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Abstract

The Dantzig Selector is a recent approach to estimation in high-dimensional

linear regression models with a large number of explanatory variables and a

relatively small number of observations. As in the least absolute shrinkage

and selection operator (LASSO), this approach sets certain regression coefficients

exactly to zero, thus performing variable selection. However, such a framework,

contrary to the LASSO, has never been used in regression models for survival data

with censoring. A key motivation of this article is to study the estimation problem

for Cox’s proportional hazards function regression models using a framework that

extends the theory, the computational advantages and the optimal asymptotic rate

properties of the Dantzig selector to the class of Cox’s proportional hazards under

appropriate sparsity scenarios. We perform a detailed simulation study to compare

our approach to other methods and illustrate it on a well-known microarray gene

expression data set for predicting survival from gene expressions.

Some key words: VARIABLE SELECTION; GENERALIZED LINEAR MODELS;

DANTZIG SELECTOR; LASSO; PENALIZED PARTIAL LIKELIHOOD; PROPORTIONAL

HAZARDS MODEL;

1 INTRODUCTION

An objective of survival analysis is to identify the risk factors and their risk

contributions. Often, many covariates are collected and, to reduce possible modelling

bias, a large parametric model is built. An important and challenging task is then

variable selection which is a form of model selection in which the class of models under

consideration is represented by subsets of covariate components to be included in the

analysis. Variable selection methods are well developed in linear regression settings

and in recent years many of them have been extended to the context of censored

survival data analysis. They include best-subset selection (Jovanovic et al. (1995)),

stepwise selection (Delong et al. (1994)), asymptotic procedures based on score tests,

Wald tests and other approximate chi-squared testing procedures (Harrell (2001)),

bootstrap procedures (Graf et al. (1999)) and Bayesian variable selection (Faraggi and
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Simon (1998); Ibrahim et al. (2008)). However, theoretical properties of these methods

have not been fully validated (Fan and Li (2002)).

Recently a family of penalized partial likelihood methods, such as the LASSO

(Tibshirani (1997)) and the smoothly clipped absolute deviation method (SCAD; Fan

and Li (2002)), were proposed for Cox’s proportional hazards model. By shrinking

some regression coefficients to zero, these methods select important variables and

estimate the regression model simultaneously. The LASSO estimator does not

possess the oracle properties (Fan and Li (2002)). The SCAD estimator has better

theoretical properties than the LASSO, but the nonconvex form of its penalty makes

its computation challenging in practice, and the solutions may suffer from numerical

instability (see Zou (2008)). An adaptive LASSO method based on a penalized partial

likelihood with adaptively weighted L1 penalties on regression coefficients developed

by Zhang and Lu (2007) enjoys the oracle properties of the SCAD estimator but the

optimization problem is efficiently solved by standard algorithms.

Recently, Candès and Tao (2007) proposed the Dantzig selector for performing

model fitting for linear regression models where the number of variables can be

much larger than the sample size but the set of coefficients is sparse, i.e. most

of the coefficients are zero. Unlike most other procedures such as the LASSO

and the SCAD, which minimize the sum of squared errors subject to a penalty

on the regression coefficients, the Dantzig Selector minimizes the L1 norm of the

coefficients subject to a constraint on the error terms. As with the LASSO and the

SCAD or the adaptive LASSO, this approach sets certain coefficients exactly to zero,

thus performing variable selection. However, unlike the other methods, standard

linear programming methods can be used to compute the solution to the Dantzig

selector, providing a computationally efficient algorithm and the resulting estimated

coefficients enjoy near-optimal `2 non-asymptotic error bounds. Hence, the Dantzig

selector appears to be an appealing estimation procedure for sparse linear regression

models and this encourages us to extend the theory and its computational advantages

to the class of semi-parametric Cox’s proportional hazards models. The proposed

method compares favorably with other methods available in the literature, and thus

provides a useful addition to the toolbox of estimation and prediction methods for the

widely used Cox’s model.

The paper is organized as follows. The usual survival data setup for (generalized)
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Cox’s regression model with time-independent covariates (for cross sectional type

data) is introduced in Section 2, recalling the basic ideas of Cox’s original proportional

model for the hazard rates. In particular, we briefly recall in this section the appropriate

framework needed to represent this model in a martingale notation based on theories

of counting processes (see e.g. Andersen and Gill (1982)). In Section 3, after

outlining the approach behind the Dantzig Selector for linear regression models, we

introduce our Dantzig Selector for proportional hazards (PH) models and develop

a computationally efficient algorithm for computing the estimator. Section 3 also

contains our main assumptions and theoretical results concerning the estimator, the

main result relating to its l2 error, in analogy with Candès and Tao’s (Candès and

Tao (2007)) results for linear models. In Section 4, we present a simulation study

comparing the proposed approach with various competitors, where we also present

the application of our method on a well-known microarray gene expression data set,

used previously for similar purposes in the literature (Bovelstad et al. (2007)). Proofs

of main and intermediate results are in Section 5.

Software (an R script) implementing our Dantzig selector for survival data can be

downloaded from

http://www.maths.bris.ac.uk/~mapzf/dscox/ds_cox.html.

2 Notation and preliminaries

In order to fix the notation we consider the usual survival data setup. The

reader unfamiliar with the concepts described in this Section is referred to the book

by Andersen et al. (1993). The survival time X is assumed to be conditionally

independent of a censoring time U given the p-dimensional vector of covariates

Z = (Z1, Z2, . . . , Zp)T so that the construction of the partial likelihood is justified.

We observe n i.i.d. copies (X̃i, Di, Zi), i = 1, . . . , n, of the right censored survival

time X̃ = min(X, U) and the censoring indicator D = I[X ≤ U] = I[X̃ = X].
The covariates are assumed to be bounded: there exists a positive constant C such

that sup1≤j≤p |Zj| ≤ C. This assumption is fully justified in the fixed design case,

and is used in our theoretical calculations regarding the performance of our estimator.

However, we emphasise that in practice, our computational algorithm makes no use

of either the assumption itself or the (possibly unknown) value of the constant C.
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Thus this assumption should not be viewed as restrictive, even in the random design

case. We also note that in cases where Zj represent gene expressions measured on a

microarray, they are naturally bounded by virtue of the measurement process.

