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Abstract

Wavelets are a commonly used tool in science and technology. Often, their use
involves applying a wavelet transform to the data, thresholding the coefficients and
applying the inverse transform to obtain an estimate of the desired quantities. In this
paper, we argue that it is often possible to gain more insight into the data by producing
not just one, but many wavelet reconstructions using a range of threshold values and
analysing the resulting object, which we term the Time-Threshold Map (TTM) of the
input data. We discuss elementary properties of the TTM, in its “basic” and “deriva-
tive” versions, using both Haar and Unbalanced Haar wavelet families. We then show
how the TTM can help in solving two statistical problems in the signal + noise model:
breakpoint detection, and estimating the longest interval of approximate stationarity.
We illustrate both applications with examples involving volatility of financial returns.
We also briefly discuss other possible uses of the TTM.

Keywords: Time-Threshold Maps; wavelets; thresholding; breakpoint detection; Un-
balanced Haar; volatility.

1 Introduction

Wavelets can be informally described as oscillatory functions, typically compactly supported
in the domain they live on and also localised, to some extent, in the corresponding frequency
domain. For the purpose of data analysis, they are often arranged into multiscale orthonor-
mal bases with a dyadic parent-children structure, which lead to decompositions of data
that (a) are fast to compute, (b) are stable and fast to invert, (c) provide a scale-location
resolution of the data and (d) are often sparse, i.e. only a small proportion of the coeffi-
cients of the decomposition tend to explain a large portion of the variability of the data.
There are many wavelet families to choose from. Section 2 provides a very brief introduc-
tion to wavelets; for a more complete overview the reader is referred to one of the many
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monographs on wavelets that have appeared since the late eighties, e.g. Daubechies (1992),
Vidakovic (1999), Härdle et al. (2000), Nason (2008) or the overview papers Antoniadis
(2007), Fryzlewicz (2010a).

Thanks to their attractive properties, an incomplete list of which appears above, wavelets
have attracted enormous attention in many branches of science and engineering. The Web
of Knowledge lists over 70,000 articles on the topic of wavelets published to date. Amongst
those published in 2011 alone, one can find applications of wavelets in climatology, astro-
physics, harmonic analysis, genome biology, signal, image and video processing, material
science, neuroscience, statistical time series analysis, and others.

Central to the popularity of wavelets and the breadth of their applicability is the concept of
sparsity of wavelet representations (already mentioned in the first paragraph above) and the
associated concept of complexity reduction via wavelet thresholding, which first appeared
in the seminal paper by Donoho and Johnstone (1994) in the context of statistical signal
denoising. In a typical wavelet decomposition, the main salient features of the data are well
described by only a few large wavelet coefficients; the rest carry the “residual” component of
the data which in many applications can be safely omitted (e.g. the information discarded
in lossy image compression) or is indeed unwanted (e.g. the noise in signal denoising).
Thresholding, whereby small wavelet coefficients get set to zero and large ones are preserved,
is often used to separate the two groups and reduce the complexity of the data (e.g. denoise
the dataset or compress the image) as desired in the particular application.

Due to the importance of the concept of thresholding in wavelet applications, the topic of
threshold selection has attracted considerable attention in various contexts. The first work
in which a particular threshold selection method was proposed was again Donoho and Johnstone
(1994), who introduced the so-called universal threshold in the problem of estimating a
function contaminated with iid Gaussian noise. The universal threshold guaranteed noise
removal with probability converging to one with the sample size. Due to the simplicity of
the function + Gaussian noise model and its importance as a “canonical” model in nonpara-
metric statistics, we will also use it to introduce the main ideas of this paper; therefore, it is
appropriate that we mention other statistical techniques used for wavelet threshold selection
in this setting; these include Stein’s shrinkage estimation (Donoho and Johnstone, 1995),
cross-validation (Nason, 1996), false discovery rate (Abramovich and Benjamini, 1996) and
empirical Bayes (Johnstone and Silverman, 2005).

We note that all of the above threshold selection procedures in the function estimation
problem advocate the choice of one single threshold value per each wavelet coefficient, which
leads to inference about data being based on the resulting single wavelet reconstruction.
Intuitively, it would appear to us that in some statistical problems (including, but not
necessarily limited to problems in which wavelet thresholding was already routinely used,
such as function estimation), more insight into the data could be gained by applying more
than one threshold value to each wavelet coefficient and analysing the resulting family of
wavelet reconstructions. Motivated by this observation, this work proposes a generic data-
analytic tool, the Time-Threshold Map (TTM), where the dataset at hand gets decomposed
in a given wavelet basis, the wavelet coefficients get thresholded using a range of threshold
values, and the resulting sequence of wavelet reconstructions of the data (one for each
threshold value) is used as an output of the procedure and a basis for drawing conclusions
about the data. Roughly speaking, for a one-dimensional time-ordered dataset Xt (e.g. a
time series or a signal), the TTM of Xt in its most basic version is defined as the matrix
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whose successive rows are the wavelet reconstructions of Xt obtained for successive values
of the wavelet threshold parameters from a specified range.

The TTM is not the first method for data analysis that proceeds by applying the same sta-
tistical procedure for a range of parameter values; however, to the best of our knowledge, it is
the first one in a wavelet context. To quote some other examples, SiZer (Chaudhuri and Marron,
1999) is a data visualisation technique for displaying features of kernel-smoothed data as
a function of location and bandwidth, simultaneously over a range of bandwidths. Thick
Pen (Fryzlewicz and Oh, 2011) is a technique for displaying and analysing time series which
uses the idea of plotting the time series data with a range of pens with varying thicknesses.
Finally, we note that the idea of visualisation of the output of a statistical algorithm for
a range of tuning parameter values simultaneously also appears in a number of modern
variable selection techniques such as LARS (Efron et al., 2004) where entire solution paths
are computed and displayed at once to aid the analysis.

Having introduced the TTM, we provide two examples of its application: one to the problem
of breakpoint detection in time series, and the other to the problem of the estimation of
the longest interval of parameter constancy, also in a time series context. We also briefly
discuss how it can possibly be applied in a selection of other statistical problems.

