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Summary. We consider the stochastic mechanisms behind the data collected by the solar
X-ray sensor (XRS) on board the the GOES-8 satellite. We discover and justify a non-trivial
mean-variance relationship within the XRS data. Transforming such data so that its variance
is stable and its distribution is taken closer to the Gaussian is the aim of many techniques (e.g.
Anscombe, Box-Cox). Recently, new techniques based on the Haar-Fisz transform have been
introduced that use a multiscale method to transform and stabilize data with a known mean-
variance relationship. In many practical cases, such as the XRS data, the variance of the data
can be assumed to increase with the mean, but other characteristics of the distribution are
unknown. We introduce a method, the data-driven Haar-Fisz transform (DDHFT), which uses
Haar-Fisz but also estimates the mean-variance relationship. For known noise distributions,
the DDHFT is shown to be competitive with the fixed Haar-Fisz methods. We show how our
DDHFT method denoises the XRS series where other existing methods fail.
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1. Introduction

1.1. GOES-8 XRS data

Central to this article is a set of solar flux time series oigdifrom the X-ray sensor (XRS) on

the GOES-8 satellite. As well as background X-ray inforimathe XRS provides warning that a

solar-flare has occurred. This information can then be usededict a solar-terrestrial disturbance
at the Earth. Such a prediction is essential as the effedtg@é flares can be dramatic: they can
disrupt communications, navigation systems and even kootgower grids. For example, in 1989

a severe solar storm disabled the electrical grid in Quetre® iours, see Taubes (1999) for further
information.

An example XRS data set is shown in Figure 1 of Section 2.2 amdbe seen to be noisy.
Scientists wish to denoise such data and before many fuatiayses, such as peak extraction, can
be performed, it is essential that noise should be removiede $he data clearly shows periods of
rapid change methods such as wavelet shrinkage might kebkjisee Abramovich et al. (2000)
for a review of wavelet methods. However, Section 2.2 shdwas $traightforward application of
wavelet shrinkage is not appropriate and the reason istikatdriance of the noise increases with
the mean of the signal.

Another approach consists of transforming the problem towamere the variance of the noise is
constant with respect to the mean of the signal, i.e. appéyiance stabilization transform to restore
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homoscedasticity. Although our main focus is on the GOE%#8,dthe technique we develop is
applicable to many situations so we next make a few comméwotistdhe general situation.

1.2. Mean-variance relationships

A great deal of research in non-parametric regression isaroed with models where the noise
is additive and Gaussian. For many real applications th&nigply inappropriate. For example,
for many types of count data, such as geophysical eventgedéikthquakes, a Poisson-like model is
appropriate. Another example is how to smooth the pericalogn time series analysis. In this
situation the ‘noise’ is multiplicative ang? in character. In many of these situations the variance
of the noise is often some non-decreasing functigrof the mean and hence there existe@an-
variancerelationship. Many classical methods fail or are non-optim this situation.

Certain methods have been proposed to overcome the probterssd by a non-additive and/or
non-constant variance functions with respect to the meame i@portant class of these methods
are thevariance stabilizing transformahich attempt to transform the data to have approximately
constant variance and additive noise. We will briefly revémme of these in Section 1.3. Many vari-
ance stabilizing transforms require knowledge of the meaance relationship. One innovation
in this paper consists of extending one of them, the Haarff&sform, to enable it to simulta-
neously estimate the mean-variance function and then asedtstabilize variance. We call this
new technique the Data-Driven Haar-Fisz transform (DDHRNVW@ use this DDHFT, along with a
simple wavelet shrinkage technique, to denoise a set of GBERS data on which other methods
are shown to fail.

1.3. Brief review of existing methods

For Poisson andy? data Recent examples of Poisson intensity estimation teclsiquclude the
multiscale Bayesian methods of Kolaczyk (1999) and Timnagmmand Nowak (1999), other meth-
ods are reviewed in Besbeas et al. (2004). Antoniadis andtfBag (2001) and Antoniadis et al.
(2001) consider wavelet shrinkage for noise whose vari@g (@ most) a quadratic or cubic func-
tion of the mean, respectively. Several authors consideeleathresholding of? data arising

in various time series contexts: see Fryzlewicz (2003)ti®&e@.3.2, for a list of references. The
major drawback of these techniques is that they effectiredyire a pre-estimate of the signal to be
supplied to the estimation procedure.

Variance stabilization.A more “modular” approach consists in transforming the ynaignal
into a signal contaminated with approximately Gaussiasenaiith constant variance, then applying
one of the many denoising procedures designed for Gaussiae,rand then transforming back to
obtain an estimate of the original signal. For Poisson datacombe (1948) proposed a square-root
transform which induces exact asymptotic normality andibzzs the variance. No such transform
exists for scalegi? data, although the log transform stabilizes the variansealiedy? exactly, and
the cube root transform (Wilson and Hilferty (1931)) bririge data close to Gaussian but has no
variance-stabilizing effect. All these transforms aretaponstants, special cases of the Box-Cox
transformation (Box and Cox (1964)). Ruppert (2001) is & néwiew article on variance-stabilizing
transforms.

