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ABSTRACT Another approach is to transform the noisy signal into a sig-
nal contaminated with approximately Gaussian noise with- co
stant variance, apply a denoising procedure designed fosskmn
noise, and then apply the inverse transform to the resufttPBis-

We propose ®ata-Driven Haar Fisz TransforrDDHFT): a fast,
fully automatic, multiscale technique for approximatelgu@sian-

ising and stabilizing the_vanance of sequences .Of ”0”“‘*9““' son data, Anscombe [8] proposed a square-root transforrahwhi
dependent random variables whose variance is a non-deweas j,qces exact asymptotic normality and stabilizes theavee.
(but otherwise unknown) function of the mean. We demorstrat 1hisis a particular case of the Box-Cox transformation Ejme
the excellent performance of the DDHFT on Poisson data. e th ..ot variance-stabilizing transforms are reviewed @j.[1

use the DDHFT to denoise a solar irradiance time seriesdedor When the underlying noise distribution is unknown, the ap-

by the X-ray radiometer on board the GOES satellite: as th&eno ., iate variance-stabilizing transformation needstestimated
distribution is unknown, we first take the DDHFT, then usesmst &0 the data. Examples of such data-driven transformation

dard wa\{elet technique for homogeneou; Gaussian dgtahend U Clude the AVAS technique of [11], the ACE method of [12], adlwe
take the inverse DDHI_:T. The procedure is shown to signifigant as the procedure described in [13].
outperform its competitors. Fryzlewicz et al. [14] proposed a Haar-Fisz Transform (HFT)
1. INTRODUCTION for Gaussianising and sFabiIizing the \{arifance of SGQLEEDF)BOiS-'

. . . son counts. The HFT is performed in linear computationaktim
In non-parametric regression, we are often faced with thblpm as a straightforward modification of the discrete Haar Thams
of estimating a one-dimensional functigh: [0,1] — R from (HT) [15]. Unlike the Anscombe transform, the HFT is not diag
noisy observationX; taken on an equispaced grid: onal and has a multiscale structure. The same authors mo@Eos

. . similar HFT for chi-square data [16].

Xi= f(i/n) +ei, i=1,...,n, Our contribution in this paper is to combine the above ideas
and propose a fully automatic Haar-Fisz method for (apjpnaxély)
Gaussianising and stabilizing the variance of sequenacesrofeg-
ative independent variables whose variance is a non-dgngea
(but otherwise unknown) function of the mean. To avoid a pos-
sible notational confusion with [14] and [16], we call ourt@u

whereeg;’s are random variables with zero med&{g;) = 0. In
cases wheref possesses irregular features, several authors ad-
vocate the use of nonlinear estimators based on wavelatkshri
age [1-3]. Many of these estimators combine excellent finite

sample performance and (near-)optimal Mean Integratedrgqu matic multiscale transform theata-Driven Haar-Fisz Transform

Error (MISE) behaviour over a variety of smoothness claes¢s (DDHFT). We use the DDHFT to denoise an X-ray irradiance time
Several of those wavelet-based methods rely on the assump-

tion that(e;)™, is a sequence of independeWi(0, o?) variables.  SCHES recorded by GOES [17]. This time series can be suiject

- S photon noise, readout noise, as well as aliasing. Moredker,
In practice, however, the distribution ef often depends on the . R -
i . . . larger the fluctuations, the more the aliasing is expectéchpact
level of the underlying signaf(i/n). For example, consider a

- ; . the usual Poisson noise distribution. A flexible method like
possibly inhomogeneous Poisson process observed on émeaht . !
h - . DDHFT is thus necessary to analyse the noise structure.
[0, 1) and discretised into a vectd = (X, .. ., Xn), whereX; The paper is organised as follows. In Section 2, we specify
is the number of events falling into the inter{@in, (i + 1)/n). our assu?n ICiions ang recall the HT. In éection 3(res l4)nWeFii
EachX; can be thought of as coming from a Poisson distribution P ) .

