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Summary.The emergence of the recent financial crisis, during which markets frequently under-
went changes in their statistical structure over a short period of time, illustrates the importance
of non-stationary modelling in financial time series. Motivated by this observation, we propose
a fast, well performing and theoretically tractable method for detecting multiple change points in
the structure of an auto-regressive conditional heteroscedastic model for financial returns with
piecewise constant parameter values. Our method, termed BASTA (binary segmentation for
transformed auto-regressive conditional heteroscedasticity), proceeds in two stages: process
transformation and binary segmentation. The process transformation decorrelates the original
process and lightens its tails; the binary segmentation consistently estimates the change points.
We propose and justify two particular transformations and use simulation to fine-tune their
parameters as well as the threshold parameter for the binary segmentation stage. A compara-
tive simulation study illustrates good performance in comparison with the state of the art, and
the analysis of the Financial Times Stock Exchange FTSE 100 index reveals an interesting
correspondence between the estimated change points and major events of the recent financial
crisis. Although the method is easy to implement, ready-made R software is provided.

Keywords: Binary segmentation; Cumulative sum; Mixing; Non-stationary time series;
Process transformation; Unbalanced Haar wavelets

1. Introduction

Log-returns on speculative prices, such as stock indices, currency exchange rates and share
prices, often exhibit the following well-known properties (see for example Rydberg (2000)): the
sample mean of the observed series is close to 0; the marginal distribution is roughly symmetric
or slightly skewed, has a peak at zero and is heavy tailed; the sample auto-correlations are ‘small’
at almost all lags, although the sample auto-correlations of the absolute values and squares are
significant for a large number of lags; volatility is ‘clustered’, in that days of either large or small
movements are likely to be followed by days with similar characteristics.

To capture these properties, we need to look beyond the stationary linear time series
framework, and to preserve stationarity a large number of non-linear models have been
proposed. Among them, two branches are by far the most popular: the families of auto-
regressive conditional heteroscedastic (ARCH) (Engle, 1982) and generalized auto-regressive
conditional heteroscedastic (GARCH) (Bollerslev, 1986; Taylor, 1986) models, as well as the
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family of ‘stochastic volatility’ models (Taylor, 1986). For a review of recent advances in ARCH,
GARCH and stochastic volatility modelling, we refer the reader to Fan and Yao (2003) and
Giraitis et al. (2005).

Although stationarity is an attractive assumption from the estimation point of view, some
researchers point out that the above properties can be better explained by resorting to non-
stationary models. Dahlhaus and Subba Rao (2006) proposed a time varying ARCH model,
where the model parameters evolve over time in a continuous fashion. Mikosch and Stărică
(2004) considered probabilistic properties of a piecewise stationary GARCH model and showed
that it explains well the ‘long memory’ effect in squared log-returns. Underlying these approaches
is the observation that, given the changing pace of the world economy, it is unlikely that log-
return series should stay stationary over long time intervals. For example, given the ‘explosion’
of market volatility during the recent financial crisis, it is hardly plausible that the volatility
dynamics before and during the crisis could be well described by the same stationary time
series model. Indeed, Janeway (2009) went further and argued that financial theorists’ belief
that

‘statistical attributes of financial time series—such as variance, correlation and liquidity—are stable
observables generated by stationary processes’

might have been a contributing factor in the crisis.
In this paper, we focus on processes with piecewise constant parameter values as the simplest

form of departure from stationarity. The appeal of this kind of modelling is in that it is easily
interpretable as it provides segmentation of the data into time intervals where the parameters of
the process remain constant. Also, the piecewise constant parameter approach can be of use in
forecasting, where it is often of interest to obtain the ‘last’ stationary segment of the data which
can then be used to forecast the future behaviour. The model we consider is that of an ARCH
process with piecewise constant parameters. We note that Fryzlewicz et al. (2008) demonstrated
that time varying ARCH processes capture well the empirical features of log-return series that
were listed in the first paragraph. Since estimation for time varying GARCH processes is a
much more challenging task (because likelihood functions are typically ‘flat’), and time varying
ARCH processes often describe typical log-returns sufficiently well, we do not consider time
varying GARCH processes in this paper.

In any model with piecewise constant parameters, one task of interest is to detect, a posteriori,
the change points, i.e. time instants when the parameters of the process changed. The problem
of detecting a single change point was studied, for example, by Chu (1995) and Kulperger and
Yu (2005) for the GARCH model and by Kokoszka and Leipus (2000) for the ARCH model.
The problem of multiple-change-point detection (or segmentation) of linear time series has
been studied by, among others, Adak (1998), Stoffer et al. (2002), Davis et al. (2006), Last
and Shumway (2008), Paparoditis (2010) and Cho and Fryzlewicz (2012). This task for ARCH-
type processes is more difficult and has not been studied rigorously by many researchers. The
heuristic procedure of Andreou and Ghysels (2002) for the GARCH model was based on the
work of Lavielle and Moulines (2000) for detecting multiple breaks in the mean of an otherwise
stationary time series. We also mention the computationally intensive procedure of Davis et al.
(2008) for non-linear time series, based on the minimum description length principle, and the
method of Lavielle and Teyssiere (2005), based on penalized Gaussian log-likelihood where the
penalization parameter is chosen automatically.

Our aim in this paper is to devise a statistically rigorous, well performing and fast technique
for multiple-change-point detection in the ARCH model with piecewise constant parameters,
where neither the number nor the amplitudes of the changes are assumed to be known. Our
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method, termed BASTA (binary segmentation for transformed auto-regressive conditional
heteroscedasticity), proceeds in two stages: the process transformation and the binary segmenta-
tion stage, which we now briefly describe in turn.

1.1. Process transformation
Given a stretch of data from an ARCH process Xt , the initial step is to form a transforma-
tion of the data, Ut =g.Xt , : : : , Xt−τ / (for a certain fixed τ which will be specified later), whose
aim is twofold: to ensure that the marginal distribution of Ut is bounded, and to ensure that
the degree of auto-correlation in Ut is less than that in X2

t . Formally speaking, the aim of
BASTA will be to detect change points in the mean value of Ut . We discuss two suitable
choices of g, leading to two algorithms: BASTA-res and BASTA-avg. In the former, more
complex construction, we initially choose g in such a way that it corresponds to the sequence
of empirical residuals of Xt under the null hypothesis of no change points present. This then
leads us to consider an entire family of transformations, gC, indexed by a vector constant C,
whose suitable default choice is discussed. In the latter, simpler, construction, g corresponds
to local averages of X2

t , suitably subsampled to reduce auto-correlation and logged to stabilize
variance.

1.2. Binary segmentation
In the second stage of the BASTA algorithm, we perform a binary segmentation procedure
on the sequence Ut , with the aim of detecting the change points in E.Ut/. Algorithmically,
our binary segmentation procedure is performed similarly to Venkatraman’s (1992) method for
detecting mean shifts in Gaussian white noise sequences, except that we use a more general form
of the threshold. We demonstrate that BASTA leads to a consistent estimator of the number and
location of change points in E.Ut/. We note that modifications in proof techniques are needed
because Ut is a highly structured time series rather than a Gaussian white noise sequence. On the
basis of an extensive simulation study, we propose a default choice of the threshold constants,
which (reassuringly) works well for both proposed transformations g.

The paper is organized as follows. Section 2 describes the model and the problem. Section 3
introduces our generic algorithm and shows its consistency. Section 4 discusses two particular
choices of the function g and the threshold constants. Section 5 describes the outcome of a
comparative simulation study where we compare our method with the state of the art. Section
6 describes the application of our methodology to the Financial Times Stock Exchange FTSE
100 index and reveals a (possible) fascinating correspondence between the estimated change
points and some major events of the recent financial crisis. The proof of our consistency result
appears in Appendix A. Appendix B provides extra technical material.

