

= ∑θ w θ)t

)

)

,                                            (7) 

 
and   is a 3 × 3 positive definite symmetric weight matrix such that . 

The efficient nonlinear GMM estimate of θ is then , where 

. An autocorrelation consistent estimate of S can be obtained as 

Ŵ ˆlim
n

p
→∞

=W W

(ˆ ˆarg min ,GMM J=
θ

θ θ W

1ˆˆ −=W S

 

(0
1

T
j j

j

∞

=

= + +∑S Γ Γ Γ                                                 (8) 

where 
 

( ) ( )
1

1 ˆ
T T

j t t j
t j

g g
T −

= +

= ⋅∑Γ θ θ̂                                           (9) 
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An S+ function that implements GMM estimation for the square root diffusion model 

(2) is given in Figure 3. It is based on the S+FinMetrics function GMM() of Zivot 

and Wang (2006). Note that the data argument x should be a timeSeries object 

with the relevant series  in the j1 2, , , Ty y y… th column. 

 
CCIR.gmm <- function(x, dt, start.vals=runif(3), j=1) 
{ 
data.ts  <- seriesMerge(diff(x[, j]), tslag(x[, j])) 
data.mat <- as.matrix(seriesData(data.ts)) 
gmm.mod  <- GMM(start.vals, CIR.moments, ts=T, data=data.mat, 
  dt, control=nlregb.control(iter.max=1000, eval.max=1000),  
            lower=rep(0,3)) 
return(t(as.matrix(gmm.mod$parameters))) 
} 

Figure 3. S+ code for GMM estimation of square root diffusion model coefficients 
 

 

3 An example: Forecasting short-term interest rates 
 
To illustrate the above procedure, consider forecasting a short-term interest rate. 

Using the 9-month Euribor interest rate daily time series we estimate the coefficients 

of the square root diffusion model (2) as α = 1e-005, β = 0.1109, σ = 0.1929 initially 

using 250 daily observations, starting at 30 Dec 1998 and finishing on 14 Dec 1999. 

Using the value of the 9-month rate on 14 Dec 1999 as the starting value, yT = 3.634, 

we can simulate H-period ahead using the MC estimator (4).  

 

With these coefficient estimates values, for H = 5 and N = 50, we obtain the forecast 

for 21 Dec 1999 of = 3.607, which can be compared to the actual value on that day 

of 3.719. Repeating this procedure by moving one day forward till, for example, 13 

Oct 2006, we obtain the backtest results plotted in 

Ty�

Figure 4. Note that GMM 

calibration should also be repeated for each 250-day window, moving one day 

forward at each step. We can observe that sharp rising of the Euribor rates in the first 

half of 2000 resulted in several months of too low forecasts, which changed in 

February 2001 hence afterwards the forecasts errors sharply decreased.  

 

What is of particular interest at this point is the convergence speed of MC estimates. 

Namely, simple backtests such as the one showed in Figure 4 can be prohibitively 

 7



expensive if ran over a large time span or if needing a large number of MC runs (N). 

Figure 5 shows convergence in mean for the example of the 5 and 50 day forecasts of 

the 9-month Euribor rate starting from 30 Dec 1998. The comparison shows that 

QMC produces much smother and much faster convergence than MC. There is no 

apparent advance in using the higher order accuracy Milstein scheme over the Euler 

scheme.  
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Figure 4. 5-days a-ahead backtest for the 9-month Euribor interest rate series  

 
 

We compared MC with QMC for both Euler and Milstein discretisation. We found no 

advantage of using either of the two discretisation schemes; however, we obtained 

notably faster convergence using QMC compared to (pseudo) MC. This finding 

suggests we would need considerably less simulation runs if using QMC compared to 

(pseudo) MC to achieve convergence. In the next section we look further into the 

convergence issue by comparing the root mean square error (RMSE) convergence of 

QMC and MC estimators. 
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Figure 5. Convergence in mean of MC and QMC estimators with using Euler and 

Milstein schemes 
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4 RMSE convergence 
 
We study the root mean square error (RMSE) convergence rates for short (H = 5), 

medium (H  = 50), and long (H  = 250) term forecasts starting at 14 Dec 1999, using 

α = 1e-005, β = 0.1109,  σ = 0.1929 and y0 = 3.634. We calculate the RMSE over K = 

20 independent replications as 

 

( )2( )

1

1 ( ) ( )
K

k
RMSE

k

y T y T
K

ε
=

= −∑ .                                     (10) 

 
Here ( )( ) ky T  is the expected value of  at k( )y T th run. ( )y T  is the corresponding  

converged value of . In our test ( )y T ( )y T  was taken to be ( )20, 2E y T N⎡ ⎤=⎣ ⎦ . For 

the MC method all runs were statistically independent. For QMC simulation for each 

run a different part of the Sobol' sequence was used.  
 

