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ABSTRACT In this article, we model financial log-return series in the Locally Stationary Wavelet
(LSW) framework proposed by Nason et al. (2000). We slightly alter the LSW set-up to include time-
modulated white noise (TMWN) as a special case. We show that the LSW model, being linear and
non-stationary, adequately captures the most commonly observed stylized facts. Furthermore, we
propose a new method for estimating time-varying second order quantities in the LSW model, and
provide an exploratory analysis of the daily FTSE 100 series using the LSW toolbox. The
example shows that the dependence structure of FTSE 100 varies over time, and that the LSW
model is particularly well-suited for modelling this series. Finally, by considering daily returns
on the DJIA index, we demonstrate that financial log-returns can be successfully forecast in the
LSW framework.

KEY WORDS: Non-decimated wavelets, wavelet periodogram, stylized facts, non-stationarity,
adaptive forecasting

Introduction

Financial log-return series, be it stock returns or exchange rates, often exhibit the follow-

ing well-known properties:

(1) The sample mean of the series is close to zero.

(2) The marginal distribution is roughly symmetric (or only slightly skewed), has a peak

at zero, and is heavy-tailed.

(3) The sample autocorrelations of the series are ‘small’ at almost all lags, but the sample

autocorrelations of the absolute values and squares of the series are significant for a

large number of lags.

(4) Volatility is ‘clustered’, i.e. days of either large of small movements are followed by

days of similar characteristics.
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Clearly, to capture the above stylized facts, one needs to look beyond the stationary

linear framework, and to preserve stationarity, a huge number of non-linear models

have been proposed. Among them, two branches seem to be the most popular: the

family of Autoregressive Conditionally Heteroscedastic (ARCH) models, and Stochastic

Volatility (SV) models. The ARCH model was proposed by Engle (1982) and Generalized

ARCH (GARCH), its most popular extension – independently by Bollerslev (1986) and

Taylor (1986). The SV model was suggested by Taylor (1986) as an alternative to

ARCH-type modelling. Literature on both families of models is massive, some recent

recommendable monographs are Cox et al. (1996), Maddala & Rao (1996) and Fan &

Yao (2003). Giraitis et al. (2003) is a recent review article on various aspects of

ARCH modelling.

Even though the assumption of stationarity is attractive from the estimation point of

view, some authors point out that the stylized facts listed above can be better accounted

for by the possible non-stationarity of the series, see for example Mikosch & Starica

(2004), Kokoszka & Leipus (2000) (who consider the detection of change points in the

ARCH model) or Härdle et al. (2000) (who introduce a time-varying SV model and

look at the adaptive estimation of its parameters). An attractive asymptotic framework

for modelling non-stationary time series was proposed by Dahlhaus (1996), who devel-

oped a theory of Locally Stationary Fourier (LSF) processes. Some attempts have been

made to apply Dahlhaus’ theory in finance: e.g. Kim (1998) provides various statistical

analyses of financial and macroeconomic data in the LSF framework (however, he does

not consider forecasting).

In this paper, we also adopt the ‘locally stationary’ approach, and model log-returns in

the Locally Stationary Wavelet (LSW) framework of Nason et al. (2000). Essentially, this

implies that the log-return series is composed of discrete wavelet vectors at various scales,

rather than localised Fourier functions at various frequencies like in the LSF theory. There

are two main initial motivations behind using wavelet, rather than Fourier, functions as

building blocks in the model. Firstly, many authors observe that various economic

factors operate at different time scales (see for example Calvet & Fisher, 2001), and wave-

lets are a commonly used tool in the analysis of multiscale phenomena (see Vidakovic,

1999, for an overview of wavelet applications in statistics). Secondly, Fryzlewicz et al.

(2003) developed a working algorithm for forecasting LSW processes, which we are

able to take advantage of and use in our context. To our knowledge, no such algorithm

has been proposed and tested for the LSF model.

On the other hand, our approach differs from GARCH/SV modelling in that both

GARCH and SV are nonlinear, but often stationary models, whereas the LSW model is

linear, but only locally stationary.

The aims of this paper are:

. to argue that the LSW model can accurately account for the most commonly observed

stylized facts,

. to propose a new (suitable for log-returns) method of estimating time-varying second

order quantities in the LSW model,

. to demonstrate the attractiveness of the LSW framework as a tool for the exploratory

analysis of log-return data,

. to demonstrate that log-returns can be successfully forecast using the adaptive forecast-

ing algorithm of Fryzlewicz et al. (2003).

We do not aim to demonstrate that the LSW methodology is uniformly superior to any

other method of analysis of financial data. Instead, we propose to treat it as yet another
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tool in the toolbox, particularly useful for forecasting or exploring the local structure of

log-return series.

All the theoretical results in the paper have been obtained for Gaussian LSW processes.

The following sections show that most stylized facts can be explained using this simple

class; however, we emphasize here that due to the simplicity of the (linear) LSW

model, analogous theoretical results can easily be obtained for other noise distributions.

