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Abstract

We propose a multiscale approach to time series autoregression, in which linear regressors
for the process in question include features of its own path that live on multiple timescales. We
take these multiscale features to be the recent averages of the process over multiple timescales,
whose number or spans are not known to the analyst and are estimated from the data via a
change-point detection technique. The resulting construction, termed Adaptive Multiscale Au-
toRegression (AMAR) enables adaptive regularisation of linear autoregressions of large orders.
The AMAR model is designed to offer simplicity and interpretability on the one hand, and
modelling flexibility on the other. Our theory permits the longest timescale to increase with
the sample size. A simulation study is presented to show the usefulness of our approach. Some
possible extensions are also discussed, including the Adaptive Multiscale Vector AutoRegres-
sive model (AMVAR) for multivariate time series, which demonstrates promising performance
in the data example on UK and US unemployment rates. The R package amar (Baranowski
et al., 2022) provides an efficient implementation of the AMAR framework.
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1 Introduction

1.1 Motivation and main idea

Autoregression in time series modelling is arguably the most frequently used device to characterise

temporal dependence in data. The classical linear autoregressive model of order p, known as AR(p),

for univariate time series Xt assumes that Xt is a linear but otherwise unconstrained function of

its own past values Xt−1, . . . , Xt−p, plus white-noise-like innovation εt, that is Xt = β1Xt−1 + . . .+

βpXt−p + εt for t = 1, . . . , T . However, in situations where the application of this model yields a

large or even moderate p, either in absolute terms or relative to T (perhaps in an attempt to reflect

long-range dependence in Xt), it may be tempting to consider instead an alternative approach, in

which Xt is regressed explicitly on some other features of its own past, rather than directly on the

individual variables Xt−1, . . . , Xt−p.

Motivated by this, we propose what we call a multiscale approach to time series autoregression,

in which we include features of the path X1, . . . , Xt−1 that live on multiple timescales as linear

regressors for Xt. To fix ideas, here we take these multiscale features to be the recent averages of

Xt over multiple time spans (N.B. possible extensions will be discussed in Section 5), which are not

necessarily known to the analyst a priori and need to be estimated from the data. This leads to the

following Adaptive Multiscale AutoRegressive model of order q, abbreviated as AMAR(q), for Xt:

Xt = α1
Xt−1 + . . .+Xt−τ1

τ1
+ . . .+ αq

Xt−1 + . . .+Xt−τq

τq
+ εt, t = 1, . . . , T, (1)

where the number of timescales q, the timescales 1 ≤ τ1 < τ2 < . . . < τq and the scale coefficients

α1, . . . , αq ∈ R\{0} are unknown (NB. zero is excluded for model identifiability), and where the

innovations {εt} follow a white noise process, which we take to mean a sequence of random variables

that are uncorrelated, having zero-mean and a finite (but non-zero) variance. The number of scales

q can possibly be much smaller than the largest timescale τq. Here we use the term “adaptive”
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to reflect the fact that the timescales in the AMAR model automatically adapt to the data in the

sense of being selected in a data-driven way, rather than being known a priori.

In essence, the AMAR(q) model is a multiscale, sparsely parameterised, version of the AR(τq)

process, which permits the longest timescale τq to be large in practice. These properties make the

AMAR framework particularly suitable for the exploratory analysis of processes in which a seasonal

component may be suspected, or for the modelling of time series which exhibit low-frequency trends

(which may give them a non-stationary appearance) accompanied by higher-frequency oscillations.

We shall illustrate these claims in Section 2.3.

1.2 Literature review

We now provide an overview of other related literature. Reinsel (1983) considers a model in which

the current time series variable depends linearly on a small number of index variables which are linear

combinations of its own past values; in contrast to our setting, these index variables are assumed

to be known a priori. Reduced-rank time series multivariate autoregression, which provides a way

of reducing the parameterisation for multivariate time series via the use of automatically chosen

index variables, is considered in Velu et al. (1986) and Ahn and Reinsel (1988), but this approach

is not explicitly designed to be multiscale or to able to cope with autoregressions of large orders.

Ferreira et al. (2006) introduce a class of bi-scale univariate time series models that consist of two

main building blocks: Yt, t = 1, . . . ,mT , the fine-level process, where the integer m > 1 is known,

and the coarse-level aggregate process Xt = m−1
∑m

j=1 Ytm−j + εt for t = 1, . . . , T , where the noise

term εt ∼ N (0, σ2) is independently and identically distributed (i.i.d.) and independent of Yt.

Ferreira et al. (2006) recommend choosing a simple model for Yt, e.g. AR(1), and show with this

choice, Xt can emulate long-memory behaviour. In contrast to this framework, AMAR assumes

that the timescales are not known a priori, and uses coarse-level information for fine-level modelling,

rather than vice versa.
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Ghysels et al. (2004) propose Mixed Data Sampling (MIDAS) regression, in which time series

observed at finer scales are used to model one observed at a lower frequency. In the notation of

the previous paragraph, the MIDAS model is defined as Xt = β0 +
∑p

i=1 bi(Ytm−i;β) + εt, where

b1(·;β), . . . , bp(·;β) are given functions of the lagged observations recorded at a higher frequency

and of a low-dimensional vector of unknown parameters β = (β1, . . . , βq)
T , and where εt is random

noise. For each recorded observation of Xt, m values of Yi are sampled. We mention one particular

form of bi(·;β) from Forsberg and Ghysels (2007): Xt = β0 +
∑q

j=1 βj

∑τj
i=1 Ytm−i + εt, where

1 ≤ τ1 < . . . < τq are known integers. One important difference between this and the AMAR

framework is that τ1, . . . , τq in our model are unknown.

In Heterogeneous AutoRegressive (HAR) modelling (Corsi, 2009), the quantity of interest is re-

gressed on its past realised averages over given known multiple timescales. The authors show that

the model is able to imitate long-memory behaviour without, in fact, possessing the long-memory

property. Numerous extensions and applications of the HAR approach have been considered; see

Corsi et al. (2012) for a review of HAR modelling of realised volatility.

Maeng and Fryzlewicz (2019) introduce bi-scale autoregression, in which the more remote autore-

gressive coefficients are assumed to be sampled from a smooth function; this is done to regularise

the estimation problem and thus facilitate estimation of the coefficients if the autoregression order is

large. The rough and smooth regions of the AR coefficient space are identified through a technique

akin to change-point detection. The approach is different from AMAR in that only two scales are

present (while in AMAR the number of scales is unknown a priori and is chosen adaptively from

the data), and the scales are defined by the degree of coefficient smoothness instead of their spans

as in AMAR.

The Long Short-Term Memory (LSTM) model of the recurrent neural network (Hochreiter and

Schmidhuber, 1997) uses a bi-scale modelling approach whereby the new hidden state at each

time point combines (in a particular way that has been learned from the data) long-range “cell

state” information with more recent information originating from the previous hidden state and
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instantaneous input. The use of LSTM models in time series forecasting is less well explored and

the theoretical understanding of their behaviour in the context of time series modelling is limited,

but see Petnehazi (2019) for a recent review. The complexity of LSTM models means that large

samples are typically required to train them.

In addition, one could view the AMAR model as a particular instance of a linear regression model in

which the coefficients have been grouped into (unknown) regions of constancy. The group LASSO

approach (Yuan and Lin, 2006) assumes that the groups are known and it therefore would not

be suitable for AMAR. The fused LASSO (Tibshirani et al., 2005), which uses a total-variation

penalty on the vector of regressors, could in principle be used for the fitting of a piecewise-constant

approximation to the estimated vector of AR coefficients, but consistent detection of scales in the

AMAR model is effectively a multiple change-point detection problem, and it is known (see e.g. Cho

and Fryzlewicz (2011)) that approaches based on the total variation penalty (e.g. fused LASSO) is

not optimal for this task.

Finally, we note that our notion of “multiscale autoregression” is different from that in, for example,

Basseville et al. (1992) or Daoudi et al. (1999), who consider statistical modelling on dyadic trees,

motivated by the wavelet decomposition of data. In contrast, we are interested in the explicit

multiscale modelling of the time evolution of the original process {Xt}, i.e. there is no prior

multiscale transformation to speak of.