R software implementing BASTA can be obtained from http://stats.lse.ac.uk/
fryzlewicz/basta/basta.html.

2. Model and problem set-up

The piecewise constant parameter ARCH(p) model Xt that we consider in this paper is defined
as follows:

Xt =Ztσt ,

σ2
t =a0.t/+

p∑
j=1

aj.t/X2
t−j, t =0, : : : , T −1,

.1/
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where the independent and identically distributed innovations Zt are such that E.Zt/ = 0 and
E.Z2

t / = 1, and the non-negative (with a0.t/ > 0 and ap.t/ �≡ 0) piecewise constant parameter
vectors {aj.t/}t have N change points 0 < η1 <: : : < ηN < T − 1 (η0 = 0, ηN+1 = T − 1), i.e., for
each ηi, i=1, : : : , N, there is at least one parameter vector {aj.t/}t such that aj.ηi/ �=aj.ηi −1/.
In assumption 1, in Section 3.2, we state assumptions on {aj.t/} such that Xt admits almost
surely a well-defined solution and specify the degree to which we require the parameters to differ
between each segment of constancy. For completeness, we assume that Xt for t =−1, − 2, : : :

comes from a stationary ARCH(p) process with parameters {aj.0/}p
j=0.

Neither the number N nor the locations ηi of the change points are assumed to be known,
and our goal is to estimate them. Naturally, we also do not assume that the parameter values
aj.t/ are known. N is permitted to increase slowly with the sample size T , but in such a way
that a minimum spacing between the ηis is preserved (see assumption 1 for precise rates). We
assume that we observe {Xt ; t = 1, : : : , T}, where formally, aj.t/, N and ηi all depend on the
sample size T , although for simplicity this is not reflected in our notation. We do not study the
issue of order selection for piecewise constant parameter ARCH processes: if the order p is not
known, we note that, in our setting, both underfitting and overfitting the model is permitted in
the sense that choosing p to be different from the true order does not affect the validity of either
our theory or our algorithm but may reduce the quality of the estimators.

3. Generic algorithm and consistency result

3.1. General approach and motivation
Our method for multiple-change-point detection in the framework that was described in Section
2 is termed BASTA. Its main ingredient is the binary segmentation procedure, suitably modified
for use in the ARCH model with piecewise constant parameters. The binary segmentation
procedure for detecting a change in the mean of normal random variables was first introduced
by Sen and Srivastava (1975). Consistency of binary segmentation for a larger class of processes
was shown by Vostrikova (1981); however, conditions for consistency were formulated under
more restrictive assumptions on change points than ours, and the procedure itself was not
easily implementable owing to the difficulty in computing the null distribution of the change
point detection statistic. Venkatraman (1992) proved consistency of the binary segmentation
procedure in the Gaussian function plus noise model, using a particularly simple form of the
test statistic.

We note that Fryzlewicz’s (2007) unbalanced Haar technique for function estimation in the
Gaussian function plus noise model is related to binary segmentation in that both proceed
in a recursive fashion by iteratively fitting best step functions to the data (see Fryzlewicz
(2007) for a discussion of similarities and differences between the two approaches). Indeed,
our choice of binary segmentation as a suitable methodology for change point detection in
the ARCH model with piecewise constant parameters is motivated by the good practical per-
formance of the unbalanced Haar estimation technique for the Gaussian function plus noise
model.

Since BASTA proceeds in a recursive fashion by acting on subsamples determined by pre-
viously detected change points, it can be viewed as a ‘multiscale’ procedure. The next section
provides a more precise description of BASTA and formulates a consistency result.

3.2. Algorithm and consistency result
The BASTA algorithm consists of two stages.
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Stage I : in the first stage, a process Ut = g.Xt , Xt−1, : : : , Xt−τ / is formed. Suitable choices
of g.·/ and τ will be discussed in Section 4. The process Ut is designed in such a way that
its time varying expectation carries information about the changing parameters of Xt and the
corresponding change points.

Stage II has the following three steps.

Step 1: begin with .j, l /= .1, 1/. Let sj,l =0 and uj,l =T −1.
Step 2: denoting n=uj,l − sj,l +1, compute

Ũ
b

sj, l,uj,l
=

√
.uj,l −b/√{n.b− sj,l +1/}

b∑
t=sj, l

Ut −
√

.b− sj,l +1/√{n.uj,l −b/}
uj, l∑

t=b+1
Ut

for all b∈ .sj,l, uj,l/. Denote bj,l =arg maxb |Ũb

sj, l,uj, l
|.

Step 3: for a given threshold b̃T , if |Ũbj, l
sj, l ,uj,l| < b̃T , then stop the algorithm on the

interval [sj,l, uj,l]. Otherwise, add bj,l to the set of estimated change points, and

(a) store .j0, l0/=.j, l /, let .sj+1,2l−1, uj+1,2l−1/ :=.sj,l, bj,l/, update j :=j+1, l :=2l−1,
and go to step 2;

(b) recall .j, l / = .j0, l0/ stored in step (a), let .sj+1,2l, uj+1,2l/ := .bj,l + 1, uj,l/, update
j := j +1, l :=2l, and go to step 2.

The maximization of the statistic |Ũb

sj, l,uj, l
| in step 2 of the above algorithm is a version of the

well-known cumulative sum test and is described in more detail in Brodsky and Darkhovsky
(1993), section 3.5. If Ut were a serially independent Gaussian sequence with one change point in
the means of otherwise identically distributed variables, b1,1 would be the maximum likelihood
statistic for detecting the likely location of the change point and would be optimal in the sense
of theorem 3.5.3 in Brodsky and Darkhovsky (1993). In our setting, it simply furnishes a least-
squares-type estimator; note that, since our Ut is a highly structured time series, exact maximum
likelihood estimators of its change points are not easy to obtain and, even if they were, their
optimality (or otherwise) would not be easy to investigate. Steps 3(a) and 3(b) describe the
binary recursion to the left and to the right of each detected change point; hence the name
‘binary segmentation’. We denote the number of the thus-obtained change point estimates by N̂

and their locations bj,l, sorted in the increasing order, by η̂1, : : : , η̂N̂ . We note that the threshold
b̃T depends on the length T of the initial sample, and not on the changing length of each
subsegment [sj,l, uj,l].

The following notation prepares the ground for the main result of this paper: a consistency
result for BASTA. Let {X̃

i

t}t denote a stationary ARCH(p) process with parameters a0.ηi/, : : : ,
ap.ηi/ (i= 0, : : : , N), constructed by using the same sequence of innovations Zt as the original
process (1). For each i, we form the process Ũ

i

t = g.X̃
i

t , : : : , X̃
i

t−τ /, with any fixed τ . Let υ.t/ be
the index i of the largest change point ηi less than or equal to t. We define

gt =E.Ũ
υ.t/

t /:

We note that, unlike E{g.Xt , : : : , Xt−τ /}, gt is exactly constant between each pair of change
points .ηi, ηi+1/. The proof of our consistency result below will rely on gt being, in a certain
sense, a limiting value for E{g.Xt , : : : , Xt−τ /}.

Before we formulate a consistency result for BASTA, we specify the following technical
assumption. C denotes a generic positive constant, not necessarily the same in value each time
it is used.
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Assumption 1.

(a) For all T , we have min{i=0,:::,N}{ηi+1 −ηi}� δT , where the minimum spacing δT satisfies
δT =CT Θ with Θ∈ . 3

4 , 1].
(b) The number N of change points is bounded from above by the function of the sample size

T specified in Appendix B.
(c) The function g :Rτ+1 →R satisfies |g.·/|� ḡ<∞ and is Lipschitz continuous in its squared

arguments (i.e. satisfies |g.x0, : : : , xτ /−g.y0, : : : , yτ /|�CΣτ
i=0|x2

i −y2
i |).

