
Developments in Applied Statistics 
Anuška Ferligoj and Andrej Mrvar (Editors) 
Metodološki zvezki, 19, Ljubljana: FDV, 2003 

Multivariate Modelling with Latent Variables in 
Experimental Designs with an Application to 

Forestry Data 

Dario Cziráky, Tugomir Filipan, and Anamarija Pisarović1 

Abstract 

The classical experimental design approach to testing for treatment 
effects in forestry research applies ANOVA and dummy-variable regression 
techniques to the individual tree development indicators such as total tree 
height or trunk diameter. An alternative to standard techniques is provided 
by a more general framework of structural equation modelling, which 
encompasses most of the classical techniques and additionally allows 
estimation of a richer class of models. This includes latent variable models 
that enable simultaneous incorporation of multiple tree development 
indicators into a single model treating tree development as a latent variable 
imperfectly measured by the observable tree measures. A problem in 
classical experimental design is that we can either test for the treatment 
effects on separate tree development indicators (e.g., height or diameter), or 
make an attempt to combine multiple indicators into a single (latent) 
variable and then test for treatment effects on the composite tree 
development variable. In this paper we apply structural equations methods 
to experimental forestry data comparing several approaches to treatment 
effect testing. 

1 Introduction 

In the forestry-research experimental designs for testing the treatment effects on 
tree development ANOVA and dummy-variable regression techniques are 
routinely applied to individual tree development indicators such as total tree height 
or trunk diameter. Multivariate techniques that can combine several tree 
development indicators and test treatment effects on all indicators simultaneously 
are, however, rarely used in the forestry research.  
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On the other hand, structural and functional relationships among different tree 
development indicators such as diameter and height are extensively researched in 
the literature (e.g., Arney, 1985, Wensel et al., 1987). For recent literature on 
general forest growth modelling see inter alia Botkin (1993), Bossel and Kriger 
(1994), Vanclay (1994) and Adler (1995). This line of research shows clear 
relationships among different tree development indicators suggesting that they all 
measure the same underlying (latent) variable, which is tree development. The 
problem of how to test for treatment effects within classical experimental design 
immediately follows. Namely, we can either test for the treatment effects on 
separate tree development indicators (e.g., height or diameter), or make an attempt 
to combine multiple indicators into a single (latent) variable and then test for 
treatment effects on the composite tree development variable. 

Testing for treatment effects on different indicators separately is most common 
in practice but problematic in several ways. If multiple indicators are used to 
separately measure the effects of applied treatments on overall tree development, 
there is a good chance that the results will be ambiguous. The second approach, 
based on multivariate modelling, while substantively appealing, is often difficult 
to apply in practice partly due to the lack of appropriately taken tree measures for 
such purpose or due to inadequately applied statistical techniques. The methods 
most commonly used in multivariate modelling with latent variables are based on 
linear structural equation modelling (SEM), which belong to the general class of 
covariance structure analysis. Rather powerful methods are available for modelling 
multivariate Gaussian variables but these methods generally fail to account for 
complex nonlinearities in the relationships among particular tree development 
indicators that are themselves not normally distributed. General SEM models can 
be specialised to most classical experimental techniques such as ANOVA, 
ANCOVA or MANOVA (Bagozzi, 1977; Bagozzi and Yi, 1989; Kano, 2001) but 
in addition they account for measurement errors and latent variables. Kano (2001) 
gives a general expression for the SEM model that encompasses many of the 
classical experimental techniques. 

This paper analyses data containing three indicators of tree development 
measured in two time points (end of years 1999 and 2001) from an ongoing multi-
annual forestry experiment carried out since 1992 at a site in Fuegenberg, Zillertal 
(Tyrol, Austria). The dependence of multivariate techniques on distributional 
assumptions is accounted for by detailed preliminary descriptive analysis and data 
transformations aiming at assuring Gaussian distribution of the modelled 
variables. A panel (longitudinal) latent variable model is then developed and 
estimated using maximum likelihood method for the joint 1999 and 2001 sample. 
After describing the latent scores technique and computing scores for the overall 
tree development, treatment effects on the overall tree development are tested 
using dummy variable regression methods. Finally, a multigroup estimation is used 
to compare model specification and parameter estimates across different groups 
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where each group corresponds to a subsample of trees grown on parcels subjected 
to particular treatments (including control). 

2 The data 

The data we model in this paper comes from an ongoing multi-annual forestry 
experiment carried out since 1992 at a site in Fuegenberg, Zillertal (Tyrol, Austria) 
at the altitude of 1450m and thus the natural growth potential of this site is thus 
expected to be reduced (see Dittmar et al., 2002). The experiment was set in a 
randomised block design with six variants and four replications thus making a 
total of 24 trial plots with Spruce trees (Picea abies K.). Five soil correctors (see 
Table 1) were applied (together with the no-treatment control parcel) in each row, 
thus there were 4 parcels for each treatment. The data consists of three tree 
development indicators measured in 1999 and 2001: total tree height at the end of 
the year, annual height increment (growth), and trunk diameter taken at breast 
height at the end of the year. The shorthand symbols used for the indicators are 
explained in Table 1. 