The paper is organised as follows. Section 2 provides a very brief introduction to wavelets
and defines the “basic” and “derivative” TTM, as well as discussing their basic properties.
Section 3 uses an example of a well-known contrived dataset to illustrate the typical features
of TTMs and discusses how they can potentially aid in the analysis and understanding of
some types of data. Section 4 applies and extends these ideas to propose solutions, based
on the TTM, to the statistical problems listed in the previous paragraph.

2 Time-Threshold Maps: motivation, definition, versions

2.1 Haar and Unbalanced Haar wavelets

For a data vector x = (x1, . . . , xn)
T , a wavelet transform of x is a linear orthonormal

transform Wx which provides a certain scale-location decomposition of x, is computable
in O(n) operations, and is able to represent x sparsely in the sense that many elements of
Wx will be close to or exactly zero. Rather than making these statements more precise
for a general wavelet transform, we provide two examples of wavelet transforms which will
be used throughout the paper: those involving Haar and Unbalanced Haar wavelets. For
a more complete introduction to wavelets, the reader is referred to the monographs and
overview papers listed in the Introduction.

In Haar wavelets, the rows of W =WH are given by vectors ψj,k with elements of the form

ψj,k(l) = 2−(J−j)/2
I{1+(k−1)2J−j ,...,2j−1+(k−1)2J−j}(l)

− 2−(J−j)/2
I{2j−1+1+(k−1)2J−j ,...,2j+(k−1)2J−j}(l),

for l = 1, . . . , n, where j, k are (respectively) scale and location parameters with ranges
j = 0, . . . , J − 1 and k = 1, . . . , 2j , with n = 2J (the function IA(·) is the indicator function
of the set A). The exception is the first row, given by ψ−1,1(l) = n−1/2. For example, when
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n = 8, we have the matrix
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The thus-definedWH is orthonormal (its rows define an orthonormal basis of Rn), it extracts
information from x at certain dyadic scales and locations, and its structure enables the
computation of WHx in O(n) computational time via the pyramid algorithm of Mallat
(1989). It also offers a sparse representation of piecewise-constant vectors in the sense that
for a vector x with M breakpoints, only at most M log2 n + 1 coefficients of WHx are
non-zero. Lower values of j correspond to “coarser” and higher – to “finer” scales of the
decomposition.

We note that each Haar vector ψj,k changes signs from positive to negative exactly in
the middle of its support, which may be restrictive in some statistical applications, such
as in breakpoint detection in the piecewise constant function + noise model (see e.g.
Brodsky and Darkhovsky, 1993, for the problem set-up and some early references). An-
other restriction is that the definition of a Haar basis is only straightforward if n is an
integer power of 2. To allow greater flexibility on both counts, it is possible to define Un-
balanced Haar (UH) wavelets, in which the sign change occurs not necessarily in the middle
of the support of the wavelets.

The construction of UH wavelets proceeds as follows. First, a vector ψ0,1(l) is formed, which
is constant and positive for l = 1, . . . , b0,1, and constant and negative for l = b0,1 +1, . . . , n.
The breakpoint b0,1 < n is to be chosen by the analyst. Then this construction is repeated on
the two parts of the domain determined by ψ0,1: that is, provided that b0,1 ≥ 2, we construct
(in a similar fashion) a vector ψ1,1 supported on l = 1, . . . , b0,1, with a breakpoint b1,1. Also,
provided that n− b0,1 ≥ 2, we construct a vector ψ1,2 supported on l = b0,1 + 1, . . . , n with
a breakpoint b1,2. The recursion then continues in the same manner for as long as feasible,
with each vector ψj,k having at most two “children” vectors ψj+1,2k−1 and ψj+1,2k. For
each vector ψj,k, their start, breakpoint and end indices are denoted by sj,k, bj,k and ej,k,
respectively. As in the Haar wavelets, the indices j, k are scale and location parameters,
respectively. Small (large) values of j can be thought of as corresponding to “coarse”
(“fine”) scales.

We consider an example of a set of UH vectors for n = 6. The rows of the matrix WUH

defined below contain (from top to bottom) vectors ψ−1,1, ψ0,1, ψ1,2, ψ2,3, ψ2,4 and ψ3,7

determined by the following set of breakpoints: (b0,1, b1,2, b2,3, b2,4, b3,7) = (1, 3, 2, 5, 4).

4



WUH =























1√
6

1√
6

1√
6

1√
6

1√
6

1√
6√

5√
6

− 1√
30

− 1√
30

− 1√
30

− 1√
30

− 1√
30

0
√
3√
10

√
3√
10

−
√
2√
15

−
√
2√
15

−
√
2√
15

0 1√
2

− 1√
2

0 0 0

0 0 0 1√
6

1√
6

−
√
2√
3

0 0 0 1√
2

− 1√
2

0























We note that similarly toWH , the transformWUH is orthonormal, provides a scale-location
decomposition of its input and represents it sparsely if it is (close to) piecewise constant. If
the set of breakpoints is fixed, the UH decomposition can also be computed in time O(n).

The running example of the use of the TTM involving Unbalanced Haar wavelets in this
paper will be in the problem of breakpoint detection in the function + noise model. In
this type of application, selecting a suitable UH basis is of utmost importance. One basis
selection procedure described in Fryzlewicz (2007) is the following greedy forward stagewise
procedure, related to the matching pursuit algorithm of Mallat and Zhang (1993) and to
the binary segmentation technique of Sen and Srivastava (1975). We first define the UH
mother vector ψs,b,e with elements defined by

ψs,b,e(l) =

{

1

b− s+ 1
− 1

e− s+ 1

}1/2

I(s ≤ l ≤ b)−
{

1

e− b
− 1

e− s+ 1

}1/2

I(b+1 ≤ l ≤ e).

• The breakpoint b0,1 is chosen such that the inner product 〈x, ψ1,b0,1 ,n〉 is maximised
in absolute value.

• Similarly, bj+1,l := argmaxb|〈x, ψsj+1,l ,b,ej+1,l〉|, where l = 2k − 1, 2k.

Under a mild assumption on the permitted degree of “unbalancedness” of the thus-constructed
UH basis, the computational complexity of the above procedure is O(n log n).

A large variety of other wavelet families have been used in various statistical contexts: these
include Shannon’s, Meyer’s, Franklin’s and Daubechies’ wavelets. The reader is refereed to
Vidakovic (1999), Section 3.4, for a concise description of these wavelets.

