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ABSTRACT

We propose aData-Driven Haar Fisz Transform(DDHFT): a fast,
fully automatic, multiscale technique for approximately Gaussian-
ising and stabilizing the variance of sequences of non-negative in-
dependent random variables whose variance is a non-decreasing
(but otherwise unknown) function of the mean. We demonstrate
the excellent performance of the DDHFT on Poisson data. We then
use the DDHFT to denoise a solar irradiance time series recorded
by the X-ray radiometer on board the GOES satellite: as the noise
distribution is unknown, we first take the DDHFT, then use a stan-
dard wavelet technique for homogeneous Gaussian data, and then
take the inverse DDHFT. The procedure is shown to significantly
outperform its competitors.

1. INTRODUCTION

In non-parametric regression, we are often faced with the problem
of estimating a one-dimensional function� � �� � �� 	
 �

from
noisy observations� 
 taken on an equispaced grid:

� 
 � � ���� � � �
 � � � �� � � � � � �
where�
 ’s are random variables with zero mean,� ��
 � � �

. In
cases where� possesses irregular features, several authors ad-
vocate the use of nonlinear estimators based on wavelet shrink-
age [1–3]. Many of these estimators combine excellent finite-
sample performance and (near-)optimal Mean Integrated Squared
Error (MISE) behaviour over a variety of smoothness classesof � .

Several of those wavelet-based methods rely on the assump-
tion that ��
 ��
� � is a sequence of independent� �� � � � � variables.
In practice, however, the distribution of�
 often depends on the
level of the underlying signal� ���� �. For example, consider a
possibly inhomogeneous Poisson process observed on the interval�� � �� and discretised into a vector� � �� � � � � � � � � �, where� 

is the number of events falling into the interval���� � �� � ���� �.
Each� 
 can be thought of as coming from a Poisson distribution
with an unknown parameter�
, which needs to be estimated. Here
the “noise”�
 � � 
  � �� 
 � � � 
  �
 is independent but not
identically distributed.

One way to construct successful wavelet-based denoising al-
gorithms is to tailor the method to one particular type of noise.
Some recent techniques for estimating Poisson intensitiesare re-
viewed in [4]. Antoniadis et al. [5, 6] consider the case where
the noise variance is (at most) a quadratic or cubic functionof the
mean. Wavelet thresholding of chi-square data is used in various
time series contexts: see [7], Section 2.3.2, for a list of references.
The major drawback of these techniques is that they essentially re-
quire a pre-estimate of the signal to be supplied to the estimation
procedure.�

This work was supported by the Belgian Federal Science Policy Of-
fice through the ESA-PRODEX LYRA program.

Another approach is to transform the noisy signal into a sig-
nal contaminated with approximately Gaussian noise with con-
stant variance, apply a denoising procedure designed for Gaussian
noise, and then apply the inverse transform to the result. For Pois-
son data, Anscombe [8] proposed a square-root transform which
induces exact asymptotic normality and stabilizes the variance.
This is a particular case of the Box-Cox transformation [9].Some
recent variance-stabilizing transforms are reviewed in [10].

When the underlying noise distribution is unknown, the ap-
propriate variance-stabilizing transformation needs to be estimated
from the data. Examples of such data-driven transformations in-
clude the AVAS technique of [11], the ACE method of [12], as well
as the procedure described in [13].

Fryzlewicz et al. [14] proposed a Haar-Fisz Transform (HFT)
for Gaussianising and stabilizing the variance of sequences of Pois-
son counts. The HFT is performed in linear computational time
as a straightforward modification of the discrete Haar Transform
(HT) [15]. Unlike the Anscombe transform, the HFT is not diag-
onal and has a multiscale structure. The same authors proposed a
similar HFT for chi-square data [16].

Our contribution in this paper is to combine the above ideas
and propose a fully automatic Haar-Fisz method for (approximately)
Gaussianising and stabilizing the variance of sequences ofnonneg-
ative independent variables whose variance is a non-decreasing
(but otherwise unknown) function of the mean. To avoid a pos-
sible notational confusion with [14] and [16], we call our auto-
matic multiscale transform theData-Driven Haar-Fisz Transform
(DDHFT). We use the DDHFT to denoise an X-ray irradiance time
series recorded by GOES [17]. This time series can be subjectto
photon noise, readout noise, as well as aliasing. Moreover,the
larger the fluctuations, the more the aliasing is expected toimpact
the usual Poisson noise distribution. A flexible method likethe
DDHFT is thus necessary to analyse the noise structure.