(d) For some m> 0 and all T , the sequence gt satisfies min{i=1,:::,N} |gηi −gηi−1|�m.
(e) The threshold b̃T satisfies b̃T = cT θ with θ ∈ . 1

4 , Θ− 1
2 / and c> 0.

(f) For some δ1 > 0 and all T , we have max1�t�T Σp
i=1ai.t/�1− δ1.

(g) For some δ2 >0 and C<∞, and all T , we have min1�t�T a0.t/>δ2 and max1�t�T a0.t/�
C<∞.

(h) Let fZ2 denote the density of Z2
t in expression (1). For all a > 0 we have

∫ |fZ2.u/ −
fZ2{u.1+a/}|du�Ka for some K independent of a.

Assumption 1, part (a), specifies the minimum permitted distance between consecutive change
points; part (b) determines how fast the number of change points is allowed to increase with the
sample size. In part (c), the boundedness and Lipschitz continuity of g are technical assump-
tions which not only facilitate our proofs but also mean that we can avoid placing bounded or
normality assumptions on Zt . Assumption 1, part (d), requires that the consecutive levels of
the asymptotic mean function gt should be sufficiently well separated from their neighbours.
Assumption 1, part (e), determines the magnitude of the threshold. Part (f) means that almost
surely Xt has a unique causal solution. In addition, parts (f)–(h) are required to guarantee that
Xt is strongly mixing at a geometric rate; see assumption 3.1 (and its discussion) as well as
theorem 3.1 in Fryzlewicz and Subba Rao (2011). Assumption 1, part (h), is a mild assump-
tion and is satisfied by many well-known distributions, as explained below assumption 3.1 in
Fryzlewicz and Subba Rao (2011). The following theorem specifies a consistency result for
BASTA.

Theorem 1. Suppose that assumption 1 holds. Let N and η1, : : : , ηN denote respectively the
number and the locations of change points. Let N̂ denote the number, and η̂1, : : : , η̂N̂ the
locations, sorted in increasing order, of the change point estimates obtained by BASTA.
There exist positive constants C and α such that P.AT /→1, where

AT ={N̂ =N; |η̂j −ηj|�C"T for 1� j �N},

with "T = T 1=2 logα.T/.

We note that the factor of T 1=2 logα.T/ appearing in the event AT is due to the fact that the
change points ηj are measured in the ‘real’ time t ∈ {0, : : : , T − 1}, as opposed to the rescaled
time t=T ∈ [0, 1]. Another way to interpret the above result is |η̂j=T − ηj=T |� CT −1=2 logα.T/.
The proof of theorem 1 appears in Appendix A.

Finally, we remark that although the most part of the proof of theorem 1 relies on the mixing
properties of Xt and its mixing rates, rather than its coming from a particular time series model,
the crucial lemma 1 is specific to the ARCH(p) model with piecewise constant parameters. Its
generalization to, for example, the ARCH(∞) model with piecewise constant parameters is
possible, but technically challenging (see section 4.2 in Fryzlewicz and Subba Rao (2011)) and
cannot proceed without extra assumptions on the ARCH(∞) parameters. We do not pursue
this extension in the current work.
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4. Two particular choices of the g(�) function and selection of threshold
constant c

4.1. General requirements
In this section, we discuss our recommended choices of the transformation function g. We start
by recalling the desired properties of the transformed process Ut =g.Xt , Xt−1, : : : , Xt−τ /.

(a) The time varying expectation of Ut should carry information about the change points, i.e.
should change at the change point locations.

(b) A high degree of auto-correlation in Ut would not be desirable as it would have the
potential to affect the statistic Ũ

b

sj, l,uj,l
, thus giving a false picture of the locations of the

change points. Thus, we aim at processes Ut with as little degree of auto-correlation as
possible.

(c) In addition, assumption 1, part (c), requires that the function g should be bounded and
Lipschitz continuous in its squared arguments.

Intuitively, requirement (a) implies that the process Ut should be a function of even powers of
Xt . This is because, if Zt has a symmetric distribution, then so does Xt , which means that, for q

odd, if E.X
q
t / exists, then it equals 0. Thus, the expectation of odd powers of Xt is ‘uninteresting’

from the point of view of change point detection.
Requirement (b) suggests that any ‘diagonal’ transformation, where g.Xt , Xt−1, : : : , Xt−τ / is

a function of Xt only, should not be used. (Examples of such transformations include Ut =
g.Xt/ = X2

t or Ut = g.Xt/ = log.X2
t /.) This is because, by the definition of the ARCH process

Xt , the squared process X2
t has a high degree of auto-correlation, which would typically be

preserved in a diagonal transformation of the type g.Xt/.
We also remark that requirement (c) guards against transformations which are for example

linear in X2
t , such as the transformation g.Xt/=X2

t . Even for Gaussian innovations Zt , X2
t does

not typically have all finite moments, which we refer to as ‘heavy-tailedness’ throughout the
paper. However, heavy tails in g.·/ could distort the performance of binary segmentation in the
sense of reducing, perhaps to an empty set in the most extreme cases, the permitted range of
thresholds for which the procedure would yield consistent results.

4.2. BASTA-res: the residual-based BASTA
Our first proposed transformation Ut , leading to the BASTA-res algorithm (the residual-based
BASTA), is constructed as follows. Under the null hypothesis of stationarity, the process

U
.1/
t = X2

t

a0 +
p∑

i=1
aiX

2
t−i

=Z2
t

is stationary, and perfectly decorrelated as it is simply an independent and identically distributed
sequence of squared innovations Z2

t . Obviously, in practice, this transformation is impossible
to effect as it involves the unknown parameter values ai. Instead, we ‘approximate’ it with a
transformation

U
.2/
t = X2

t

C0 +
p∑

i=1
CiX

2
t−i

,

which, under the null hypothesis, also results in a process which is stationary, and hopefully
almost decorrelated because of its closeness to U

.1/
t . The parameter C= .C0, : : : , Cp/ will need

to be estimated from the data and we describe later how.
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To ensure the boundedness of Ut , we add an extra term "X2
t in the denominator, which results

in the transformation

U
.3/
t = X2

t

C0 +
p∑

i=1
CiX

2
t−i + "X2

t

: .2/

In this paper, for simplicity, we do not dwell on the choice of ": in fact, in the numerical
experiments that are described later, we always assume that " has the default value of 10−3,
with Xt being normalized in such a way that the sample variance of the data vector Xt equals 1.
Constructed with a different purpose, a transformation related to U

.3/
t has also appeared in

Politis (2007).
As discussed above, the hope is that the transformation U

.3/
t will produce, with a suitable

choice of C, a sequence approximating the squared empirical residuals of the process under the
null hypothesis of stationarity. Under the alternative hypothesis, U

.3/
t is still (by construction)

a sequence of non-negative random variables whose changing expectation from one (approxi-
mately) stationary segment to another reflects the different parameter regimes. In practice, U

.3/
t

tends to have a distribution which is highly skewed to the right. This is unsurprising as U
.3/
t is

of the form σ̃2
t Z2

t , where Z2
t are the true squared residuals, and σ̃2

t is a non-negative random
variable (that resembles the conditional variance).

To alleviate the above rightward skew, and to bring the model closer to additive, we consider
our final transformation

U
.4/
t = log."+U

.3/
t /, .3/

where, for simplicity, the default value of " is as in U
.3/
t above. Note that we cannot simply use

log.U
.3/
t / as one of the requirements on the function g.·/ is that it should be bounded (since U

.3/
t

is bounded and non-negative and "> 0, it follows that U
.4/
t is bounded).