2.2 Time-Threshold Maps

For any wavelet transform W (with rows ψj,k) applied to a data vector x, we denote dj,k =
〈ψj,k,x〉, where 〈·, ·〉 is the inner product. The sparsity property of wavelets means that
for a “typical” input vector x, the sequence dj,k will be sparse, with many elements close
to or even exactly zero. The meaning of “typical” depends on what wavelet basis is used:
for example, Haar and Unbalanced Haar wavelets produce sparse decompositions of vectors
which are exactly or close to piecewise constant.

A canonical example of a statistical application where the sparsity property of wavelets has
been used is that of estimating a function from noisy observations (a.k.a. smoothing or
denoising). In the most basic setup, we observe

xi = fi + εi, (1)
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where fi = f(i/n) are the function values to be estimated and εi is noise, which in this
illustration we assume to be iid Gaussian with mean zero. A wavelet decomposition W
of the terms of this regression equation using any fixed orthonormal wavelet basis yields,
respectively, dj,k = µj,k + εj,k, where many of the µj,k’s are hopefully close to zero and only
a few are large in magnitude, and εj,k’s are again iid Gaussian due to the orthonormality of
W . Because of this separation of the coefficients dj,k into a few large and many small ones,
a natural estimator for µj,k is the (hard) thresholding estimator

µ̂j,k = dj,kI(|dj,k| ≥ λ), (j, k) 6= (−1, 1)

(and µ̂−1,1 = d−1,1), which yields an estimator f̂ of f upon applying the inverse wavelet
transform W−1 =W T . For any j, k, we introduce the functional notation t(dj,k, λ) := µ̂j,k,

which will be useful later. If λ is chosen well, f̂ can often be shown to possess several
attractive properties, e.g. mean-square consistency with a near-optimal rate for a wide
range of signals f , see e.g. Vidakovic (1999), Section 6.6, for a summary. Arguably the
simplest “good” choice of λ is the universal threshold of Donoho and Johnstone (1994) of
the form λ = σ

√
2 log n where σ2 = Var(εi) (and can be easily estimated from the data),

which leads to f̂ being noise-free in a suitable sense, with high probability. The principle
of function estimation via wavelet thresholding has been extended to a variety of other
settings with more complicated noise structure, including Poisson intensity estimation (see
Besbeas et al., 2004, for a review), spectral density estimation in time series (Neumann,
1996, amongst others), or time-varying parameter estimation in locally stationary time
series models (Nason et al., 2000, amongst others). Although details differ, meaningful
application of wavelet thresholding in these settings often requires the use of a different
threshold value λj,k for each j, k.

For notational convenience later, we define the vectors d = (dj,k)j,k and Λ = (λj,k)j,k (where
the indices j, k, here and below, are arranged in the same order as in the rows ofW ). We ex-
tend the definition of the function t(·) to vector arguments as follows: t(d, λ) = (t(dj,k, λ))j,k
and t(d,Λ) = (t(dj,k, λj,k))j,k. We also define the term “wavelet reconstruction” or “recon-

struction” of a data vector x with (vector) threshold Λ as follows:

xΛ :=W−1t(Wx,Λ), (2)

with xλ defined analogously. We note that this definition is model-free and that xΛ should
not necessarily be viewed as an estimator of any quantity, even if there is a stochastic model
for x. However, if, for example, x follows model (1) and λ = σ

√
2 log n, then xλ reduces to

the estimator f̂ described above. We also observe that x0 = x, and x∞ is a vector whose
elements are the sample means of x.

The overwhelming majority of existing applications of wavelet thresholding in statistics
involve a single reconstruction xΛ, corresponding to a single (possibly vector) threshold Λ.
The canonical example is again the denoising problem in which we typically search for a
suitable threshold Λ such that xΛ is a good estimator of f .

Our main proposition is this paper is to argue that for a range of statistical problems, more
insight into the data x could be gained by producing reconstructions xΛ for an entire range
of thresholds Λ and analysing them jointly. How precisely to do this and what insight can
be gained is of course problem-dependent, and we will have ample examples in the paper.
We first construct the necessary toolbox. Starting with scalar thresholds λ (rather than
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vector thresholds Λ), we define the TTM of x as

T (x) = {xλ}d̄λ=0,

where d̄ = max(j,k)6=(−1,1) |dj,k|. It is enough to stop at d̄ as xλ = x∞ for λ > d̄. We will
occasionally refer to T (x) as the “basic” Time-Threshold map to differentiate it from the
Derivative TTM below.

Each component of the vector xλ is a piecewise-constant (right-continuous) function of λ.
We define

∆xλ = lim
h→0

xλ − xλ+h.

The interpretation of ∆xλ is simple: it is the effect of the inverse wavelet transform W−1

applied to only those coefficients dj,k ((j, k) 6= (−1, 1)) of x whose absolute value equals
exactly λ. Therefore, it is the “detail” present in the reconstruction xλ but not in any
reconstructions xλ+h for h > 0.

The introduction of ∆xλ invites the definition of the Derivative TTM of x as

∆T (x) = {∆xλ}d̄λ=0 ∪ {x∞}.

We note that ∆T (x) provides a decomposition of x which is orthogonal and invertible, in
the sense that

〈∆xλ1
,∆xλ2

〉 = 0 if λ1 6= λ2 (3)

x = x∞ +
∑

λ∈[0,d̄]
∆xλ. (4)

(3) is the result of the fact that a coefficient dj,k cannot simultaneously have magnitude λ1
and λ2, and of the orthonormality of W . In (4), all but at most n terms ∆xλ in the range
λ ∈ [0, d̄] are zero.

T (x) can be interpreted as a visualisation of how quickly the nonlinear approximation xλ

of x = x0 reaches the latter as λ decreases. Note that this is presented as a function of the
threshold λ, rather than of the number of terms in the nonlinear approximation. For more
on nonlinear approximation, the reader is referred to DeVore (1998).

To define the TTM for vector thresholds Λ, we restrict our attention to separable thresholds
Λ(λ) for which

λj,k = λ r(x, j, k)

and define
T (x) = {xΛ(λ)}λ̄λ=0,

where
λ̄ = min{λ : λj,k ≥ |dj,k| ∀ (j, k) 6= (−1, 1)}.