The paper is organised as follows. In Section 2, we specify
our assumptions and recall the HT. In Section 3 (resp. 4), we intro-
duce the DDHFT in the case when the link function between the
mean and the variance of the noise is known (resp. unknown). In
Section 5, we show the performance of our method on a data set
arising in solar physics (namely, irradiance data). In Section 6, we
conclude and discuss the use of the DDHFT in the analysis of data
sets collected by radiometers such as LYRA on PROBA-2 [18].

2. ASSUMPTIONS ON DATA AND DISCRETE HAAR
TRANSFORM

Let � � �� 
��
� � denote an input vector to the DDHFT. The fol-
lowing list specifies the generic distributional properties of� .

1. The length� of � must be a power of two. We denote! � "#$ � �� �.
2. �� 
 ��
� � must be a sequence of independent, nonnegative

random variables with finite positive means% 
 � � �� 
 � &
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Fig. 1. Variance stabilization for a Poisson contaminated signal.

�
and finite positive variances

� �
 � Var�� 
 � & �
.

3. The variance
� �
 must be a non-decreasing function of the

mean% 
: we must have
� �
 � ( �% 
 �, where the function

(
is independent of�.

For example, let� 
 ) Pois��
 �. In this case,% 
 � �
 and
� �
 ��
, which yields

( �* � � *. Naturally, in many practical situations
the exact form of

(
is unknown and needs to be estimated from the

data. Sections 3 and 4 below describe the HFT in the cases where(
is known and unknown, respectively.

Before we move on to describe the HFT and its data-driven
version, we briefly recall the formula for the HT. The HT is a linear
orthogonal transform

�� 
 �� where� � +, . Given an input
vector� � �� 
 ��
� �, the HT is performed as follows:

1. Let -,
 � � 
.
2. For each. � !  �� !  + � � � � � �, recursively form vectors/0 and10 :

-02 � -0 3 ��24� � -0 3 ��2
+ 5

602 � -0 3 ��24�  -0 3 ��2
+ � 7 � �� � � � � +0 �

The operator8 , where8� � �/9 � 19 � � � � � 1 , 4��, defines the
HT. The inverse HT is performed as follows:

1. For each. � � � �� � � � � !  �
, recursively form/0 3 �:

-0 3 ��24� � -02 � 602 5 -0 3 ��2 � -02  602 � 7 � �� � � � � +0 �
2. Set� 
 � -,
 .

The elements of/0 and10 have a simple interpretation: they
can be thought of as “smooth” and “detail” (respectively) ofthe
original vector� at scale+0 .

3. THE HAAR-FISZ TRANSFORM WITH : KNOWN

In this section, we introduce the HFT: a multiscale algorithm for
(approximately) stabilizing the variance of� and bringing its dis-
tribution closer to normality.

The main idea of the HFT is to decompose� using the HT,
then “Gaussianise” the coefficients

602 and stabilize their variance,
and then apply the inverse HT to obtain a vector which is closer to
Gaussianity and has its variance approximately stabilized. We now
describe the middle step: the variance stabilization and “Gaussian-
isation” of

602 .
Consider first

6, 4�� � �� �  � � ��+. Suppose for now that� � � � � are identically distributed (i.d.): indeed, this is likelyto
occur if the underlying mean;% 
 <
 is e.g. piecewise constant.
This implies that

6, 4�� is symmetric around zero. We want to
stabilize the variance of

6, 4�� around+ =, 4�>4, � ��+. To do

so, we divide
6, 4�� by +�?� times its own standard deviation. We

have

Var�6, 4�� � � ��@ �Var�� �� � Var�� � �� � � �� �+ �
which gives+ �?� AVar�6, 4�� �B �?� � � � � ( �?� �% ��. In practice% � is unknown and we estimate it locally by'% � � �� ��� � ��+ �-, 4�� . The (approximately) variance-stabilized coefficient� , 4�� is
given by � , 4�� � 6, 4�� �( �?� A-, 4�� B (throughout the paper, we
use the convention

��� � �
).