In many cases, the underlying noise distribution is not kmamd the appropriate variance-
stabilizing transformation has to be estimated from the.d&xamples of such data-driven trans-
formations include the AVAS technique of Tibshirani (1988)e ACE method of Breiman and
Friedman (1985), as well as the procedure of Linton et aBT).9
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Fryzlewicz and Nason (2004) proposed a Haar-Fisz (HF) toamsfor Gaussianising and sta-
bilizing the variance of sequences of Poisson counts. Thdraitsform is performed in linear
computational time as a computationally straightforwamtification of the Discrete Haar Trans-
form (Mallat (1989)). Unlike the Anscombe transform, the 4ot diagonal and has a multiscale
structure. The authors also proposed a Poisson intensitysi®n algorithm based on the HF trans-
form and showed that it outperformed other state-of-ther@thods. Jansen (2006) extended that
idea to other families of wavelets. Fryzlewicz and NasorO@®roposed a similar HF transform
for 2 data.

In this paper, we combine the above ideas and propose a futityreatic Haar-Fisz method for
(approximately) Gaussianising and stabilizing the vargeof sequences of nonnegative independent
variables whose variance is a non-decreasing (but othewmknown function, h, of the mean
(which we call thevariancefunction). To avoid a possible notational clash with Frydtez and
Nason (2004) and Fryzlewicz and Nason (2006), we call our aigwmatic multiscale transform
the Data-Driven Haar-Fisz transforfDDHFT).

1.4. Organization of the paper

Section 2 considers the GOES-8 XRS and justifies why data fravill have a non-trivial mean-
variance relationship. This section also applies somedat@nmethods to the XRS data, demon-
strates their failure and previews the successful apphicatf the DDHFT. Section 3 describes the
general model setup and identifies the kinds of data that @ihoa is likely to be suitable for.
Section 4 provides some essential background informatiothe Haar wavelet transform which
forms the basis for our new methodology, the DDHFT, whichésafibed in Sections 5 and 6.
Section 7 uses the DDHFT and a simple wavelet shrinkage iggabmo denoise the GOES-8 XRS
data with excellent results. As mentioned previously tharHisz transform has already been pro-
posed for known noise structures such as Poissornyan8ection 8 investigates how well tilata
drivenversion does in those situations and concludes that thétdaperformance loss. Section 9
concludes.

2. The GOES-8 XRS and its mean-variance relationship

2.1. The sensor and its physical characteristics
The abbreviation GOES stands for ‘Geostationary Operatiknvironmental Satellite’. GOESs
are actually a series of geostationary satellites that fmrimtegral part of US weather monitoring
and forecasting. GOES-8 was launched on 13th April 1994 amikd a wide range of instrumen-
tation including an imager (to take pictures of the earth\eg fiequencies), a sounder (measuring
emitted radiation in 18 thermal infrared bands for infegrie.g. atmospheric moisture and ozone),
a space environment monitor subsystem (which includes fR8,>ut also sensors for detecting
energetic particles (EPS), high energy protons and alphiies (HEPAD), and magnetometers
for monitoring the Earth’s geomagnetic field strength). @2 Eended operational service on 1st
April 2003. A wide range of literature is available on GOESFr example, the NASA ‘GOES
Project Science’ web page4d. gsf c. nasa. gov/ goes). More traditionally,Proceedings of
SPIE Volume 2812, 1996 is a comprehensive treatise on the dasidiackground to a particular
GOES series of satellites of which GOES-8 was the first.

Our article concentrates on the X-ray sensor (XRS) instnirte design of which is described
in detail by Hanser and Sellers (1996). Broadly speakirgydhtects solar X-rays and this detection
is converted into an electrical signal which is quantized ten transmitted to the ground.
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The XRS consists of two ion chambers (A and B) that detecty$-ia two frequency bands.
Chamber A is filled with Xenon gas and responds to X-rays wielengths in the range 0.05nm
to 0.3nm and chamber B, filled with Argon gas, to wavelengthhe range of 0.1nm to 0.8nm.
As X-rays impinge on the ion chamber they generate ions ingteewhich get swept into the
chamber electrodes generating a tiny electric currents hirent gets collected by an electronic
circuit which is then further processed by the XRS electsnkarlier GOES spacecraft possessed
a similar instrument but often large solar flares causedimgadhat exceeded the maximum flux
capacity of the device. As a consequence the GOES-8 eléxdrbas a kind of ‘auto-ranging’
facility that effectively decreases the sensitivity dgrftare events.