We end this section by mentioning that the TTM methodology does not provide a new
wavelet thresholding procedure; instead, it helps visualise existing procedures in a way that
displays more information at once and can therefore potentially lead to improved inference.
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3 Basic properties and features of the TTMs

In this section, we illustrate some generic features of the Time-Threshold Map, both in its
basic and derivative version. As we restrict our attention to Haar and Unbalanced Haar
wavelets, which are piecewise-constant, we use the well-known piecewise-constant “blocks”
signal (first having appeared in Donoho and Johnstone, 1994) as a running example.

3.1 Basic Time-Threshold Map

3.1.1 Ordering the importance of features

We provide the first illustration of the TTM on the blocks signal, using the Unbalanced
Haar wavelets with the basis selection procedure described in Section 2.1. The middle plot
in Figure 1 shows the signal, x, sampled at n = 1000 equispaced time points. The top-plot
shows the values of the TTM T (x) = {xλ}d̄λ=0 (lighter colours correspond to higher values)
as a function of time (on the x-axis) and λ (on the y-axis). The threshold parameter λ has
been sampled at 50 equispaced points between 0 and d̄ (thus the size of the plotted matrix
is 50 × 1000). The bottom plot shows xλ for λ = k

5 d̄, k = 0, 1, . . . , 4.

Note that each vertical line in the TTM corresponds to a breakpoint in xλ for the values
of λ within the range of that particular vertical line. One characteristic of the TTM of a
piecewise-constant signal (such as blocks) is that the time-locations of the vertical lines in
the TTM correspond exactly to the locations of breakpoints in the input signal x. This
is guaranteed by Lemma 2.2 in Venkatraman (1993) which, translated into the notation of
our paper, states that the breakpoint bj,k in each selected UH basis vector ψj,k coincides
with one of the breakpoints in x (provided there are any breakpoints in x contained in the
support of ψj,k).

We further note that the length of each vertical line can be interpreted as a measure of
“importance” or “prominence” of the given breakpoint in x. For example, in the blocks
signal, the “most prominent” feature is the one defined by the two breakpoints at times
t = 650 and t = 810, since the vertical lines corresponding to these two breakpoints are
present for λ ∈ [0, d̄), i.e. for the entire permitted range. Similarly, the “least important”
feature is the breakpoint at time t = 780 (as it corresponds to the shortest vertical line)
or, interpreting features as peaks or troughs rather than individual breakpoints, the small
trough between times t = 760 and t = 780 as it is defined by two vertical lines the sum
of whose lengths is the shortest among all pairs of vertical lines in the TTM. Similarly,
quantities such as the ratio or the difference of the lengths of two vertical lines can serve as
a measure of the relative importance of two breakpoints in the signal.

We note at this point that the TTM does not necessarily preserve the order in which the UH
basis vectors have been chosen, i.e. the vertical lines corresponding to breakpoints bj,k at
the coarsest scales (= those for the lowest values of j) are not necessarily the longest (since
the corresponding UH coefficients are not necessarily of the largest magnitude). This makes
the TTM inherently different from dendrogram-type plots in which, using our terminology,
coarser-scale splits would be presented as more prominent than finer-scale ones.
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Figure 1: Middle: the blocks signal x. Top: the TTM of x using Unbalanced Haar wavelets;
see Section 3.1.1 for details. Bottom: xλ for λ = k

5 d̄, k = 0, 1, . . . , 4 (black, red, green, dark
blue, light blue). 9



3.1.2 Separation of signal from noise

In Section 3.1.1, we considered the TTM of the noise-free blocks signal. In this section, we
illustrate the behaviour of the TTM of the blocks signal with added iid Gaussian noise. We
are particularly interested in very noisy set-ups where the human eye cannot be relied on
to denoise the signal and more sophisticated techniques are needed.

The middle plot in Figure 2 shows the blocks signal from Section 3.1.1, contaminated
with iid Gaussian noise with mean zero and standard deviation 2, resulting in the root-
signal-to-noise ratio of 0.952. Although the overall shape of the signal is clear, it would be
challenging to an untrained eye to give an accurate estimate of the number of breakpoints
in the underlying true signal. The top plot shows the TTM of the noisy blocks, again
using Unbalanced Haar wavelets with the basis selection procedure from Section 2.1, with
superimposed true locations of the breakpoints in blocks.

It is unsurprising to observe that the bottom part of the TTM shows those reconstructions
xλ which still contain noise. It is more interesting to note that the visibly noisy part of the
TTM is confined to a relatively narrow strip of the TTM, reaching only as far as λ = 5 or
λ = 6 but not above these values. This may give the impression of the TTM being “cleaner”
and providing more distinct separation of signal from noise than the plot of the original
signal. Indeed, all the true breakpoints in blocks are clearly reflected in the TTM for some
values of λ significantly above λ = 6. The spurious features in the TTM occurring before
the first true breakpoint are unsurprising given the appearance of this particular simulated
data sample in that time region.

The bottom plot in Figure 2, showing xλ for λ = 7.5, confirms the good noise separation
property of the TTM in this example: the reconstruction is almost perfect except for the
spurious break before the first true breakpoint.

We do not formally quantify the above noise-separation property of the TTM in this section;
however, we provide some rigorous (albeit asymptotic) results concerning this property in
Section 4.1 where we apply it to the problem of breakpoint detection in a particular signal
+ noise set-up.

We end this section by noting that the noise-separation property can be viewed as an
instance of the feature-ordering property from Section 3.1.1: the fact that the vertical lines
corresponding to noise tend to be shorter than those corresponding to the signal can be
interpreted as noise being “less prominent” than signal in this example.