Against the background of the existing literature, the unique contributions of this work can be

summarised as follows. Unlike the existing multiscale and index-based approaches to autoregression

described above, the scales τ1, . . . , τq in the AMAR model are not assumed to be known by the

analyst and are estimable from the data; so is their number q. The AMAR model is able to

accommodate autoregressions of large order: the largest-scale parameter τq is permitted to increase

with the sample size T at a rate close to T 1/2. The consistent estimation of the number of scales q and

their spans τ1, . . . , τq is achieved by a change-point detection algorithm, more precisely, a “narrowest-

over-threshold”-type (Baranowski et al., 2019) adapted to the AMAR context, and this paper
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both justifies this choice and shows how to overcome the significant methodological and theoretical

challenges that arise in this adaptation. Being only based on the past averages of the process but

enabling data-driven selection of their number and spans, the AMAR framework is designed to offer

simplicity and interpretability on the one hand, and modelling flexibility on the other. Besides, the

AMAR framework can be extended in different ways to handle more complicated data structure,

including multivariate time series. The promising performance of this particular extension, named

Adaptive Multiscale Vector AutoRegressive model (AMVAR), is also demonstrated in this paper.

The R package amar (Baranowski et al., 2022) provides an efficient implementation of our proposal.

2 Methodology and theory

2.1 Model framework

Recall that AMAR(q) is an instance of a sparsely parametrised AR model. Therefore, for any

p ≥ τq, (1) can be rewritten as

Xt = β1Xt−1 + . . .+ βpXt−p + εt, t = 1, . . . , T, (2)

βj =
∑

k:τk≥j

αk

τk
, j = 1, . . . , p, (3)

where {εt} is a white noise process. Here we refer to (2) and (3) as an AR(p) representation of the

AMAR(q) process. Also note that βj = 0 for j = τq + 1, . . . , p.

Let β̂ = (β̂1, . . . , β̂p)
T be the Ordinary Least Squares (OLS) estimator of β = (β1, . . . , βp)

T . Then

β̂j’s can be trivially decomposed as

β̂j = βj + (β̂j − βj), j = 1, . . . , p. (4)

The coefficients β1, . . . , βp form a piecewise-constant vector with change-points at the timescales
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τ1, . . . , τq, and thus the hope is that the timescales can be estimated consistently using a multiple

change-point detection technique. This observation motivates the following estimation procedure for

the AMAR models. First, we choose an adequate p and find the OLS estimates of the autoregressive

coefficients in the AR(p) representation of the AMAR(q) process. Then, we estimate the timescales

by identifying the change-points in the series β1, . . . , βp, using for this purpose an adaptation of the

Narrowest-Over-Threshold (NOT) approach of Baranowski et al. (2019). Once the timescales are

estimated, we estimate the scale coefficients via least squares.

Our motivation for using the NOT approach as a change-point detector in this context is that it

enjoys the following change-point isolation property: in each detection step, the NOT algorithm is

guaranteed (with high probability) to be only selecting for consideration sections of the input data

(i.e. the vector (β̂1, . . . , β̂p) here) that contain at most a single change-point each. This is a key fact

that makes our version of the NOT method easily amenable to a theoretical analysis in the AMAR

framework.

In a typical application of the AMAR(q) model, we envisage that the number of timescales q will

be small in comparison to the maximum timescale τq. For the development of our theory, we work

in a framework where the number of timescales q, the timescales τ1, . . . , τq and the coefficients

α1, . . . , αq possibly depend on the sample size T under Gaussian innovations, and are fixed under

heavy-tailed innovations. However, for the economy of notation, we shall suppress the dependence

of these quantities on T in the remainder of the paper.

We end this section by emphasising again that the purpose of change-point detection in our context is

not to find change-point in the AMAR(q) process itself; indeed, this paper studies stationary AMAR

processes, which themselves contain no change-points. The aim of change-point detection in the

AMAR context is to segment the possibly long vector of the estimated autoregressive coefficients

into regions of piecewise constancy, and thereby estimate the unknown timescales τ1, . . . , τq.
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2.2 Stationarity

Recall that the characteristic polynomial of any AR(p) is b(z) := b(z; β1, . . . , βp) = 1−
∑p

j=1 βjz
j for

z ∈ C, where C denotes the complex plane. Also, the unit circle is denoted by T = {z ∈ C : |z| = 1}.

We now discuss the stationarity of the AMAR models with q and α1, . . . , αq being fixed. Since

AMAR is a special form of AR, {Xt} that follows the AMAR model has a stationary (and causal)

solution if and only if the roots of b(z; β1, . . . , βτq) are outside T, where β1, . . . , βτq are defined in

Equation (3). Here any z ∈ C is outside T if and only if |z| > 1. Furthermore, a simplified sufficient

condition for stationarity is given in the following result.

Proposition 2.1 Given {Xt} follows the AMAR(q) model in Equation (1) with α1, . . . , αq. If∑q
j=1 |αj| < 1, then {Xt} has a causal stationary solution. Suppose all the αj’s are non-negative,

then the converse is true.

We remark that when all the αj’s are non-negative, previous observations have non-negative effects

on the current one. In this case,
∑q

j=1 αj < 1 would be a sufficient (but not necessary) condition for

stationarity. Furthermore, the above proposition holds even when q = ∞. When q (or τq) increases

with T , the stationarity property of AMAR would need to be discussed in a setup that involves

triangular arrays. These details are omitted for notational convenience.

Finally, we remark that AMAR models can be useful even in the settings involving unit-roots. See

discussions in Section 2.3, as well as additional numerical results in the supplement.

2.3 Special cases of AMAR

We now consider some special cases of AMAR, and offer visual insights into their behaviour.

8



2.3.1 Special case I: a single scale

Let {Xt} be a series following the AMAR model with a single scale, i.e.

Xt = α1
Xt−1 + . . .+Xt−τ1

τ1
+ εt, t = 1, . . . , T. (5)

Realisations for different values of α1 (from 0.5 to 0.95, the latter corresponds to series that are

near unit-root) and τ1 (from 1 to 10) with standard Gaussian noise are plotted in Figure 1. It

appears that the longer the scale, the noisier the appearance; the overall shape (driven by the low

frequencies) is preserved, but the details (driven by the high frequencies) are increasingly obscured

by noise. This behaviour can also be understood by considering the spectral properties of the

single-scale AMAR model, where the fact that the corresponding AR coefficients in the single-scale

AMAR model (5) are constant provides a useful simplification in the form of the spectral density.

With εt being white noise with unit variance, the spectral density of Xt given by (5) is

SX(f) =

∣∣∣∣1− α1

τ1
e−2πfi1− e−2πfτ1i

1− e−2πfi

∣∣∣∣−2

, |f | < 1

2
. (6)

In view of the boundedness of e−2πfi 1−e−2πfτ1i

1−e−2πfi as a function of τ1, we have that SX(f) → 1 as

τ1 → ∞, for all f ∈ (0, 1/2). However, as the sum of the AR coefficients in the single-scale AMAR

does not depend on τ1, we have SX(0) = |1 − α1|−2. Note that more generally, given α1, . . . , αq,

the spectral density at zero of any AMAR(q) process, i.e. its long-run variance, is independent of

τ1, . . . , τq.

As a visual illustration, Figure 2 shows the spectral density of a single-scale AMAR process with

τ1 = 10 and α1 = 0.7. Due to the limiting behaviour described above, a single-scale AMAR for a

large τ1 can be approximated as the sum of two independent processes: one band-limited with a

sharp peak at zero (and therefore representing a “slowly-varying” signal), and the other as white

noise. This is in agreement with the appearance of the sample realisations shown in Figure 1, which
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Figure 1: Simulated sample paths, of length 500, from the single-scale AMAR model (5), with
α1 = 0.5, 0.9, 0.95 (respectively from top to bottom) and τ1 = 1, 2, 5, 10 (respectively from left to
right). The same random seed is used to generate path for each row.
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Figure 2: Spectral density of a single-scale AMAR process with τ1 = 10 and α1 = 0.7.

begin to resemble a “signal + white noise” model for the larger values of τ1.