Even though the examples provided in the paper use stock index returns only, the LSW

methodology can also, in principle, be applied to other instruments, such as shares or

exchange rates.

The paper is organized as follows: in the next section, we motivate our methodology by

arguing that daily returns on the FTSE 100 index can be adequately modelled as Gaussian

time-modulated white noise (TMWN). In the section after, we recall the LSW model and

show that Gaussian TMWN is a special case of an LSW process. The subsequent section

provides theoretical evidence that LSW processes can capture most of the stylized facts

listed at the beginning of this section. In the fifth section, we introduce a new (suitable

for log-returns) estimation approach for LSW processes, and demonstrate its superiority

to the general method of Nason et al. (2000). The sixth section provides an interesting

example of exploratory data analysis using the LSW model. We apply the adaptive fore-

casting algorithm of Fryzlewicz et al. (2003) to log-returns, and provide a comparison with

forecasts based on GARCH modelling in the seventh section. The final section concludes

the paper.

Motivation

In this section, we motivate our ‘linear non-stationary’ approach by arguing that returns on

the daily closing values of the FTSE 100 index can be adequately modelled as Gaussian

TMWN, i.e. a process of the form Xt ¼ stZt, where st is a deterministic sequence, and

Zt s are independent N (0,1). In the next section, we show that Gaussian TMWN is a

special case of an LSW process.

For the purpose of this section, let Xt denote 2,158 consecutive observations of logged

and differenced daily closing values of the FTSE 100 index, running from 22/23

October 1992 to 10/11 May 2001. The source of the data here, and throughout the rest

of the paper, is http://bossa.pl/notowania/daneatech/metastock, page in Polish. Xt is

plotted in the top left plot of Figure 1. Superimposed on the plot is an estimate ŝt of

the local standard deviation st (the estimate was obtained by smoothing Xt
2 using a

Gaussian kernel with the bandwidth chosen by trial and error, and then square-rooting

the result; see the fifth section for automatic methods of estimation). Following down

the left-hand column, the next plot shows the sample autocorrelation of Xt, and the plot

below it – the sample autocorrelation of Xt
2. The bottom left plot shows the Q-Q plot

of Xt against the normal quantiles. From those plots, it is evident that Xt obeys the

well-known ‘stylized facts’.

The right-hand column provides evidence that Xt can be modelled as Gaussian TMWN,

which is a linear, but non-stationary process. Indeed, the top plot shows Ẑt ¼ Xt=ŝt, and

the plots in the second and third rows – the sample autocorrelation function (a.c.f.) of

Ẑt and Ẑ2
t , respectively. The bottom right plot shows the Q-Q plot of Ẑt against the

normal quantiles. From the inspection of the sample autocorrelation functions of Ẑt and

Ẑ2
t , it appears that, as a first approximation, Zt can be modelled fairly accurately as an

i.i.d. sample of N(0,1) variables. This in turn implies that Xt can be modelled as Gaussian

TMWN: clearly, there exists a st such that Xt ¼ stZt with Zt i.i.d. N(0,1).
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One of the consequences of the non-stationarity of Xt is the fact that the sample a.c.f. is

simply not an appropriate tool for computing the a.c.f. of Xt or Xt
2. We would submit, and

will argue this point later in the paper, that the ‘long memory’ effect in squared log-

returns on indices is nothing else than a spurious effect of applying the sample a.c.f. to

non-stationary data (see Mikosch & Starica, 2004, for similar considerations in the

GARCH framework).

Having demonstrated that daily FTSE 100 can be modelled as Gaussian TMWN, we

now proceed to recall the LSW model and show that Gaussian TMWN is a special case

of a general LSW process. In the sixth section, we return to the example of the FTSE

100 and model this series in the general LSW framework. We show that, in this way,

more local features of the LSW data can be picked up.

Figure 1. Left-hand column, from top to bottom: Xt with ŝt superimposed, a.c.f. of Xt, a.c.f. of X2
t ,

normal Q-Q plot of Xt. Right-hand column, from top to bottom: Ẑt, a.c.f. of Ẑt, a.c.f. of Ẑ2
t , normal

Q-Q plot of Ẑt. See the second section for a discussion
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The Model

Definition 1 (Nason et al., 2000)

An LSW process {Xt;T}t¼0;1;...;T�1T ¼ 2J � 2, is defined as

Xt;T ¼
X�1

j¼�J

X
k[Z

vj;k;Tcj;k�1jj;k; (1)

where

(1) The parameters j and k denote scale and location, respectively.

(2) The random innovations jj;k (5) have mean 0 and E(jj;kjj0;k0 ) ¼ dj;j0dk;k0 , where

dm;n ¼ 1 if m ¼ n and 0 otherwise.