The ion chamber and associated electronics is worthy of/dtedn a statistical point of view.
X-ray incidents are discrete events and number of eventgjinem time can be modelled using a
counting stochastic process (e.g., a Poisson processktramhtawaywe will obtain a series of
counts with a potentially non-trivial mean-variance rétatship(e.g., if the stochastic process was
Poisson then clearly the variance equals to the mean). Hawieghould be noted that even if the
X-ray arrivals were due to a conveniently nice Poisson metke actual output signal is unlikely
to be so as the ion chambers have a non-linear response tpsXotdifferent energies, these get
integrated by the first stage electronics and then the angorg will put these quantities on different
scales (and this is before we have considered other effectsas various sources or noise). So,
although it is not entirely clea priori what the mean-variance relationship would ks @lear that
it is likely to be non-trivial.

As we will begin to see in the next section the GOES-8 XRS dstibés an interesting mean-
variance relationship. It should be stressed that simdtionships turn up in many places where
the intensity of some kind of physical phenomena is beingsueesl. For example, photon sensing
in CCD imaging (Janesick, 2001) or in microarrays (Sebaségal., 2003).

2.2. An example GOES-8 XRS data set and some standard analyses

Figure 1 shows the serieX,, which consists 02'* = 16384 observations recorded every 3 seconds
from about 10am to midnight on 9th February 2001. They represieasurements for the whole
Sun X-ray fluxes in the 0.1-0.8nm wavelength band. The sarieisibly noisy and although the
variance of the noise is not large it does appear to depenkdeoméan intensity of the signal. It is
of interest to solar physicists both to remove the noiseiegfooceeding with their analyses, and
to understand the noise structure itself. In the remainarg @f this section, we explain why some
traditional approaches fail in denoising the signal, amhthdvocate the use of our DDHFT for this
purpose.

Wavelet smoothing of the raw datAs the underlying signal appears “spiky”, it is natural to
attempt to denoise it by means of a wavelet-based methoce, Mer make a preliminary attempt
at denoising the signal using the translation-invariansiom of the standard hard thresholding esti-
mator with the universal threshold, as described in Donatthl@hnstone (1994) and Coifman and
Donoho (1995). We use Daubechies’ (1992) Extremal Phaselatawith two vanishing moments
(DEP2): the signal roughly resembles the Bumps signal (Doramd Johnstone (1994)) and the
DEP2 wavelet is known to perform well on that signal, see é&gizlewicz (2006). The above
denoising procedure will be referred to as UNIV below. Theuiing estimate (displayed on part
of the domain only, for clarity) is shown as the bottom ploFdgure 1.

In the region shown, the UNIV estimate is extremely noisy.e Teason for this poor perfor-
mance is that UNIV (like many denoising techniques) assutnasthe variance of the noise is
constant over the support of the signal. This certainly dmg$old for X,;: from visual inspection,
it is apparent that the size of the noise between the 21stand 2our is higher than that between,
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Fig. 1. Top: Solar X-ray flux X; recorded by GOES-8 XRS on February 9, 2001. Units are Wm™2.
Bottom: fragment of X; denoised by means of the UNIV procedure, see text for discussion.
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say, the 18th and 19th hour. Some extensions of classicaletalenoising to inhomogeneous vari-
ance have been developed, but they are still very prelipimapst of them only use the universal
threshold, and require a pre-estimate of the noise magnitutiere the question of the choice of
the pre-estimation method, and its parameters, arise®.ge&on Sachs and MacGibbon (2000).
In contrast to this methodology, our approach based on thdBiDis (a) completely automatic, i.e.

no smoothing parameters need to be supplied by the userbantb@ular, i.e., it can make use of
any denoising procedure intended for homogeneous Gausaian

Classical variance stabilization techniqueo avoid having to pre-estimate the time-varying
noise level (which is an inherently difficult task as it reesi knowledge of the noise which the
analyst obviously does not have), an alternative is to applglata-driven” (automatic) variance
stabilization technique, such as the AVAS or ACE techniquestioned in the Introduction. Both
are implemented in the popular statistical pack3¢gelusasavas andace, respectively. Figure 2
exhibits the performance of AVAS and ACE d%y. It is clear that neither procedure does a good
job here: the variance of the noise in the transformed sigstél varies from one region to another.

Preview of DDHFT performancé&efore we introduce our methodology we refer forward to its
results on the GOES-8 XRS data in the top-left and top-righurés of Figure 4. The left of these
shows data used to estimate an empirical mean-variand®redaip and the right plot shows the
estimate itself. It is clear that the variance of the XRS datdes with the mean and the estimate
provides a quantitative description of a possible two+regsystem. After appropriate denoising
using this information the final estimate of the underlyifgnsal appears in the bottom-left plot of
Figure 4 and is superior to the ones obtained above usingicésnethods.