Finally, we note that even though all the series plotted in Figure 1 are weakly stationary, some

of them exhibit behaviour that mimics non-stationarity, at least visually, when τ1 if large, even

for a moderate α1. This hints at the usefulness of AMAR in the modelling of near unit-root or

certain non-stationary series. More details can be found in a simulation study in Section A of the

supplement.

2.3.2 Special case II: one short plus one long scale

We now study the case of the AMAR model in which two timescales are present: one short one,

and one long one. We have

Xt = α1
Xt−1 + . . .+Xt−τ1

τ1
+ α2

Xt−1 + . . .+Xt−τ2

τ2
+ εt. (7)

First, if we keep α1+α2 constant, and vary both coefficients from α1 = 0 on one extreme to α2 = 0

on the other extreme, then we obtain a “smooth transition” from a single-scale model with scale τ2

to a single-scale model with scale τ1.

To gain further insight into the behaviour of AMAR with two timescales, now we consider α1 =
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α2 = α, take τ1 = 1 and vary τ2. Figure 3 illustrates the case in which α1 = α2 = α = 0.49, τ1 = 1

and τ2 = 2, 10, 50. When τ2 = 50, the longer scale has visually and practically no impact as the

coefficients for the individual components (i.e. α2/τ2) are small. When τ2 = 2, we have a simple

AR(2) model. On the other hand, when τ2 = 10, the realisation has the visual appearance of “a

time-varying trend plus a low-order AR model”. Here, the longer scale is responsible for the changing

“levels” at low-frequencies, whereas the shorter scale is responsible for instantaneous fluctuations

at high-frequencies. This phenomenon is visually not present if
∑

i αi is small or moderate, e.g.

α = α1 = α2 = 0.3, as demonstrated in Figure 3, but would show up if
∑

i αi gets moderately close

to 1, e.g. at around 0.8.

Besides, models with a large τ2 (for different αi’s) also display the same interesting feature (i.e.

“trend + noise” type, which might visually appear to be non-stationary), but it seems that the

longer the scale τ2, the larger the sample sizes at which we are able to observe this phenomenon.

From these findings, we would infer that a two-scale AMAR model (with a small τ1) is perhaps the

most useful if (a) the longer scale is not too short or too long (i.e. in the order of 10s in practice),

and (b) when the sum of the coefficients α1 + α2 is moderately close to 1 (say > 0.8), with the

coefficient α2 of the longer scale not being too small. In this case the two-scale AMAR can imitate

a time-varying trend plus a low order AR model, i.e. we are in a situation in which we are able to

use a stationary AMAR model to model certain non-stationary-looking phenomena.

2.3.3 Special case III: AMAR representation of seasonal models

In the class of seasonal ARIMA(p, 0, q)×(P, 0, Q)S models, we consider models of the form Φ(BS)ϕ(B)Xt =

εt (i.e. q = Q = 0), where

Φ(BS) = 1− Φ1B
S − . . .− ΦPB

PS

ϕ(B) = 1− ϕ1B − . . .− ϕpB
p,
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Figure 3: Simulated sample paths, of length 500, from the two-scale AMAR model (7), with α1 =
α2 = α = 0.49 in the first row and α1 = α2 = α = 0.3 in the second. Here τ1 = 1 and τ2 = 2, 10, 50
(respectively from left to right). The same random seed is used to generate path for each row.
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and where B is the lag operator. They belong to the class of AMAR models. As a simple example,

consider ARIMA(1, 0, 0)× (1, 0, 0)12, an autoregressive model for monthly time series, with a single

non-seasonal lag and yearly seasonality, given by

Xt = ϕ1Xt−1 + Φ1Xt−12 − ϕ1Φ1Xt−13 + εt. (8)

A typical characteristic feature of ARIMA(p, 0, q)× (P, 0, Q)S models is its stretches of consecutive

zero AR coefficients. For example, in (8), the AR coefficients corresponding to lags 2 to 11 are zero.

This means that AMAR models are also able to provide a relatively parsimonious representation

of ARIMA(p, 0, q) × (P, 0, Q)S models. As an example, model (8), represented in the AMAR

framework, will need four scale parameters (at τ1 = 1, τ2 = 11, τ3 = 12 and τ4 = 13) and four

corresponding AMAR coefficients (i.e. α1 = ϕ1, α2 = −11Φ1, α3 = 12Φ1(1+ϕ1) and α4 = −13ϕ1Φ1),

which is more heavily parameterised than the optimal seasonal representation (8) (with ϕ1 and Φ1)

but much less than the full AR representation of (8).

This (relative) parsimony of representation of seasonal models in the AMAR framework, plus the

fact that the AMAR estimation framework is able to estimate the number of timescales and their

spans automatically, makes AMAR a viable exploratory tool for identifying time series seasonality

in data. In fact, our simulation study in Section 3.3 show that the AMAR estimation procedure

capable of identifying the right timescales rather effectively even with relatively small number of

observations, confirming good potential of AMAR for the identification and exploratory analysis of

seasonal models.

2.4 Large deviations for the OLS estimator in AR(p)

As a prelude to the study of the behaviour of our proposed AMAR scale and coefficient estimation

procedure, we obtain a tail probability bound on the Euclidean norm of the difference between the

OLS estimator β̂ of the autoregressive parameters β in model (2), with all bounds explicitly depend-
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ing on T , p and the other parameters of the AR(p) process. For any vector v = (v1, . . . , vk)
T ∈ Rk

the Euclidean norm is denoted by ∥v∥ =
√∑k

j=1 v
2
k. The following theorem holds.

Theorem 2.1 Suppose that {Xt}Tt=1 follows the AR(p) model (2) with the innovations ε1, . . . , εT

being i.i.d. N (0, σ2) with σ > 0. Also assume that the process is stationary and causal. Let β̂ =

(β̂1, . . . , β̂p)
T be the OLS estimator of the vector of the autoregressive coefficients β = (β1, . . . , βp)

T .

Then there exist universal constants κ1, κ2, κ3 > 0 not depending on T , p or β s.t. if
√
T >

κ2p log(T ), then we have

P

(∥∥∥β̂ − β
∥∥∥ ≤ κ1(b/b)

2 ∥β∥
p log(T )

√
log(T + p)√

T − κ2p log(T )

)
≥ 1− κ3

T
, (9)

where b = minz∈T |b(z)| and b = maxz∈T |b(z)|.

Theorem 2.1 implies that, with high probability, the differences β̂j −βj in (4) converge to zero with

T → ∞, provided that
p log(T )

√
log(T+p)

√
T−κ2p log(T )

→ 0. Also note that this result holds for any σ > 0, as the

OLS estimate has the “self-normalising” property in the current setting, i.e. it remains unchanged

when we scale the entire observed series {Xt} (and thus σ) by a constant.

We remark that in a setting where both the order p and the autoregressive coefficients in model

(2) do not depend on the sample size T , properties of the OLS estimators are well-established. Lai

and Wei (1983) show that, without assumptions on the roots of the characteristic polynomial b(z),

the OLS estimators are strongly consistent if {εt} is a martingale difference sequence with bounds

on the conditional second moments. Barabanov (1983) obtains similar results independently, under

slightly stronger assumptions on the noise sequence. Bercu and Touati (2008) give an exponential

inequality for the OLS estimators in the AR(1) model with i.i.d. Gaussian noise.

15



2.5 AMAR estimation algorithm

2.5.1 Timescale estimation

Algorithm 1 NOT algorithm for estimation of timescales in AMAR models

Input: Estimates β̂ = (β̂1, . . . , β̂p)
T ; s and e are the start- and end-points of an interval of interest;

FM
T is a set of intervals within [1, p]; and a given threshold ζT and S = ∅ (as an initiation).