In the following we will denote by Z the n × p matrix whose generic term Zij is

the ith observed value of the jth covariate Zj, and the ith row of Z will be denoted by

zT
i . For simplicity, we will also assume that there are no tied failure times; suitable

modifications of the partial likelihood exist for the case of predictable and locally

bounded covariate processes and for the case of ties (see Andersen et al. (1993)). Most

often in the literature, proportional hazards models are formulated using random

variables (as opposed to stochastic processes), and the implied statistical methods are

based on maximum (partial) likelihoods. However, we prefer studying such problems

in terms of the theory of counting processes, since time and random phenomena

occurring in time play an essential role in survival analysis. Moreover, this counting

process approach has been facilitated by the work of Andersen and Gill (1982) and

permits us to use martingale convergence results in a unified way to demonstrate

theoretical properties of our approach.

In the counting process setup, we can represent the observed data as follows. The

regression model for survival data, described above, is linked to the multivariate

counting process N = (N1, . . . , Nn) of the form, Ni(t) = I(X̃i ≤ t, Di = 1) where

the Ni’s are independent copies of the single-jump counting process N(t) = I(X̃ ≤
t, D = 1) that registers whether an uncensored failure (or death) has occurred by time

t. Let Y(t) = I[X̃ ≥ t] be the corresponding “at risk” indicator. Define the filtration

Ft = F0 ∨ {N(u); u ≤ t}, where F0 = σ(Z). Under the true probability measure P
on F = Ft, the counting processes Ni(t) have intensity processes λi(t, zi) and under

the Cox regression model, the conditional intensities λi(t, zi) of Ni given Zi = zi for t

restricted to a fixed time interval [0, τ] are

λi(t, zi) = Yi(t)α0(t) exp(zT
i β0) (1)

where α0 is the baseline hazard function and β0 is the unknown vector of regression

coefficients. For flexibility of fit, the baseline hazard function is left unspecified and

our setting is therefore semiparametric. This, in particular, means that

Mi(t) = Ni(t)−
∫ t

0
λi(u, zi)du, t ∈ [0, τ],
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are independent Ft square-integrable martingales under P with compensator Vi(t) =∫ t
0 λi(u, zi)du. In particular, we have

〈Mi, Mi〉(t) =
∫ t

0
λi(u, zi)du = Vi(t).

Under the above notation, the (rescaled by −1/n) Cox’s partial loglikelihood

function is given by

l(β) =
1
n

n

∑
i=1

zT
i β
∫ τ

0
dNi(u)−

∫ τ

0
log

(
n

∑
i=1

Yi(u) exp(zT
i β)

)
dN̄(u)

n
,

where dN̄(u) = d ∑n
i=1 Ni(u). Let Sn(β, u) = ∑n

i=1 Yi(u) exp(zT
i β). Then

l(β) =
1
n

n

∑
i=1

zT
i β
∫ τ

0
dNi(u)−

∫ τ

0
log (Sn(β, u))

dN̄(u)
n

.

Define the first and second order partial derivative of Sn(β, u) with respect to β:

S1
n(β, u) =

n

∑
i=1

Yi(u) exp(zT
i β)zi and S2

n(β, u) =
n

∑
i=1

Yi(u) exp(zT
i β)z

⊗
2

i , (2)

where z
⊗

2 = zzT. The maximum likelihood estimator of β in Cox’s model, is found as

the solution to the score equation U(β̂) = 0, where the score process U(β) is defined

by

U(β) =
∂l(β)

∂β
=

1
n

n

∑
i=1

∫ τ

0
(zi − E(u, β))dNi(u),

with E(u, β) = S1
n(β,u)

Sn(β,u) . In particular, for the true parameter β = β0, we have:

(U(β0))j =

(
∂l(β)
∂β j

)
β0

=
1
n

n

∑
i=1

Zij

∫ τ

0
dMi(u)−

∫ τ

0

S1
n(β0, u)

Sn(β0, u)
dM̄(u)

n
,

where dM̄(u) = d ∑n
i=1 Mi(u). Thus the score process evaluated at the true parameter

β = β0 is itself a martingale and this fact, together with standard regularity

assumptions, facilitates the study of the asymptotic properties of the MLE estimator

of the vector of regression coefficients.

In practice, not all the covariates (components of Z) may contribute to the prediction

of survival outcomes: some components of β in the true model may be zero. Our

Dantzig selection procedure, described in the next section, works under this “sparsity”

assumption and produces consistent and easily computable estimates of the relevant

coefficients.
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3 Dantzig selector for Cox’s regression model

Theoretical properties of LASSO and SCAD for Cox’s proportional hazard model have

been investigated. These penalized partial likelihood methods may be viewed, in an

asymptotic sense, as instances of iteratively re-weighted least squares procedures by

transferring the objective functions involved in the optimization into asymptotically

equivalent least-squares problems. Indeed, as noted by Wang and Leng (2007), when

p is fixed and is smaller that n, using the asymptotic theory for the MLE estimator

β̃ of β in a standard Cox’s regression model, the negative log-likelihood function

can be replaced locally by a Taylor series expansion at β̃ leading to a least squares

penalized criterion which is updated iteratively (LASSO Estimation via Least Squares

Approximation (LSA)). As shown by Wang and Leng (2007), their resulting LSA

estimators are often asymptotically as efficient as oracle as long as the number of

components p remains fixed and the tuning parameters are chosen appropriately. In

our case, we do not want to restrict ourselves to the standard p < n setup, but we

would also like to examine the case where p may grow with, and exceed, n, i.e. the case

of a (fast) growing dimension of the predictor. This is indeed part of our motivation

for proposing the Dantzig selector. However, in order to justify the algorithm that

numerically implements our procedure, we will make some use of the above remarks

about LSA.

