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Abstract—We propose the TGUH (Tail-Greedy Unbalanced
Haar) transform for networks, which results in an orthonormal,
adaptive decomposition of the network adjacency matrix into
Haar-wavelet like components. The ‘tail-greediness’ of the algo-
rithm – indicating multiple greedy steps are taken in a single pass
through the data – enables both fast computation and consistent
estimation of network signals. We focus on development of our
multiscale network decomposition and a corresponding method
for network signal denoising. Moreover, we establish consistency
of our resulting denoising methodology, present numerical simula-
tions illustrating compression, and illustrate through application
to signals on diffusion tensor imaging (DTI) networks.

I. INTRODUCTION

Wavelet-related methods have been developed extensively
for classical signal and image processing problems. In recent
years, there has been a resurgence of interest in this area, within
the emerging field of graph signal processing. Advancement
in this area does not come without challenges. Not all tools in
classical signal processing can be directly transfered to graph
signal processing. Problems with which people are concerned
include but are not limited to: How to effectively compress a
signal on a network? How to identify and remove noise from
a signal on a graph? See [21] for seminal work in graph signal
processing. An early characterization of the multi-scale aspect
of this field can be found in [22].

In this work, we present an algorithm that offers certain solu-
tions to these problems. We work with an undirected connected
graph G0 = (V 0, E0), where V 0 = {v01 , · · · , v0N} is the set of
vertices and E0 = {e0ij |v0i ∈ V 0, v0j ∈ V 0, i 6= j} is the
set of edges (assumed to be without self-loops).

Our contribution is a new class of graph wavelets, based on
the notion of “tail-greedy” unbalanced Haar transformations.
We also establish a consistency result for piecewise-constant

function estimation using thresholding procedures in the
corresponding basis obtained from our TGUH.

A. Related work

Various previous studies have focused on either wavelet
transforms on networks and/or wavelet transforms of networks.
This highly active literature has already become too large
to survey adequately here. The first category includes those
transformations based on the graph Laplacian, relevant to
analysis of signals over networks, e.g., see [6] and [14]. Earlier
work of Crovella and Kolaczyk [7] extends the Mexican hat
wavelet to unweighted graphs and uses it to analyze computer
network traffic. Also related is work by Gavish, Nadler and
Coifman [11], who develop various results on graphs that
possess a hierarchical tree structure, and the work by Irion and
Saito [15], where they compute graph basis dictionaries using
graph Laplacian eigen transforms and generalized Haar-Walsh
transforms. The second category focuses more exclusively
on transforms of the graph itself. Examples include work by
Murtagh [20], who develops an invertible wavelet transform
based on hierarchical clustering using Ward’s criterion, and
the work by Lee, Nadler and Wasserman [19], who propose an
attribute-based construction of adaptive multi-scale hierarchical
trees. Other methods of this type incorporate ideas from matrix
compression and factorization. For example, see [18], where
they propose a multi-scale way of doing matrix factorization,
which effectively decomposes large matrices using a series
of transformation matrices that capture structures at different
scales. Other examples of relevant literature are cited strategi-
cally throughout this paper.

The tail-greedy unbalanced Haar transformation was orig-
inally proposed by Fryzlewicz [8] for the one-dimensional
signal plus noise model. The algorithm results in a nonlinear



but conditionally orthonormal, multiscale decomposition of
the data with respect to an adaptively chosen unbalanced
Haar wavelet basis. Related work also includes the work by
Fryzlewicz and Timmermans [10], where an adaptive Haar-type
of transformation is used for image compression and denoising.
Here we extend the TGUH method to networks and use it to
show various results and applications.

The organization of this paper is as follows. In section II, we
present the development of our TGUH transforms. In section
III, we discuss graph signal denoising with the TGUH and
propose a consistent method of estimation. In section IV, we
illustrate the utility of our algorithm through simulation and
application in computational neuroscience. In section V, we
discuss potential extensions.

II. TGUH OF NETWORKS

Consider a graph G0 = (V 0, E0), the connectivity of which
we summarize by its adjacency matrix W0 ∈ Rn×n, where
w0
ij ≥ 0 is the (possibly non-binary) edge weight between

vertex i and j, such that w0
ij = 0 indicates no edge.