3.2 Derivative Time-Threshold Map

3.2.1 Visualising basis vectors on the Time-Threshold plane

In this section, we illustrate some features of the Derivative Time-Threshold Map, using
again the blocks example. We now use both Haar and Unbalanced Haar wavelets and there-
fore consider length n = 1024, which is a power of two as required by Haar wavelets (but not
by Unbalanced Haar). As in the previous section, we add independent Gaussian noise with
mean zero and standard deviation of 2. Algorithmically, it is straightforward to compute
the Derivative TTM simply by taking row-wise differences of the matrix representing the
basic TTM (whose construction is described in Section 3.1.1).
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Figure 2: Middle: the noisy blocks signal x. Top: the TTM of x using Unbalanced Haar
wavelets, with true breakpoint locations (blue); see Section 3.1.2 for details. Bottom: x7.5,
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The top and middle plots in Figure 3 show the sign of the Derivative TTMs of the noisy
blocks. The reason why sign{∆T (x)}, rather than ∆T (x) itself, is shown, is that the
magnitudes of the non-zero elements in ∆T (x) are much lower for small values of λ than
they are for its large values, which makes ∆T (x) inconvenient to view as a heat map due
to insufficient contrast for small values of λ. The interpretation of the plots is simple: each
light-dark colour strip represents a different component (wavelet basis vector ψj,k times the
wavelet coefficient dj,k) of x. The y-coordinate determines the magnitude of the wavelet
coefficient dj,k. The light-colour part of the strip coincides with the positive part of the
support of dj,kψj,k, and the dark colour – with the negative part. In other words, the
Derivative TTM provides a natural way of visualising the contribution of each wavelet ψj,k

to the input signal.

Traditionally, visualising the wavelet decomposition of a signal has mostly been done via
so-called time-scale plots (see e.g. Vidakovic, 1999, Section 3.1), in which, in contrast to
the Derivative TTM, the displayed object is the dj,k’s, arranged as a function of k (on the
x-axis) and j (on the y-axis). A time-scale plot of the Haar decomposition of the same
noisy blocks signal, computed in the R package wavethresh, is shown in the bottom plot
of Figure 3.

The two approaches, the time-scale plots and the Derivative TTM, aim to visualise the
same information in two different ways and should be viewed as ‘complementary’ rather than
‘competing’. However, one scenario in which the Derivative TTMmight be a more attractive
option than the time-scale plot is the case where the given wavelet system does not have a
clear notion of scale. One example of such a wavelet system is the Unbalanced Haar basis.
Although notionally, the j parameter in the Unbalanced Haar wavelets ψj,k is referred to as
“scale”, parameters such as the shape or frequency characteristics of different Unbalanced
Haar wavelets for the same value of j can be dramatically different as they heavily depend
on the previously selected Unbalanced Haar basis vectors in the basis selection algorithm
as well as on the shape of the input signal over the current sub-interval. Note that this is
different from the Haar wavelet case where a wavelet at scale j always has the same shape
and length of support. Since the Derivative Time-Threshold Map completely circumvents
the notion of “scale” (as it only uses ‘time’ and ‘threshold’ as the free variables), it might
be a more natural visualisation tool for such types of wavelets.

Another classic example of a wavelet system for which it is not obvious how to define scale is
when it arises from a lifting transform, see e.g. Jansen and Oonincx (2005) for an overview
of the latter. For lack of a better term, we shall refer to such wavelets as “lifted”. Indeed,
Knight et al. (2011) in their work on lifted wavelet spectra for time series sampled on a
non-equispaced grid provide one particular assignment of “scales” to lifted wavelets, but
refer to such scales as “artificial”. Many other assignments are possible. Since it avoids
the concept of scale altogether, the Derivative Time-Threshold Map might provide a less
ambiguous framework in which to visualise and analyse lifted wavelet decompositions.

3.2.2 Orthogonal Feature Decomposition via the Derivative TTM

It is a straightforward but interesting consequence of (3) that for any disjoint intervals
[λ1, λ2), [λ3, λ4), the vectors xλ1

− xλ2
and xλ3

− xλ4
are exactly orthogonal. To see this,

recall the definition of xλ from (2), the fact that W−1 is orthonormal and that the supports
of t(Wx, λ1)− t(Wx, λ2) and t(Wx, λ3)− t(Wx, λ4) are disjoint.

13



The implication is that for any sampling of the threshold parameter λ, the rows of the
Derivative TTM matrix, computed from the basic TTM by row-wise differencing as de-
scribed in Section 3.2.1, are exactly orthogonal to each other (with some of them possibly
being exactly zero).

As an example, consider again the noisy blocks signal from Section 3.2.1 and its Derivative
TTM computed using Unbalanced Haar wavelets, where the threshold parameter λ has been
sampled at six points λi, i = 1, . . . , 6, equispaced between 0 and d̄ = 38.91. Additionally,
we denote λ7 = ∞.

Figure 4 shows the rows of the Derivative TTM, that is the vectors xλi
−xλi+1

(i = 1, . . . , 6),
which provide the following orthogonal decomposition:

x = xλ7
+

6
∑

i=1

xλi
− xλi+1

. (5)

The fact that the orthogonal components xλi
− xλi+1

correspond to different features of
the input signal x motivates calling these components the ‘orthogonal features’ of x and
the resolution of identity in (5) – the ‘Orthogonal Feature Decomposition’. Obviously,
the number of non-zero features in an Orthogonal Feature Decomposition is bounded from
above by the length of the input signal.

At this point, we note the difference between (5) and the wavelet multiresolution decompo-
sition of Mallat (1989): the latter provides a linear decomposition of x whereas the former
is nonlinear. Indeed, the components of a multiresolution decomposition are defined by the
scales of the underlying wavelet basis, whereas in the Orthogonal Feature Decomposition
they are defined not by scales but by the magnitudes of the wavelet coefficients (hence
the nonlinearity). As an aside, note that additionally, in the case of the Unbalanced Haar
wavelets (as in the data example considered in this section), the Orthogonal Feature De-
composition is ‘highly nonlinear’ in the sense of DeVore (1998) since the wavelet functions
themselves are chosen adaptively.

Finally, we observe that the Orthogonal Feature Decomposition can be viewed as a gener-
alisation of the ‘noise separation’ property of Section 3.1.2 in the sense that it provides a
decomposition of the input signal into a larger number of orthogonal components, rather
than merely into what can be viewed as ‘signal’ and ‘noise’.