3.1 Dantzig selector for linear regression

The Dantzig Selector (Candès and Tao (2007)) was designed for linear regression

models

Y = Zβ + ε, (3)

with a large p but a sparse set of coefficients, i.e. where most of the regression

coefficients β j are zero. For the linear regression model given by (3), the Dantzig

Selector estimate, β̂, is defined as the solution to

min
β∈B

‖β‖1 subject to |ZjT(Y− Zβ)| ≤ λ, j = 1, . . . , p, (4)

where ‖ · ‖1 is the L1 norm, Zj is the jth column of Z, λ is a tuning parameter and

B represents the set of possible values for β, usually taken to be a subset of Rp. The
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L1 norm minimization produces coefficient estimates that are exactly zero in a similar

fashion to the LASSO and hence can be used as a variable selection tool. In this setup Zj

is assumed to be norm one which is rarely the case in practice. However, this difficulty

is easily resolved by reparamaterizing ( 3) such that the Zj’s do have norm one.

Notice that for Gaussian error terms, (4) can be rewritten as,

min
β∈B

‖β‖1 subject to |`′j(β)| ≤ λ/σ2, j = 1, . . . , p, (5)

where `′j is the partial derivative of the log likelihood function with respect to β j and

σ2 = Var(εj). Hence, an intuitive motivation for the Dantzig Selector, as also observed

by James and Radchenko (2009), is that, for λ = 0, the solution to (5) will return the

maximum likelihood estimator. For λ > 0, the Dantzig Selector searches for the β

with the smallest L1-norm that is within a given distance of the maximum likelihood

solution, i.e. the sparsest β that is still reasonably consistent with the observed data.

Notice that even for p > n, where the likelihood equation will have infinite possible

solutions, this approach can still hope to identify a unique solution, provided β is

sparse, because it is only attempting to locate the sparsest β close to the peak of the

likelihood function.

The Dantzig Selector has two main advantages. The first is that (4) can be

formulated as a standard linear programming problem. The second main advantage

is theoretical. Candès and Tao (2007) proved tight non-asymptotic bounds on the error

in the estimator for β, a result which has recently attracted a lot of attention since it

demonstrated that the L2-error in estimating β was within a factor of log p of that one

could achieve if the true model were known. More precisely, suppose that that εi are

i.i.d. N(0, σ2) variables and that β has at most S non-zero components. Assume also

that a Uniform Uncertainty Principle (UUP) condition holds on the design matrix, i.e.

suppose that the Gram matrix Ψ = 1
n ZTZ is such that Ψii = 1 for all i = 1, . . . , p

and maxi 6=j |Ψi,j| ≤ 1
3αS for some α > 1 (see Lounici (2008)). Then for any a ≥ 0 and

λ = σ
√

2(1 + a)(log p)/n, the Dantzig selector estimator satisfies

‖β̂− β‖2
2 ≤ (1 + a) · C · S · σ2 · (log p)/n, (6)

with probability close to 1. Even if we knew ahead of time which β j’s were non-

zero, under the same conditions on the design Gram matrix, it would still be the

case that ‖β̂ − β‖2
2 grew at the rate of S · σ2/n. Hence the rate is optimal up to a
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factor of log p, and we only pay a small price for adaptively choosing the significant

variables. As mentioned before, equation (6) holds for Gaussian errors with a linear

regression model. Our purpose is to extend the Dantzig estimator, algorithm and the

above theoretical bounds to the general class of Cox’s proportional hazards regression

models introduced in Section 2. To our knowledge this is the first time that bounds of

this form have been proposed for such models.

3.2 Survival Dantzig Selector

We have already observed that for Gaussian errors in a linear regression model, the

inner product between the jth covariate and the vector of residuals, ZjT(Y − Zβ)
is proportional to the jth component `′j(β) of the score vector. Hence, the Dantzig

optimization criteria given by (4) and (5) can be extended to the class of Cox’s PH

regression models in a natural fashion by computing the solution β̂ of

min
β∈IRp

‖β‖1 subject to ‖U(β)‖∞ ≤ γ, (7)

where γ ≥ 0 and U(β) is the score process. Note that such a solution exists because

the negative of the loglikelihood is a convex function of β. We will call the resulting

procedure the Survival Dantzig Selector (SDS for short). The purpose of this subsection

is to show that, under appropriate assumptions on the information matrix of the

corresponding point process, the resulting SDS estimator maintains all the important

properties of the Dantzig selector.

In order to prove our main results we will partially proceed along similar lines to

Candès and Tao’s (2007) original result on the DS and we will need for that the fact that

‖β̂‖1 ≤ ‖β0‖1. However, while for Gaussian errors in a sparse linear regression model,

such an inequality is “automatic” (it follows from obvious concentration properties of

centered Gaussian measures), this is not the case in our general point process setup,

and, indeed, it is implied by Lemma 3.1 stated below and proved in Section 7. The

number of predictors p = pn is allowed to grow (fast) with the sample size n.

Lemma 3.1 Assume that the dimension of predictor in Cox’s PH model satisfies pn = O(nξ),

n → ∞, for some 1 < ξ. Assume also that the number S of effective predictors, i.e. the number

of β0 j,n 6= 0 is independent of n and finite (S-sparsity of β0). Let γ = γn,p =
√

(1+a) log pn√
n for

some a > 0. Under the additional assumptions that
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• the baseline hazard function in eq. (1) is such that
∫

α0(u)du < +∞

• sup1≤i≤n sup1≤j≤pn
|Zij| ≤ C,

it follows that

P{‖U(β0)‖∞ ≥ γn,p} ≤ pn exp

(
−

nγ2
p,n

2(2Cγp,n + K)

)
= O

(
n−aξ

)
,

with K > 0 a suitable constant. It follows that, as n → ∞, with probability tending to 1, the

true β0 is admissible for problem (7) , i.e. ‖U(β0)‖∞ < γ and in particular ‖β̂‖1 ≤ ‖β0‖1.

Remark 3.1 The scaling 1/
√

n in γn,p in the above lemma comes from the scaling 1/n we

chose in the log-likelihood. This choice is also made by Bickel et al. (2008) and Lounici (2008).