The TGUH is a bottom-up method. At each run, we select
columns from the adjacency matrix, corresponding to linked
pairs of nodes, and merge them by applying an orthonormal
transformation to the columns. We define W` to be the
adjacency matrix, and V ` to be the corresponding set of vertices,
after the `-th iteration. We denote by v`r the r-th node in V `,
and by N `

r and N `
r′ , the number of nodes in V 0 represented

(through merging) in meta nodes v`−1r and v`−1r′ . Let ρ ∈ (0, 1)
be a constant, used to describe the proportion of pairs of nodes
to merge at each run. More precisely, we merge dρ|V `−1|e
pairs of nodes at the `-th iteration, where the expression |·|
is the cardinality of the vertex set. The parameter ρ controls
the speed and greediness of our method. When ρ = 1/2,
the transform reduces to the non-adaptive (and therefore non-
greedy) classical Haar transform; the degree of greediness
increases as ρ decreases. In our applications, we use ρ = 0.01.

We now outline the procedure.
1) At the `-th iteration, search for dρ|V `−1|e pairs of

columns for which the `2 norms of the detail coefficient
vectors are the smallest. To be more precise, the algorithm
proceeds as follows:
For each pair of columns corresponding to pairs of
connected nodes (v`−1r , v`−1r′ ), construct a "detail" filter
(a`(r,r′),−b

`
(r,r′)), where each filter is uniquely indexed

by ` and the pair (r, r′). Here a`(r,r′) > 0 and b`(r,r′) > 0
are set in the following way:

a) To produce a sparse representation of the initial
input matrix, the algorithm needs to produce zero
details over regions of constancy of the network,
by which we mean nodes sharing identical neigh-
borhood structure and weighting. Let j = j(r) and
j′ = j(r′) denote the corresponding positions in the
adjacency matrix and assume j < j′. We compute
the details using

d`(r,r′) = a`(r,r′)W
`−1
·j − b`(r,r′)W

`−1
·j′ .

b) To force orthonormality of the transformation, we
impose the following requirement:

a`(r,r′)
2
+ b`(r,r′)

2
= 1

The two requirements above determine a unique filter.
The detail coefficient vector is computed as

d`(r,r′) =
[
W`−1
·j ,W`−1

·j′

]
N×2

[
a`(r,r′)
−b`(r,r′)

]
2×1

.

2) Sort the norms of the detail coefficient vectors ‖d`(r,r′)‖`2
in ascending order and extract dρ|V `−1|e detail coeffi-
cient vectors corresponding to the smallest dρ|V `−1|e
elements in the sorted sequence. If any element of the
sorted sequence uses nodes already used by any of the
previous elements, it is discarded and the next candidate
is considered. In the case where there are fewer than
dρ|V `−1|e detail coefficient vectors, extract all of them.
No nodes will be merged more than once at iteration `.

3) For each ‖d`(r,r′)‖`2 , use filter (b`(r,r′), a
`
(r,r′)), which is

orthogonal to the previous filter used for computing the
detail coefficient, to produce the corresponding merged
columns:

W`
·j ←

[
W`−1
·j ,W`−1

·j′

]
N×2

[
b`(r,r′)
a`(r,r′)

]
2×1

W`
·j′ ← d`(r,r′)

where ← indicates replacement of the original
rows/columns with the new one. Alternatively, these
operations can be written as
[
W

`
·j ,W

`
·j′
]
N×2

=
[
W

`−1
·j ,W

`−1

·j′

]
N×2

[
b`
(r,r′) a`

(r,r′)
a`
(r,r′) −b`

(r,r′)

]
2×2

.

The transformation matrix is a rotation matrix.
4) Perform the corresponding row-wise rotation and sym-

metrize W`.[
W`
j·

W`
j′·

]
2×N

=

[
b`
(r,r′) a`

(r,r′)
a`
(r,r′) −b`

(r,r′)

]
2×2

[
W`−1
j·

W`−1

j′·

]
2×N

5) Set `← `+1 and go back to step 1, unless the transform
is completed.

A compact summary of the above description is provided as
Algorithm 1. Code implementing this algorithm is available at
github.com/KolaczykResearch/NetworkTGUH-Code/.