- . . duce the DDHFT in the case when the link function between the
with an unknown parametey;, which needs to be estimated. Here mean and the variance of the noise is known (resp. unknown). |
the “noise”s; = X; — E(X;) = X; — A is independent but not P ’

identically distributed. Section 5, we show the performance of our method on a data set

One way to construct successful wavelet-based denoising al arising in solar physics (namely, irradiance data). In Sed, we
. vay to c h 9 8l conclude and discuss the use of the DDHFT in the analysistaf da
gorithms is to tailor the method to one particular type ofseoi

. - - . - sets collected by radiometers such as LYRA on PROBA-2 [18].
Some recent techniques for estimating Poisson intensitese-
viewed in [4]. Antoniadis et al. [5, 6] consider the case veher 2. ASSUMPTIONSON DATA AND DISCRETE HAAR
the noise variance is (at most) a quadratic or cubic funaifdhe TRANSFORM
mean. Wavelet thresholding of chi-square data is used ipwsr Let X = (X;)Z, denote an input vector to the DDHFT. The fol-

time series contexts: see [7], Section 2.3.2, for a list fefrences. lowing i ) S .
. . ; ; ngl fies th ner r nal pr X.
The major drawback of these techniques is that they esfigméa owing list specifies the generic distributional propestaf

quire a pre-estimate of the signal to be supplied to the asidm 1. The lengthn of X must be a power of two. We denote
procedure. J =log,(n).
2 This work was supported by the Belgian Federal Science yPolfe 2. (Xi)i=1 must be a sequence of independent, nonnegative

fice through the ESA-PRODEX LYRA program. random variables with finite positive meagms= E(X;) >
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Fig. 1. Variance stabilization for a Poisson contaminated signal

0 and finite positive variances? = Var(X;) > 0.

3. The variancer? must be a non-decreasing function of the

meany;: we must haves? = h(u;), where the functiorh
is independent of.

For example, lefX; ~ Poig);). In this casey; = \; ando? =
A, which yieldsh(z) = z. Naturally, in many practical situations

so, we divided; ~* by 2!/2 times its own standard deviation. We
have

Var(dy ~') = 1/4 (Var(X1) + Var(X»)) = 03 /2,
which gives2'/? (Var(d{‘l))l/2 = o1 = h'/?(u1). In practice
p1 is unknown and we estimate it locally iy = (X1 +X32)/2 =

the exact form ofs is unknown and needs to be estimated fromthe s - The (approximately) variance-stabilized coefficigt " is
data. Sections 3 and 4 below describe the HFT in the casegwher given by f/ = = d{~'/h'/? (s{ =) (throughout the paper, we

h is known and unknown, respectively.

Before we move on to describe the HFT and its data-driven

version, we briefly recall the formula for the HT. The HT isradlar
orthogonal transforiR™ — R"™ wheren = 27. Given an input
vectorX = (X;)i—,, the HT is performed as follows:

1. Lets{ = X;.

2. Foreacly = J—1,J—2,...,0, recursively form vectors
s’ andd’:
j+1 j+1 j+1 j+1
i Sap—1 TS & = Sok—1 — S2 E=1 oi
sk—72 sy =——5— - k=1...,2.

The operatorH, whereHX = (s°,d°,...,d’ "), defines the
HT. The inverse HT is performed as follows:

1. Foreachj =0,1,...,J — 1, recursively forms/*1:

J+l o FI b o S, B — J
Sop_1 =8, +dy; 89, =8, —dy, k=1,...,2.

2. Setx; =s].

The elements of’ andd’ have a simple interpretation: they
can be thought of as “smooth” and “detail” (respectively)tiod
original vectorX at scale2’.

3. THE HAAR-FISZ TRANSFORM WITH H KNOWN

In this section, we introduce the HFT: a multiscale algonitfor
(approximately) stabilizing the variance ¥f and bringing its dis-
tribution closer to normality.

The main idea of the HFT is to decompaXeusing the HT,
then “Gaussianise” the coefficiem‘.% and stabilize their variance,
and then apply the inverse HT to obtain a vector which is clase
Gaussianity and has its variance approximately stabili?éginow
describe the middle step: the variance stabilization aralr&sSian-
isation” of dJ,.

Consider firsd{ = = (X1 — X2)/2. Suppose for now that
X1, X, are identically distributed (i.d.): indeed, this is likely
occur if the underlying meadu;}; is e.g. piecewise constant.
This implies thatd ~* is symmetric around zero. We want to
stabilize the variance of ! around2/=Y=7 = 1/2. To do

use the conventiof/0 = 0).