Although our article concentrates on the analysis of the XIR& it is important to realize that
our new DDHFT method is very general and is designed to vegiatabilize (and take distributions
closer to Gaussian) many kinds of data that may possess arande of mean-variance relation-
ships. Hence, we need to formulate a widely applicable maxglestablish a general methodology.
This we do next.

3. General Model Setup

In this section, we describe the probabilistic structurmpfit vectors to the Data-Driven Haar-Fisz
transform (DDHFT), and give examples of distributions wihsatisfy these requirements. Dét=
(X;)™_, denote an input vector to the DDHFT. The following list siiesi the generic distributional
properties ofX.

(a) The lengt of X must be a power of two. We denofe= log,(n).

(b) (X;), mustbe a sequence of independent, nonnegative randorbleaneith finite positive
meansu; = E(X;) > 0 and finite positive variances’ = Var(X;) > 0.

(c) The variance? must be a non-decreasing function of the mgan

o7 = h(ui), 1)

where the functiort is independent of.

Note that the condition (a) above can be relaxed: evenisf not a power of two, we can still
implement the DDHFT using the lifting scheme proposed byI8eres (1996, 1997). We now give
two examples of well-known probability distributions whisatisfy the above requirements.

Poisson. Let X; ~ Poig)\;). We haveu; = \; ando? = )\;, which givesh(z) = z.
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Gamma. Let X; ~ Gamma)\;, 5;) where); is the scale parameter agglis the shape parameter.
We haveu; = 8;/\; ando? = (3;/)2. This yields two natural possibilities:

(@) h(z) = 2?/83;, henceB; must be independent af As an example, consideY; =
o (Z3 + ...+ Z2) wherea; > 0 andZ; i.i.d. N(0,1). Then

X; ~ Gammadl/(2a;), m/2)

and, for a fixedn, §; is independent of whereas\; is allowed to vary along the signal.
Readers might recognize this parameterization which istieeconventionally used in
generalized linear models.

(b) h(x) = z/\;, hence\; must be independent of Consider now

Xi=a(Zi+...+22,)

wherea > 0 andZ; i.i.d. N(0,1). ThenX; ~ Gammdl/(2«), m;/2) and, for a fixed
a, \; is independent of while 3; is allowed to vary along the signal.

Our motivation for restricting the variance functidrto be non-decreasing can be summarised
as follows:

e As described at the end of Section 2 and in Section 7 the GOES déRa has a functioh
that can be modelled as non-decreasing.

e As demonstrated above, for the two canonical examples eEBoiand? data, the true is
increasing.

e For a number of measuring devices (for example Charge Cdupdwices, which form the
basis of modernimage sensors and can be found in both demiglsto cameras and advanced
astronomical instruments, see e.g. Janesick (2001)), wexqzect a larger noise variance for
observationsX; which are larger in value (i.e. have a larger mean).

e With a shape restriction of this form, it is natural to estigvavia isotone regression, which
is a fully automatic procedure, i.e. no smoothing paransgrch as bandwidth) need to be
supplied by the user. See Section 5 for details of the estmatocedure.

Inthe Gamma and Poisson examples the exact formwafs known. However, in many practical
situations it is unknown and needs to be estimated from ttee @&ections 5 and 6 below describe
the Haar-Fisz transform in the cases whitie known and unknown, respectively.

4. The Haar transform

Before we move on to describe the Haar-Fisz transform armdhiis-driven version, we briefly ex-
plain the Discrete Haar Transform (DHT). Our Haar-Fisz $farm will arise as a computationally
straightforward modification of the DHT. The DHT is a lineattmgonal transfornR™ — R™
wheren = 27. Given an input vectoK = (X;)%_,, the DHT is performed as follows:

(@) Letsy = X;,fori=1,...,n.
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(b) Foreachj =J —1,J —2,...,0, recursively form vectors’ andd’:

j+1 j+1

i Sap_q T Sy

Sk = _—
2

j+1 j+1

- Sop—1 — Sok

;o= 2ol TRk
2

fork=1,...,27.
(c) The operatot, whereHX = (s°,d°,...,d’!), defines the DHT.

The Inverse DHT is performed by mechanically reversing thifBteps as follows:

(@) Foreachj =0,1,...,.J — 1, recursively forms’**:
e S R
Sop—1 = Sptdy
L g g
Sop = &, —dy

fork=1,...,27.
(b) SetX; = s/, fori=1,...,n.

The elements of’ andd’ have a simple interpretation: they can be thought of as smead
detail (respectively) of the original vectdr at scale2’. As an example, assume= 8 and consider
the reconstruction ok :

X, = s
sT 4 d3
= si+di+d;
= Y+ d) +di+di
S X Z?:lXi_Z§:5Xi+X1+X2_X3_X4+X1_X2

- s T 8 1 2

Noting the pattern of operations in the above formula wilkené easier to understand the origin of
the more complicated formulae for the (Data-Driven) Haigzfransform which we shall describe
later.