We make a few comments regarding the TGUH. The
resulting transformation is non-linear, but it is orthonormal
conditional on the order in which the detail coefficient
vectors are selected. Given that the transform is conditionally
orthonormal, it preserves the `2 energy of the adjacency matrix.
Because small detail coefficients are selected at the beginning
of the algorithm, most energy will be concentrated at coarser
scales.

The algorithm can be viewed as a variation on agglomerative
hierarchical clustering for community detection (e.g., [16, Ch
4.3.3.1]), using a column-wise `2 norm as our measure of so-
called ‘linkage’, but with particular attention paid to the notions

github.com/KolaczykResearch/NetworkTGUH-Code/


Algorithm 1 TGUH transform of network

Input: Adjacency matrix: W0

1: for level ` = 1 to L do
2: for each pair of connected nodes (r, r′) do
3: Compute candidate “detail” coefficient vector norms
‖d`(r,r′)‖2= ‖a

`
(r,r′)W

`−1
·j − b`(r,r′)W

`−1
·j′ ‖2.

4: Store ‖d`(r,r′)‖2.
5: end for
6: Sort ‖d`(r,r′)‖2 in ascending order.
7: for i = 1 to dρ|V `|e do
8: Select the column/row corresponding to the smallest
‖d`(r,r′)‖2.

9: Update W `−1 by

[
W`

·j ,W
`
·j′
]
←
[
W`−1

·j ,W`−1
·j′

] [ b`(r,r′) a`
(r,r′)

a`
(r,r′) −b`(r,r′)

]
[

W`
j·

W`
j′·

]
←
[

b`(r,r′) a`
(r,r′)

a`
(r,r′) −b`(r,r′)

] [
W`−1

j·
W`−1

j′·

]
.

10: end for
11: end for

of coarsening and detail, in the usual multiscale tradition. From
this perspective, our TGUH is similar in spirit to the hierarchical
clustering algorithm of Singh, Nowak, and Calderbank [23].

The term “tail-greedy” comes from the fact that in each
run, we select from among the lower tail of the distribution
of “details”. “Tail-greedy” is not as greedy as standard greedy
methods, as it may select more than one detail per run, which
ensures the method terminates in at most O(logN) levels.

The complexity of the TGUH transform is nearly linear in the
number of edges in the graph. For a graph of size N , the number
of nodes remaining after ` iterations is at most (1 − ρ)`N .
Solving for the smallest ` such that (1 − ρ)`N < 1 yields
that ` > logN

log(1−ρ)−1 . At each step, we need to compute details
for every edge and sort, which requires up to O(|E|log|E|)
operations. Accordingly, the complexity of the overall TGUH
scales like O( logN

log(1−ρ)−1 × |E|log|E|). Note that for sparse
graphs, where the number of edges is of the same order as
the number of vertices, |E|∼ N , the complexity scales like
O( N log2N

log(1−ρ)−1 ).
Note that the TGUH can be expressed in a series of matrix

multiplications:

WL = FL · · ·F 1W0F 1> · · ·FL> .

Using our tail-greedy algorithm, the collection of the column
spaces of the F ’s corresponds to that of an unbalanced
Haar type of basis and the adjacency matrix is effectively
decomposed in a bottom-up fashion. From this perspective,
our TGUH transform is a special case of the multi-resolution
matrix factorization (MMF) method of Kondor, Teneva and
Garg [18], which compresses matrices efficiently through the
use of a sequence of sparse orthogonal transforms. Specifically,
our TGUH constitutes a 2nd order Jacobi MMF in the language

of that paper. We note, however, that the problem of denoising
a graph signal is not considered in [18].

III. DENOISING GRAPH SIGNALS USING TGUH
We have introduced a Haar-like basis for a network G0. Now

consider a signal f on that network. If the signal varies in a way
that is somehow ‘consistent with’ the network structure that
drives the network-adaptive steps of our TGUH algorithm, then
we should have good signal compression when transforming f
through the resulting TGUH orthobasis. Estimation techniques
that can exploit this compression should then prove effective
for denoising a signal observed with noise. In this section we
explore the use of TGUH bases for denoising graph signals.