Output: Set of estimated timescales S = {τ̂1, . . . , τ̂q̂} ⊂ {1, . . . , p}, where τ̂1, . . . , τ̂q̂ are in increas-
ing order.
procedure NOT(β̂, s, e, FM

T , ζT )
if e = s then STOP
else

Ms,e :=
{
m : [sm, em] ∈ FM

T , [sm, em] ⊂ [s, e]
}

if Ms,e = ∅ then STOP
else

Os,e :=
{
m ∈ Ms,e : maxb∈{sm,...,em−1} Cb

sm,em

(
β̂
)
> ζT

}
if Os,e = ∅ then STOP
else

m∗ :∈ argminm∈Os,e
|em − sm + 1|

b∗ := argmaxb∈{sm∗ ,...,em∗−1} Cb
sm∗ ,em∗

(
β̂
)

S := S ∪ {b∗}
NOT(β̂, s, b∗, ζT )
NOT(β̂, b∗ + 1, e, ζT )

end if
end if

end if
end procedure

To estimate the timescales τ1, . . . , τq, at which the change-points in model (4) are located, we adapt

the Narrowest-Over-Threshold (NOT) approach of Baranowski et al. (2019), with the cumulative

sum (CUSUM) contrast function Cb
s,e (·) suitable for the piecewise-constant model, defined by

Cb
s,e (v) =

∣∣∣∣∣
√

e− b

(e− s+ 1)(b− s+ 1)

b∑
t=s

vt −

√
b− s+ 1

(e− s+ 1)(e− b)

e∑
t=b+1

vt

∣∣∣∣∣ . (10)
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In Baranowski et al. (2019), NOT was shown to recover the number and locations of change-points

(the latter at near-optimal rates) in the “piecewise-constant signal + i.i.d. Gaussian noise” model.

Although it is challenging to establish the corresponding consistency and near-optimal rates in

problem (4) due to the complex dependence structure in β̂j −βj, we show in Section 2.5.2 that here

NOT estimators enjoy properties similar to those established in the i.i.d. Gaussian setting.

Let ζT > 0 be a significance threshold with which to identify large CUSUM values (with its choice

to be discussed in Section 3.1). The NOT procedure for the estimation of the timescales in the

AMAR(q) model is described in Algorithm 1, which serves as a key ingredient of the AMAR

estimation algorithm, given in Section 2.5.2. Core to this approach is a particular blend of global

and local treatment of the data β̂ in the search for the multiple scales that may be present in the

true β0. At the global stage, we look at the behaviour of β̂ over a large number of subintervals

(either drawn randomly or systematically), (β̂s, . . . , β̂s), where 1 ≤ s < e ≤ p. On each subinterval,

we assume, possibly erroneously, that only one feature (i.e. scale) is present and use a contrast

function (in this setting, CUSUM-based) to find the most likely location of the scale. We retain

those subsamples for which the contrast exceeds a certain specified threshold, and discard the others.

Amongst the retained subsamples, we search for the one drawn on the narrowest interval, i.e. one

for which e − s is the smallest. The focus on the narrowest interval constitutes the local part of

the method, which ensures that with high probability, at most (and also at least, with appropriate

choice of threshold) one scale is present in the selected interval. Having detected the first scale, our

Algorithm 1 then proceeds recursively to the left and to the right of it, and stops, on any current

subinterval, if no contrasts can be found that exceed the threshold. More details regarding the

intuitions and the construction of the contrast function under different settings can be found in

Baranowski et al. (2019).
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2.5.2 Parameter estimation

We now introduce our proposed estimation procedure for the parameters of the AMAR model.

We refer to it as the AMAR algorithm, and its steps are described in Algorithm 2. An efficient

implementation of the procedure is available in the R package amar (Baranowski et al., 2022). The

choice of all the input parameters is discussed in Section 3.1. As a remark, we note that in Step

4, finding the AMAR coefficients via OLS amounts to the same procedure as refitting the OLS

estimates of the AR coefficients (e.g. β̂) subject to equality constraints of having the coefficients

to be the same from the (τk + 1)-th to the τk+1-th time-lag for all k .

Algorithm 2 AMAR algorithm

Input: Data X1, . . . , XT , p; threshold ζT , and M (needed only if p > 500).
Output: Estimates of the relevant scales τ̂1, . . . , τ̂q̂ and the corresponding AMAR coefficients

α̂1, . . . , α̂q̂.

procedure AMAR({X1, . . . , XT}, p, ζT )
Step 1 Find β̂ = (β̂1, . . . , β̂p)

T , the OLS estimates of the autoregressive coefficients in the
AR(p) representation of AMAR(q).
Step 2 Let FM

T be a set of all M = p(p − 1)/2 intervals within [1, p] (i.e.
[1, 2], . . . , [1, p], [2, 3], . . . , [2, p], . . . , [p − 1, p]). If p is large (e.g. > 500), we take FM

T to be
a set of M intervals whose start- and end-points have been drawn independently and uniformly
from {1, . . . , p} with replacement.
Step 3 Call NOT(β̂, 1, p, FM

T , ζT ) from Algorithm 1 to find the estimates of the timescales;
Sort them in increasing order to obtain τ̂1, . . . , τ̂q̂.
Step 4 With the timescales in (1) set to {τ̂1, . . . , τ̂q̂}, find α̂1, . . . , α̂q̂, the OLS estimates of the
scale coefficients α1, . . . , αq.

end procedure
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2.6 Theoretical properties

2.6.1 Gaussian innovations

The following two quantities will together measure the difficulty of our change-point problem de-

tection problem (with the convention τ0 = 0 and τq+1 = p):

δT := min
j=1,...,q+1

|τj − τj−1|, (11)

αT := min
j=1,...,q

|βτj+1 − βτj | = min
j=1,...,q

|αj|τ−1
j . (12)

To study the theoretical properties of the timescale estimators τ̂1, . . . , τ̂q̂, we make the following

assumptions.

(A1) {Xt} is stationary and follows the AMAR(q) model given in (1) with the innovations εt being

i.i.d. N (0, σ2) for some σ > 0.

(A2) p > τq and there exist constants θ < 1
2
and c1 > 0 such that p < c1T

θ for all T .

(A3) The roots of the characteristic polynomial b(z) lie outside the unit circle T. Furthermore,

there exists constants c2, c̄2 > 0 such that c2 ≤ minz∈T |b(z)| ≤ maxz∈T |b(z)| ≤ c̄2 uniformly

in T .

(A4) δ
1/2
T αT ≻ T θ− 1

2 (log(T ))3/2 =: λT , where θ is as in (A2), and where δT and αT are given by

(11) and (12), respectively. Here f(T ) ≻ g(T ) means that liminfT→∞f(T )/g(T ) = ∞.

Some comments regarding these assumptions are in order. First, the Gaussianity assumption (A1)

is made to simplify the theoretical arguments of the proof of Theorem 2.1, which is subsequently

used to justify Theorem 2.2 below. As is shown later, Theorem 2.2 could possibly be extended to

cover more general distributional scenarios for the noise εt.
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Second, Assumption (A2) imposes restrictions on both p and the maximum timescale τq, which

are allowed to increase with T → ∞, but at rates slower than T 1/2. A similar condition on p

being the order of AR(p) approximations of an AR(∞) processes can be found in e.g. Ing and

Wei (2005). Assumption (A3) implies that the AMAR(q) process Xt, t = 1, . . . , T , is uniformly

stationary for all T : the requirement that minz∈T |b(z)| is bounded from below implies that the

roots of the characteristic polynomial do not approach the unit circle T when T → ∞, which in

turn ensures that the Xt process is, heuristically speaking, sufficiently far from being unit-root.

Besides, the upper bound on maxz∈T |b(z)| implies that ∥β∥ is uniformly bounded from below, in

view of the Parseval’s identity (see Lemma C.1 in the supplementary materials).

Third, Assumption (A4) controls both the minimum spacing between the timescales and the size

of the jumps in (3). The quantity δ
1/2
T αT used here is well-known in the change-point detection

literature and characterises the difficulty of the multiple change-point detection problem.