 

Table 1: Definitions of variables and treatments. 

Tree development indicators 
x1 = total tree height at the end of 1999 
x2 = annual height increment (growth) in 1999 
x3 = trunk diameter taken at breast height at the end of 1999 
x4 = total tree height et the end of 2001 
x5 = annual height increment (growth) in 2001 
x6 = trunk diameter taken at breast height at the end of 2001 

Treatments 
T1 = AV-SPS1: Agrarvital with SPS (1800 kg/Ha) 
T2 = AV-SPS2: Agrarvital with SPS (3600 kg/Ha) 
T3 = Biosol (2400 kg/Ha) 
T4 = AV+Biosol: combination of Agrarvital with SPS (3600     
        kg/Ha) and Biosol (2400 kg/Ha) 
T5 = Biomag (3600 kg/Ha) 

 
 
From the beginning of the experiment, each individual tree was numbered and 

thus track was kept of each tree across the years. The number of live trees, 
however, from year to year was decreasing thus we use the data on trees that were 
still alive in the end of 2001, the total number of which is 1931. This allowed us to 
pool the data and form a panel for the two years with matching data for each tree 
in the sample. 
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Tests for normality of the distribution (Table 2) reject the null for each of the 
three variables in both years (for details on these tests see D’Agustino, 1986; 
Bowman and Shenton, 1975; Doornik and Hansen, 1994; Shenton and Bowman, 
1977; Mardia 1980).  

 

Table 2: Normality tests and descriptive statistics (N = 1931). 

1999 data 
 x1 x1

NS x2 x2
NS x3 x3

NS 
Mean ( x ) 102.23 102.23 16.02 16.03 2.85 2.86 
Std. dev. (σ) 36.36 36.36 11.69 11.69 0.90 0.90 
Skewness 0.58 0.00 0.84 0.01 0.25 0.00 
Excess kurtosis 0.04 0.00 0.03 −0.03 −0.23 −0.01 
Minimum 31.50 −11.40 0.00 −22.38 1.50 −0.29 
Maximum 267.00 233.86 6.00 58.01 6.60 6.00 
Normality χ2(2) 167.89 0.01 46.46 0.02 35.99 0.00 
p-value 0.00 0.99 0.00 0.98 0.00 0.73 

 
2001 data 

 x4 x4
NS x5 x5

NS x6 x6
NS 

Mean ( x ) 126.73 126.73 13.34 13.34 3.54 3.54 
Std. Dev. (σ) 55.05 55.05 13.48 13.48 1.20 1.20 
Skewness 0.82 0.00 1.56 0.01 0.42 0.00 
Excess kurtosis 0.45 −0.01 2.13 −0.04 0.02 −0.01 
Minimum 50.00 −24.56 0.00 −28.83 0.90 −0.82 
Maximum 324.00 318.02 75.50 6.64 9.90 7.91 
Normality χ2(2) 334.49 0.01 1786.90 0.13 73.46 0.00 
p-value 0.00 0.88 0.00 0.58 0.00 0.99 
 

 
The growth increase is particularly skewed in 1999, with large excess kurtosis 

(normality χ2 is 682.3). In 2001 growth was also the most problematically 
distributed variable with the normality χ2 statistic of 1262.5. Related to non-
normality and an even more serious problem for multivariate techniques we apply 
in this paper is a notable non-linearity in the relationships (see upper part of Figure 
1). Figure 1 includes interpolated non-linear regression curves that signify likely 
non-linearity in bivariate relationships between pairs of tree measures.  

Because of the sensitivity to departures from normality of the maximum 
likelihood-based multivariate methods that we use in the analysis, and likely non-
linearity in the relationships,  transformation deserves particular attention and the 
analysed variables should be approximately normally distributed. In order to 
normalise the original variables we apply the normal scores technique (Jöreskog, 
1999, 2000; Jöreskog et al., 2000) which, when applicable, often shows superior 
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results to standard Box-Cox type of transforms (for technical details on this 
technique see Cziráky et al. 2002a,b; 2003).  

 

 
Figure 1: Bivariate cross plots. 