We adopt the standard signal plus noise model, g(v) =
f(v) + ε(v), for v ∈ V 0. Here g(v) is the observed signal,
f(v) is an unknown true signal, and ε(v) is an independent
and identically distributed N(0, 1) noise. We assume that f
is ‘piece-wise constant’ in the sense that the number of edges
e0ij ∈ E0 for which f(i) 6= f(j) is no more than some constant
K > 0. See [3], for example, for related notions of ‘piece-wise
smooth’ functions based on vertex subsets.

Traditional multiresolution analysis constructs a sequence of
function spaces {U`} of increasingly finer scale, by recursively
dividing each U` into a coarser part U`+1 and its orthogonal
complement W`+1. The latter are the wavelet subspaces. The
original space U0 can thus be decomposed as

U0 =

L⊕
`=1

W`

⊕
UL .

Decompositions of a function f ∈ U0 follow accordingly.
The TGUH wavelet transform up to level L can be expressed

as

f(v) =

L∑
`=1

k(`)∑
r=1

µ`rψ
`
r(v) +

k(L)∑
r=1

γrφ
L
r (v),

where µ`r = 〈f, ψ`r〉 are the wavelet coefficients with respective
to the Haar basis functions ψ`r with support on the nodes set
V `r . We estimate f by estimating each µ`r and then taking the
inverse transformation.

Define empirical coefficients

α`r =
∑
v

g(v)ψ`r(v) .

Suppose that the two sets V `
′−1

m and V `
′−1

m′ contain the nodes
that merge into the meta node v`

′

r′ at the next level, that is
V `
′

r′ = V `
′−1

m ∪ V `
′−1

m′ . We define the estimator

µ̂`r = α`rI
{
∃V `

′

r′ ⊆ V `r
∣∣∣ |α`′r′ |> λ(`′, r′)

}
, (1)

where

λ(`′, r′) =
√

2 logN


√
|V `′−1m |+

√
|V `′−1m′ |√

|V `′−1m |+|V `′−1m′ |

 . (2)

In this case, we estimate µ`r by zero if α`r and all of its children
coefficients fall below the threshold. The advantage of using this



type of threshold is that it allows us to construct an unbiased
estimator f̂ of f , in the sense that within each constant regime,
our estimator is the sample mean of the observed signal within
that constant section.

For any estimator f̃ of f , we denote the squared empirical L2

risk as R = 1
N

∑
v(f̃(v)−f(v))2. We then have the following

result characterizing the performance of our estimator f̂ .

Theorem III.1. Let f̂ be an estimator of f obtained through
the inverse TGUH transform of the estimated coefficients µ̂`r in
(1), based on the thresholding function λ(`′, r′) in (2). Suppose
K = o

(
N/log2N

)
. Then we have that the risk R(f̂ , f) is of

order O
(

K log2N
N log(1−ρ)−1

)
on the set

A =

∀r, `, |V `r |−1/2
∣∣∣∣∣∣
∑
v∈V `r

ε(v)

∣∣∣∣∣∣ ≤√2 logN

 ,

where P(A)→ 1 as N →∞.

Theorem III.1 says that the estimator f̂ is an L2-consistent
estimator of the signal f . The key driver behind the result is
the property of “tail-greediness”, by which multiple pairs of
nodes are merged at each level `. L2 consistency cannot be
guaranteed if the algorithm is greedy, where only one pair of
nodes from the tail distribution is merged. Proof of Theorem
III.1 can be found in the appendix.

We note that the assumption of piecewise constant f is
presumably stronger than needed here, and can likely be relaxed
to the case of functions of a certain Hölder smoothness. For
example, the type of necessary intermediate approximation
theoretic results for Hölder smooth functions follows for our
TGUH basis immediately from [5].

IV. APPLICATIONS

A. Simulations

We use simulation to establish a simple proof of concept
regarding compression by TGUH. Specifically, we look at the
use of our TGUH transform to compress a ‘barbell’ type of
network, i.e., a network with two fully connected components
joined by a single link. We generated such a barbell with
10 nodes in each fully connected component and applied
the TGUH transform described in Algorithm 1. All detail
coefficients are zero except that resulting from the last step
of the algorithm, where the two connected components merge
together, which demonstrates that the TGUH transform is
able to capture well the structure of the barbell network. The
resulting compression curve is shown in Figure 1.