We note that the transformation U
.4/
t is invertible, i.e. X2

t can be recovered from it by applying
the inverse transformation. This implies that any changes in the joint distribution of X2

t (i.e.
changes in the time varying ARCH parameters) must be recoverable by examining the joint
distribution of U

.4/
t . BASTA-res proceeds by searching for changes in the mean of U

.4/
t , rather

than in the complete (joint) distribution, and there are good reasons for this simplification.
Firstly, U

.4/
t is specifically constructed to have less auto-correlation than the original process

X2
t . Secondly, the logarithmic transformation in U

.4/
t is designed to stabilize the variance in this

sequence, i.e. to make it more homogeneous. Altogether, the hope is that this brings U
.4/
t close

to a ‘function plus independent and identically distributed noise’ set-up, in which any changes
in the joint distribution would have to be reflected in changes in the mean of U

.4/
t , which is

what BASTA-res looks for. Although this argument for considering the mean only is merely
heuristic, we feel that it is vindicated by the good empirical performance of BASTA-res. In our
simulations described later, both U

.3/
t and U

.4/
t are used.

4.2.1. Default choice of C
We propose the following default choice of the vector constant C in our transformations (2)
and (3). In the first stage, we (not necessarily correctly) act as if {Xt}n

t=1 were a realization of
a stationary ARCH process with parameters a0, : : : , ap and follow a normalized least squares
procedure (Fryzlewicz et al., 2008) to estimate the values of a0, : : : , ap as â0, : : : , âp. If {Xt}n

t=1
indeed happened to be stationary, i.e. contained no change points, the computed values â0, : : : , âp

would then form meaningful estimates of the true parameters a0, : : : , ap.
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Thus, in the null hypothesis of no change points present, if we were to set Ci := âi for i =
0, : : : , p, the corresponding transformed sequences U

.3/
t and U

.4/
t would indeed be close to the

(squared, and squared and logged respectively) empirical residuals from the model, as explained
above. The hope is that our change point detection procedure would then correctly react to
this construction by determining that no change points were present in the model. However,
rather than directly setting Ci := âi for i= 0, : : : , p, we add extra flexibility to our construction
by introducing a positive factor F � 1, which we use to ‘dampen’ the values of the constants
C1, : : : , Cp as follows:

C0 := â0,

Ci := âi=F , i=1, : : : , p:

The effect of this above dampening of the values of C1, : : : , Cp is that, as F increases, U
.3/
t is,

up to a multiplicative constant, increasingly closer to X2
t itself. Indeed, in the limit as F →∞,

we have

U
.3/
t ≈ X2

t

C0 + "X2
t

(bear in mind that the default value of " is small). Empirical evidence suggests that larger values
of F can lead to better exposure of change points in the alternative hypothesis of change points
being present, at the expense of introducing a higher degree of auto-correlation and thicker tails
in the empirical distribution of U

.3/
t . Naturally, this also applies to U

.4/
t , but to a less extent.

Since, typically, higher values of F will lead to better exposure of change points but will also
introduce higher auto-correlation, it is desirable to choose F to obtain a trade-off between these
two trends. Section 4.2.2 will discuss the proposed default choice of F based on an extensive
simulation study.

4.2.2. Default choice of F and c through simulation
A simulation study was performed in which we assessed the empirical performance of our
procedure for a variety of ARCH(1) and ARCH(2) models with piecewise constant parameters
and various sample sizes. We mention that our empirical experience suggests that time varying
ARCH processes of order up to 2 are typically sufficient to model and forecast a wide range of
low frequency returns well; see for example Fryzlewicz et al. (2008). The dampening constant
F (see Section 4.2.1) ranged from 1 to 10, and the threshold constant c (see Section 3.2) ranged
from 0.1 to 1. The number of change points ranged from 0 to 2, and, if present, they were located
two-thirds and a third the way through the series. Sample sizes varied from n=750 to n=3000.

It was found that the algorithm based on the sequence U
.4/
t performed better than that based

on U
.3/
t : this was because the ‘noise’ in U

.4/
t has a more homogeneous structure due to the use

of the log-transform. This is unsurprising: recall that U
.3/
t is of the form σ̃2

t Z2
t , where Z2

t are the
true squared residuals, and σ̃2

t is a non-negative random variable. Therefore, the logarithmic
transformation in U

.4/
t brings the model close to the additive model log.σ̃2

t /+ log.Z2
t /, in which

the noise log.Z2
t / has a constant variance. Hence, our threshold b̃T , whose magnitude does not

vary locally with t, can be expected to offer better performance for the more homogeneous
model U

.4/
t , although we emphasize that our method is consistent for both U

.3/
t and U

.4/
t .

Performance was surprisingly robust across all models tested with respect to the choice of F .
We found that the value of c ranging in the interval [0:4, 0:6] was the best choice in terms of the
probability of correctly detecting the true number of change points. The obvious exceptions were
‘null hypothesis’ models not containing change points, for which, as expected, higher values of
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c resulted in better performance than lower values. Below, we provide details of the models that
were used:

(a) an ARCH(1) model with one change point, two-thirds the way (a1 is constant and equal
to 0:7, and a0 changes from 1 to 1:5, 2:0 or 2:5);

(b) an ARCH(1) model with one change point, two-thirds the way (a0 is constant and equal
to 1, and a1 changes from 0:7 to 0, 0:3 or 0:9);

(c) an ARCH(1) model with one change point, two-thirds the way (a1 changes from 0:7 to 0,
0:3 or 0:9, and a0 also changes at the same time point in such a way that the unconditional
variance of the process remains constant throughout);

(d) an ARCH(1) model with no change points (a0 equals 1, and a1 is set equal to 0, 0:5 or
0:9);

(e) an ARCH(2) model, with two change points, occurring a third the way (in a2 only) and
two-thirds the way (in a1 only) (a0 = 1 throughout; if a1 changes from α to β, then a2
changes from β to α; the values of .α, β/ are .0, 0:7/, .0:2, 0:6/ or .0:4, 0:1/).

In the colour ‘maps’ of Figs 1 and 2, the lighter the colour, the higher the proportion (over 100
simulations) of correctly detected numbers of change points for the various models, with U

.4/
t .

Figs 1(a)–1(c) show maps averaged over models (a), (b), (c) and (e) (and the various changes in
a0 and a1) for sample sizes 750 (Fig. 1(a)), 1500 (Fig. 1(b)) and 3000 (Fig. 1(c)). Figs 1(d)–1(f)
show maps averaged over model (d) (and the three values of a1); the sample sizes corres-
pond. The difference in the patterns between the columns is explained by the fact that, for the
no-change-point model (d), the higher the threshold, the better.

Fig. 2(a) shows results averaged over models (a), (b), (c) and (e) (and the various changes in
a0 and a1) and averaged over sample sizes 750, 1500 and 3000. Fig. 2(b) shows a similar result
averaged over model (d) (and the three values of a1) and sample sizes 750, 1500 and 3000.

From the results, it appears that the configuration .c, F/= .0:5, 8/ is a sensible default choice.
However, in practice it may be beneficial to apply an extra ‘correction’ and to use a slightly
lower threshold for higher sample sizes and a slightly higher threshold for lower sample sizes.
This is because, as indicated in Fig. 1, the constant c = 0:4 yields the best results for sample
size 3000, c = 0:5 is the best for sample size 1500 and c = 0:6 is the best for sample size 750.
This is not surprising as it must be borne in mind that our simulations use a threshold b̃T

of order T 3=8, whereas the maximum permitted range of the exponent θ in b̃T is θ ∈ . 1
4 , 1

2 /.
Applying the extra correction would correspond to choosing a slightly lower exponent θ in the
threshold. To summarize, we issue the following practical recommendation: use .c, F/= .0:6, 8/

for sample sizes of up to 1000, .c, F/= .0:5, 8/ for sample sizes of between 1000 and 2000, and
.c, F/ = .0:4, 8/ for sample sizes of between 2000 and 3000. For longer series, we recommend
applying the procedure to segments of length up to 3000, rather than to the entire series at once.
We emphasize that BASTA-res is a completely specified procedure in the sense that we provide
default values for all of its parameters.