)

5. The Haar-Fisz transform with & known

In this section, we introduce the Haar-Fisz (HF) transfoarmultiscale algorithm for (approxi-
mately) stabilizing the variance & and bringing its distribution closer to normality. For thmeé
being, we assume that the functibifsee formula (1)) is known. In Section 6, we propose a method
for estimating it from the data.

The main idea of the HF transform is to decompd&eusing the Discrete Haar Transform
(DHT), then “Gaussianise” the coefficientsand stabilize their variance, and then apply the Inverse
DHT to obtain a vector which is closer to Gaussianity and tsegriance approximately stabilized.
We first describe the middle step: the “Gaussianisation?;ofAs a motivating example, consider
d{ =1 andd] 2. Later, we will describe the complete algorithm in its geztiey.

We first turn tod/ ~*. Recall thatd/ ™' = (X; — X3)/2. To facilitate understanding, the
reader is invited to think of a situation whefie; ), is a piecewise constant sequence with a small
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number of jumps, and the entire distribution§f depends only om; (as is the case, for example,
with Poisson-distributed signals). We now assume that igtelulitions ofX'; and X, are identical
(which is indeed likely in the piecewise-constant setupcdbed above). This implies that the
distribution ofd; ~! is symmetric around zero. Our aim is to stabilize the vageofal/ ~* around
2i=7 = 27-1-J = 1/2. A natural way to achieve this is to dividg ' by 2!/2 times its own
standard deviation. We have

Var(d/™') = 1/4 (Var(X,) + Var(Xs)) = 01/2,
which gives2!/2 (Var(clf*l))l/2 = o1 = h'/?(uy). Of course in practicg, is unknown and we
propose to estimate it locally by, = (X; + X5)/2 = sffl. Thus, we obtain an approximately
variance-stabilized coefficierft’ ~*:

fJfl — di]71
1 h1/2 (Sljfl) ’

with the conventiorD/0 = 0. In a different context, Fisz (1955) showed that for somel-wel
known distributions ofX';, X5 (such as Poisson or Gamma), the random variﬁﬁ’ré convergesin
distribution toN (0, 1/2) in a certain asymptotic regime (for more details on the agptigoregime
in thefixeddistribution Haar-Fisz case see Fisz (1955), Fryzlewickason (2004) or Fryzlewicz
et al. (2006)). On the other hand, if the distributionsXgf and X > are distinct, the distribution of
f{~* deviates in the mean from (0, 1/2) and the coefficienf; ~! carries significant information,
and not only pure “noise”. In this case we expect the coefftcjf@(*1 to survive any subsequent
thresholding.

Turning now tod{*2 = (X7 + X2 — X35 — X4)/4, we also first look at the case where the
distributions ofX1, X», X3, X, are identical. As withi‘l"l, our aim is to stabilize the variance of
d{ =2 around2’~/ = 27-2=7 = 1/4 and to achieve this we dividé/ 2 by 2 times its standard

deviation. We have (Var(cl'f*?))l/2 = o1 = h'/?(u) as before, and we estimate locally by

sf*Q, which yields an approximately variance-stabilized ccm‘ﬁtff”:
J—2
J-2 _ dy
1 h1/2 (Slj_z) ’

again with the conventiof/0 = 0. Again, convergence oﬁf*r" to N(0,1/4) can be proved in a
certain asymptotic regime. Note that if the distributiofisXa , X5, X3, X, are all identical, then
using symmetry arguments it can readily be shown ffat' and f;/ =2 are exactly uncorrelated.
Once more, if the distributions are not the same then we expecoefficientf; 2 to survive any
subsequent thresholding. _

The asymptotic distribution of random variables of a formitar to f] was studied by Fisz
(1955): hence we Iabqﬂ,g the Fisz coefficientef X. Motivated by the above discussion, we now
introduce the algorithm for the Haar-Fisz transform whageftinctionh is known. Given the input
vectorX, the algorithm proceeds as follows:

(@) Lets = X;,fori=1,...,n.
(b) Foreachj =J —1,J —2,...,0, recursively form vectors’ andf’:
j+1 j+1

J — Sop_1 T S
k 2
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Jj+1 j+1
fj _ Sop1 — Sog

k . )
2hn1/2 (s}c)

fork =1,...,27, with the conventio)/0 = 0.