Theorem 2.2 Let assumptions (A1) – (A4) hold, and let q̂ and τ̂1, . . . , τ̂q̂ denote, respectively,

the number and the locations of the timescales estimated with Algorithm 2. There exist constants

C1, C2, C3, C4 > 0 such that if C1λT < ζT < C2δ
1/2
T αT , and M > 36Tδ−2

T log(Tδ−1
T ) (only if needed

by Algorithm 2), then for all sufficiently large T we have

P
(
q̂ = q, max

j=1,...,q
|τ̂j − τj| ≤ ϵT

)
≥ 1− C4T

−1, (13)

with ϵT = C3λ
2
Tα

−2
T .

The main conclusion of Theorem 2.2 is that Algorithm 2 estimates the number of the timescales

correctly, while the corresponding locations of the estimates lie close to the true timescales, both

with a high probability. Under certain circumstances, Algorithm 2 recovers the exact locations of

the timescales. Consider, for example, the case when both the number of scales q and the scale

coefficients α1, . . . , αq in (1) are fixed, while the timescales increase with T such that δT ∼ p ∼ T θ

(‘∼’ means that the quantities in question grow at the same rate with T → ∞). This is a challenging
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setting, in which αT ∼ T−θ and ∥β∥ ∼ T−θ/2, where the coordinates of β are given by (3), so the

signal strength decreases to 0 when T → ∞. Here δ
1/2
T αT ∼ T−θ/2, thus (A4) can only be met

if θ in (A2) satisfies the additional requirement θ ≤ 1
3
. The distance between the true timescales

and their estimates is then not larger than ϵT ∼ T 4θ−1(log(T ))3, which tends to zero if θ < 1
4
.

In this case, (13) simplifies to P (q̂ = q, τ̂j = τj ∀j = 1, . . . , q) ≥ 1 − C4T
−1, when T is sufficiently

large. Furthermore, in the much simpler setting where all the locations of the timescales are fixed,

Theorem 2.2 concludes that with high probability q̂ = q and τ̂j = τj for all j = 1, . . . , q. As a

consequence, one could establish further that all the estimated autoregressive and scale coefficients

(i.e. βi’s and αi’s) converging at the rate of T−1/2. However, in general, we would expect the

convergence rate of α̂i’s to αi’s to be slower than O(T−1/2) when either q or τq (or both) increases

with T . Due to its theoretical nature, we leave the complete characterisation of the asymptotic

behaviours of α̂i’s to future research.

2.6.2 Heavy-tailed innovations

In the settings where the innovations follow more heavy-tailed distributions, consistency of our

procedure could still be established. For simplicity, we shall assume that the number of scales q is

fixed, so that the presented results would have much simpler dependence on the tail behaviour of

the innovation distributions. The assumptions we impose under this setup are given below.

(B1) {Xt} is stationary and follows the AMAR(q) model given in (1) with the innovations εt being

i.i.d. following a symmetric distribution Z with regularly varying tail probabilities of index

α, such that

P (|Z| > z) = z−αL(z)

for any z > 0 with any positive α ̸= 2, and L(·) is a slowly varying function at ∞, i.e.

limz→∞
L(az)
L(z)

= 1 for any a > 0.

(B2) α1, . . . , αq, τ1, . . . , τq and p are fixed, with p > τq.
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(B3) The roots of the corresponding characteristic polynomial b(z) lie outside the unit circle T.

Regarding Assumption (B1), we note that it covers many scenarios of heavy-tailed distributions,

including generalized Pareto and Cauchy. Here a smaller α implies heavier tails. For instance, when

α > 4, the innovation distribution has finite fourth-moment, while a distribution with α ∈ (2, 4) has

finite variance. Here the case of α = 2 (i.e. the boundary of an infinite variance) is not included to

simplify our analysis further. In the setting of autoregressive models, much heavier tails (e.g. with

α < 2) actually tend to make the parameter estimation (fundamentally via autocorrelation) more

accurate, which intuitively is due to the fact that observations would be more spread-out. See Yohai

and Maronna (1977), Hannan and Kanter (1977), Davis and Resnick (1985, 1986). Consequently,

our Algorithm 2 would still work as intended, as established in the following result.

Theorem 2.3 Let assumptions (B1) – (B3) hold, and let q̂ and τ̂1, . . . , τ̂q̂ denote, respectively, the

number and the locations of the timescales estimated with Algorithm 2 (with FM
T taken as the set of

all p(p− 1)/2 intervals within [1, p]). For any sufficiently small ϵ > 0, there exist constants C1, C2

such that if C1T
−max(1/2,1/α)+ϵ < ζT < C2αT , then as T → ∞,

P
(
q̂ = q, max

j=1,...,q
|τ̂j − τj| = 0

)
→ 1.

3 Practicalities and simulated examples

3.1 Parameter choice

Threshold ζT . This threshold is one of the input parameters required in Algorithm 1 and Algo-

rithm 2. A few different approaches to its choice are mentioned below.

1. We use a threshold of the minimum rate of magnitude permitted by Theorem 2.2, that is

ζT = CT θ−1/2(log(T ))3/2 with θ = 0. Using C = 0.5 leads to reasonably good results in our

numerical experiments.
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2. For any ζT > 0, denote by X̂t(ζT ) the forecast of Xt obtained via Algorithm 2 and by

q̂(ζT ) the number of the estimated timescales. Specifically, with the estimated timescales

τ̂1(ζT ), . . . , τ̂q̂(ζT )(ζT ) and corresponding scales coefficients α̂1(ζT ), . . . , α̂q̂(ζT )(ζT ),

X̂t(ζT ) = α̂1(ζT )
Xt−1 + . . .+Xt−τ̂1(ζT )

τ̂1(ζT )
+ . . .+ α̂q̂(ζT )(ζT )

Xt−1 + . . .+Xt−τ̂q̂(ζT )(ζT )

τ̂q̂(ζT )(ζT )
,

where we set the values of the unobserved X0, X−1, . . . to be the sample mean of the series.

We then select the threshold that minimises the Schwarz Information Criterion (SIC) defined

as follows:

SIC(ζT ) = T log

(
T∑
t=1

(Xt − X̂t(ζT ))
2

)
+ 2q̂(ζT ) log(T ), (14)

where (14) is minimised over ζT such that q̂(ζT ) ≤ qmax = 10. We take this approach as

our default choice in our simulation study in Section 3.3 and Section A in the supplementary

materials.

Number M of random intervals. As outlined in Algorithm 2, we normally use all the intervals unless

p is extremely large. This would be computationally feasible for most applications. However, when

p is large (say > 500), we would follow the recommendation in Baranowski et al. (2019) by setting

M = 10000.

The autoregressive order p. We refrain from giving a universal recipe for the choice of p. In the real

data example reported later, we choose the p that corresponds to a large “natural” time span. If

such choice is not obvious, then in principle, the SIC criterion (14) can be minimised with respect

to both ζT and p. Here to reduce the computational burden, in practice, instead of going through

all possible values of p, one possibility would be to search for p only on a grid with its elements

increasing exponentially from 1 up to the order of T 1/2, e.g. {1, 2, 4, 8, . . .}.
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3.2 Computational complexity of the AMAR algorithm

The calculation of the OLS estimates in Steps 1 and 4 of Algorithm 2 takes O(Tp2) operations. The

values of Cb
s,e (·) can be computed for all b in O(e − s) operations, hence the complexity of Step 3

is O(Mp). This term is typically dominated by O(Tp2), and therefore the usual computational

complexity of the AMAR algorithm is O(Tp2). We make use of an efficient implementation of OLS

estimation available from the R package RcppEigen (Bates and Eddelbuettel, 2013).

3.3 Simulation study

We illustrate the finite sample behaviour and performance Algorithm 2 in a comprehensive simula-

tion study. The data are simulated from (1) for the following four scenarios. In all these scenarios,

the noise εt are i.i.d. N (0, 1).

(M1) Two timescales at τ1 = 1 and τ2 = 3, with the corresponding coefficients α1 = 0.3, α2 = 0.6

(i.e. β = (0.5, 0.2, 0.2)T ).