Note also that the result of Lemma 3.1 is taken for granted in the extension of the DS to the class

of generalized linear models derived by James and Radchenko (2009), but it is not automatically

true. Finally, note that we allow for a large predictor dimension relative to the sample size

n as long as ξ > 1 and the S-sparsity assumption holds. The other assumptions about the

boundedness of the predictor variables and the baseline hazard are standard under Cox’s PH

model (Andersen et al. (1993)).

In order to obtain error bounds on the components selected by our Survival Dantzig

Selector, we introduce a few definitions that are closely related to those from Candès

and Tao (2007).

Given an n × p matrix A and an index set T ⊂ {1, . . . , p} we will write AT for the

n× |T| matrix constructed by extracting the columns of A corresponding to the indices

in T. The quantities defined below depend on A but this will be omitted to simplify

the notation. If this dependency is needed we will denote them with a superscript A.

As in Candès and Tao (2007), for any integer S ≤ p, δS is the largest quantity such that

‖ATc‖2
2 ≥ δS‖c‖2

2

for all subsets T with |T| ≤ S and all vectors c of length |T|. If A is an orthonormal

matrix, then ‖ATc‖2 = ‖c‖2 for all T, c and hence δS = 1. If some columns of A are

linearly dependent then for a certain T and c, ‖ATc‖2 = 0 and hence δS = 0.

If S + S′ ≤ p, we also define θS,S′ as the smallest quantity such that

|(ATc)T AT′c
′| ≤ θS,S′‖c‖2‖c′‖2
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for all disjoint subsets T and T′ with |T| ≤ S and |T′| ≤ S′ and all corresponding

vectors c and c′. Note that when the columns of A are orthogonal then θS,S′ = 0.

Before stating our main result, we recall that the p × p observed “information”

matrix up to time τ corresponding to Cox’s proportional model is given by (see e.g.

Andersen and Gill (1982)):

J(β, τ) = Jn(β, τ) =
∫ τ

0
[
S2

n
Sn

(β, u)− (
S1

n
Sn

)⊗2(β, u)]
dN̄n(u)

n
,

with notation as in (2). For a fixed sparsity parameter S, as n tends to infinity, it tends

in probability (see Theorem VII.2.2 in Andersen et al. (1993)) to the p× p matrix of rank

S

I(β, τ) =
∫ τ

0
[
s2

s
(β, u)− (

s1

s
)⊗2(β, u)]s(β, u)α0(u)du,

where s(β, u) = E(Sn(β, u)/n), s1(β, u) = E(S1
n(β, u)/n), s2(β, u) = E(S2

n(β, u)/n).

Finally, when derivatives defining s(β, u), s1(β, u) and s2(β, u) are computed only

with respect to the components of the true S-dimensional vector β0, the true S × S

information matrix, not be confused with the p × p matrix I(β0, τ) (of rank S) which

is the asymptotic limit of J(β0, τ), will be denoted by I(β0, τ). Applying Theorem

7.2.6 of Horn and Johnson (1985) with k = 2, we will denote hereafter V1/2 the unique

(semi)definite positive square root matrix of a (semi)definite positive matrix V.

Let γ = γn,p be a tuning parameter. We now state our main theoretical result in

Theorem 3.1 below. The proof is in Section 7.

Theorem 3.1 Suppose that the true vector of coefficients β0 ∈ Rp is a nonzero S-sparse

coefficient vector with S independent of n, such that the coefficients δ and θ for the matrix

I1/2(β0, τ) obey θS,2S < δ2S. Assume that the assumptions used in Lemma 3.1 hold and let

β̂ be the estimate from the SDS using tuning parameter γ = γn,p with γn,p as in Lemma 3.1.

Then, as long as the information matrix I(β0, τ) is positive definite at β0, we have:

P
(
‖β̂− β0‖

2
2 > 64S(

γ

δ2S − θS,2S
)2
)
≤ O(n−aξ).

The assumptions of Theorem 3.1 are similar to the assumption δ + θ < 1 made

for the Dantzig selector in standard linear models by Candès and Tao (2007) and the

assumption ∆K > 0 made for sparse generalized models by James and Radchenko

(2009). The positive-definiteness of I(β0, τ) is classical in survival analysis (condition

VII.2.1 of Andersen et al. (1993)).
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The above theorem depends on the rate at which p is allowed to increase with

the number of observations n. Under the usual regularity assumptions for our point

process (similar to those of Andersen and Gill (1982), Theorem 4.1) our choice of the

threshold γ leads to an optimal (a rate that is similar to the one obtained for the

classical Dantzig selector in linear models by Candès and Tao (2007)), up to a log p

factor, squared error bound for the SDS estimator β̂, provided that S remains small.

Under such conditions the SDS will give accurate results even for values of p that are

larger than n.

3.3 An algorithm for computing the SDS

In this section, we propose an iterative weighted Dantzig selector algorithm for

computing the SDS solution for a given value of γ.

Note that the constraints in (7) are non-linear, so linear programming software

cannot directly be used to compute the SDS solution. As noted in the Introduction,

in a standard GLM setting, an iterative weighted least squares algorithm is usually

used to solve the system of score equations. More precisely, given a current estimate

for β̂, an adjusted dependent variable is computed, and a new estimate for β is then

computed using weighted least squares. This procedure is iterated until β̂ converges.

For more details the reader is referred to McCullagh and Nelder (1989). An analogous

iterative approach works well in computing the SDS solution. We can describe it as

follows.

For any fixed γ:

1. At the k + 1st iteration, compute the gradient vector U(β̂
(k)) and the Hessian

matrix J(β̂
(k)

, τ), where (k) denotes the corresponding estimate from the kth

iteration. Consider the unique square root of the matrix J(β̂
(k)

, τ), i.e. J(β̂
(k)

, τ) =
A2

(k), and set the pseudo response vector Y = (A(k))−{J(β̂
(k)

, τ)β̂
(k − U(β̂

(k))},

where V− denotes the Moore-Penrose generalized inverse of V. This amounts to

approximating Cox’s partial likelihood at the current estimate by the quadratic

form
1
2
(Y− A(k)β)T(Y− A(k)β). (8)

2. Re-parameterize A(k) say to A?
(k) such that its columns have norm one and modify

accordingly Y to Y? to produce the SDS estimate of β at the original scale.
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3. Use Candes and Tao’s (2007) Dantzig selector to compute β̂
(k+1)

with Y? as the

response and A?
(k) as the design matrix.