(c) Foreachj =0,1,...,J — 1, recursively modifys’*:
Jj+1 _J J
Sak-1 = Skt fi
J+1 g J
sak. = Sk Ji

fork=1,...,27.
(d) Sety = s

The relationY = F;, X defines a nonlinear, invertible operatgy, which we callthe Haar-Fisz
transform (ofX) with variance functiorh.
As an example, we look again at the case 8 and considel:

_ > Xi n Y Xi = s X X+ X — X5 — Xy X1 - X

Y + +
' 8 shi/z (B ani/z (B XY 2R (B

®3)

To gain a better understanding of the above pattern the reaigét find it useful to compare (3)

to the “resolution of identity” in formula (2). Each term iB)(applies the suitable division which
Gaussianises and variance-stabilizes each individual ¢tedficient, and then the final coefficient
summation induces further Gaussianisation.

Of course, after the Fisz transformation the transformedficients are not, in general, exactly
distributed according to a Gaussian distribution. Howgestge to the joint action of the Fisz trans-
form, and the repeated summation action of the waveletfoamsthe transformed coefficients tend
to be closer to Gaussianity than previously and coarse soalécients tend to be ‘more Gaussian’.

6. The Haar-Fisz transform with A~ unknown

As we already mentioned before, in practices often unknown and needs to be estimated from the
data. Since? = h(u;,), ideally we would wish to be able to estimatdy computing the empirical
variances ofX1, X, ... at pointsuy, ue, . . ., respectively, and then smoothing the observations to
obtain an estimate of. Suppose for the time being that's are known and, as an illustrative
example, considen; = u;11 (recall the piecewise constant setup evoked before). Thereal
variance ofX; can be pre-estimated, for example, as

o (Xi—Xi)?

o, = ————.

2
Itis easily seen that, given thaf = o7, ,, we haveE(67) = o7, so that on any piecewise constant
stretch, our pre-estimate is exactly unbiased.
The above discussion motivates the following regressitupse

whereg; = 62 — 0? = (X; — X;4+1)?/2 — o7 and “in most casesE(e;) ~ 0 (“in most cases”
means where the intensity function is reasonably smoothislpiecewise constant thé(e;) = 0
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over the constant stretches). Of course, in pragiiceare not known and, since we pre-estimate
the variance of{; usingX; and X, we analogously pre-estimgtg by

o Xi+ Xin
Hi = 2 .
Note that for eactt = 1,...,27~!, we havejio,—; = s; ' andé3, , = 2(d]~")?, which leads
us to our final regression setup
2(d] 1% = h(s{ ™) + e (4)

In other words, we estimatefrom the finest-scale Haar smooth and detail coefficien{s@j?_,,
where the smooth coefficients serve as pre-estimatgsaifid the squared detail coefficients serve
as pre-estimates of’.

Because we restrict to be a non-decreasing function @f we choose to estimate it from the
regression problem (4) via least-squares isotone regresssing the automatic “pool-adjacent-
violators” algorithm described in detail in Johnstone aildge®8man (2005), Section 6.3. The result-
ing estimate, denoted here byis a non-decreasing, piecewise constant function. ofAlthough
we typically obtain good results in practice it is importemnhote that the isotonic regression we use
here is only intended as an approximate estimation metimguarticular, the ‘X’ variablel@(si_l))
is not deterministic and although the meanofs approximately zero and independently distributed
the variance ofy, is not likely to be constant. It should also be noted that theokinds of mean-
variance functions (e.g. like the Binomial) which are natrgmsing, isotonic regression would not
be appropriate, but a more general smoother, e.g. loesslkarwavelet, might be useful. A full
technical treatment of these issues is beyond the scope présent paper).

The DDHFT is performed as in Section 5 except thé replaced byh.

Simulation exhibiting our method whenconsidered unknownWe now briefly exhibit the
performance of our DDHFT for Poisson ang noise. We report these simulations here so that
the reader can understand the behaviour of our methodatogygdntrolled situation so as to better
prepare for the analysis of the real data in the next section.

e Poisson noiseThe left column in Figure 3 shows results for a Poisson-auoirtated signal.
The top plot shows a simulated Poisson vectgrwhose underlying intensity is Donoho’s
Blocks function sampled at 1024 equispaced points and ¢albave a minimum (maxi-
mum) of 3 (25). The plot underneath shows the estirﬁﬁ,te (solid line), estimated foX
from the regression problem (4) via least-squares isotegeession. The dotted line is the
true h(u) function: recall that for Poisson data, we haug:) = p. The next plot down the
column shows the DDHFT aX;: the variance of the noise is now clearly well-stabilized.
For comparison, the bottom plot shows the Anscombe squertransform ofX,, scaled to
have the same vertical range as the DDHFTXgf Visually, there is little to choose between
the two, however one must remember that the Anscombe tnamséospecifically designed
for Poisson noise whereas the DDHFT “does not know” the eadfithe noise and needs to
estimate some of its characeristics (namely, the variameetion’(x)) from the data. The
analysis of the noise (not shown) of the DDHF-transformettatereveals that no spurious
autocorrelation is induced.