4.3. BASTA-avg: BASTA based on subsampled local averages
We now describe the construction of the BASTA-avg algorithm, which is a simpler alternative
to BASTA-res, that requires the choice of fewer parameters than the latter. We earlier argued
that diagonal transformations in which g.·/ was a function of X2

t only would not be suitable for
our purpose as they preserved the high degree of auto-correlation that is normally present in
the process X2

t . However, non-overlapping local averages of the process X2
t are an interesting

candidate for our transformation g.·/ as they exhibit less auto-correlation and have lighter tails
than X2

t . More formally, we take
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Fig. 1. Maps of correctly detected numbers of change points in BASTA-res, depending on F and c: see
Section 4.2.2 for a description

U
.5/
t = log

{
min

(
1
s

.t+1/s−1∑
j=ts

X2
j + ", M

)}

(which is simply a bounded version of log.s−1Σ.t+1/s−1
j=ts X2

j /). The effective sample size for U
.5/
t is

T=s but, since s is a constant, this is still of order O.T/ and the rates in theorem 1 are unaffected.
We now investigate the performance of our binary segmentation procedure on the sequence
U

.5/
t . Always normalizing our process Xt so that its sample variance is 1, we set " equal to 10−3
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Fig. 3. Maps of correctly detected numbers of change points in BASTA-avg, depending on span s and c;
see Section 4.3 for details

as in BASTA-res; the ceiling M is set equal to 10. These two parameters do not seem to have
much effect on the practical performance of the procedure and we do not dwell on their choice
in this work. As before, the threshold exponent constant θ is taken to be 3

8 : this is in the middle
of the maximum permitted range . 1

4 , 1
2 / and, not unexpectedly, was found to perform the best

in our numerical experiments. There remains the issue of choosing the span constant s and the
threshold scaling constant c. We first examine the performance of the new procedure for a range
of these two parameters on the training models (a)–(e) from Section 4.2.2.
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Fig. 3 is analogous to Fig. 1 for BASTA-res: it visualizes the performance of BASTA-avg
averaged over the non-stationary models (a), (b), (c) and (e) (Figs 3(a)–3(c)) and for the stationary
model (d) (Figs 3(d)–3(f)), for sample sizes 750 (Figs 3(a) and 3(d)), 1500 (Figs 3(b) and 3(e))
and 3000 (Figs 3(c) and 3(f)). Lighter colour in each image means that the correct number of
change points was detected a large proportion of times (over 100 runs).

As expected, span s=1 (equivalent to no averaging at all) does not yield good performance,
compared with spans 2 or 5. For the latter spans, we can observe that the best performance
occurs for values of c roughly around 0:5, although the ‘best’ value seems to be slightly lower
for s=5 and for longer data sets.

Finally, we re-emphasize that our theory does not permit a data-dependent choice of the
constants c and θ, so it is important to have reliable default constant values at our disposal. We
have found it reassuring that, although the data transformations in BASTA-res and BASTA-avg
are constructed in two completely different ways, values of .c, θ/ close to .0:5, 3

8 / have been found
to perform the best for both of these algorithms.

5. Performance evaluation

In this comparative simulation study, we use our algorithms, BASTA-res and BASTA-avg, to
re-examine the examples of GARCH processes that were reported in Davis et al. (2008), which
appears to be the state of the art procedure for change point detection in GARCH models. We
recall that a process Yt follows a GARCH(p,q) model if it is defined as in expression (1) except
that σ2

t is defined as

σ2
t =a0 +

p∑
i=1

aiY
2
t−i +

q∑
j=1

bjσ
2
t−j:

Among other models, Davis et al. (2008) considered 10 GARCH(1,1) models with sample size
n= 1000, and with at most one change point occurring in the triple .a0, a1, b1/ at time t = 501
as follows:

(a) .0:4, 0:1, 0:5/→ .0:4, 0:1, 0:5/ (note that this model is stationary);
(b) .0:1, 0:1, 0:8/→ .0:1, 0:1, 0:8/ (note that this model is stationary);
(c) .0:4, 0:1, 0:5/→ .0:4, 0:1, 0:6/;
(d) .0:4, 0:1, 0:5/→ .0:4, 0:1, 0:8/;
(e) .0:1, 0:1, 0:8/→ .0:1, 0:1, 0:7/;
(f) .0:1, 0:1, 0:8/→ .0:1, 0:1, 0:4/;
(g) .0:4, 0:1, 0:5/→ .0:5, 0:1, 0:5/;
(h) .0:4, 0:1, 0:5/→ .0:8, 0:1, 0:5/;
(i) .0:1, 0:1, 0:8/→ .0:3, 0:1, 0:8/;
(j) .0:1, 0:1, 0:8/→ .0:5, 0:1, 0:8/.

Table 1 shows the proportion of simulation runs for which the correct number of change
points (0 for models (a) and (b); 1 for the rest) has been detected, for three competing methods:
that of Andreou and Ghysels (2002), that of Davis et al. (2008) and ours (BASTA-res and
BASTA-avg). (The results for the Andreou–Ghysels method have been taken from Davis et al.
(2008).) BASTA-res used the default values c = 0:6 and F = 8 (as recommended in Section
4.2.2), was based on the sequence U

.4/
t and used order p = 1. BASTA-avg used two pairs of

values for s and c: .s, c/ = .2, 0:5/ (BASTA-avg1 in Table 1) and .5, 0:4/ (BASTA-avg2). 100
simulation runs were performed. We also tried the method from Lavielle and Teyssiere (2005)
(using the MATLAB implementation DCPC) and, although we found that its performance was
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Table 1. Proportion of times that the correct number of change points was detected in models (a)–(j), as
well as on average across all models for the three competing methods

Method Results for the following models: Average

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

Davis et al. (2008) 0.96 0.96 0.19 0.96 0.63 0.98 0.12 0.91 0.91 0.95 0.757
Andreou and Ghysels

(2002)
0.96 0.88 0.24 0.95 0.75 0.72 0.14 0.94 0.94 0.86 0.738

BASTA-res 0.98 0.93 0.25 0.94 0.75 0.95 0.18 0.90 0.96 0.93 0.777
BASTA-avg1 0.98 0.97 0.17 0.91 0.88 0.91 0.07 0.96 0.86 0.92 0.763
BASTA-avg2 0.98 0.86 0.29 0.92 0.91 0.89 0.11 0.99 0.9 0.85 0.77

good, it was overall substantially inferior to all the above methods, so we do not report details
here.

Although BASTA was not always the best of the three methods, we note that it was always
either the best or came very close to the best, including in models where there was a large
difference in performance between the best and the worst. Indeed, BASTA-res achieved the
highest average correct proportion across all models tested. Despite its simplicity, BASTA-avg
also performed very well for both parameter sets, with the overall results placing it just behind
BASTA-res.

6. FTSE 100 index analysis

In this section, we apply our BASTA-res technique to the series of differenced closing values of
the FTSE 100 index: the share index of the 100 most highly capitalized UK companies listed
on the London Stock Exchange, with the aim of investigating whether and how any detected
change points correspond to the milestones of the recent financial crisis. The series has 1000
observations ranging from July 27th, 2005, to July 13th, 2009, i.e. roughly 4 trading years. As
before, our method used the default values as recommended in Section 4.2.2, was based on the
sequence U

.4/
t and used order p=1.

It is fascinating to observe that the estimated change points, which are shown in Fig. 4, do
indeed correspond to important events in the recent financial crisis. More precisely, the estimated
change points are as follows.

(a) t = 467, corresponding to June 5th, 2007: the summer of 2007 is widely regarded as the
start of the subprime mortgage hedge fund crisis, with the major investment bank Bear
Stearns revealing, in July 2007, that their two subprime hedge funds had lost nearly all of
their value.