To demonstrate the robustness of this result, we simulated
100 such barbells perturbed with both Type I and Type II
errors, i.e., declaring non-edges edges and vice versa. Here
we set P (Type I error) = 0.01 and P (Type II error) = (1 −
Den)/Den × P (Type I error), where Den is the density of
adjacency matrix of the noise-free barbell. Under this setting,
the expected density of the ‘noisy’ network is the same as the
original one. Figure 1 shows the average compression curve
resulting from applying the TGUH to these noisy networks.

5 10 15

0
2

4
6

8
1
0

Coefficients index

D
e
ta

il 
c
o
e
ff
ic

ie
n
ts

 (
A

v
g
)

noisy

noise free

Fig. 1: Compression curve for barbell network (dotted) and
average compression curve for noisy barbell network (solid)
using TGUH.

We see that this curve is qualitatively quite similar to that for
the noise-free version of these networks.

B. EEG data on a DTI network

We now provide an application of using the TGUH to
denoise EEG signals over a DTI network. Understanding the
relationship between brain anatomical connectivity and brain
dynamics remains an active research area [4] [17]. In general,
different frequency bands have been associated with different
brain function [2], and different spatial organization over the
brain’s surface, but how brain anatomical connectivity relates
to brain rhythms remains incompletely understood.

As an example application of the method developed here,
we consider two types of data collected from a human
subject. Brain anatomical connectivity was computed from
high resolution diffusion tensor imaging data using previously
described methods [4]. Briefly, 324 regions of interest (ROI) at
the gray-white matter border were selected using the topology
of a recursively subdivided icosahedron fitted in the subject’s
cortical surface inflated to a sphere [9] [12]. Quantitative
bidirectional white matter connectivity between each ROI
pair was computed using Probtrackx2 software [1] where
500 streamlines were sampled per voxel within each ROI.
A connectivity index was then computed for each ROI pair
as the proportion of successful streamlines connected between
the ROI pair over the total number of streamlines sampled.

Dynamic brain electrical activity was collected from the
same ROIs using the MNE-C and Freesurfer software packages
[9] [13] and previously reported methods [4]. Briefly, EEG
data during stage 2 sleep was recorded with a 70 channel
EEG cap and electrode positions collected using a 3D digitizer.
Anatomical cortical surfaces of the brain were reconstructed



using T1-weighted MRI data and a forward solution was cal-
culated using a three-layer boundary element model consisting
of the inner skull, outer skull and outer skin surfaces. The
digitized EEG electrode coordinates were coregistered to the
reconstructed surface using the nasion and auricular points.
The inverse operator was computed from the forward model
and the resultant current estimates at each ROI calculated. Ten
seconds of artifact free data were selected for analysis. From
the electrical source estimates at each ROI, we computed the
power spectrum using the multitaper method (bandwidth 1 Hz,
9 tapers). We then compute the average power in the theta
band (5-8 Hz), alpha band (8-12 Hz), beta band (12-20 Hz),
and gamma band (20-40 Hz).

The DTI network contains 324 nodes and 1487 edges. Power
in each spectral band was compressed using the TGUH bases
on the DTI network. The resulting compression curves appear
in Figure 2. In all four bands, half of the signals were captured
using the leading 50 basis functions.
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Fig. 2: Compressed spectral bands of the TGUH bases

To illustrate TGUH denoising, we only show the result of
denoising the alpha band signal, in Figure 3. There the size
of the nodes indicates the strength of the signal. Using the
theoretical threshold suggested by Theorem III.1, signal on
only 6 nodes in the occipital cortex remain; the rest has been
eliminated. The intuition is that the cluster of electrodes with
increased alpha power likely represents the posterior dominant
rhythm in this area.

V. DISCUSSION & FUTURE RESEARCH

In this paper, we develop a new class of graph wavelets,
based on adaptive unbalanced Haar transformations, and

(a) Noisy signal (b) Denoised signal

Fig. 3: (a) alpha band of the DTI network; (b) denoised alpha
band of the DTI network.

establish consistency for estimating appropriate functions
over a network. Theoretical analysis, simulation, and real
data application in the context of computational neuroscience
suggest the promise of this class. Our algorithm is especially
useful in the case where the signal behaves differently at
different scales and these scales correspond to analogous
variations in the underlying network topology.