e X3 noise. The right column in Figure 3 shows results for independealesty? noise with
two degrees of freedom (which is similar to the periodograttirsy). The series is denoted
by Y;. The underlying mean of the data is again Donoho’s Blockstion sampled at 1024
equispaced points and scaled to have a minimum (maximum}%s@) The plot underneath
shows the estimatk(,) (solid line) and the trué(u): in this setting (1) = x2. The next
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Fig. 3. Left-hand column corresponds to the Poisson case and right-hand column to the x? case.
Top row: Blocks function contaminated with selected noise. Second row: the true variance function i
(dotted line) and its DDHFT estimate (continuous line). Third row shows the DDHFT of both signals
from the top row. Bottom row: Poisson data stabilized via the Anscombe transform and the x2 data
stabilized via the log-transform.
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two plots show the DDHFT of; and the log transform df;, scaled to have the same range.
The noise in the DDHFT of; appears to be more symmetric, and the shape of the underlying
signal is clearer. Again, the analysis of the noise (not sty@fthe DDHF-transformed vector
reveals that no spurious autocorrelation is present.

7. DDHFT analysis of GOES-8 XRS X-ray data

In this section, we combine our DDHFT algorithm with a wavelenoising method. First, we
estimate the variance function from the data{s€t}. The top left plot of Figure 4 shows the pairs
(s771,2(d]~")?) plotted on a square-root scale for clarity, whefe(d},) are the empirical Haar
smooth (detail) coefficients of; (see formula (4)). The top right plot shows the estimatedfion
fz(u), again plotted on a square-root scale. The sharp step afosntl2 x 10~° seems to indicate
(at least) two noise regimes: one with a lower varianceifor 1.2 x 1075, and the other with

a higher variance for, > 1.2 x 107%. We suspect that this change in variance is due, in part, to
the autoranging function of the sensor electronics whichstaldenly change ranges in response to
changes of solar X-ray flux.

The middle left plot shows; X;: the DDHFT of X; computed using the estimated variance
function 2. Note that unlike in AVAS or ACE, the variance of the noise/i X; appears to be
constant over time.

This observation is confirmed whef), X, is denoised: the middle right plot shows the empirical
residuals obtained from denoisitfg X; by means of the UNIV procedure described in Section 2.2
(except that, for speed, the DWT-based, rather than thelaton-invariant, version of UNIV was
used). The variance of the empirical residuals appears tmohstant over time. We denote the
denoised version of; X; by F; X;.

The last step of the denoising procedure is to take the isM@BHFT transform OVF;LXt to
obtain the final estimate d.X;, denoted here by-‘};lf,;Xt. The estimate}"fl_lfﬁXt is shown
in the bottom left plot of Figure 4: for comparison with the UiNestimate from the bottom plot
of Figure 1, only part of the time domain is displayed. Theseefree character of—}{l}N‘;lXt,
compared to UNIV, is remarkable.

Finally, the bottom right plot on Figure 4 shows the residué) — }‘ﬁ‘l}tht (solid line) and
the plot of the function 0~ "I(X; < 1.2 x 10~%), wherel(-) is the indicator function (dotted line).
When the dotted line i$0~7 then X is in the low-variation mode. The plot clearly confirms our
earlier observation that (at least) two noise regimes asgut inX,: one with a lower variance for
p < 1.2 x 1079, and the other with a higher variance for> 1.2 x 1075. Also, the fact that the
residuals oscillate around zero, shows the apparent Iablasﬁn}‘}{l}z;lXt.

8. Comparison of DDHFT to regular Haar-Fisz with known noise

As mentioned in Section 1.3 above Fryzlewicz and Nason (RP@&dhonstrated how to use the Haar-
Fisz transform for estimating the intensity of an inhomagmis Poisson sequence. The general idea
is to Haar-Fisz transform the “noisy” sequence, which posdua “signal+noise” representation
with approximately constant variance and a distributioriciwhis closer to Gaussian. A suitable
denoiser can then be applied to estimate the signal and ethewoise. Generally speaking, since
the (transformed) noise has reasonably constant variamtésd'nearly Gaussian”, many simple
smoothers perform very well. The final step is to take the g¢mand perform the inverse Haar-Fisz
transform to obtain the desired estimate. Such a “HF-derioigerse HF” strategy can also make
use of the DDHFT.
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Table 1. Scaled MISE for Poisson intensity estimation (Poisson) and
local variance estimation for Gaussian data (x?): comparing Haar-
Fisz with Data-Driven Haar-Fisz. Smoothing used Daubechies’ least
asymmetric wavelets with 10 vanishing moments, hard thresholding,
universal threshold with variances computed by MAD and applied to
scale level 3 and finer. All estimates are averaged over 50 circular
shifts of the data.