(M2) Two timescales at τ1 = 2, τ2 = 5, with the corresponding coefficients α1 = 1.9, α2 = −1 (i.e.

β = (0.75, 0.75,−0.2,−0.2,−0.2)T ).

(M3) Three timescales at τ1 = 1, τ2 = 5 and τ3 = 14, α1 = 0.4, α2 = −1, α3 = 1.4 (i.e. β =

(0.4,−0.1,−0.1,−0.1,−0.1, 0.1, . . . , 0.1)T ).

(M4) Seasonal model with four timescales at τ1 = 1, τ2 = 6, τ3 = 7 and τ4 = 8, with the correspond-

ing coefficients α1 = 0.5, α2 = −4.8, α3 = 8.4, α4 = −3.2 (i.e. β = (0.5, 0, . . . , 0, 0.8,−0.4)T ,

so εt = (1− 0.8B7)(1− 0.5B)Xt).

(M5) A single timescale at τ1 = 10 with α1 = 0.9 (i.e. β = (0.09, . . . , 0.09)T ), as illustrated in

Figure 1.
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(M6) Two timescales at τ1 = 1 and τ2 = ⌊T 0.4⌋, (which increases with T ), with with the correspond-

ing coefficients α1 = α2 = 0.49 (i.e. β = (0.49 + 0.49/⌊T 0.4⌋, 0.49/⌊T 0.4⌋ . . . , 0.49/⌊T 0.4⌋)T ),

as illustrated in Figure 3.

These scenarios were designed to cover combinations of timescales of different lengths. Here β is

selected as such that the series are stationary but also strongly autocorrelated with
∑p

j=1 βj ≈ 0.9

(or more in (M6)). We believe that this is the regime where AMAR models are most useful, and

is in the lines with what one would get from fitting some of the real data in practice, as shown in

Section 4.

We consider a few different aspects of the estimators obtained with Algorithm 2 with different

numbers of observations T = 400, 800, 1500, 3000. We assess the accuracy in terms of the number of

the fitted timescales q̂, the Hausdorff distance DH between the fitted timescale locations {τ̂1, . . . , τ̂q̂}

and the true ones {τ1, . . . , τq}, as well as the Euclidean distance between the fitted parameter vector

β̂ and the true one β. We also compare the mean squared prediction errors (MSPE) of the fitted

models with the oracles. For the sake of fair comparison, for each of the simulated series (with

length T ), after model fitting, we further draw T ∗ = 100 observations at the end of the series

and use these observations solely for the purpose of out-of-sample mean squared prediction error

estimation, given as
∑T ∗

i=1(X̂T+i −XT+i)
2/T ∗, where for every i = 1, . . . , T ∗, the predicted value of

XT+i is given as

X̂T+i = α̂1
XT+i−1 + . . .+XT+i−τ̂1

τ̂1
+ . . .+ α̂q

XT+i−1 + . . .+XT+i−τ̂q̂

τ̂q
.

We then report the ratio between the out-of-sample mean squared prediction error and
∑T ∗

i=1 ε
2
T+i/T

∗,

which is the mean squared prediction error from the oracle model.

Here for our proposed AMAR approach, we select both the threshold and p via the Schwarz Infor-

mation Criterion as mentioned previously with the maximum number of timescales qmax = 10. With

regard to the competitors, we also report results obtained using the fused LASSO (N.B. details can
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be recalled from our literature review in Section 1.2), where β is estimated by minimising

T∑
j=p+1

(Xj − β′
1Xj−1 − · · · − β′

pXj−p)
2 + λ

( p−1∑
j=1

|β′
j+1 − β′

j|+ |β′
p|
)

with respect to β′ = (β′
1, . . . , β

′
p)

T ∈ Rp, where λ is picked by cross-validation. Finally, we also

consider the autoregressive model selected via AIC (i.e. among AR(1), . . ., AR(p)). Note that

for the AIC, we do not enforce the parameters to be constant in between consecutive timescale

locations; as such, only the corresponding ∥β̂ − β∥ and the mean squared prediction errors are

computed. All the numerical experiments are repeated 1000 times and the results are summarised

in Table 1 and Table 2.

We see that AMAR approach performs consistently better than the fused LASSO for all aspects

in all model settings and with all the sample sizes we consider. In fact, estimates from the fused

LASSO do not seem to be consistent in terms of estimating the number and locations of the

scales, indicating that the fused LASSO approach (with L1 penalisation) is not appropriate for

identifying jumps within the parameter vector. Rather interestingly, the AMAR approach also seems

to perform better than the approach based on the AIC in terms of the mean squared prediction

errors, illustrating the usefulness and importance of taking into account additional structures in the

parameters when they are available.

In Section A of the supplementary materials, we also report results from our sensitivity analysis

where we look into the performance of our proposed approach with (i) different choices of qmax

and (ii) a fixed p. In addition, We run experiments with series simulated from non-stationary AR

models with unit roots. To summarise the findings here, AMAR is generally not sensitive to the

choice of qmax (as long as the truth is no greater). Besides, a fixed p might lead to some very

moderate improvement over our current approach of selection via SIC when T is small, but could

be problematic when the chosen p is close to or bigger than τqmax . Finally, even in the setting of non-

stationary observations, AMAR still performs much better than its competitors in most settings,
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Model (M1)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T = 400 0.172 6.07 0.593 16.1 0.0159 0.0206 0.0156 0.0133 0.0226 0.0138

(0.014) (0.088) (0.047) (0.05) (0.0008) (0.00049) (0.0006) (0.00093) (0.0012) (0.00093)

T = 800 0.051 8.65 0.181 24.1 0.0035 0.0114 0.00749 0.0046 0.0154 0.00802
(0.0072) (0.12) (0.03) (0.056) (0.00026) (0.00027) (0.00028) (0.00048) (0.00089) (0.00061)

T = 1500 0.018 12.5 0.085 34.1 0.00116 0.00613 0.00445 0.00138 0.00764 0.00393
(0.0042) (0.16) (0.03) (0.051) (0.000088) (0.00014) (0.0002) (0.00024) (0.00062) (0.00041)

T = 3000 0.012 20.2 0.072 50.2 0.000546 0.0029 0.00207 0.000662 0.00429 0.002
(0.0034) (0.21) (0.035) (0.052) (0.000027) (0.000063) (0.000088) (0.00017) (0.00046) (0.00028)

Model (M2)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T = 400 0.303 7.32 1.33 14.1 0.02 0.0717 0.124 0.0281 0.0857 0.0763

(0.018) (0.064) (0.072) (0.062) (0.0013) (0.0019) (0.0032) (0.01) (0.0043) (0.0032)

T = 800 0.194 9.39 0.764 21.8 0.00635 0.0595 0.061 0.00852 0.0615 0.0331
(0.014) (0.071) (0.06) (0.077) (0.00071) (0.001) (0.0018) (0.0013) (0.0024) (0.0016)

T = 1500 0.108 10.9 0.921 31.6 0.00171 0.0535 0.0327 0.00666 0.0532 0.0165
(0.01) (0.069) (0.11) (0.092) (0.00038) (0.0011) (0.0011) (0.0038) (0.0022) (0.001)

T = 3000 0.07 12.8 0.646 47.2 0.0000979 0.0504 0.0131 0.000793 0.0444 0.00571
(0.0081) (0.071) (0.099) (0.12) (0.000021) (0.0011) (0.00048) (0.0002) (0.002) (0.00056)

Model (M3)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T = 400 0.711 5.76 1.37 5.12 0.0211 0.0204 0.0499 0.0296 0.0321 0.0567

(0.035) (0.077) (0.046) (0.038) (0.00076) (0.00041) (0.00073) (0.0016) (0.0017) (0.0022)

T = 800 0.344 7.83 0.643 12.6 0.00699 0.012 0.0244 0.00922 0.0158 0.0215
(0.026) (0.11) (0.034) (0.068) (0.00031) (0.00024) (0.00041) (0.00075) (0.00091) (0.00099)