(b) t =773, corresponding to August 18th, 2008: it is probably safe to attribute this estimated
change point to the collapse of Lehman Brothers, a major financial services firm.

(c) t =850, corresponding to December 4th, 2008: although it is difficult to attribute this date
to a specific event, we point out that the end of the year 2008 was the time when govern-
ments, national banks and international institutions such as the International Monetary
Fund announced and began to implement a range of financial measures to help the ailing
world economy.



16 P. Fryzlewicz and S. Subba Rao

Days

(a)

(b)

0 200 400 600 800 1000

35
00

40
00

45
00

50
00

55
00

60
00

65
00

Days
0 200 400 600 800 1000

−
40

0
−

20
0

0
20

0
40

0

Fig. 4. (a) Closing values of the FTSE 100 index from July 27th, 2005, to July 13th, 2009 (1000 observations:
roughly 4 trading years) and (b) differenced values of the index over this period (see Section 6 for comment):
, change points detected by BASTA-res on the bottom series as input

Appendix A: Proof of theorem 1

The lemmas below are proved under assumption 1.
We first collect some of the definitions given in the main section. Let X̃

i

t satisfy X̃
i

t = σ̃i
tZt where

.σ̃i
t /

2 =a0.ηi/+
p∑

j=1
aj.ηi/.X̃

i

t−j/
2, t �T −1: .4/
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Let υ.t/ be the index i of the closest change point ηi less than or equal to t and η.t/ be the location of the
largest change point less than or equal to t (ηi � t). In the following lemma we show that the piecewise
constant squared ARCH process X2

t is ‘close’ to .X̃
υ.t/
t /2.

Lemma 1. Let Xt and X̃
i

t be defined as in expression (1) and (4) respectively; then we have

|X2
t − .X̃

υ.t/

t /2|�Vt ,

where E.Vt/�Cρt−η.t/, with 0 <ρ< 1 and C being some constants independent of t.

Proof. As the proof involves only the squared ARCH processes, to reduce cumbersome notation we
let ξt =X2

t and ξ̃υ.t/
t = .X̃

υ.t/
t /2. Let [·]i denote the ith element of a vector. For a generic squared ARCH(p)

process Yt =Z2
t {α0.t/+Σp

j=1 αj.t/Yt−j} (be it time varying or not) iterating k steps backwards gives

Yt =Z2
t {PY

k, t .Zt, t−k/+QY
k, t .Yt−k/},

where Zt, t−k = .Z2
t , : : : , Z2

t−k+1/, Yt−k = .Yt−k, : : : , Yt−k−p+1/,

PY
k, t .Zt, t−k/=α0.t/+

[
At

t−k∑
r=0

r∏
j=1

Ãt−jbt−r−1

]
1

,

QY
k, t .Yt−k/=

[
At

k−1∏
j=1

Ãt−jYt−k

]
1

and

Ãt =

⎛
⎜⎜⎜⎜⎝

α1.t/Z
2
t α2.t/Z

2
t : : : αp.t/Z2

t

1 0 : : : 0
0 1 : : : 0

: : : : : :
: : :

:::
0 0 1 0

⎞
⎟⎟⎟⎟⎠,

bt = .α0.t/Z
2
t , 0, : : : , 0/′

and At =E.Ãt/. We now consider the above expansion for both ξt and ξ̃
υ.t/

t . Using the above notation and
iterating ξt backwards k = t −η.t/ steps (i.e. to its nearest change point from below) gives

ξt =Z2
t {P

ξ
t−η.t/, t .Zt,η.t//+Q

ξ
t−η.t/, t .ξη.t//}

and a similar expansion of ξ̃
υ.t/

t yields

ξ̃
υ.t/

t =Z2
t {P

ξ̃
υ.t/

t−η.t/, t .Zt,η.t//+Q
ξ̃
υ.t/

t−η.t/, t .ξ̃
υ.t/

η.t//}:

Recalling that both ξt and ξ̃
υ.t/

t share the same time varying coefficients on η.t/, : : : , t and the same inno-
vation sequence {Zt}t we have P

ξ
t−η.t/, t .Zt,η.t//=P

ξ̃υ.t/

t−η.t/, t .Zt,η.t//. Thus, taking differences, we have

ξt − ξ̃
υ.t/

t =Z2
t {Qt−η.t/, t .ξη.t//−Qt−η.t/, t .ξ̃

υ.t/

η.t//}:

Define the positive random variable Vt =Z2
t {Qt−η.t/, t .ξη.t//+Qt−η.t/, t .ξ̃

υ.t/
η.t//}; then it is clear that |ξt − ξ̃

υ.t/

t |�
Vt . Therefore, since At , : : : , At−η.t/ share the same ARCH coefficients, we have E.Vt/ = [At−η.t/

t E .ξt−k/]1 +
[At−η.t/

t E .ξ̃
υ.t/

t−k/]1 and thus E.Vt/ � ‖A
t−η.t/
t E.ξt−k/‖1 + ‖A

t−η.t/
t E.ξ̃υ.t/

t−k/‖1. Since the entries of At are non-
negative, if x and y are column vectors of length p such that 0 � x � y componentwise (where 0 is a
column vector of 0s, of length p), then A

t−η.t/
t x � A

t−η.t/
t y componentwise. From assumptions (f) and (g)

of theorem 1, both E.ξt−k/ and E.ξ̃υ.t/
t−k/ are bounded from above, componentwise, by the vector C=δ11,

where 1 is a column vector of 1s, of length p. Therefore E.Vt/ � C‖A
t−η.t/
t 1‖1 for some constant C. But

from the form of the matrix At , and using assumption (f) again, it is clear that A
p
t 1 � .1 − δ1/1 compo-

nentwise. This eventually leads to E.Vt/ � C{.1 − δ1/
1=p}t−η.t/, as required, which completes the proof of

1emma 1.
In the remainder of the proof of theorem 1, we use the decomposition

Ut =gt + "t , t =0, : : : , T −1,

noting that |"t |�2ḡ, where ḡ= supt |Ut |. In general, E."t/ �=0, but it is close to 0 in the sense that is explained
in lemma 4 below. Since Xt is a strongly α-mixing process with a geometric rate ρ, where 1−δ1 <ρ<1 (see
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theorem 3.1 in Fryzlewicz and Subba Rao (2011)), so are Ut and "t , with the same rates (see for example
theorem 14.1 of Davidson (1994)).

Let s and u satisfy ηp0 � s <ηp0+1 <: : :<ηp0+q < u�ηp0+q+1 for 0�p0 �N −q, which will always be so
at all stages of the algorithm. Denoting n=u− s+1, we define

Ũ
b

s,u =
√

.u−b/√{n.b− s+1/}
b∑

t=s

Ut −
√

.b− s+1/√{n.u−b/}
u∑

t=b+1
Ut ,

g̃b
s,u =

√
.u−b/√{n.b− s+1/}

b∑
t=s

gt −
√

.b− s+1/√{n.u−b/}
u∑

t=b+1
gt ,

where b satisfies s�b<u.
In lemmas 2–6 below, we impose at least one of the following conditions:

s<ηp0+r −CδT <ηp0+r +CδT <u for some 1� r �q; .5/

max{min.ηp0+1 − s, s−ηp0 /, min.ηp0+q+1 −u, u−ηp0+q/}�C"T : .6/

Both condition (5) and condition (6) hold throughout the algorithm for all those segments starting at s
and ending at u which contain previously undetected change points. As lemma 7 concerns the case when
all change points have been detected, it does not use either of these conditions.

The structure of the proof is as follows: lemma 2 is used in lemma 3; lemma 1 in 4; lemmas 3 and 4 in
5; lemma 5 in 6; lemmas 6 and 7 prove theorem 1.