 
In Table 2 variables superscripted “NS” denote normalised variables. It can be 

observed that none of the χ2 statistics for the normalised variables is significant, 
thus the null of Gaussianity cannot be rejected. Skewness and excess kurtosis were 
significantly reduced by the transformation, noting that the first two empirical 
moments remained unchanged. Bottom part of Figure 1 shows bivariate plots of 
transformed variables with interpolated linear regression lines. It is easy to see that 
normality transformations induced linearity in the relationships, thus in this case 
the transformations aimed at normalising the data also linearised the relationships. 
In the following analysis we use normalised variables, thus for simplicity the “NS” 
superscript will be omitted. 
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3 Statistical methodology 

3.1 Latent variables model 
 
We aim to combine multiple tree development indicators into one single variable 
that would measure the unobserved overall tree development. The most common 
approach in multivariate statistics is to estimate a factor-analytic measurement 
model for tree development where the measures are tree development indicators. 

We first define the following notation. Latent variables indicating overall 
growth progress of the trees for 1999 and 2001 are denoted ξξξξ1 and ξξξξ2, respectively. 
The postulated model is an autocorrelated panel model. It is assumed that each of 
the three tree development indicators are determined by a latent variable denoting 
“growth progress” of trees, where each indicator is measuring the underlying latent 
variable with a measurement error δi. The panel specification allows the errors of 
the same indicator across two time periods to correlate (with the covariance 
parameters θij). Note that we do not imply causal dynamics in the latent variables 
in form of autoregressive (lagged) relationships.  

This model can be specified as a special case of the general linear structural 
equation model with latent variables in the form 
  

δξΛx += x       (1) 

 
where ΛΛΛΛx is the matrix of factor loadings and x and ξξξξ are vectors of observed and 
latent variables, respectively (see Jöreskog 1973; Jöreskog et al., 2000; Bollen, 
1989, Kaplan, 2000). Presence of the residual vector δδδδ allows for the measurement 
error in the observed indicators. In matrix notation, the model can be written as  
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 The covariance matrix of the latent variables is given (by writing only the 

lower triangular elements) as 
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and δΘ  is the covariance matrix of the residuals. Note that Eq. (3) assumes that 

latent variables are standardised; reparametrisation of the model can allow for 
non-standardised 	  with some loadings in Eq. (2) fixed (usually to unity). The 
later parametrisation is used to compute scores of the latent variables which then 
assume the metric of the observed variable with unit loading coefficient. Assuming 
multivariate Gaussianity, the model parameters can be estimated using full 
information maximum likelihood (FIML) technique (for details see Kaplan, 2000). 

3.2 Testing for treatment effects 

3.2.1 Latent scores 
 
By computing scores from an estimated latent variables model we get a composite 
variable that can be used in subsequent analysis specifically in testing for 
treatment effects on tree development. Of particular interest in this application are 
methods for estimation of latent scores in the general structural equation models 
(Jöreskog, 2000). Such methods also allow structural recursive and simultaneous 
relationships among latent variables. Estimation of factor scores in the pure 
measurement (factor) models is just a special case of the general procedure (see 
Lawley and Maxwell, 1971).  

We describe a technique capable of computing scores of the latent variables 
based on the maximum likelihood solution of the autocorrelated panel model 
following the approach of Jöreskog (2000).  

Given the measurement model δξΛx += x , the latent scores ξξξξi can be 

computed for each observation xij in the (6 × N) sample matrix whose rows are 
observations on each of our six observed variables, i.e., 
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Once the coefficients of ΛΛΛΛx are estimated they can be treated as fixed and the 

latent scores can be computed by maximising )()( 1
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UDUT and HKHT are singular value decompositions of ΦΦΦΦ and 

D1/2UTΛΛΛΛx
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−1ΛΛΛΛxUD1/2, respectively. 

  Once the latent scores are computed, it is possible to use them in standard 
(experimental) techniques such as ANOVA or dummy variable regression (see 
inter alia Winer et al., 1991). The later technique estimates the treatment effects 
using ordinary least squares (OLS) and the coefficient vector is given by 

 
 ββββOLS = (XTX) −1XTξξξξi = (XTX) −1XT D1/2UTHK−1/2HTUD1/2 (ΛΛΛΛx

TΘΘΘΘδ
−1xi)   (5) 

 
where X is the matrix of dummy variables (including column of 1’s for the 
constant term) indicating treatments. In further analysis we replace control dummy 
with the constant.  

The main advantage of the above approach is that after the latent scores for  
ξξξξi’s are estimated they can be used in testing for treatment effects in standard 
experimental techniques including multiple comparison procedures (see Hochbert 
and Tamhane, 1987). However, while latent scores in principle offer a convenient 
summary effect that takes into account multiple tree measures, weighted by their 
variances and covariances, the standard adjustments to the significance level in 
multiple comparison procedures (e.g., Šidak, 1967) might have to be further 
adjusted. The issue of simultaneous testing for differences among treatments 
(Miller, 1981) would now have to include provision for the fact that the tested 
latent-scores are obtained on the basis of a multivariate statistical model that 
might have been build or modified already on inferential grounds. A known 
problem with the factor scores approach is that, while the estimates of the factor 
loadings are not biased, the replacement of unknown structural parameters by their 
estimates induces sample dependence in the estimated factor scores which can 
affect the accuracy of standard errors and test statistics (Kano, 2001). This 
indicates an important direction and need for further research, especially in the 
direction of adjustments of standard errors and fit statistics.  