4. Repeat steps 1 through 3 until convergence.

Note that step 3 only requires a linear programming algorithm to compute.

This algorithm gives exact zeros for some coefficients and it converges quickly

based on our empirical experience. However, as with the standard GLM iterative

algorithm, there is no theoretical proof that the algorithm is guaranteed to converge to

the global minimizer of (7). Especially in the case n < p, instead of using a Moore-

Penrose inverse for the possibly semi-positive definite matrix A(k) in the previous

algorithm, we could have used, as it is done in ridge regression, the square root of

the positive definite matrix J(β̂
(k)

, τ) + µIp for a small µ > 0.

To estimate the tuning parameter γ, we use generalized cross-validation (Craven

and Wahba (1979)). Let ν = γ−1 and V(β̂) be the diagonal matrix with diagonal

entries 1/β̂2
i when β̂2

i > 0 and 1 when β̂i = 0. At convergence, the minimizer of (8) in

step 1 can be approximated by the ridge solution (J(β̂, τ) + νV(β̂))−1ATY. Therefore,

the number of effective parameters in the SDS estimator can be approximated by

p(ν) = tr
(
(J(β̂, τ) + νV(β̂))−1 J(β̂, τ)

)
and the generalized cross-validation function

is GCV(ν) = −`(β̂)/[n(1− p(ν)/n)2]. If ν̂ minimizes GCV(ν) then γ is chosen to be

1/ν̂. We used the above algorithm both in the simulation study and in the real data

analysis, reported below.

4 Simulation study

In this section, we present the results of a simulation study conducted to evaluate the

performance of the SDS in comparison with three other approaches which include both

state-of-the-art and classical methods. In the simulations, we focused on finding the

best prediction rule for the time to an adverse event using all the available covariates

measurements. To keep the scope of the study manageable, we only included a limited

number of methods in our comparison. We feel that the current selection covers the

spectrum of existing methods reasonably well: one of them is similar to the Lasso but

better, the other one is known to be an excellent predictor while the third one is simple

and standard. We briefly describe below the methods to which the comparisons with
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SDS are made, namely Partial Cox regression with one or two retained components

(PLS Cox), Cox regression with the subset of 20 “best” genes (Cox20) and the threshold

gradient descent procedure (TGD) for the Cox model by Gui and Li (2005).

Partial Cox Regression. Nguyen and Rocke (2002) proposed the use of the partial

least squares (PLS) algorithm for the prediction of survival with gene expression.

This method, however, does not handle the censoring aspect of the survival

data properly. We adopted the approach of Park et al. (2002) in which the full

likelihood for Cox’s model is reformulated as the likelihood of a Poisson model,

i.e. a generalized linear model (GLM). This reformulation enables application of

the iteratively reweighted partial least squares (IRPLS) procedure for GLM (Marx

(1996)). We used the implementation of the PLS algorithm of Park et al. (2002)

in R provided by Boulesteix and Strimmer (2007) where the PLS components

depend solely on the gene expressions. The interpretation of components is

generally not straightforward, especially if the number of genes that contribute

to the component becomes large. Aside from this difficulty, PLS components may

be excellent survival time predictors.

Cox with univariate gene selection. Possibly the most straightforward and intuitive

approach to handling high-dimensional data consists of carrying out univariate

gene selection and using the obtained (small) subset of genes as covariates in the

standard Cox model. Such an approach was adopted by Jenssen et al. (2002) and

van Wieringen et al. (2008). We order genes based on the p-value obtained using

Wald’s test in univariate Cox regression and, similarly to van Wieringen et al.

(2008), we select a pre-fixed number of genes (20 in the present study) rather

than genes whose p-values fall below a threshold. This ensures having a set of

genes of a convenient size for any training set. A partial justification for selecting

20 covariates comes from the work of van Wieringen et al. (2008), which indicates

that using more covariates may lead to more variable results. Furthermore, the

univariate Cox regression model is estimated based on the training data only,

which is a universally recommended approach.

TGD Cox. The threshold gradient descent procedure for the Cox regression analysis

in the high-dimensional and low-sample size setting approximates the Lasso

or LARS estimates, while selecting more relevant genes, which is also the

14



reason why we did not include Lasso directly in our simulation study. The

method is described in Gui and Li (2005). The approach has two parameters

but they rarely need to be tuned, and can instead be chosen by minimizing

a cross-validated partial likelihood. The complete method, including the

dimensional reduction and the ability to capture correlated genes, is discussed

in details in the above cited paper and implemented as an R script available at

http://www.cceb.upenn.edu/˜hli/prog.html.

The methods are compared in a simulation study. As in van Wieringen et al.

(2008) two artificial data sets are used. In the first data set the survival times are

generated independently of the gene expression data. Its results give an indication

of the performance of the tested algorithms when there is no predictive power in the

expression data. The other simulated data set was introduced by Bair et al. (2006), also

for evaluation purposes.

Design of artificial data sets

Each artificial data set used in the simulation study consists of p = 500 variables and

n = 100 samples. The survival times and covariate values are distributed as follows.

Data set 1: The columns of the design matrix are samples from a multivariate

normal distribution with a given non-diagonal covariation matrix. The survival and

censoring times (with censoring probability 1/3) are exponentially distributed. They

are independent from each other as well as from the covariates data. Hence, there is

no prediction power in the covariates.