4 Possible applications of the TTMs

4.1 Aiding breakpoint detection in signals and time series

In this section, we demonstrate how the TTM can be used to improve existing breakpoint
detection procedures for signals and time series. We first describe our general model; C
below denotes a generic constant. Suppose we observe a realisation of

Xt = gt + εt, t = 1, . . . , n (6)

where gt is close to a piecewise-constant function g̃t in the sense that
∑n

t=1 |gt − g̃t| ≤ C,
and εt is a sequence of bounded random variables with mean zero, strongly mixing with a
geometric rate ρ. The number N of breakpoints in g̃ is bounded by a constant (this can be

14
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Figure 4: From top to bottom and from left to right: orthogonal features i = 1, . . . , 6 of the
noisy blocks signal using Unbalanced Haar wavelets; see Section 3.2.2 for details.
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extended to N increasing with n but we do not pursue it in this work) and their locations,
sorted in an increasing order, are denoted by η1, . . . ηN with η0 = 1 and ηN+1 = n. The
breakpoints are such that inf i=0,...,N{ηi+1− ηi} ≥ Cn, and infi=1,...,N |g̃ηi − g̃ηi−1| ≥ C. The
task is to estimate the number N and the locations {ηi}i of the breakpoints. The above
setting was considered in Fryzlewicz and Subba Rao (2011) in the context of segmenting
ARCH processes, which also forms the basis of the examples in this section.

Theorem 4.1 below, which concerns consistent estimation ofN and {ηi}i, is a re-interpretation
of Theorem 3.1 from Fryzlewicz and Subba Rao (2011) in the language of the present paper;
the proof is identical so we omit it.

Theorem 4.1 Let X = (X1, . . . ,Xn)
T follow model (6). Let W denote the Unbalanced

Haar transform with the basis selection procedure performed on X as described in Section
2.1. Let the threshold λn = cnθ, with θ ∈ (14 ,

1
2) and c being a positive constant. Produce the

reconstruction Xλn
= W−1t(WX, λn) and denote the number of breakpoints in Xλn

by N̂
and their locations, sorted in an increasing order, by η̂1, . . . , η̂N̂ . Then there exist positive
constants C, α such that P (An) → 1, where

An = {N̂ = N ; |η̂i − ηi| ≤ Cǫn for 1 ≤ i ≤ N},

with ǫn = n1/2 logα n.

We note that the breakpoint detection procedure from Theorem 4.1 is based on a single
wavelet reconstruction of the input data X. In the spirit of this paper, our proposal in this
section is to consider instead a range of reconstructions, i.e. the TTM of X, and argue that
it has the potential to lead to improved breakpoint detection. In this section, we always
use Unbalanced Haar wavelets to produce the TTM.

We use the following motivating example to introduce our TTM-based methodology. The
middle left plot in Figure 5 shows an example of a sequence Xt of length 200, following
model (6), arising from a financial time series context which will be described later. The true
underlying g̃t has one breakpoint at t = 100. The method of Theorem 4.1, with the threshold
constants c = 0.5 and θ = 3/8 (recommended as default in Fryzlewicz and Subba Rao
(2011)), leading to the threshold value λ = 3.65, fails by detecting no breakpoints in this
sequence. Consider also the TTM of the sequence Xt (see the top right plot in Figure 5).
The TTM appears to indicate the existence of a breakpoint and indeed it shows that the
use of any threshold between 2.14 and d̄ = 3.51 would have lead to the correct detection of
the single breakpoint. Since d̄ < λ, we may conclude that the breakpoint detection in this
example failed because the breakpoint did not feature prominently enough in the sequence
Xt for the default threshold to ‘catch’ it.

To remedy this issue, we use the TTM of Xt to construct an artificial signal X̃t which
‘amplifies’ the prominent features of Xt (here: the single breakpoint) and suppresses the
less prominent ones. We do this by taking the average of the rows of the TTM matrix of
Xt. Since, as argued in Section 3.1.2, the more prominent breakpoints in Xt are reflected
in a larger number of rows of the TTM of Xt than the less prominent ones, the hope is that
this construction will lead to a signal X̃t in which the prominent features of Xt are exposed
in a clearer manner than in Xt itself.
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More formally, using the notation X̃ = (X̃1, . . . , X̃n)
T , we define

X̃ =
1

d̄

∫ d̄

0
Xλdλ. (7)

For practical purposes, the integral in (7) is approximated by taking the average of the rows
of the TTM matrix of Xt.

We now formulate and prove a result which we will interpret to mean that the ‘noise
separation property’ in X̃t is stronger than that in Xt itself, i.e. that it is easier to identify
the breakpoints in Xt by considering X̃t rather than Xt.

Proposition 4.1 Let W be the Unbalanced Haar transform from Theorem 4.1. Let the
threshold βn = cnθ, with θ ∈ (0, 12 ) and c being a positive constant. Produce the reconstruc-

tion X̃βn
= W−1t(W X̃, βn) and denote the number of breakpoints in X̃βn

by N̂ and their
locations, sorted in an increasing order, by η̂1, . . . , η̂N̂ . Then there exist positive constants
C, α such that P (An) → 1, where

An = {N̂ = N ; |η̂i − ηi| ≤ Cǫn for 1 ≤ i ≤ N},

with ǫn = n1/2 logα n.

The proof appears in the Appendix. Proposition 4.1 states that reconstructions X̃βn
con-

sistently estimate the number and locations of the breakpoints in g̃t for an asymptotically
larger range of thresholds βn = cnθ (note the range of the exponent θ ∈ (0, 1/2)) than the
reconstructions Xλn

in which the thresholds are of the form λn = cnθ with θ ∈ (1/4, 1/2).
This can be interpreted as X̃ providing better separation of signal from noise than X.

Returning to the example from the start of the section, the middle right plot in Figure 5
shows the sequence X̃t corresponding to the sequence Xt from the middle left plot, rescaled
such that their sample variances are equal. In confirmation of the above theory, X̃t seems to
expose the breakpoint in g̃t more clearly. Indeed, the breakpoint detection method described
in Theorem 4.1, applied to X̃t with the default values of c = 0.5 and θ = 3/8, leads to one
estimated breakpoint, as required.