Turning now to
6, 4�� � �� ��� �  � C  � D ��@, we also first

assume that the� � � � � � � C � � D are i.d. In order to stabilize the
variance of

6, 4�� around+0 4, � +, 4�4, � ��@, we divide
6, 4��

by + times its standard deviation. We have+ AVar�6, 4�� �B �?� �� � � ( �?� �% �� as before, and we estimate% � locally by -, 4�� ,
which yields an approximately variance-stabilized coefficient � , 4�� �6, 4�� �( �?� A-, 4�� B. Asymptotic Gaussianity and variance stabi-
lization of random variables of a form similar to� 02 were studied
by Fisz [19]: hence we label� 02 theFisz coefficientsof � , and the
whole procedure — theHaar-Fisz transformof � .

We now give the general algorithm for the Haar-Fisz transform
when the function

(
is known.

1. Let -,
 � � 
.
2. For each. � !  �� !  + � � � � � �, recursively form vectors/0 andE 0 :

-02 � -0 3 ��24� � -0 3 ��2
+ 5 � 02 �

-0 3 ��24�  -0 3 ��2
+( �?� A-02 B

� 7 � �� � � � � +0 �

3. For each. � � � �� � � � � !  �
, recursively modify/0 3 �:

-0 3 ��24� � -02 � � 02 5 -0 3 ��2 � -02  � 02 � 7 � �� � � � � +0 �
4. SetF � /, .

The relationF � GH � defines a nonlinear, invertible operatorG H which we callthe Haar-Fisz transform (of� ) with link func-
tion

(
.

4. THE HAAR-FISZ TRANSFORM WITH : UNKNOWN

In practice
(

is often unknown and needs to be estimated from
the data. Since

� �
 � ( �% 
 �, ideally we would wish to estimate(
by computing the empirical variances of� � � � � � � � � at points% � � % � � � � �, respectively, and then smoothing the observations to

obtain an estimate of
(
. Suppose for the time being that the% 
 ’s

are known and, as an illustrative example, consider% 
 � % 
3 �.
The empirical variance of� 
 can be pre-estimated, for example,
as '� �
 � �� 
  � 
3 ��� �+. Note that on any piecewise constant



stretch, our pre-estimate is exactly unbiased. The above discussion
motivates the following regression setup:

'� �
 � ( �% 
 � � �
 �
where �
 � '� �
  � �
 � �� 
  � 
3 ��� �+  � �
 and “in most
cases”� ��
 � � �

. Of course, in practice, the% 
 ’s are not known
and, since we pre-estimate the variance of� 
 using� 
 and� 
3 �,
it also makes sense to pre-estimate% 
 by '% 
 � �� 
 � � 
3 ���+.
Note that for each

7 � �� � � � � +, 4�, we have'% �24� � -, 4�2 and

'� ��24� � + �6, 4�2 ��, which leads to our final regression setup

+ �6, 4�2 �� � ( �-, 4�2 � � �2 � (1)

In other words, we estimate
(

from the finest-scale Haar smooth
and detail coefficients of�� 
 ��
� �, where the smooth coefficients
serve as pre-estimates of% 
 and the squared detail coefficients
serve as pre-estimates of

� �
 .
As we restrict

(
to be a non-decreasing function of% , we

choose to estimate it from the regression problem (1) via least-
squares isotone regression, using the “pool-adjacent-violators” al-
gorithm described in detail in [20], Section 6.3. The resulting es-
timate, denoted here by'(, is a non-decreasing, piecewise constant
function of% .

The DDHFT is performed as in Section 3 except that
(

is re-
placed by'(. As an example, we exhibit the performance of our
DDHFT for Poisson noise.

Figure 1 shows results for a Poisson-contaminated signal. Fig-
ure 1(a) shows a simulated Poisson vector� I whose underlying
intensity is Donoho’s “blocks” function sampled at 1024 equis-
paced points and scaled to have a minimum (maximum) of 3 (25).
Figure 1(b) shows the estimate'( �% � (solid line), estimated for� I
from the regression problem (1) via least-squares isotone regres-
sion. The dotted line is the true

( �% � function: recall that for Pois-
son data, we have

( �% � � % . The resulting DDHFT of� I is
displayed in Figure 1(c): the variance of the noise is now clearly
well stabilized. The Anscombe square-root transform of�I pro-
duces a result similar to the one in Figure 1(c). Note however
that the Anscombe transform is specifically designed for Poisson
noise whereas the DDHFT “does not know” the nature of the noise
and needs to estimate some of its characteristics (namely, the link
function

( �% �) from the data.