T = 1500 0.083 10.1 0.31 22.4 0.00203 0.00704 0.013 0.0034 0.00984 0.0112
(0.011) (0.13) (0.043) (0.08) (0.00011) (0.00013) (0.00022) (0.0004) (0.00066) (0.00072)

T = 3000 0.054 13.5 0.219 38.2 0.000673 0.00397 0.00648 0.0015 0.00628 0.00683
(0.0082) (0.16) (0.045) (0.084) (0.000041) (0.000074) (0.00011) (0.00023) (0.00051) (0.00048)

Table 1: Performance of different methods under (M1) – (M3), with estimated errors given in
the brackets. Here q̂ is the number of the fitted timescales, DH is the Hausdorff distance between
the fitted timescale locations {τ̂1, . . . , τ̂q̂} and the true ones {τ1, . . . , τq}, ∥β̂ − β∥ is the Euclidean
distance between the fitted parameter vector and the true one, and MPSE is the mean squared
prediction errors of different models.
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Model (M4)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T = 400 0.098 11.1 0.199 11.8 0.00892 0.0483 0.0246 0.0145 0.0492 0.0358

(0.012) (0.073) (0.027) (0.017) (0.00065) (0.00086) (0.00083) (0.0011) (0.0019) (0.0017)

T = 800 0.044 16.3 0.092 19.7 0.00397 0.0274 0.0107 0.00657 0.0274 0.0142
(0.0085) (0.1) (0.019) (0.019) (0.0003) (0.00045) (0.00038) (0.0006) (0.0012) (0.00088)

T = 1500 0.035 24.2 0.291 29.8 0.00179 0.0182 0.00685 0.00333 0.0182 0.00812
(0.006) (0.14) (0.059) (0.017) (0.00011) (0.00027) (0.00026) (0.0004) (0.00091) (0.00066)

T = 3000 0.023 36.3 0.129 45.8 0.000756 0.0106 0.00301 0.0017 0.0116 0.0043
(0.0051) (0.19) (0.033) (0.016) (0.000023) (0.00015) (0.00012) (0.00024) (0.0007) (0.0004)

Model (M5)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T = 400 0.217 3.11 1.64 6.95 0.0109 0.0106 0.0341 0.0164 0.0151 0.0398

(0.017) (0.085) (0.073) (0.1) (0.00045) (0.00038) (0.00053) (0.0028) (0.00099) (0.0016)

T = 800 0.133 4.06 0.858 12.9 0.00414 0.00562 0.0166 0.00517 0.00833 0.0176
(0.013) (0.098) (0.056) (0.17) (0.00022) (0.00019) (0.0003) (0.00055) (0.00069) (0.001)

T = 1500 0.099 5.06 0.704 22.1 0.00167 0.00331 0.00877 0.00237 0.00454 0.00908
(0.012) (0.11) (0.076) (0.25) (0.00012) (0.000097) (0.00017) (0.00033) (0.00046) (0.00065)

T = 3000 0.052 7.07 0.331 38.9 0.000339 0.00171 0.00427 0.000788 0.00278 0.00452
(0.0086) (0.16) (0.054) (0.27) (0.000043) (0.000055) (0.000087) (0.00017) (0.00035) (0.00044)

Model (M6)

E|q̂ − q| E(DH) E∥β̂ − β∥ MSPE(fitted)
MSPE(oracle) − 1

Method AMAR Fused AMAR Fused AMAR Fused AIC AMAR Fused AIC
T = 400 0.407 6.87 2.3 9.26 0.0133 0.0336 0.0372 0.023 0.0435 0.06

(0.024) (0.097) (0.054) (0.05) (0.00046) (0.0018) (0.00062) (0.0016) (0.0027) (0.0027)

T = 800 0.886 9.83 3.29 13.1 0.00902 0.0234 0.0252 0.015 0.0311 0.0296
(0.035) (0.13) (0.071) (0.054) (0.00028) (0.0017) (0.00036) (0.00098) (0.0025) (0.0013)

T = 1500 0.455 13.8 3.08 19 0.00336 0.0174 0.0174 0.00668 0.0241 0.0193
(0.028) (0.17) (0.1) (0.057) (0.00013) (0.0016) (0.00023) (0.00055) (0.0023) (0.00098)

T = 3000 0.642 20.9 3.52 28.8 0.00177 0.0134 0.011 0.00395 0.0187 0.0111
(0.037) (0.21) (0.11) (0.063) (0.000064) (0.0015) (0.00012) (0.00038) (0.0021) (0.00068)

Table 2: Performance of different methods under (M4) – (M6), with estimated errors given in
the brackets. Here q̂ is the number of the fitted timescales, DH is the Hausdorff distance between
the fitted timescale locations {τ̂1, . . . , τ̂q̂} and the true ones {τ1, . . . , τq}, ∥β̂ − β∥ is the Euclidean
distance between the fitted parameter vector and the true one, and MPSE is the mean squared
prediction errors of different models.
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though the reported results from all methods are associated with larger standard errors.

4 Real data examples

4.1 Stock returns

In this example, we demonstrate the strength of AMAR models for predicting the DAX stock index

daily return over the traditional AR. We look at ten years of data from 1 January 2011 to 31

December 2020, with the first seven years of data (70%) used for training, and the last three years

of data (30%) used for testing. Here we shall work directly on the series of log-return, which we

denote as {Xt}. The visual appearance of the series is illustrated in Figure 4.
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Figure 4: DAX daily log-return from January 2011 to December 2020. The series is divided into
two parts for training and testing, with the part for testing highlighted in shade.

First, we fit an AMAR model on {Xt} using AMAR with the thresholds and p selected automatically

via the approach outlined in Section 3.1. A three-scale AMAR model is selected, with τ1 = 1, τ2 = 5

and τ3 = 27.
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However, for the purpose of interpretability, we note that a two-scale AMAR model might be

preferred, with the short scale fixed at τ1 = 1 for this particular application. As such, we also fit

different AMAR models on only the training data with τ1 = 1 and τ2 = {2, . . . , 251}, and select

the corresponding τ2 that minimises the residual sum of squares. This results in a two-scale AMAR

model with τ2 = 5 (and τ1 = 1).

Since our focus is on prediction, we also fit the traditional AR model with the order selected by the

AIC. This results in an AR(6) model.

We then examine the performance of these fitted models on the testing data and measure their

performance by both the rooted mean squared prediction error (RMSPE) and the hit rate. Here

the hit rate is defined as the proportion of time the model predicts the sign of the daily log-return

correctly, which is an important performance indicator for financial time series modelling. The

results are reported in Table 3. In terms of both criteria, AMAR with two scales performs the best.

Here AMAR with three scales appears slightly worse, while AR with its order selected by the AIC

performs the worst. In addition, we remark that AMAR with τ1 = 1 and τ2 = 5 can be easily

interpreted as having the daily log-return depending on the returns of both the previous trading

day and the previous week, a fact that would potentially be appreciated by the practitioners. In

summary, we believe that AMAR would be a promising alternative to the traditional AR models

in modelling real data of this type.

Methods AMAR(auto-selection for scales) AMAR with two scales AR (order via AIC)
RMSPE 0.014564 0.014521 0.014580
Hit Rate 0.5013 0.5186 0.4775

Table 3: Performance of different methods in terms of their rooted mean squared prediction error
(RMSPE) and hit rate. Results from the better method are highlighted in bold.