 
3.2.2 Multiple group estimation 
 
The use of latent scores obtained from multivariate measurement models in 
ANOVA or regression techniques enables testing for mean differences among 
treatments. The measurement structure (factor loadings, error covariances and 
residual covariances) is estimated jointly across the entire sample and is assumed 
to be equal for all treatments (groups). Alternatively, we can define separate 
groups based on particular treatment subsamples (i.e., observations coming from 
parcels treated with particular soil correctors) and estimate model specified in Eq. 
(2) in each subsample, separately.  

Jöreskog (1971) proposed a testing procedure for evaluating group differences 
in respect to group covariance matrices and group-specific model estimates. 
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Sörbom (1974) appended Jöreskog’s procedure with estimates of latent means 
which, in principle, allows for estimation of general differences across groups or 
treatments (see also Sörbom, 1981; Bollen, 1989; Kaplan, 2000). Specifically for 
our application, we can test three sets of hypotheses, either jointly or separately: 
ΛΛΛΛx

(1) = ΛΛΛΛx
(2) = ⋅⋅⋅ = ΛΛΛΛx

(6), ΦΦΦΦ(1) = ΦΦΦΦ(2) = ⋅⋅⋅ = ΦΦΦΦ(6) and ΘΘΘΘδ
(1) = ΘΘΘΘδ

(2) = ⋅⋅⋅ = ΘΘΘΘδ
(6), where 

the numbers in the superscript denote treatment group. Note that the control group 
is also included as number one treatment (thus there are 6 groups). Formally, the 
testing proceeds by specifying a multigroup version of the model in Eq. (1) with 
group (treatment) specific subscript i, i.e., 
 

iixii δξΛx +=                                                                         (6) 
 

The hypothesis of overall equality of covariance matrices 

k... ΣΣΣ === 21
(1)
0 :H  can be tested by the Box-M test (see Kaplan, 2000). In 

respect to specific multivariate structure of the analysed matrices, if they are found 
not to be overall identical we can test for the equality of the number of factors and 
equality of the model parameters. Particularly, as already mentioned, we can test 
for k... ΛΛΛ === 21

(2)
0 :H  by minimising the multi-group likelihood function with 

and without the equality constraints which allows computing a likelihood ratio 
statistic and formal hypothesis testing.  

The addition of latent means results with inclusion of additional parameters 
(see Sörbom, 1974) and the model becomes iixiii δξΛτx ++=  with an additional 

assumption that )()( ixiii EE ξΛτx += , where E(ξi) is commonly denoted as κi. The 

model with means requires zero means restrictions on the latent means parameters 
in the reference group (e.g., control treatment) in order to be identified and thus 
group or treatment means measure deviations from the reference group means. 
Sörbom’s means-structure model assumes factorial invariance (i.e., invariance of 
the measurement model) across different groups. In the typical experimental 
design applications this assumptions precludes the effect of particular treatments 
on the inter-relationships among variables allowing merely different effects on 
means. This type of ceteris paribus assumption is thus problematic in a relatively 
large class of experimental treatment applications. 

The multigroup estimation allows for more detailed analysis than generally 
required in experimental forestry research. Namely, it allows analysing in more 
detail covariance structures within each treatment group as well as testing for 
structural differences across groups. A relevant use of multigroup estimation for 
our purpose is to check whether the model from which we computed the latent 
scores holds approximately in each treatment group, but it additionally allows us 
to investigate treatment effects on the covariance structure of the measurements 
and their inter-relationships which might differ both across treatments and across 
time. An additional advantage of the multigroup approach is that this approach can 
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also solve the sample dependence and standard error problem of latent variable 
scores pointed out by Kano (2001). 

4 Results 

The covariance matrix for the entire sample is given in Table 3 with means in the 
bottom row. An informal look at the (panel) covariance matrix in Table 3 leads to 
an immediate conclusion that individual variances among the tree indicators differ 
to large degree despite the identical measurement scales (in centimetres). 
Covariances are also different, confirming the visual inspection of plots in Figure 
1. Again, height in both years has far larger variance then the other two variables 
and it also correlates with them more. Height increase and diameter, on the other 
hand, correlate between themselves than with height individually. These findings 
indicate the greatest overall potential of height as a treatment discriminator.  
 