Motivated by the above theory and the example, we propose the following TTM-based
refinement to any breakpoint estimation procedure (not necessarily based on the method
from Theorem 4.1):

1. Given an input sequence Xt, produce X̃t as described above.

2. Rescale X̃t so that its sample variance matches that of Xt.

3. Use X̃t, instead of Xt, as input to the breakpoint estimation procedure.

We now describe a simulation study which will illustrate the effectiveness of this procedure
in the simulation set-up of Fryzlewicz and Subba Rao (2011). They apply the method of
Theorem 4.1 to the detection of breakpoints in GARCH processes with piecewise constant
parameters. A GARCH(1,1) process Yt, possibly the most widely used model for low-
frequency financial return data, has the form

Yt = σtZt

σ2t = a0 + a1Y
2
t−1 + b1σ

2
t−1

17



where Zt is a sequence of iid innovations with mean zero and variance one (assumed Gaussian
in the remainder of this section), and a0, a1 and b1 are positive constants.

Following Davis et al. (2008), Fryzlewicz and Subba Rao (2011) consider ten GARCH(1,1)
models with sample size n = 1000, and with at most one breakpoint occuring in the triple
(a0, a1, b1) at time t = 501 as follows:

(a) (0.4, 0.1, 0.5) → (0.4, 0.1, 0.5) [note that this model is stationary]

(b) (0.1, 0.1, 0.8) → (0.1, 0.1, 0.8) [note that this model is stationary]

(c) (0.4, 0.1, 0.5) → (0.4, 0.1, 0.6)

(d) (0.4, 0.1, 0.5) → (0.4, 0.1, 0.8)

(e) (0.1, 0.1, 0.8) → (0.1, 0.1, 0.7)

(f) (0.1, 0.1, 0.8) → (0.1, 0.1, 0.4)

(g) (0.4, 0.1, 0.5) → (0.5, 0.1, 0.5)

(h) (0.4, 0.1, 0.5) → (0.8, 0.1, 0.5)

(i) (0.1, 0.1, 0.8) → (0.3, 0.1, 0.8)

(j) (0.1, 0.1, 0.8) → (0.5, 0.1, 0.8).

The BaSTA-avg method of Fryzlewicz and Subba Rao (2011) transforms the sample path
Yt into another sequence Xt and searches for breakpoints in the (asymptotic) mean of the
latter. For example, a sample path Yt corresponding to model (c) is shown in the top left
plot of Figure 5; the middle left plot shows the corresponding Xt.

Table 1 shows the proportion of correctly detected number of breakpoints, averaged over
models (a)–(j), for the BaSTA-avg method of Fryzlewicz and Subba Rao (2011) (with the
span parameter s set to 5 as recommended in that work) and the TTM-refined BaSTA-avg
according to the recipe from this section. The results are shown for a range of values of the
threshold constants c and θ. It is encouraging to note that the TTM-refined BaSTA-avg is
uniformly better, by a large margin, than the original BaSTA-avg.

The model-by-model breakdown of the results, for the best parameter configurations ((c, θ) =
(0.5, 0.375) for BaSTA-avg and (c, θ) = (0.6, 0.375) for the TTM-refined BaSTA-avg) is in
Table 2.

4.2 Visualising intervals of stationarity

In this section, we demonstrate how the Derivative TTM can be of use in the following
statistical problem: given observations from the model Xt = ft+ εt, t = . . . , n− 1, n, where
ft is deterministic and εt are random variables (assumed iid N(0, σ2) for the purpose of this
simple illustration), find the longest segment [n−M,n] on which ft can be approximated by
a constant. One instance of this problem arises in financial statistics where it is of interest
to estimate the longest “recent” period of constant volatility in financial asset returns to
ensure as much stability and accuracy of the estimated current volatility as possible. We
expand on this example in our illustration below.
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Figure 5: Left column, from top to bottom: sample path Yt from model (c) of Section 4.1;
corresponding Xt; result of BaSTA-avg on Xt with c = 0.5, θ = 3/8. Right column, from
top to bottom: TTM of Xt with Unbalanced Haar wavelets; corresponding X̃t; result of
BaSTA-avg on X̃t with c = 0.5, θ = 3/8.

19



c \θ 0.26 0.375 0.49

0.1 4, 0 20, 0 51, 24
0.2 21, 1 54, 26 81, 76
0.3 40, 8 72, 64 85, 77
0.4 55, 30 82, 77 81, 64
0.5 67, 52 85, 79 79, 51
0.6 73, 65 85, 76 76, 52
0.7 79, 75 83, 69 69, 42
0.8 83, 78 81, 63 61, 30
0.9 85, 79 80, 60 56, 22
1 85, 79 78, 56 45, 20

Table 1: Number of simulation runs (out of 100) for which the number of breakpoints has
been correctly detected, averaged over models (a)–(j) from Section 4.1, for BaSTA-avg with
span s = 5 (normal font) and TTM-refined BaSTA-avg with span s = 5 (bold font).

Method (a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

BaSTA-avg 1.00 0.99 0.11 0.98 0.88 0.99 0.02 0.98 0.98 0.98
TTM BaSTA-avg 1.00 0.86 0.37 0.99 0.98 1.00 0.29 1.00 0.98 1.00

Table 2: Proportion of simulation runs for which the number of breakpoints has been
correctly detected, for models (a)–(j) from Section 4.1, for BaSTA-avg with span s = 5
((c, θ) = (0.5, 0.375)) and TTM-refined BaSTA-avg with span s = 5 ((c, θ) = (0.6, 0.375)).

On first glance, a wavelet-based solution to the above problem appears straightforward.
Indeed, one can take a sample X(N) = {Xt}nt=n−N+1 of dyadic length N = 2J , take its

Haar wavelet decomposition, apply the universal threshold λ = σ{2 log N}1/2 and take
the inverse Haar transform of the thresholded coefficients to obtain a piecewise-constant

reconstruction X
(N)
λ . In the case when ft = f(t/N) and the function f(u) is piecewise-

constant, the last constant segment in X
(N)
λ is, with probability tending to one with N ,

the longest segment of a dyadic length that is still contained within the last segment of
constancy of ft. The proof of this statement is straightforward and proceeds along the lines
of Fryzlewicz (2010b), Theorem 3.3, so we omit it.

However, one issue with this simple solution is that its theoretical validity heavily relies
on the “rescaled time” (a.k.a. “in-fill asymptotics”) concept which assumes that ft is a
sampled version of a compactly supported function where the sampling grid becomes finer
and finer as the sample size increases. This framework may be difficult to justify in some
time series contexts, such as in the volatility example from this section, where an increasing
sample size simply means progression of time rather than finer sampling in the past.