Turning now todf‘2 = (X1+X2—X3—X4)/4, we also first
assume that th&;, X», X3, X4 are i.d. In order to stabilize the
variance ofd =% around2’ ~7 = 2727 = 1/4, we divided] ~2
by 2 times its standard deviation. We hai’/téVar(df‘z’))l/z =
o1 = h'/?(u1) as before, and we estimage locally by s7 =2,
which yields an approximately variance-stabilized cogdfitf; ~2 =
d{=?/h'/? (s{~?). Asymptotic Gaussianity and variance stabi-
lization of random variables of a form similar f§ were studied
by Fisz [19]: hence we Iabqﬂ,{ theFisz coefficientef X, and the
whole procedure — thelaar-Fisz transformof X.

We now give the general algorithm for the Haar-Fisz tramafor
when the functiorh is known.

1. Lets) = X;.
2. Foreacly =J—1,J—2,...,0, recursively form vectors
s’ andf’:
j+1 j+1 j+1 j+1
Sop—1 t+ S Sak—1 — Sop

k=1 27

;fizwy PO

R
S = B

3. Foreachj =0,1,...,J — 1, recursively modifys’*:

J+1 J . oJ L o fd — J
S =8+ fli s =s,.—fl, k=1,...,27.

4. SetY =s”.

The relationY = F, X defines a nonlinear, invertible operator
Fr, which we callthe Haar-Fisz transform (oK) with link func-
tion h.

4. THE HAAR-FISZ TRANSFORM WITH H UNKNOWN

In practiceh is often unknown and needs to be estimated from
the data. Since? = h(u;), ideally we would wish to estimate

h by computing the empirical variances &f,, X5, ... at points

1, 2, . . ., respectively, and then smoothing the observations to
obtain an estimate df. Suppose for the time being that the¢'s

are known and, as an illustrative example, consgeE= pit1.
The empirical variance akK; can be pre-estimated, for example,
asé? = (X; — Xi+1)?/2. Note that on any piecewise constant



stretch, our pre-estimate is exactly unbiased. The ab@egisision
motivates the following regression setup:

67 = h(ps) + €i,

whereg; = 67 — 07 = (Xi — Xi+1)?/2 — o and “in most

cases’E(e;) = 0. Of course, in practice, the;’s are not known
and, since we pre-estimate the varianc&Xgfusing X; and X1,
it also makes sense to pre-estimateby ji; = (X; + Xi+1)/2.
Note that for eactk = 1,...,27 7!, we havejisi_1 = s~ ' and
63k, = 2(d{~")?, which leads to our final regression setup

()

In other words, we estimatk from the finest-scale Haar smooth
and detail coefficients ofX;)7-,, where the smooth coefficients
serve as pre-estimates pf and the squared detail coefficients
serve as pre-estimatesaf.

As we restricth to be a non-decreasing function pf we
choose to estimate it from the regression problem (1) viatlea
squares isotone regression, using the “pool-adjacetdtois” al-
gorithm described in detail in [20], Section 6.3. The rasgles-
timate, denoted here by, is a non-decreasing, piecewise constant
function of u.

The DDHFT is performed as in Section 3 except thas re-
placed byfz. As an example, we exhibit the performance of our
DDHFT for Poisson noise.

Figure 1 shows results for a Poisson-contaminated sigigd. F
ure 1(a) shows a simulated Poisson vecXgrwhose underlying
intensity is Donoho’s “blocks” function sampled at 1024 isgu
paced points and scaled to have a minimum (maximum) of 3 (25).
Figure 1(b) shows the estimafhép) (solid line), estimated foX;
from the regression problem (1) via least-squares isotegees-
sion. The dotted line is the trugy) function: recall that for Pois-
son data, we havé(u) = p. The resulting DDHFT ofX; is
displayed in Figure 1(c): the variance of the noise is novartje
well stabilized. The Anscombe square-root transfornXefpro-
duces a result similar to the one in Figure 1(c). Note however
that the Anscombe transform is specifically designed fos$tmi
noise whereas the DDHFT “does not know” the nature of theenois
and needs to estimate some of its characteristics (narhelyink
functionh(u)) from the data.