Table 3: Panel data covariance matrix, N = 1931. 

 x1 x2 x3 x4 x5 x6 
x1 1321.97           
x2 311.36 136.66         
x3 22.90 6.53 0.81       
x4 1397.52 385.29 27.61 3030.98     
x5 227.31 61.67 4.57 454.91 181.81   
x6 27.37 8.11 0.66 50.23 9.79 1.44 
       

x  102.23     16.03      2.86    126.73     13.34    3.54 
 

    
We first estimate the model specified in Eq. (2). Initially we estimate the basic 

panel model with uncorrelated errors. The δΘ  matrix for this model is specified, 

writing only diagonal and lower triangular elements due to symmetry, as 
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Estimation of this model gives an overall-fit χ2 statistic of 158.72  (d.f. = 8). 

The goodness-of-fit index (GFI) is 0.97; the standardised root-mean-square 
residual (RMR) is 0.026; the non-normed fit index (NNFI) is 0.97; and the root-
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mean-square error of approximation (RMSEA) is 0.098. Relaxing the cross-time 
error covariance parameters (θ41, θ52, θ63) and estimating a modified model with 

δΘ  specified as 

��
��
��
��

�

�

��
��
��
��

�

�

θθ
θθ

θθ
θ

θ
θ

=δ

6663

5552

4441

33

22

11

B

0000
000

00
00

0

�                                   (8) 

 

gave a χ2 of 27.90 (d.f. = 5), GFI = 1.00; RMR = 0.016; NNFI = 0.99; CFI = 1.00; 
and RMSEA = 0.048, which jointly indicate approximately well fitting model.  

 

Table 4: Treatment effects (N = 1931). 

T1 = AV-SPS1; T2 = AV-SPS2; T3 = Biosol; T4 = AV+Biosol; T5 = Biomag 
 
Table 4 shows dummy variable regression results for each of the tree variables 

in both years, together with the results for the latent variables, ξξξξi, calculated using 
estimated parameters from the model with δΘ  specified as in Eq. (8). Note that the 

coefficient estimates express treatment effects as increase over the control (the 
omitted variable). Testing for treatment effects on the individual tree development 
indicators suggests that treatment T4 (Biosol) has largest effect on tree height both 
in 1999 (x1) and in 2001 (x4), while T2 (AV-SPS1) has relatively largest effect on 

1999 data 
 x1 (S.E.) x2   (S.E.) x3 (S.E.) ξ1   (S.E.)   

T1 12.64 (2.85) 4.69 (0.91) 0.39 (0.07) 13.59 (2.65) 
T2 9.96 (2.88) 2.67 (0.92) 0.47 (0.07) 11.43 (2.67) 
T3 18.95 (2.77) 3.94 (0.89) 0.50 (0.07) 18.42 (2.58) 
T4 12.66 (2.67) 1.91 (0.86) 0.37 (0.06) 11.93 (2.48) 
T5 1.05 (3.01) 0.85 (0.97) 0.24 (0.07) 3.28 (2.80) 
F(5,1925) 13.04 − 7.47 − 15.27 − 13.29 − 

 
2001 data 

 x4 (S.E.) x5        (S.E.) x6 (S.E.) ξ2   (S.E.)   

T1 22.15 (4.13) 3.48 (1.03) 0.59 (0.09) 22.61 (4.34) 
T2 14.91 (4.17) 2.58 (1.04) 0.45 (0.10) 16.15 (4.38) 
T3 26.74 (4.02) 1.98 (1.00) 0.56 (0.09) 27.65 (4.23) 
T4 18.17 (3.87) 0.74 (0.96) 0.47 (0.09) 18.51 (4.06) 
T5 −0.45 (4.37) −2.63 (1.09) 0.20 (0.10) −1.84 (4.59) 
F(5,1925) 14.51 − 7.51 − 11.98 − 14.62 − 
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growth increase in both years (x2 and x5). Regarding the effects on trunk diameter 
(x3 and x6) there is a slight difference between the two years (though not 
statistically significant) were relatively best performance show T4 (Biosol) in 1999 
and T2 (AV-SPS1) in 2001. The last column of Table 4 shows the results for the 
latent variable scores in 1999 (ξξξξ1) and in 2001 (ξξξξ2). There is no longer any 
ambiguity regarding the effects across years. 

 
Table 5: Covariance matrices for the treatment sub-samples. 