Lemma 2. Let s and u satisfy condition (5); then there exists 1� rÅ �q such that

|g̃ηp0+rÅ

s,u |=max
s<t<u

|g̃t
s,u|�CδT T −1=2: .7/

Proof. The equality in expression (7) is the exact statement of lemma 2.3 of Venkatraman (1992). For
the inequality part, we note that, in the case of a single change point in gt , r in condition (5) coincides with
rÅ and we can use the constancy of gt to the left and to the right of the change point to show that

|g̃ηp0+r

s,u |=
∣∣∣∣
√

.ηp0+r − s+1/
√

.u−ηp0+r/√
n

.gηp0+r −gηp0+r+1/

∣∣∣∣ ,
which is bounded from below by CδT T −1=2. In the case of multiple change points, we remark that, for any
r satisfying condition (5), the above order remains the same and thus result (7) follows.

Lemma 3. Suppose that condition (5) holds, and further assume that g̃
ηp0+r

s,u > 0 for some 1 � r � q.
Then for any k satisfying |ηp0+r − k| = C0"T and g̃

ηp0+r

s,u > g̃k
s,u we have, for sufficiently large T , g̃

ηp0+r

s,u �
g̃k

s,u +CC0"T T −1=2.

Proof. Without loss of generality, assume that ηp0+r <k. As in lemma 2, we first derive the result in the
case of a single change point in gt . The following equations hold:

g̃k
s,u =

√
.ηp0+r − s+1/

√
.u−k/√

.u−ηp0+r/
√

.k − s+1/
g̃

ηp0+r

s,u ,

and

g̃
ηp0+r

s,u − g̃k
s,u =

{
1−

√
.ηp0+r − s+1/

√
.u−k/√

.u−ηp0+r/
√

.k − s+1/

}
g̃

ηp0+r

s,u

=

√(
1+ k −ηp0+r

ηp0+r − s+1

)
−

√(
1− k −ηp0+r

u−ηp0+r

)
√(

1+ k −ηp0+r

ηp0+r − s+1

) g̃
ηp0+r

s,u

� .1+ c1C0"T =2δT /− .1+ c2C0"T =2δT /+o ."T =δT /√
2

g̃
ηp0+r

s,u �CC0
"T

δT

δT

T 1=2
=CC0"T T −1=2:
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Lemma 4. Define

BT =
{

max
s,b,u

|Ũb

s,u − g̃b
s,u|�C logα.T/

}
:

We have P.BT /→1 for some positive α and C.

Proof. We denote

Ũs,b =
√

.u−b/√{n.b− s+1/}
b∑

t=s

Ut , Ũb,u =
√

.b− s+1/√{n.u−b/}
u∑

t=b+1
Ut ,

g̃s,b =
√

.u−b/√{n.b− s+1/}
b∑

t=s

gt , g̃b,u =
√

.b− s+1/√{n.u−b/}
u∑

t=b+1
gt ,

so that Ũ
b

s,u = Ũs,b − Ũb,u and g̃b
s,u = g̃s,b − g̃b,u. We have

P{max
s,b,u

|Ũb

s,u − g̃b
s,u|�λ}�P{max

s,b,u
|Ũs,b − g̃s,b|+ |Ũb,u − g̃b,u|�λ}

�P{max
s,b,u

|Ũs,b − g̃s,b|�λ=2}+P{max
s,b,u

|Ũb,u − g̃b,u|�λ=2}

�2P{max
s,b,u

|Ũs,b − g̃s,b|�λ=2}:

We now bound the above probability in two different ways depending on the difference b− s.

(a) b− s ‘small’: we have

Ũs,b − g̃s,b =
√

.u−b/√{n.b− s+1/}
b∑

t=s

"t ;

note that √
.u−b/√{n.b− s+1/} =

√
.u−b/√

.u− s+1/
ν−1=2 �ν−1=2,

where ν = b − s + 1. We bound |Ũs,b − g̃s,b| � 2ḡν1=2, which does not exceed λ=2 as long as ν �
λ2=.16ḡ2/ (where λ is logarithmic, which will be established below), which defines what we mean
by a small b− s.

(b) b − s ‘large’: in this case ν > λ2=.16ḡ2/, where we have freedom in choosing λ as long as it is
O{logα.T/}. The main tool is theorem 1.3, part (i), in Bosq (1998). We first observe that E.Ut/ �=gt ;
however, by using lemma 1, we show that, for t far from the change point η.t/, they are very close.
Taking differences and using lemma 1, we have

|E.Ut/−gt |= |E.{g.Xt , : : : , Xt−τ /}−E{g.X̃
υ.t/

t , : : : , X̃
υ.t/

t−τ /}|
�C

τ∑
i=0

E|X2
t−i − .X̃

υ.t/

t−i /
2|�C

τ∑
i=0

E.Vt−i/�C.τ /ρt−η.t/, .8/

where C.τ / is a generic constant (that varies according to the equation both here and below and
depends on τ ) and the above is due to the Lipschitz continuity of g.·/ in its squared arguments.
Therefore we have

Ut −gt =Ut −E.Ut/+{E.Ut/−gt} := "′
t +dt .9/

where "′
t =Ut −E.Ut/ and |dt |�C.τ /ρt−η.t/ (by expression (8)). Therefore for all s�b we have

b∑
t=s

|dt |�
T−1∑
t=η1

|dt |�C.τ /
T−1∑
t=η1

ρt−η.t/ =C.τ /
N∑

i=1

ηi+1∑
t=ηi

ρt−ηi �C.τ /N: .10/

We use this result below. We bound

P{max
s,b,u

|Ũs,b − g̃s,b|�λ=2}�∑
s,b

P{max
u

|Ũs,b − g̃s,b|�λ=2}

�T 2 max
s,b

P{max
u

|Ũs,b − g̃s,b|�λ=2}:
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Further, by using expressions (9) and (10),

P{max
u

|Ũs,b − g̃s,b|�λ=2}�P

{∣∣∣∣ν−1=2
b∑

t=s

."′
t +dt/

∣∣∣∣�λ=2
}

(by equation (9))

�P

{∣∣∣∣ν−1=2
b∑

t=s

"′
t

∣∣∣∣+ν−1=2
b∑

t=s

|dt |�λ=2
}

�P

{∣∣∣∣ν−1=2
b∑

t=s

"′
t

∣∣∣∣�λ=2−C.τ /ν−1=2N

}
(by expression (10)).

Denote λ̃=λ=2−C.τ /ν−1=2N. Using formula (1.25) of Bosq (1998), we have

P

{∣∣∣∣ν−1=2
b∑

t=s

"′
t

∣∣∣∣� λ̃

}
�4 exp

{
− λ̃

2

C̃1ν
q.ν, T/

}
+22

(
1+ C̃2ν

1=2

λ̃

)1=2

q.ν, T/α

{[
ν

2q.ν, T/

]}
, .11/

where C̃1 and C̃2 are positive constants, q.ν, T/ is an arbitrary integer in [1, : : : , ν=2], [a] is the
integer part of a and α.k/ are the α-mixing coefficients of Xt which are of order ρk. Suitable choice
of q.ν, T/ is crucial. We set it to be q.ν, T/= ν=h.T/, where h.T/ is of the same order as λ̃. Clearly
q.ν, T/ � ν=2 as h.T/ → ∞ and also q.ν, T/ � 1 as ν is at least of order O.λ̃

2
/. With this choice

of q.ν, T/, the bound in inequality (11) becomes at most 4 exp.−λ̃=C̃3/ + C̃4T 5=4ρλ̃=2, which con-
verges to 0 exponentially fast for a suitable logarithmic choice of λ̃ (see Appendix B for details of
this rate). This completes the proof as the resulting λ is also logarithmic, as required in the statement
of the proof.

Lemma 5. Assume expressions (5) and (6). On the event BT from lemma 4, for b=arg maxs<t<u |Ũt

s,u|,
there exists 1� r �q such that, for large T , |b−ηp0+r|�C"T .