Finally, we note that in this example, more complicated dependence structure, such as heteroscedas-

ticity, has not been taken into account. In principle, the AMAR approach could be extended to the

multiscale modelling of both the AR component and the ARCH-type errors.
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4.2 UK and US unemployment data

In this example, we first consider the time series of seasonally adjusted UK monthly unemployment

rate from 1960 to 2020. The data can be found in OECD (2022). The series is shown in the

top plot of Figure 5. As before, here our aim is not to find models that best fit the data, but

to compare AMAR with the AR alternatives normally used in practice, and to demonstrate the

potential superiority and practicality of AMAR over other AR approaches. For this analysis, we

report our findings on both the original series and the differenced series using AMAR and AR with

its order selected via AIC. We also report prediction errors of the different models, where we use

the last 5, 10, 20 or 30 years of data for testing and the remaining for training (without specifying

the scales or orders a priori). We set the maximum AR order to be 48 (i.e. four years) for both

methods. For the original series, AMAR fits a model with scales at 1,2 and 3, while AIC selects an

AR(13). For the differenced series, AMAR fits a model with scales at 1 and 10, while AIC selects

an AR(8). A closer look reveals that the sum of the fitted AR coefficients on the original series

is close to one (> 0.99) for both approaches, reflecting the possibility that the series might not be

stationary, while the sum on the differenced series is much smaller (at around 0.7). Looking at the

quality of prediction in terms of rooted mean squared errors (at the original series level), we see that

AMAR performs better than AR with order selected by AIC in both the original and differenced

series in the testing periods of all lengths, though admittedly the difference between these two

methods becomes much smaller when considering the differenced series. In fact, for the purpose

of prediction, results from Table 4, suggest that it is more appropriate to model the differenced

rather than the original series. However, we would like to point out that no matter which series

(i.e. original or differenced) one prefers to work with in this particular example, AMAR always

offers better predictive performance than the AR with the order selected using AIC, and possibly

also comes with improved interpretability.

Next, to demonstrate the potential use of AMAR on multivariate time series, we additionally include

the seasonally adjusted US monthly unemployment rate during the same period. The data can be

31



Jan
1960

Jan
1965

Jan
1970

Jan
1975

Jan
1980

Jan
1985

Jan
1990

Jan
1995

Jan
2000

Jan
2005

Jan
2010

Jan
2015

Jan
2020

UK 1960−01−01 / 2020−12−01

 2

 4

 6

 8

10

 2

 4

 6

 8

10

Jan
1960

Jan
1965

Jan
1970

Jan
1975

Jan
1980

Jan
1985

Jan
1990

Jan
1995

Jan
2000

Jan
2005

Jan
2010

Jan
2015

Jan
2020

USA 1960−01−01 / 2020−12−01

 4

 6

 8

10

12

14

 4

 6

 8

10

12

14

Figure 5: Seasonally adjusted monthly unemployment rates of UK and USA from January 1960 to
December 2020.

Series Methods 5 years 10 years 20 years 30 years

original
AMAR 1.0267 0.7590 0.5849 0.5683
AIC 1.2436 0.9452 0.7409 0.7636

differenced
AMAR 0.3359 0.2469 0.1861 0.15295
AIC 0.3753 0.2554 0.1874 0.1557

Table 4: Performance of different methods for different testing periods in terms of rooted mean
squared prediction errors at the original series level. Here AMAR is the adaptive multiscale autore-
gression, while AIC is the autoregressive model with order chosen by AIC. Results from the better
method are highlighted in bold.
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found in U.S. Bureau of Labor Statistics (2022), with the series also shown in Figure 5. In view

of our previous analysis, we only consider the differenced time series for the purpose of prediction.

Let Xt,1 and Xt,2 represent the respective differenced UK and US unemployment rates at time t.

Then the corresponding Adaptive Multiscale Vector AutoRegressive model (AMVAR) for bivariate

observations can be written asXt,1

Xt,2

 = α1

Xt−1,1+...+Xt−τ1,1

τ1
Xt−1,2+...+Xt−τ1,2

τ1

+ . . .+αq

Xt−1,1+...+Xt−τq,1

τq
Xt−1,2+...+Xt−τq,2

τq

+

εt,1

εt,2

 (15)

where τ1, . . . , τq are the scales, α1, . . . ,αq are 2 × 2 matrices, and where εt = (εt,1, εt,2)
T are

noise vectors. The optimal selection of the number of scales and their locations for AMVAR is

beyond the scope this paper. One simple approach would be to perform scale selection for each

univariate series, and combine all of them to be then used as the scales for AMVAR. Though

there might be limitations in this approach, we believe it serves as a good starting point for further

exploration, as demonstrated below. Recall that AMAR selects scales of 1 and 10 for the differenced

UK unemployment series. In addition, AMAR selects a single scale of 11 for the differenced US

unemployment series. Consequently, we use scales at 1, 10 and 11 for AMVAR. To facilitate

comparison with our previous analysis, we focus on the differenced UK unemployment series, which

we now explicit model as

Xt,1 = α1,(1,1)Xt−1,1 + α1,(1,2)Xt−1,2 + α2,(1,1)
Xt−1,1 + . . .+Xt−10,1

10
+ α2,(1,2)

Xt−1,2 + . . .+Xt−10,2

10

+ α3,(1,1)
Xt−1,1 + . . .+Xt−11,1

11
+ α3,(1,2)

Xt−1,2 + . . .+Xt−11,2

11
+ εt,1.

On the other hand, fitting the data by the Vector Autoregressive (VAR) models and selecting

order via AIC leads to a VAR(4). The rooted squared errors for prediction of different models are

reported in Table 5, where we use the last five, ten, twenty or thirty years of data for testing and the

remaining for training. Our results suggest that for the purpose of prediction, AMVAR performs

better than VAR with order selected using AIC for various testing periods in this example under
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Series Methods 5 years 10 years 20 years 30 years

differenced
AMVAR 0.3023 0.2176 0.1682 0.1438
AIC 0.4383 0.3136 0.2271 0.1912

AMAR 0.3359 0.2469 0.1861 0.15295

Table 5: Performance of different methods for different testing periods in terms of rooted mean
squared prediction errors. Here AMVAR is the adaptive multiscale vector autoregression, while
AIC is the vector autoregressive model with order chosen by AIC, both under the bivariate setting.
We also include (univariate) AMAR for comparison. Results from the better method are highlighted
in bold.

the multivariate setting. Importantly, this appears to be the case even without fine tuning the scale

selection procedure. In addition, comparing results in Table 4 and Table 5, we note that AMVAR

performs better than the univariate AMAR for UK unemployment, indicating that including an

extra regressor from a different time series (i.e. US unemployment rate) does indeed improve the

predictive power.

5 Extensions and further discussions

The AMAR estimation algorithm can also be used in large-order autoregressions in which the AR

coefficients may not necessarily be piecewise constant, but possess a different type of regularity

(e.g. be a piecewise polynomial of a higher degree). As an example, we could consider features that

are linearly-weighted averages, instead of the simple averages in (1) for AMAR(q). To give more

details, for some 1 ≤ τ1 < . . . < τq, the model is given as

Xt = α1
τ1Xt−1 + (τ1 − 1)Xt−2 + . . .+Xt−τ1

τ1(1 + τ1)/2
+ · · ·+ αq

τqXt−1 + (τq − 1)Xt−2 + . . .+Xt−τq

τq(1 + τq)/2
+ εt

(16)
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Here the influence of the past observations on any given feature decays as the time gap between

them and the present widens. The linear decaying form is just one possible way of modelling

that results in a more parsimonious parameter structure of the AR. The other appealing reason

for linear decaying is that τ1, . . . , τq can also be estimated using the previous framework, say, by

simply changing the contrast function in the NOT algorithm from piecewise-constant contrast to

piecewise-linear and continuous contrast.

As briefly illustrated in our second real data example, another interesting venue for applying the

AMAR framework is time series data with multivariate, or even high-dimensional observations.

In particular, in the high-dimensional setting, instead of applying the same averages (or features)

across different components of (Xt,1, . . . , Xt,p)
T , some group structures (or even factors) within these

components can be introduced to further enhance its interpretability.

Finally, it would also be of interest to investigate how estimation uncertainty could be quantified

in AMAR, and whether the AMAR philosophy could be extended to multiscale features of some

latent or hidden observations. One such example would be to consider multiscale autoregressive

and moving average (ARMA) models, in which there are different scales on both the observed time

series and the unobserved innovations.

SUPPLEMENTARY MATERIALS

The file (.pdf) contains further simulations, an additional real data example, and the proofs of all

the theoretical results.
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