 Control (N = 362) AV-SPS1 (N = 302) 
 x1 x2 x3 x4 X5 x6  x1 x2 x3 x4 x5 x6 

x1 1467.62            1496.50           
x2 323.46 148.98          326.45 117.30         
x3 28.95 8.28 0.80        25.01 5.95 0.72       
x4 1652.20 430.71 35.83 3188.79      1565.67 371.91 23.77 2849.15     
x5 276.34 82.49 7.07 573.55 181.2    242.32 67.28 4.06 401.73 165.22   
x6 31.74 9.08 0.90 65.88 13.01 1.73  31.48 8.25 0.53 52.19 8.92 1.39 

              

x  92.77 13.71 2.53 112.76 12.25 3.17  105.40 18.40 2.92 134.90 15.73 3.75 

  
AV-SPS2 (N = 292) 

 
Biosol (N = 334) 

 x1 x2 x3 x4 X5 x6  x1 x2 X3 x4 x5 x6 
x1 1172.67            1159.77           
x2 265.83 147.70          315.10 146.08         
x3 12.60 4.54 1.20        20.90 5.70 0.64       
x4 1407.82 457.91 25.46 2606.65      1202.21 356.35 23.35 2617.24     
x5 246.24 93.50 4.16 505.10 187.13    203.70 82.76 3.54 384.95 174.63   
x6 26.83 9.66 0.62 55.04 10.66 1.35  21.84 6.19 0.50 45.36 8.11 1.21 

              

x  102.73 16.38 3.00 127.67 14.83 3.62  111.72 17.65 3.03 139.50 14.23 3.73 

  
AV+Biosol (N = 392) 

 
Biomag (N = 249) 

 x1 x2 x3 x4 x5 x6  x1 x2 x3 x4 x5 x6 
x1 1203.53            1477.65           
x2 298.02 112.25          344.83 155.04         
x3 19.70 5.38 0.54        31.35 9.93 1.13       
x4 1080.34 241.43 15.96 2811.15      1572.57 515.59 46.87 4420.74     
x5 230.99 72.40 4.17 557.22 222.30    141.50 44.66 4.07 220.86 142.41   
x6 17.95 4.90 0.38 49.80 13.01 1.27  38.95 12.33 1.19 26.66 2.32 1.76 

              

x  101.00 12.99 2.83 125.78 12.68 3.35  93.81 14.57 2.78 112.31 9.62 3.37 
 

Since our full sample has 1931 cases, each subsample in multi-group 
estimation was sufficiently large to perform the estimation. The numbers of trees 
under various treatments differ due to unequal tree survival rate across treatments 
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while the initial numbers of planted trees were equal for all treatments (including 
control). The covariance matrices and means together with N (sample size) are 
shown in Table 5.  

 

Table 6: Maximum likelihood estimates of the coefficients. 

 Separate estimates 
        Control     T1            T2           T3      T4 T5 

Joint 
estimates 

 Estim
ate       S.E. Esti 

mate S.E. Estimat
e S.E. Esti 

mate S.E. Esti 
mate      S.E. Esti 

mate              S.E. Estimate S.E. 

λ11 33.02 1.59 36.77 1.72 26.88 1.78 33.54 1.45 32.30 1.30 33.01 2.01 32.69 0.68
λ21 9.78 0.54 8.89 0.52 9.59 0.63 9.41 0.57 8.94 0.44 10.50 0.65 9.48 0.23
λ31 0.87 0.04 0.68 0.04 0.52 0.06 0.63 0.04 0.61 0.03 0.95 0.05 0.69 0.02
λ42 53.87 2.18 48.36 2.48 51.05 2.16 48.78 2.30 46.23 2.11 35.46 4.07 48.85 1.04
λ52 10.60 0.60 8.20 0.68 9.91 0.69 8.03 0.67 12.11 0.63 2.20 0.43 9.30 0.28
λ62 1.23 0.05 1.08 0.05 1.08 0.05 0.93 0.05 1.07 0.04 0.85 0.08 1.04 0.02
φ21 0.77 0.02 0.80 0.03 0.94 0.02 0.74 0.03 0.54 0.04 0.99 0.08 0.81 0.01
θ11 350.07 35.24 145.56 38.53 449.59 50.71 394.40 36.47 124.39 28.17 387.42 49.07 249.26 17.47
θ22 53.40 4.53 38.25 3.25 55.85 6.33 57.41 5.31 31.02 2.98 45.42 4.72 46.22 2.04
θ33 0.06 0.02 0.26 0.03 0.93 0.08 0.25 0.02 0.18 0.02 0.23 0.04 0.33 0.01
θ44 225.60 55.60 518.23 86.23 266.00 40.97 236.16 98.22 660.81 69.28 316.33 29.59 649.65 40.98
θ55 69.13 5.62 96.99 8.44 89.07 7.49 109.08 8.94 75.76 6.52 137.54 12.05 95.54 3.48
θ66 0.27 0.03 0.22 0.04 0.18 0.02 0.35 0.04 0.12 0.03 1.04 0.10 0.37 0.02
θ41 228.27 34.38 155.33 40.92 128.78 32.48 −31.60 39.63 222.41 30.73 −59.99 70.56 101.60 18.60
θ52 −1.17 3.50 4.93 3.92 5.88 4.73 24.97 4.94 8.95 3.00 −2.55 5.68 −6.54 1.83
θ63 0.11 0.02 −0.01 0.02 0.07 0.02 0.09 0.02 0.05 0.01 0.07 0.04 0.08 0.01
χ2 11.85 − 12.24 − 7.02 −  13.01 −     9.18 −  10.03   −      27.90 −
d.f.   5 −   5 −     5 −    5 −     5 −    5 −   5 −
N 362 − 302 − 292 − 334 − 392 − 249 − 1931 −