RMSE can be approximated by a trend line: cN α− . For MC methods the convergence 

rate α  is typically ~ 0.5 while for QMC methods is ~ 1.0. Values ( )α−  are given in 

brackets on the plots of convergence rates. 

 

The RMSE convergence results for H  = 5 indicates faster convergence rate of the 

QMC compared to MC algorithm (Figure 7), which is a similar result to the well 

known case of the geometric Brownian motion. For example, to achieve the same 

reduction in RMSE with 210 replications of QMC it would take approximately 217 

replications with MC using pseudo random numbers, which translates into the 

reduction of CPU time of more than 100 times. Such convergence speed difference 

would be particularly noticeable if a MC simulation is used in backtesting. 

 

Figure 6 outlines the S+ function we used to compute the simulations reported here. 

Note that this function uses the Sobol quasi random number generator sobolD(), 

which is an S+ wrapper for the SobolSeq370 generator distributed by Broda Ltd  

( Broda Ltd, 2007 ). 
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Figure 8 and Figure 9 show the RMSE convergence results for forecasting horizons of 

H  = 50 and H  = 250. We can observe similar convergence supremacy of QMC even 

in high dimensions.  

 
MonteCarlo <-  function(alpha, beta, sigma, r0, dt, scheme="euler", 
method="MC", N, ToReturn="last") 
{ 
K.rep <- matrix(NA,13,20); 
for(k in 1:20) 
{ 
k.index <- (k-1)*((2^13-1)*2^6+1)-((k-1)-1)+cumsum(c(0,2^(6:17))); 
N.trial <- rep(NA,13);  
 if(method=="MC") 
 { 
 for(j in 6:18) 
 { 
 N.j.mean <- rep(NA,2^j); 
 for(i in 0:(2^j-1)) 
 {  

N.j.mean[i+1] <- CIR.sim(alpha, beta, sigma, r0, dt, scheme,  
                  method="MC", N, ToReturn, index=(k.index[j-5]+i)); 

  } 
 N.trial[j-5] <- mean(N.j.mean); 
 print(paste("N.trial = ",N.trial[j-5],"| K = ",k,"| j = ",j)); 
 } 
 } 
 if(method=="QMC") 
 { 
 for(j in 6:18) 
 { 
 Sim.s <- t(sobolD(k.index[j-5], 2^j, N)) 
 N.j.mean <- apply(Sim.s, 2, FUN=function(x){CIR.sim(alpha, beta,   
                   sigma, r0, dt, scheme, method="QMC", N, ToReturn, z=x)}); 
 N.trial[j-5] <- mean(N.j.mean); 
 print(paste("N.trial = ",N.trial[j-5],"| K = ",k,"| j = ",j)); 
 } 
 } 
K.rep[,k] <- (N.trial - N.trial[13])^2; 
} 
rm(alpha,beta,sigma,r0,dt,scheme,method,N,ToReturn); 
return( sqrt(rowMeans(K.rep)) ); 
} 

Figure 6. S+ code for computing MC RMSE 
 

We also compare the RMSE convergence of the QMC estimator using Euler 

discretisation and the Brownian bridge algorithm. Figure 10 shows the results, which 

find no notable advantage of Brownian bridge over the Euler scheme. It is in contrast 

to the standard geometric diffusion model for which the Brownian bridge algorithm 

produces a much higher convergence rate comparing to the standard (Euler) 

discretisation scheme ( Kucherenko et al, 2007 ). 
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Figure 7. RMSE convergence for 5-days forecasting horizon 
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Figure 8. RMSE convergence for 50-days forecasting horizon 
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Figure 9. RMSE convergence for 250-days forecasting horizon 
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Figure 10. Brownian bridge compared to Euler scheme for 250-days horizon  

 

 

4 Conclusion 
 
We considered forecasting from the square root diffusion model, and outlined a MC 

simulation forecasting procedure. We compared empirical convergence of the MC 

and QMC estimates of the H-period forecasts for the square root diffusion model. We 

find that QMC estimator displays much faster convergence compared to MC 
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regardless of the forecasting horizon (dimension) and discretisation method used. In 

addition, we find that for the square root diffusion model the QMC outperforms 

(pseudo random) MC using Euler discretisation scheme, without the need to use the 

Brownian bridge algorithm. 
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