Data set 2: Following Bair et al. (2006) the covariate data are distributed as:

log(Zij) =


3 + εij if i ≤ n/2, j ≤ 30

4 + εij if i > n/2, j ≤ 30

3.4 + εij if j > 30

where the εij are drawn from a standard normal distribution. The survival and

censoring times (with censoring probability 1/3) are generated from an accelerated

failure model in which only the values of covariates 1 to 30 (with additional noise)

contribute. In other words, only the first 30 covariates determine the survival.
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As noted in van Wieringen et al. (2008), it is not straightforward to evaluate

or compare prediction methods in the presence of censoring. The standard mean-

squared-error or misclassification rate criteria used in regression or classification

cannot be applied to censored survival times. In the simulations, we used three

measures to evaluate the prediction of the compared methods: the p-value (likelihood

ratio test) of Bair et al. (2006), which is in fact the probability of drawing the observed

data under the null-hypothesis that the covariates have no effect on survival (the lower

the p-value, the more probable that the null hypothesis is not true); a goodness-of-fit

measure for the proportional hazard model based on the variance of the martingale

residuals proposed by Barlow and Prentice (1988) (the smaller the better); and the

integrated Brier-Score introduced by Graf et al. (1999). The values of the Brier-Score

are between 0 and 1 and good predictions result in small Brier-Scores. A detailed

description of these measures is given in van Wieringen et al. (2008). The first two

measures are based on the Cox model, while the Brier score uses the predicted survival

curves, which can be derived via other approaches. For applying the evaluation

measures to our prediction methods, we simply extract the predicted median survival

time from the predicted survival curves and use it as a predictor in a univariate

Cox model. This approach, though possibly suboptimal, allows to compare all the

prediction methods with these three evaluation measures.

Simulation results

The data sets described above were generated 50 times, and randomly split into

training and test sets with a 7:3 ratio. The survival prediction methods were applied

to the training sets, and the test set was then used for calculation of the evaluation

measures (p-value, variance of martingale residuals and Brier score as implemented in

the R package ipred). The hyperparameters needed for the TGD and the DS methods

were determined by cross-validation on the training sample.

The results are plotted and summarized in the figures and tables that follow.

Figures 4.1, 4.2 and 4.3 show evaluation measure boxplots for the results of each of the

five methods. The boxplots are grouped by method: two boxplots for the two artificial

data sets per method. The coding of the methods underneath the boxplots is explained

in Tables 1, 2 and 3 which also contain the summary statistics of the results for the

three evaluation measures. The median and IQR are given to match the characteristic
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features of the boxplots.
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Figure 4.1: Box plots of the p-values for each method over the 50 simulations of each data set.
The lower the p-value, the more probable is that the covariates have predictive power.

With respect to the variance of the martingale residuals, no method clearly stands

out. They all perform more or less alike. Hence, the variance of the martingale

residuals is not very discriminative as an evaluation measure for survival prediction

methods.

The smaller the Brier score, the better the survival prediction. Focusing on the

second data set where the expression data contains predictive information on survival,

we observe that PLS1, PLS2 and DS have a similar good performance. Exceptions are

the Cox with 20 genes method and the TGD Cox regression, which do not perform so

well, even falling behind the simple Cox regression with univariate feature selection.

A closer look at this method revealed that for data set 2 sometimes no features were

selected, leading to poor evaluation measures. We believe this is partially due to the

choice of the tuning parameters in the cross-validation, forcing the method to choose

between either the maximum (no features included) or a value that leads to a poor
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Method Coded as Data set Median IQR

Cox regression with 20 best genes COX ds1 0.563 0.445

Cox regression with 20 best genes COX ds2 0.437 0.555

PLS Cox (1 comp) PLS1 ds1 0.516 0.399

PLS Cox (1 comp) PLS1 ds2 0.031 0.099

PLS Cox (2 comp) PLS2 ds1 0.626 0.412

PLS Cox (2 comp) PLS2 ds2 0.495 0.483

TGD Cox regression TGD ds1 0.404 0.121

TGD Cox regression TGD ds2 0.028 0.084

Dantzig Selector DS ds1 0.438 0.492

Dantzig Selector DS ds2 0.027 0.084

Table 1: Results for the simulated data sets: p-values.
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Figure 4.2: Box plots of the variance of martingale residuals for each method over the 50
simulations of each data set.

18



Method Coded as Data set Median IQR

Cox regression with 20 best genes COX ds1 0.617 0.106

Cox regression with 20 best genes COX ds2 0.606 0.104

PLS Cox (1 comp) PLS1 ds1 0.650 0.144

PLS Cox (1 comp) PLS1 ds2 0.620 0.165

PLS Cox (2 comp) PLS2 ds1 0.635 0.138

PLS Cox (2 comp) PLS2 ds2 0.571 0.156

TGD Cox regression TGD ds1 0.618 0.121

TGD Cox regression TGD ds2 0.639 0.150

Dantzig Selector DS ds1 0.636 0.114

Dantzig Selector DS ds2 0.631 0.120

Table 2: Results for the simulated data sets: variance of martingale residuals.
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Figure 4.3: Box plots of the Brier prediction score for each method over the 50 simulations of
each data set.
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Method Coded as Data set Median IQR

Cox regression with 20 best genes COX ds1 0.169 0.052

Cox regression with 20 best genes COX ds2 0.150 0.054

PLS Cox (1 comp) PLS1 ds1 0.135 0.049

PLS Cox (1 comp) PLS1 ds2 0.106 0.040

PLS Cox (2 comp) PLS2 ds1 0.157 0.055

PLS Cox (2 comp) PLS2 ds2 0.120 0.043

TGD Cox regression TGD ds1 0.264 0.107

TGD Cox regression TGD ds2 0.191 0.082

Dantzig Selector DS ds1 0.156 0.060

Dantzig Selector DS ds2 0.109 0.037

Table 3: Results for the simulated data sets: Brier scores (the lower the better).

prediction.

In the simulations, we focused on finding the best prediction rule for the time to an

adverse event using all the available covariates measurements. However, if we bear in

mind that in many studies, the main focus is on finding a small subset of the covariates

that are the most important ones for predicting survival, we find the survival Dantzig

selector very interesting, as it also is a variable selection method. Note that the SDS

selector picked on average as few as 15 genes (median over the 50 splits) for the second

data set and as few as 3 genes for the first data set.