T1 = AV-SPS1; T2 = AV-SPS2; T3 = Biosol; T4 = AV+Biosol; T5 = Biomag 
 

Table 6 gives maximum likelihood estimates of the model parameters for 
treatment subsamples (columns 1-6) and the full estimates from the joint model 
(column 7). Inspection of the parameter estimates suggests that structural 
parameters (λ11, λ21, λ31, λ42, λ52, λ62, and φ21) are similar across. The expectation 
that different treatments affect tree growth measures not only in respect to their 
mean and variance but also in respect to their covariances is tested in the most 
general form with the Box-M test. The Box-M χ2 was 2677.24 with 105 degrees of 
freedom which rejects general equality of covariance matrices. Further testing 
within the specific model proceeds with separate estimation of all parameters for 
all groups. The results are shown in Table 6. This is completely unconstrained 
model and its overall χ2 statistic was 63.32 with 30 degrees of freedom. The χ2 
values shown in the bottom raw of Table 6 are those that would be obtained when 
the model is separately estimated for each particular group separately (note that 
there the overall χ2 statistic for the joint model cannot be obtained by summing up 
individual χ2’ s). Constraining the lambda matrices (factor loadings) to be equal 
across groups produces a χ2 of 593.15 with 60 d.f. (GFI = 0.78, RMR = 0.19). 
Overall, we conclude that treatments indeed have an effect on covariances among 
the tree measurement indicators, and not merely on their means. 
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Testing a SEM model with means structure (Eq. 6) due to inclusion of 
additional parameters (means of the latent variables) and data (means of the 
observed variables) produces somewhat different results from the multi-sample 
analysis without means reported above. Repeating the multi-group comparisons 
with means included and first testing equality of factor loadings, i.e., holding τi 
and Λxi fixed across subsamples, produced a χ2 fit statistic of 475.90 (d.f. = 70), 
GFI = 0.90, RMR = 0.17, NNFI = 0.95, RMSEA = 0.13, which is a significantly 
better fit from the above estimated model without means. This indicates that the 
addition of means itself improves the fit of the model. In addition, the means-
structure model allows direct estimation of the latent means providing 
comparative, but not identical, results to those reported in Table 4. As such 
estimates are rather dependable on the assumption of parameter equality across 
sub-samples, interpretation of these results warrants caution. We additionally test 
the equality of latent variable means (κi) by fixing them to be equal across 
subsamples, again holding τi and Λxi fixed across subsamples. This produced a χ2 
fit statistic of 593.24 (d.f. = 80), GFI = 0.90, RMR = 0.16, NNFI = 0.95, RMSEA 
= 0.14, which is significantly worst fit from the previously estimated model. This 
indicates that latent means are significantly different across treatment subsamples. 
Note that testing for equality of  κi across treatment subsamples in the multigroup 
context has the same purpose as performing ANOVA tests on latent variable 
scores (or equivalently Wald F test in dummy variable regression). Table 7 reports 
the estimated latent means using Sörbom’ s technique performed on the model with 

δΘ  matrix specified by Eq. (8). It can be noticed that most of the estimates are 

close to those obtained on the basis of factor means (Table 4). Table 7 shows 
estimates from two models, one with only factor loadings constrained across sub-
samples (C), and the other with both loadings and error covariances constrained to 
be equal (D). A noted difference relates to the latent mean estimates in the T4 
treatment (AV+Biosol), which does not agree with the dummy variable regression 
results (Table 4) on individual observed variables separately. This last finding 
indicates high degree of sensitivity of the multi-group means-structure modelling 
when experimental treatments affect not only means but also general covariance 
pattern of the observed variables. 

 

Table 7: Estimates of latent means from means-structure model. 

ξ1
(C) ξ1

(D) ξ2
(C) ξ2

(D)  
Treatments Estimate (S.E.) Estimate (S.E.) Estimate (S.E.) Estimate (S.E.) 