In the spirit of the TTM approach, the alternative solution proposed in this section is to
apply a family of thresholds and investigate the lengths of the last segments of constancy
yielded by each of them. This would give the analyst a more complete picture of the data
and facilitate the final choice of the desired interval. One possibility would be, for example,
to consider all possible samples X(N) = {Xt}nt=n−N+1 for N = 21, 22, 23, . . ., apply the
corresponding universal thresholds and investigate what intervals of constancy they lead to.
This is the route that we follow in the example below.
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The example we consider in this section is that of the Dow Jones Industrial Average index,
one of the most widely reported stock market indices. Let Yt denote the logged and differ-
enced daily closing values of the DJIA index on 10240 consecutive trading days (roughly
40 trading years) ending on 21 October 2011. Local constancy of the expectation of Y 2

t

would correspond to the volatility of the returns being constant over the corresponding time
interval.

To stabilise the variance of Y 2
t and bring the data closer to the “function + iid Gaussian

noise” set-up, we take local averages of Y 2
t over non-overlapping windows of 5 days, and

take the logarithmic transform. To be more precise, we form

Xt = log







1

5

5t
∑

s=5(t−1)+1

Y 2
s







, t = 1, . . . , 2048.

Xt is shown in the top left plot of Figure 6. From initial inspection, it appears sensible to
model Xt as Xt = ft + εt, t = 1, . . . , n = 2048 with σ = Var1/2(εt) ≈ 0.68. The sign of the
Derivative TTM of Xt is shown in the top right plot of Figure 6.

The bottom left plot of Figure 6 shows the portion of the Derivative TTM map of Xt for
t = (2048−64+1), . . . , 2048, i.e. for the last 64 time units (the y-axis has also been changed
for clarity). The horizontal black lines show the family of universal thresholds corresponding
to sample sizes N = 2048, 1024, . . . , 2 (obviously, the larger the sample size, the higher the
threshold). For each threshold, the implied longest segment of constancy [n − M,n] is
the longest segment for which there are no sign changes in any wavelet functions that
appear above the given threshold (which means that the reconstruction over that segment
is constant). It is remarkable to note that all considered threshold values indicate that the
longest segment of constancy is the segment [n − 7, n] of length 8. The constancy of the
expectation of Xt in the last 8 time units corresponds to the constancy of the expectation
of Y 2

t over the last 40 days. Yt for the last 80 days, with the location of the beginning
of the last estimated segment of constancy, is shown in the bottom right plot of Figure
6. The answer is visually plausible. One way of summarising/interpreting this outcome
would be to say that “it is significant for sample sizes N = 2, . . . , 2048 with respect to the
corresponding universal thresholds”, which is a stronger statement than if one were to say
“it is significant for one particular sample size with respect to the corresponding universal
threshold” (as would the likely conclusion be if one were to apply the usual “rescaled time”
asymptotics).

We note that the role of the TTM in the example of this section is mainly that of a
“visualiser”: it provides a natural and convenient framework in which to visually read and
interpret a family of solutions, each yielded by a different threshold, at once.

4.3 Discussion: other possible uses of the TTMs

We end by listing two other statistical problems where we envisage that the TTM approach
could possibly be of use.

1. Classification of time series, curves or signals. In this task, the TTM or Derivative
TTM could serve as a classification “signature” of a given dataset in the sense that the
membership of a class would be determined by certain properties of the (Derivative)
TTM of the dataset.
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2. Testing for time series stationarity. Since the Derivative TTM is invertible, its dis-
tribution completely determines the distribution of the input time series. Therefore,
tracking changes in the distribution of the Derivative TTM over time could possibly
help in assessing the (strict) stationarity, or otherwise, of the input time series.

A Proof of Proposition 4.1

Let dj,k denote the Unbalanced Haar coefficients of Xt, obtained by applying the matrix
W . Let d̃j,k denote the Unbalanced Haar coefficients of X̃t obtained by applying the same
matrix. Below, C denotes a generic positive constant, not necessarily the same in value
each time it is used. From (7), we obtain

X̃ =
1

d̄

∫ d̄

0
W−1t(dj,k, λ)dλ

d̃j,k =
1

d̄

∫ d̄

0
t(dj,k, λ)dλ,

which leads to

d̃j,k = sign(dj,k)
d2j,k

d̄

for (j, k) 6= (−1, 1) (and d̃−1,1 = d−1,1). We consider separately two cases, Case 1 when the
number N of breakpoints satisfies N ≥ 1 and Case 2 when N = 0. The terminology below
partly follows Fryzlewicz and Subba Rao (2011).

Case 1. We divide the double indices (j, k) 6= (−1, 1) into two subsets: those for which
the corresponding bj,k estimate previously undetected breakpoints (denote this set by I1)
and the remaining ones (I2). By Lemma A.6 of Fryzlewicz and Subba Rao (2011), on the
set An, the dj,k from the set I1 satisfy |dj,k| ≥ C(n1/2 − logα n). By similar arguments,
d̄ ≤ C(n1/2 + logα n). This leads to the d̃j,k’s from the set I1 satisfying

|d̃j,k| ≥ C(n1/2 − logα n).

On the other hand, by Lemma A.7 of Fryzlewicz and Subba Rao (2011), on the set An, the
dj,k from the set I2 satisfy |dj,k| ≤ C(n1/4 logα/2 n+ logα n), which leads to d̃j,k’s from the
set I2 satisfying

|d̃j,k| ≤ C logα n.

Thus, any threshold of the form βn = cnθ, θ ∈ (0, 1/2), successfully separates, for n large
enough, between the two groups of coefficients, leading to X̃βn

coinciding with Xαn from
Theorem 4.1 and thereby ensuring consistency of the estimated number and locations of
the breakpoints with identical rates.

Case 2. By Lemma A.4 of Fryzlewicz and Subba Rao (2011), on the set An, we have
|dj,k| ≤ C logα n. Because |d̃j,k| ≤ |dj,k|, the same upper bound applies to |d̃j,k|, and thus

βn sets all d̃j,k’s to zero, thereby ensuring that N̂ = 0 as required. �
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