5 Analysis of a real-life data set

In this section, we compare the performance of the prediction methods on a real-life

data set from survival gene expression data. As in Bovelstad et al. (2007), we use a

well known real-life data set, namely the Dutch breast cancer data used by Van’t Veer

et al. (2002) to build a model to predict the time to metastasis of breast cancer in

patients based on microarray data from 78 patients. The expression levels of p = 4919

genes were available for this study (consisting of 78 patients). In order to evaluate

the methods we divided the data set randomly into two parts; a training set of about

2/3 of the patients used for estimation and a test set of about 1/3 of the patients used
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for evaluation or testing of the prediction capability of the estimated model. The split

was done 50 times and in such a way that the proportion of censored observations in

the original data set was respected. The results are plotted and summarized in the

following figures and tables.

As shown in the simulations, the variance of the martingale residuals was not

highly discriminative as an evaluation measure for survival prediction. Bearing this

in mind, for this real-data case we only used the p-values and the Brier scores as

evaluation measures of predictive performance. Figures 5.4 and 5.5 show boxplots for

the evaluation measures of the results for each of the five methods. Table 4 and Table 5

contain the summary statistics of the results for the two evaluation measures over the

50 iterations. The median and IQR are given to match the characteristic features of the

boxplots.
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Figure 5.4: Box plots of the p-values for each method over the 50 simulations for the Breast
Cancer data set.

With respect to the variance of the martingale residuals, as for the simulation, no

method clearly stands out. Both the boxplots in Figure 5.5 and Table 5 indicate that
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Method Median IQR

COX 0.139 0.406

PLS1 0.082 0.181

PLS2 0.094 0.217

TGD 0.027 0.120

DS 0.141 0.194

Table 4: Results for the Breast Cancer data: p-values over the 50 splits.
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Figure 5.5: Box plots of the Brier prediction score for each method over the 50 simulations for
the Breast Cancer data set.

the PLS based methods and the Dantzig selector have the smallest Brier score, with the

Dantzig selector also having the smallest IQR. Remembering that the PLS components

are built out of a combination of genes, the Dantzig selector is therefore preferable in

terms of interpretability for the breast cancer data set.
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Method Median IQR

COX 0.263 0.113

PLS1 0.199 0.052

PLS2 0.215 0.047

TGD 0.246 0.093

DS 0.230 0.045

Table 5: Results for the Breast Cancer data: Brier scores over the 50 splits.

6 Conclusions

We compared our Dantzig selector method for survival data to several previously

published methods for predicting survival and applied it on some simulated data

and also on a survival study based on microarray data. Our method performed

well on simulations and for real data compared to these existing methods. Another

important advantage of the Dantzig selector is that it selects a subset of the genes to

use as predictors. The PLS based method that had a comparable predicting power, by

contrast, require the use of all (or a large number) of the genes.

We close with a few further remarks. We acknowledge that previous work (Lounici

(2008); James and Radchenko (2009)) established links between the Danztig selector

and LASSO for linear models, also as variable selectors. We note that establishing

a possible similar connection between the two procedures in Cox’s model appears

challenging and is out of scope of the present work. It is also unclear to us whether

or how it is possible to rapidly compute entire solution paths for the Survival Dantzig

Selector; we note that generalised path algorithms for penalised optimisation problems

for loss functions different from least-squares are not obvious to construct or known to

exist (Rosset and Zhu (2007)).
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7 Appendix: Proofs

This section is devoted to the proofs of our main theoretical results stated in the paper.

Proof of Lemma 3.1. We have to control P(‖U(β0)‖∞ < γ) as n, p → ∞. That is, we

are studying the event

sup
j

∣∣∣∣∣ 1n n

∑
i=1

∫ τ

0
dMi(u)

[
n

∑
k=1

{
Zij − Zkj

}
wk(β0, u)

]∣∣∣∣∣ ≥ γ,

where

wk(β, u) =
exp(zT

k β)Yk(u)
∑l exp(zT

l β)Yl(u)
.

Note that the wk(β, u), u ∈ [0, τ) are nonegative and sum to one. Let

gn,i,j(u) =
n

∑
k=1

(Zij − Zkj)wk(β, u).

Note that gn,i,j(u) inherits from Yk(u) all measurability properties, so it is a predictable

process. Thus, for each i, j,
∫ τ

0 gn,i,j(u)dMi(u) is a martingale, which implies that

Mn,j = 1
n ∑n

i=1
∫ τ

0 gn,i,j(u)dMi(u) is a martingale. We use now Lemma 2.1 from van de

Geer (1995), which comes from Shorack and Wellner (1986). For that purpose, we need

to compute the quantities ∆Mn,j(u) (magnitude of a jump in Mn,j if it occurs at time u)

and Vn,j(u) (the variation process of Mn,j(u)).

Since the jumps of the processes Mi do not occur at the same time and are all of

magnitude one, we have

|∆Mn,j(u)| ≤ sup
1≤i≤n

‖gn,i,j‖∞

n
≤ sup

i,j,k

|Zi,j − Zk,j|
n

n

∑
k=1

wk(u) ≤ 2 sup
j

‖zj‖2

n
=

2C
n

.

For the variation process, we use the fact that

〈
∫ τ

0
HudMu,

∫ τ

0
H′

udM′
u〉 =

∫ τ

0
HuH′

ud〈M, M′〉u,

24



where H, H′ are square integrable predictable processes, and M and M′ are square

integrable martingales. Since the Mi are independent, we have

Vn,j(τ) =
1
n2

n

∑
i=1

∫ τ

0
g2

n,i,j(u)d〈Mi, Mi〉u

=
1
n2

n

∑
i=1

∫ τ

0
g2

n,i,j(u) exp(zT
i β0)Yi(u)α0(u)du

≤ 4
n2‖zj‖2

2 sup
u∈[0,τ]

{Sn(β0, u)}‖α0‖1.

We have

sup
u∈[0,τ]

{Sn(β0, u)} ≤
n

∑
i=1

exp(zT
i β0) ≤ n exp(S‖β0‖∞ sup

j
‖zj‖2) = O(n),

so that Vn,j(τ) ≤ K
n for a suitable constant K. We will now use the exponential

inequality from Shorack and Wellner (1986).