T1 16.08 (2.86) 16.50 (2.83) 24.46 (4.16) 24.57 (4.15) 
T2 13.42 (2.76) 14.02 (2.72) 15.93 (4.24) 16.28 (4.23) 
T3 20.25 (2.71) 19.88 (2.67) 25.36 (4.01) 24.83 (3.97) 
T4 7.39 (2.59) 8.13 (2.57) 7.97 (3.97) 8.19 (3.94) 
T5 5.25 (3.14) 6.78 (3.18) 1.50 (4.17) 3.31 (4.21) 

   T1 = AV-SPS1; T2 = AV-SPS2; T3 = Biosol; T4 = AV+Biosol; T5 = Biomag 
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However, since the equality of Λi matrices across groups is rejected, the 
comparison of factor means cannot be formally done, because the latent variables 
are compounded in a different way in different groups. Therefore, the results from 
Table 7 are given mainly for illustrative purposes. 

5 Discussion 

In this paper we estimated a panel model with three tree-development indicators 
taken at two different points in time using a general structural equation model with 
latent variables. This approach enabled statistical evaluation of the model 
specification and provided empirical guidance to subsequent model modification. 
Two main approaches were applied: the latent scores technique in combination 
with the classical experimental methods (i.e. dummy variable regression), and the 
multigroup structural equation modelling. Scores for the latent tree development 
were computed and used in testing for treatment effects. The subsequent analysis 
included multigroup estimation that aimed at comparing model specification in 
individual treatment subsamples.  

The main results from this paper show that multivariate methods can be 
successfully used in experimental design with good potential of providing less 
ambiguous and more substantively interpretable results. The main requirement for 
using methods described in this paper is multivariate normality of the tree 
development indicators and linearity in their bivariate relationships. Our approach 
to dealing with the empirically observed deviations from normality was to 
transform the data, for which purpose the normal scores technique was used. This 
technique proved satisfactory in dealing with both non-normality and non-
linearity.  

Advantages of the latent scores approach are in the ability to apply standard 
experimental techniques such as ANOVA and dummy variable regression that 
have clear interpretability and familiarity for the applied researchers. It is 
substantively appealing to have a measure of “ underlying tree development”  for 
each individual tree in the sample and to be able to graph or do other post-
secondary analysis on these quantities, which is enabled by the latent scores 
approach. On the other hand, the main drawback of the latent scores approach is 
that replacement of unknown structural parameters by their estimates induces 
sample dependence in the estimated latent scores, which can affect the accuracy of 
standard errors and test statistics (Kano, 2001). This indicates an important 
direction and need for further research, especially in the direction of adjustment of 
standard errors and fit statistics. In addition to needed adjustment for sample 
dependence bias, further work in this direction might develop adjustments needed 
for multiple range comparison tests that are of high importance in experimental 
research. Kano (2001) proposed to use the MIMIC model instead of the latent 
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scores approach, as a possible solution to the sample dependence bias. The MIMIC 
approach indeed has several potential advantages such as being simpler to apply by 
practitioners; it does not have standard error or test statistics problems; and it 
leads to more powerful tests of treatment effects. However, the MIMIC approach 
induces a small factor loading bias and it does not allow application of standard 
experimental techniques. Subsequently, extensions to multiple comparison tests 
within the MIMIC framework are not straightforward and would be rather 
difficult. Thus, while the latent scores are relatively complex to compute they 
allow the use of standard experimental testing techniques that are more popular in 
the applied experimental research.  

The multigroup structural equation modelling approach, on the other hand, 
enables computation of treatment effects as well as testing for similarity in 
covariance structures across treatment subsamples, but it has rather restrictive 
assumptions regarding invariance of the model parameters across the subsamples. 
This equal covariance structure requirement is problematic in a relatively large 
class of experimental treatment applications where the effect of treatment alone is 
expected to cause differences in e.g. factor loadings structures across treatment 
subsamples. A relevant use of multigroup estimation for our purpose is to check 
whether the model from which we computed the latent scores holds approximately 
in each treatment group. However, while a requirement for treatment-effect testing 
in the multigroup framework this is not required for computing latent variable 
scores. Nevertheless, the multigroup approach, similarly to the MIMIC approach, 
might be able to solve the sample dependence and standard error problem of latent 
variable scores pointed out by Kano (2001). 

Further research in this direction could focus on application of multiple 
comparison procedures and on adjustment of the significance levels. Such 
adjustment might be needed because the latent-scores were obtained from a 
multivariate statistical model that has been build or modified already on inferential 
grounds. Additionally, alternative paths of model building and different estimation 
methods could be considered. Data with more pronounced time series dimension 
might be modelled by extensions of the presently widely used structural equation 
models such growth curve modelling that requires at least three time points (see 
Muthén et al., 2001). Most importantly, the data gathering process and decision of 
which tree development indicators need to be measured would be improved by 
knowing how each measure fits into the covariance structure giving raise to overall 
tree development. 
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