5. APPLICATION TO SOLAR PHYSICS DATA

In this section, we analyse a time series provided by the X-ray sen-
sor instrument on board the GOES satellite [17]. The series was
recorded on 9th February 2001, and represents measurementsfor
the whole Sun X-ray fluxes in the 0.1 – 0.8 nm wavelength band,
at the sampling rate of one measurement every 3 seconds. We
only consider the last+ �D observations of the time series, which
corresponds to the measurements taken between around 10.00and
24.00 hours. The time series (denoted by;� I <), is shown in Fig-
ure 2(a). It is visibly noisy (although the variance of the noise is
not large), and it is of interest to solar physicists to (a) detect de-
parture of the noise from the white noise model with constantvari-
ance, (b) remove the noise before proceeding with the analysis.
We now denoise;� I< using a classical wavelet-based technique
and our DDHFT-based approach, and compare the results.

5.1. Wavelet smoothing of the raw data

As the underlying signal appears “spiky”, we denoise it using a
wavelet-based method: namely, the translation-invariantversion of
a hard thresholding estimator proposed by [1] (we use Daubechies’
Extremal Phase wavelet with 2 vanishing moments [21]). Thispro-
cedure will be referred to as UNIV below. Figure 2(b) shows the

resulting estimate (displayed on part of the domain only, for clar-
ity).

In the region shown, the UNIV estimate is extremely noisy.
The reason is that UNIV assumes that the variance of the noise
is constant over time, whereas this does not hold for� I, see Fig-
ure 2(a). Some extensions of classical wavelet denoising toin-
homogeneous variance have been developed. However, most of
them use the universal threshold, and require a pre-estimate of the
time-varying noise level. Hence the question of the choice of the
pre-estimation method, and its parameters, arises [22]. Incontrast,
our approach based on the DDHFT is (a) completely automatic,
i.e. no smoothing parameters need to be supplied to the user,and
(b) modular, i.e. it can make use of any denoising procedure in-
tended for homogeneous Gaussian data.

5.2. Approach via DDHFT
In this section, we apply a variant of our DDHFT-based denois-
ing algorithm to� I. The first step is to estimate the link func-
tion

(
from the data, see Figure 3(a). The sharp step around% J ��+ K ��4L

seems to indicate (at least) two noise regimes:
one with a lower variance for% M ��+ K ��4L , and the other with
a higher variance for% & ��+ K ��4L . Figure 3(b) showsG NH� I:
the DDHFT of�I computed using the estimated link function'(.
The variance of the noise inG NH� I appears to be constant over
time. We also tried the AVAS and ACE techniques mentioned in
the Introduction, but none of them produced a good result: the
noise was still strongly heterogeneous.

Next, we denoiseG NH� I by means of the UNIV procedure de-
scribed in Section 5.1. The variance of the corresponding empiri-
cal residuals appears to be constant over time. The denoisedver-
sion ofG NH� I is denoted byOG NH� I. We estimate� � I byG 4�NH OG NH� I:
the inverse DDHFT ofOG NH� I . The estimateG 4�NH OG NH� I is shown
in Figure 2(c) (for comparison with the UNIV estimate from Fig-
ure 2(b), only part of the time domain is displayed). The noise-free
character ofG 4�NH OG NH� I, compared to UNIV, is remarkable.

Finally, Figure 3(c) shows the residuals�I  G 4�NH OG NH� I (solid

line) and the plot of the function
��4PQ�� I M ��+ K ��4L �, whereQ�R� is the indicator function (dotted line). The fact that the residu-

als oscillate around zero, shows the apparent lack of bias inG 4�NH OG NH� I .
6. CONCLUSION AND FUTURE WORK

Through a simulated and a real data example, we have demon-
strated that the DDHFT is a robust and flexible way of stabilizing
the variance in heteroscedastic data sets. The method can han-
dle various noise distributions and can be combined with anynon-
parametric denoising technology for homoscedastic data.

The DDHFT promises to be a useful tool for analysing data
obtained from LYRA [18], a new radiometer to be launched in the
year 2006. LYRA will measure the irradiance of the Sun in four
wavebands at a sampling rate higher than 10 Hz. The data will
be corrupted by different types of noise (Poisson and readout). In
order to analyse the variance of the data, a flexible and fullyau-
tomatic method such as the one presented here is needed. More-
over, variance stabilization and denoising are a necessaryprelude
to tackling solar physics problems, e.g. the problem of the extrac-
tion of peaks (which correspond to solar eruptions) from a smooth
background.
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