Even with the current advancement in this now-highly-active
space, the interaction of network topology, basis and signal is
still an under-explored area. In future work, denoising of the
network itself seems a natural extension here, although theo-
retical analysis even in toy cases is challenging. Connections
to graph coarsening and visualization are possible as well.
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VII. PROOFS

A. Proof of Theorem III.1
Proof. The fact that P(A) → 1 as N → ∞
follows from Lemma 1 of [24]. We begin
by defining two sets S`0 and S`1 with S`1 ={
1 ≤ r ≤ k(`) : the support of ψ`r crosses multiple regions

of constancy at level `} and S`0 = {1, · · · , k(`)}\S`1.

R(f̂, f) =
1

N

∑
v

(f̂(v) − f(v))2

=
1

N

L∑
`=1

k(`)∑
r=1

(
α
`
r I
{
∃V `
′
r′ ⊆ V

`
r

∣∣∣∣ |α`′r′ |> λ(`
′
, r
′
)

}
− µ`r

)2

+
1

N
(α

0
0 − µ

0
0)

2

=
1

N

L∑
`=1

 ∑
r∈S`0

+
∑
r∈S`1

(α`r I{∃V `′r′ ⊆ V `r
∣∣∣∣ |α`′r′ |> λ(`

′
, r
′
)

}
− µ`r

)2

+
1

N
(α

0
0 − µ

0
0)

2

≤
1

N

L∑
`=1

 ∑
r∈S`0

+
∑
r∈S`1

(α`r I{∃V `′r′ ⊆ V `r
∣∣∣∣ |α`′r′ |> λ(`

′
, r
′
)

}
− µ`r

)2

+
2

N
logN



By Lemma VII.1, we have that on the set S`0, |α`r|≤
√
2 logN

{√
|V `′−1
m |+

√
|V `′−1

m′ |√
|V `′−1
m |+|V `′−1

m′ |

}
. We then have

R(f̂ , f) ≤
1

N

L∑
`=1

∑
r∈S`1

(
α
`
rI
{
∃V `

′
r′ ⊆ V

`
r

∣∣∣ |α`′r′ |> λ(`
′
, r
′
)
}
− µ`r

)2

+
2

N
logN .

Denote by E the event∃V `
′
r′ ⊆ V

`
r

∣∣∣∣ |α`′r′ | > √2 logN


√
|V `
′−1
m |+

√
|V `
′−1
m′

|√
|V `r |


 .

We compute

(α`rI(E)− µ`r)2 = (α`rI(E)− α`r + α`r − µ`r)2

≤ (α`r)
2I(¬E) + (α`r − µ`r)2 + 2|α`rI(¬E)||α`r − µ`r|

≤ λ2 + 2λ
√
2 logN + 2 logN

≤ (6 + 4
√
2) logN .

Note that the level L associated with the TGUH transforma-
tion is bounded, i.e., L ≤ logN/log(1 − ρ)−1. Combining
this with the fact that |S1

` |≤ K, and the assumption that
K = o

(
N/log2N

)
, we have that R(f̂ , f) is of order

O
(

K log2N
N log(1−ρ)−1

)
.

Lemma VII.1. Let S`0 = {1 ≤ m ≤ k(`) : µ`r = 0}. On A,
for ` = 1, · · · , L, k ∈ S`0, we have

|α`r|≤
√

2 logN


√
|V `−1
m |+

√
|V `−1

m′ |√
|V `m|

 .

Proof. Denote the two sub-regions which merge into V `r in the
next level as V `−1m and V `−1m′ . On A, for ` = 1, · · · , L, k ∈ S`0,
we have

∣∣∣α`r∣∣∣ =
∣∣∣∣∣∣∣
{
|V `−1

m′ |
|V `r |

}1/2
∑
v∈V `−1

m
ε(v)√

|V `−1
m |

−
{
|V `−1
m |
|V `r |

}1/2
∑
v∈V `−1

m′
ε(v)√

|V `−1

m′ |

∣∣∣∣∣∣∣
≤
√

2 logN

{ |V `−1

m′ |
|V `r |

}1/2

+

{
|V `−1
m |
|V `r |

}1/2


=
√

2 logN

{
|V `−1

m′ |
1/2+|V `−1

m |1/2

|V `r |1/2

}
.
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