Proof. Let b1 = arg maxs<t<u |g̃t
s,u|. From lemma 4, |g̃b1

s,u| � |Ũb1
s,u| + C logα.T/ and |Ũb

s,u| � |g̃b
s,u| +

C logα.T/. By the definition of b, we have |Ũb1
s,u|� |Ũb

s,u|. Putting these together, we obtain

|g̃b1
s,u|� |Ũb1

s,u|+C logα.T/� |Ũb

s,u|+C logα.T/� |g̃b
s,u|+2C logα.T/: .12/

Assume that b∈ .ηp0+r +C"T , ηp0+r+1 −C"T / for some r and without loss of generality g̃b
s,u >0. From lemma

2.2 in Venkatraman (1992), we have

(a) g̃t
s,u is either monotonic or decreasing and then increasing on [ηp0+r, ηp0+r+1] and

(b) max.g̃
ηp0+r

s,u , g̃
ηp0+r+1
s,u /> g̃b

s,u.

If g̃b
s,u locally decreases at b, then g̃

ηp0+r

s,u > g̃b
s,u and, from lemma 3, for C sufficiently large, there exists

b′∈.ηp0+r, ηp0+r + C"T ] such that g̃
ηp0+r

s,u �g̃b′
s,u + 2C logα.T/. Since g̃b′

s,u > g̃b
s,u, this would in turn lead to

|g̃b1
s,u|�|g̃ηp0+r

s,u | > |g̃b
s,u| + 2C logα.T/, which would contradict result (12). Similar arguments (but in-

volving ηp0+r+1 rather than ηp0+r) apply if g̃b
s,u locally increases at b.

Lemma 6. On the event BT from lemma 4, and under expressions (5) and (6), |Ũb

s,u| > CT θ, where
b=arg maxs<t<u |Ũt

s,u|.
Proof. |Ũb

s,u|� |Ũηp0+rÆ

s,u |� |g̃ηp0+rÆ

s,u |−C logα.T/�C{δT T −1=2 − logα.T/}>CT θ.

Lemma 7. For some positive constants C and C′, let s and u satisfy either

(a) ∃1�p�N such that s�ηp �u and .ηp − s+1/∧ .u−ηp/�C"T or
(b) ∃1�p�N such that s�ηp �ηp+1 �u and .ηp − s+1/∨ .u−ηp+1/�C′"T .

On the event BT from lemma 4, |Ũb

s,u|<CT θ, where b=arg maxs<t<u |Ũt

s,u|.
Proof.

|Ũb

s,u|� |g̃b
s,u|+C logα.T/�C{"

1=2
T + logα.T/},
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where the last inequality uses the definition of g̃t
s,u and condition (a) or (b). This is, for large T , of a lower

magnitude than CT θ as θ > 1
4 .

With the use of lemmas 1–7, the proof of theorem 1 is simple; the following occurs on the event BT .
At the start of the algorithm, as s = 0 and u = T − 1, all conditions for lemma 6 are met and it finds a
change point within the distance of C"T from the true change point, by lemma 5. Under the assumption
of theorem 1, both condition (5) and condition (6) are satisfied within each segment until every change
point in gt has been identified. Then, either of the two conditions (a) and (b) of lemma 7 is met and no
further change points are detected.

Appendix B: Clarification of N as a function of T

The maximum permitted N can be inferred from lemma 4. The quantity 4 exp.−λ̃=C3/+C4T 5=4ρλ̃=2 needs
to converge to 0. The rate is arbitrary but, to set it to T Δ (Δ< 0) or faster, we require −λ̃=C3 �Δ log.T/
and 5

4 log.T/+ .λ̃=2/ log.ρ/�Δ log.T/, which give

λ̃�max

{
2.Δ− 5

4 /

log.ρ/
, −C3Δ

}
log.T/=: C̄ log.T/:

Recalling that λ̃=λ=2−C.τ /ν−1=2N and choosing λ=C logα.T/ as in lemma 4, we obtain C.τ /ν−1=2N �
.C=2/ logα.T/− C̄ log.T/, which, recalling that ν >λ2=.16ḡ2/, is guaranteed by

N � C logα.T/{.C=2/ logα.T/− C̄ log.T/}
4C.τ /ḡ

:

This determines the largest permitted number of change points N. As can be seen from the above formula,
it is permitted to increase slowly to ∞ with the sample size.

References

Adak, S. (1998) Time-dependent spectral analysis of nonstationary time series. J. Am. Statist. Ass., 93, 1488–1501.
Andreou, E. and Ghysels, E. (2002) Detecting multiple breaks in financial market volatility dynamics. J. Appl.

Econmetr., 17, 579–600.
Bollerslev, T. (1986) Generalized autoregressive conditional heteroscedasticity. J. Econmetr., 31, 307–327.
Bosq, D. (1998) Nonparametric Statistics for Stochastic Processes. New York: Springer.
Brodsky, B. and Darkhovsky, B. (1993) Nonparametric Methods in Change-point Problems. Dordrecht: Kluwer.
Cho, H. and Fryzlewicz, P. (2012) Multiscale and multilevel technique for consistent segmentation of nonstationary

time series. Statist. Sin., 22, 207–229.
Chu, C.-S. J. (1995) Detecting parameter shift in GARCH models. Econmetr. Rev., 14, 241–266.
Dahlhaus, R. and Subba Rao, S. (2006) Statistical inference for time-varying ARCH processes. Ann. Statist., 34,

1075–1114.
Davidson, J. (1994) Stochastic Limit Theory. Oxford: Oxford University Press.
Davis, R., Lee, T. and Rodriguez-Yam, G. (2006) Structural break estimation for nonstationary time series models.

J. Am. Statist. Ass., 101, 223–239.
Davis, R., Lee, T. and Rodriguez-Yam, G. (2008) Break detection for a class of nonlinear time series models.

J. Time Ser. Anal., 29, 834–867.
Engle, R. F. (1982) Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom

inflation. Econometrica, 50, 987–1008.
Fan, J. and Yao, Q. (2003) Nonlinear Time Series. New York: Springer.
Fryzlewicz, P. (2007) Unbalanced Haar technique for nonparametric function estimation. J. Am. Statist. Ass.,

102, 1318–1327.
Fryzlewicz, P., Sapatinas, T. and Subba Rao, S. (2008) Normalized least-squares estimation in time-varying ARCH

models. Ann. Statist., 36, 742–786.
Fryzlewicz, P. and Subba Rao, S. (2011) On some mixing properties of ARCH and time-varying ARCH processes.

Bernoulli, 17, 320–346.
Giraitis, L., Leipus, R. and Surgailis, D. (2005) Recent advances in ARCH modelling. In Long Memory in Eco-

nomics (eds A. Kirman and G. Teyssiere), pp. 3–39. Berlin: Springer.
Janeway, W. (2009) Six impossible things before breakfast: lessons from the crisis. Significance, 6, 28–31.
Kokoszka, P. and Leipus, R. (2000) Change-point estimation in ARCH models. Bernoulli, 6, 513–539.
Kulperger, R. and Yu, H. (2005) High moment partial sum processes of residuals in GARCH models and their

applications. Ann. Statist., 33, 2395–2422.



22 P. Fryzlewicz and S. Subba Rao

Last, M. and Shumway, R. (2008) Detecting abrupt changes in a piecewise locally stationary time series. J. Multiv.
Anal., 99, 191–214.

Lavielle, M. and Moulines, E. (2000) Least-squares estimation of an unknown number of shifts in a time series.
J. Time Ser. Anal., 21, 33–59.

Lavielle, M. and Teyssiere, G. (2005) Adaptive detection of multiple change-points in asset price volatility. In
Long Memory in Economics (eds A. Kirman and G. Teyssiere), pp. 129–157. Berlin: Springer.
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