P

(
sup

j

∣∣∣∣∣ 1n n

∑
i=1

∫ τ

0
dMi(u)

[
n

∑
k=1

{
Zij − Zkj

}
wk(β0, u)

]∣∣∣∣∣ ≥ γ

)
≤

∑
j

P

(∣∣∣∣∣ 1n n

∑
i=1

∫ τ

0
dMi(u)

[
n

∑
k=1

{
Zij − Zkj

}
wk(β0, u)

]∣∣∣∣∣ ≥ γ

)
=

∑
j

P

(∣∣∣∣∣ 1n n

∑
i=1

∫ τ

0
dMi(u)

[
n

∑
k=1

{
Zij − Zkj

}
wk(β0, u)

]∣∣∣∣∣ ≥ γ ∩Vn,j(τ) ≤ K
n

)
≤

p exp
(
− nγ2

2(2Cγ + K)

)
.

Our choice of γ allows us to conclude.

Proof of Theorem 3.1. To prove the result, we will also need the following Lemma

which we state with no proof since it is a straightforward generalization of Lemma 3.1

in Candès and Tao (2007).

Lemma 7.1 Let A be an n × p matrix and suppose T0 ⊂ {1, . . . , p} is a set of cardinality S.

For a vector h ∈ Rp, let T1 be the S′ largest positions of h outside of T0 and put T01 = T0 ∪ T1.

Then

‖hT01‖2 ≤ 1
δS+S′

‖AT
T01

Ah‖2 +
θS′,S+S′

δS+S′(S′)1/2‖hTc
0
‖1

‖h‖2
2 ≤ ‖hT01‖

2
2 + (S′)−1‖hTc

0
‖2

1.
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To prove the Theorem we need to establish that ‖U(β0)‖∞ ≤ γ implies that

‖β̂− β0‖2
2 ≤ 64S( γ

δ2S−θS,2S
)2. Assume that ‖U(β0)‖∞ ≤ γ where

‖U(β0)‖∞ = sup
j

∣∣∣∣∣ 1n n

∑
i=1

∫ τ

0
dMi(u)

[
n

∑
k=1

{
Zij − Zkj

}
wk(u)

]∣∣∣∣∣ .

Recall here that for any consistent estimator β̃ of β0, we may write:

J(β̃, τ)− I(β0, τ) =
∫ τ

0
(Vn(β̃, u)− v(β̃, u))

dN̄(u)
n

(9)

+
∫ τ

0
(v(β̃, u)− v(β0, u))

dN̄(u)
n

(10)

+
∫ τ

0
v(β0, u)

dM̄(u)
n

(11)

+
∫ τ

0
v(β0, u)(

Sn(β0, u)
n

− s(β0, u))α0(u)du, (12)

where Vn(β, u) = S2
n

Sn
(β, u)− (S1

n
Sn

)⊗2(β, u) and v(β, u) = s2

s (β, u)− ( s1

s )⊗2(β, u). Since

β0 is a nonzero S-sparse vector with S independent of n and since the true information

matrix I(β0, τ) is positive definite at β0, for any β∗ in an Euclidian ball Br = B(β0, r)
centered at β0 and of radius at most r = 8

√
S γ

δ2S−θS,2S
, the regularity conditions of

Theorem 3.4 in Huang (1996) hold and it follows that

sup
β̃∈Br

‖J(β?, τ)− I(β0, τ)‖∞ = OP(n−1/2) (13)

as n tends to ∞.

Define h = β̂ − β0 and let T0 be the support of β0. According to Lemma 3.1, we

have ‖β̂‖1 ≤ ‖β0‖1 and this inequality implies that ‖hTc
0
‖1 ≤ ‖hT0‖1, which yields, by

Cauchy inequality,

‖hTc
0
‖1 ≤ ‖hT0‖1 ≤ S1/2‖hT0‖2. (14)

By assumption, we have ‖U(β0)‖∞ ≤ γ and by construction of the estimator,

‖U(β̂)‖∞ ≤ γ. Adding up the two inequalities (triangle inequality)

‖U(β)−U(β̂)‖∞ ≤ 2γ

By Andersen and Gill (1982), formula (2.6), we have, Taylor-expanding the LHS of the

above, ∥∥∥J(β∗, τ)(β̂− β0)
∥∥∥

∞
≤ 2γ, (15)
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where β∗ lies within the segment between β̂ and β0.

Now, using our remark (13) on the behavior of the matrix I(β0, τ) at the

neighborhood of β0 we have∥∥∥I(β0, τ)(β̂− β0)
∥∥∥

∞
≤

∥∥∥(J(β∗, τ)− I(β0, τ))(β̂− β0)
∥∥∥

∞
+
∥∥∥J(β∗, τ)(β̂− β0)

∥∥∥
∞

≤ Dn−1/2
∥∥∥β̂− β0

∥∥∥
1
+ 2γ,

≤ 4γ,

for n large enough, since
∥∥∥β̂− β0

∥∥∥
1
≤
∥∥∥β̂
∥∥∥

1
+ ‖β0‖1 ≤ 2 ‖β0‖1. Hence, if A =

I(β0, τ)1/2 denotes the squared root of the (semi)definite positive matrix I(β0, τ), we

have

‖AAh‖∞ ≤ 4γ.

This, again by Cauchy inequality, implies ‖AT
T01

Ah‖2 ≤ 4(S + S′)1/2γ. Take S′ = S.

By the first inequality of Lemma 7.1 and inequality (14), we have

‖hT01‖2 ≤ 4
δ2S

(2S)1/2γ +
θS,2S

δ2SS1/2 S1/2‖hT0‖2

≤ 4
δ2S

(2S)1/2γ +
θS,2S

δ2S
‖hT01‖2.

Rearranging for ‖hT01‖2, we get

‖hT01‖2

(
1− θS,2S

δ2S

)
≤ 4

δ2S
(2S)1/2γ

‖hT01‖2 ≤ 4
δ2S − θS,2S

(2S)1/2γ.

By the second inequality of Lemma 7.1 and inequality (14), we have

‖h‖2
2 ≤ ‖hT01‖

2
2 + S−1S‖hT0‖

2
2 ≤ 2‖hT01‖

2
2 ≤ 64S(

γ

δ2S − θS,2S
)2,

which completes the proof of the Theorem.
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