Poisson x?
Peak intensity=8| Peak intensity=128 Peak intensity=8
Intensity | HFT DDHFT | HFT DDHFT | HFT DDHFT
Doppler 94 97 12 13| 502 535
Blocks 287 290 31 32| 803 835
Heavisine 39 40 6 6| 196 203
Bumps | 1243 1423| 144 157| 3874 3529

In this section, we compare intensity estimation resultsMoisson data using (a) the Haar-
Fisz transform suitable for Poisson data (witt:) = 1), and (b) the DDHFT. We use exactly
the same denoising methodology and error measure as Figzland Nason (2004). In summary,
Fryzlewicz and Nason (2004) repeated the simulation stddyimromermann and Nowak (1999),
which created “noisy” data by taking one of the Doppler, BEdBumps or Heavisine signals from
Donoho and Johnstone (1994), scaling them to have (mininmiaxjmum) intensity of(1/8,8)
or (1/128,128), and then sampling 1024 independent Poisson replicatésmegan equal to the
intensity values at/1024 for i = 0,...,1023. Fryzlewicz and Nason (2004) demonstrated the
superiority of the Haar-Fisz algorithm over existing meatbo

Table 1 shows the (scaled) Mean Integrated Square Erroragea over 100 simulated noisy
signals. The DDHFT-based algorithm is hardly worse thanHhar-Fisz algorithm, even though
the variance function is being estimated by DDHFT. Coupléith whe results for the Haar-Fisz
transform given in Fryzlewicz and Nason (2004), this denramss the superiority of DDHFT over
other existing methods. Moreover, the appearance of DDHieTHaar-Fisz reconstructions is very
similar; examples of the latter are given in Fryzlewicz arasbdh (2004).

A similar experiment was carried out fgf variation. Here the Timmermann and Nowak (1999)
intensity functions were multiplied pointwise by indepentl? random variables and denoised by
both a fixed Haar-Fisz transform designed fgrdata (withh () = 12) and the DDHFT. Note
that as the setup is now multiplicative (i.e. two noisy vestoorresponding to the two scalings
are exactly multiples of each other), it is sufficient to istigate the performance for one intensity
scaling. The results are also shown in Table 1. Overall tdjman the Bumps intensity, the DDHFT
produces results which are up to 6% worse than the specific-Hsa transform. However, for
Bumps, the DDHFT does about 9% better.

9. Conclusions and future work

This article considered the GOES-8 XRS data. The prime ratitin was to discover a way in which
to successfully denoise the XRS data. Since the XRS dataouaslito possess a non-trivial mean-
variance relationship standard wavelet shrinkage metbodsher variance stabilization methods
were shown to fail or are non-optimal in this situation. Oppeach used a data-driven transform to
first estimate the mean-variance relationship and then Hs@gaFisz transform to variance stabilize
the XRS data in a multiscale way. The transformed XRS datlld¢ban be denoised and the inverse
DDHFT applied to obtain a successfully denoised estimate.
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The DDHFT enables us to discover such mean-variance radtips and then, also, to stabilize
the variance in these cases.

A great deal has been written in the statistics literatupaathe new paradigm of vast quantities
of data collected by automatic systems. However, for manthede sensors (some of which work
by collecting photons) the mean-variance relationshipsigally not of the ‘signal+noise’ kind,
nor is it likely to be Gaussian nor have constant variancemeéanportant examples are to be
found in astronomy (sensing over wide ranges of the elecgoratic spectrum), bioinformatics (in
microarrays, for example), low-light vision in securitychdefence applications. In many of these
cases it is likely that the use of the DDHFT to Gaussianisessatuilize variance will help improve
and ease the analysis of these kinds of data.

Further, simulations showed that DDHFT performs nearly el &s the fixed Haar-Fisz trans-
forms for Poisson ang? noise (even though it does not know the mean-varianceaaktiip).

For the future it would be interesting to think about how oniglthuse smoother wavelets to
replace Haar in the DDHFT, possibly using the ideas of Ja(®06). Another interesting question
is what is the best way of performing isotonic regressionme ‘X’ variable is stochastic? Here
we apply ‘standard’ isotonic algorithm but future work cdurhvestigate a formal framework and
alternative methods that take account of the stochastio@atf ‘X’. Or when the variance of the
error,ex, in model (4), is not constant.

We mentioned in the introduction that our technique doesemtire pre-estimation. However,
use of the quantity;, in the formation of the transformed coefficients is a fixed-@sémate of the
mean. Future work might investigate whether performancebeaimproved by using alternatives
to s7. but it should be remembered that more complex alternativghtmequire additional compu-
tations whereas thé is efficiently and automatically produced by the discreteetet transform.

Software implementing the DDHFT can be obtained upon redts the first author.
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