5. APPLICATION TO SOLAR PHYSICSDATA

In this section, we analyse a time series provided by theysea-

sor instrument on board the GOES satellite [17]. The serigs w
recorded on 9th February 2001, and represents measurefoents
the whole Sun X-ray fluxes in the 0.1 — 0.8 nm wavelength band,

2(dy ") = h(sy ') +ex.

at the sampling rate of one measurement every 3 seconds. We

only consider the las2'* observations of the time series, which
corresponds to the measurements taken between aroundat@i 00
24.00 hours. The time series (denoted{%; }), is shown in Fig-
ure 2(a). Itis visibly noisy (although the variance of théseois
not large), and it is of interest to solar physicists to (apdede-
parture of the noise from the white noise model with constarit
ance, (b) remove the noise before proceeding with the asalys
We now denoisg X:} using a classical wavelet-based technique
and our DDHFT-based approach, and compare the results.

5.1. Wavelet smoothing of theraw data

As the underlying signal appears “spiky”, we denoise it gsin
wavelet-based method: namely, the translation-invariaergion of

a hard thresholding estimator proposed by [1] (we use Ddikgc
Extremal Phase wavelet with 2 vanishing moments [21]). phas
cedure will be referred to as UNIV below. Figure 2(b) showes th

resulting estimate (displayed on part of the domain onlycfar-
ity).

In the region shown, the UNIV estimate is extremely noisy.
The reason is that UNIV assumes that the variance of the noise
is constant over time, whereas this does not holdX¥er see Fig-
ure 2(a). Some extensions of classical wavelet denoisirig-to
homogeneous variance have been developed. However, most of
them use the universal threshold, and require a pre-egtiofidhe
time-varying noise level. Hence the question of the choicthe
pre-estimation method, and its parameters, arises [22pritrast,
our approach based on the DDHFT is (a) completely automatic,
i.e. no smoothing parameters need to be supplied to thearser,

(b) modular, i.e. it can make use of any denoising procedwre i
tended for homogeneous Gaussian data.

5.2. Approach via DDHFT

In this section, we apply a variant of our DDHFT-based denois
ing algorithm toX;. The first step is to estimate the link func-
tion h from the data, see Figure 3(a). The sharp step around
p =~ 1.2 x 1075 seems to indicate (at least) two noise regimes:
one with a lower variance fqe < 1.2 x 10~%, and the other with

a higher variance for > 1.2 x 10~ 6. Figure 3(b) shows™; X;:

the DDHFT of X; computed using the estimated link functibn
The variance of the noise iff; X; appears to be constant over
time. We also tried the AVAS and ACE techniques mentioned in
the Introduction, but none of them produced a good resuk: th
noise was still strongly heterogeneous.

Next, we denoiseF;, X; by means of the UNIV procedure de-
scribed in Section 5.1. The variance of the correspondingirem
cal residuals appears to be constant over time. The deneésed
sion of 7, X is denoted byF; X;. We estimat&X by F; ' F; X;:

the inverse DDHFT ofF; X;. The estimateF; ' F; X, is shown
in Figure 2(c) (for comparison with the UNIQ/ estimate frongFi
ure 2(b), only part of the time domain is displayed). The edige
character ofifﬁ’lf;LXt, compared to UNIV, is remarkable.

Finally, Figure 3(c) shows the residuals —F; ' F; X; (solid
line) and the plot of the functiohd~"T1(X; < 1.2 x 10~%), where
I(-) is the indicator function (dotted line). The fact that theide-
als oscillate around zero, shows the apparent lack of blﬁgi‘rﬂt';LXt.

6. CONCLUSION AND FUTURE WORK

Through a simulated and a real data example, we have demon-
strated that the DDHFT is a robust and flexible way of staibi¢jz

the variance in heteroscedastic data sets. The method can ha
dle various noise distributions and can be combined withremy
parametric denoising technology for homoscedastic data.

The DDHFT promises to be a useful tool for analysing data
obtained from LYRA [18], a new radiometer to be launched i th
year 2006. LYRA will measure the irradiance of the Sun in four
wavebands at a sampling rate higher than 10 Hz. The data will
be corrupted by different types of noise (Poisson and readbu
order to analyse the variance of the data, a flexible and fuly
tomatic method such as the one presented here is needed: More
over, variance stabilization and denoising are a necegsatyde

to tackling solar physics problems, e.g. the problem of ttieae-

tion of peaks (which correspond to solar eruptions) from actin
background.
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