(3) The amplitudes vj;k;T are real constants and 8j � �1 9Wj : ½0; 1) ! R such that Wj is

Lipschitz-continuous with parameter Lj and

X�1

j¼�1

W2
j , 1 (2)

X�1

j¼�1

2�jLj , 1 (3)

9{Cj}j�18T sup
k¼0;1;...;T�1

jvj;k;t �Wj(k=T)j � Cj=T (4)

X
j

Cj � 1 (5)

(4) The vectors cj ¼ (cj;0;cj;1; . . . ;cj;‘j ); j ¼ �1;�2; . . . ;�J; lj � M2�j;M � 1, are

discrete wavelets.

For a mathematical introduction to wavelets, the reader is referred to Daubechies

(1992), and for an overview of their applications in statistics, to Vidakovic (1999). By

way of example, we recall the simplest discrete wavelet system: the Haar wavelets.

They are defined by

cj;k ¼ 2j=2I{0;1;...;2�j�1�1}(k) � 2j=2I{2�j�1;...;2�j�1}(k) (6)

for j ¼ �1;�2; . . . and k [ Z, where IA is the indicator function of A. In the above,

j ¼ 21 is the finest scale, j ¼ 22 is the second finest scale, etc. We can think of equation

(1) as an analogue of the traditional Cramer representation for stationary processes, where

a process is a linear combination of Fourier basis functions. Here, sines and cosines have

been replaced by more ‘localized’ wavelets, therefore potentially allowing successful

modelling of non-stationary series.

Condition (4) means that, for each j, the sequence {vj;k;T}k is ‘closer and closer’ (as

T ! 1) to a Lipschitz function Wj(z) defined on the interval ð0; 1). The ‘slow’ evolution

of the sequence {vj;k;T}k makes it possible to establish an asymptotic framework, which

enables effective estimation in the model. The rescaled time set-up implies that letting

T ! 1 does not mean obtaining information about the future; instead, it means
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obtaining more and more information about the local structure of the process. See also

Nason et al. (2000) and Dahlhaus (1996) for further discussion of the concept of rescaled

time.

Nason et al. (2000) define the evolutionary wavelet spectrum of Xt;T as Sj (z) ¼ Wj (z)2.

For stationary processes, the spectrum is independent of time: we have v2
j;k;T ¼ W2

j ¼ S2
j .

In the classical theory, the autocovariance function and the spectrum of a stationary

process are Fourier transforms of each other, and an analogous link can be established

between the evolutionary wavelet spectrum and the local autocovariance. The finite-

sample local autocovariance in the LSW model is defined as

cT (z; t) ¼ cov(X½zT �;T ;X½zT�þt;T )

Nason et al. (2000) show that cT (z; t) has an asymptotic limit as T ! 1. Indeed, define

the autocorrelation wavelets as

Cj(t) ¼
X1
k¼�1

cj;kcj;k�t

and define the local autocovariance as

c(z; t) ¼
X�1

j¼�1

Sj(z)Cj(t) (7)

Proposition 1 (Nason et al., 2000)

With the asymptotics of Definition 1, kcT � ckL1 ¼ O(T�1).

The above proposition says that the local autocovariance is the ‘autocorrelation

wavelet’ transform of the evolutionary wavelet spectrum. Theorem 1 in Nason et al.

(2000) states that the evolutionary wavelet spectrum (and, therefore, the local autocovar-

iance), are uniquely defined given an LSW process. There is a one-to-one correspondence

between {Sj(z)}j and {c(z; t)}t, and an inverse formula to (7) can be derived. The local

variance is denoted by s2(z) :¼ c(z; 0).

Before looking at two important examples of LSW processes, we quote the following

useful Lemma from Fryzlewicz et al. (2003).

Lemma 1 (Fryzlewicz et al., 2003)

Let {Cj}j be the autocorrelation wavelets constructed from Daubechies’ compactly

supported wavelets of an arbitrary degree of smoothness (this includes Haar wavelets as

a special case). We have

X�1

j¼�1

2jCj(t) ¼ d0(t)

where d0(k) ¼ 1 if k ¼ 0 and 0 otherwise.

Example 1 (white noise)

By Lemma 1, if Xt,T ¼ Zt where Zt is i.i.d. N (0,1), then Xt,T is LSW with Sj ¼ 2j.
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Example 2 (time-modulated white noise)

Suppose that Xt;T ¼ s(t=T)Zt with Zt i.i.d. N (0,1). By Lemma 1, if Xt,T were LSW, we

would have Sj(z) ¼ s2(z)2j. However, we would then have Lj ¼ L2j=2, where L is the

Lipschitz constant for s (z), and that would violate condition (3). This shows that,

without modifications, the LSW model cannot accommodate time-modulated white

noise, which, as we saw in the second section, is an essential basic model for financial

log-returns. To remedy this unwelcome situation, we slightly alter the definition of an

LSW process.

Definition 2

An LSW process {Xt;T}t¼0;1;...;T�1; T ¼ 2J � 2, is defined as

Xt;T ¼
X�1

j¼�J

X
k[Z

vj;k; Tcj;k�1jj;k (8)

where

(1) The parameters j and k denote scale and location, respectively.

(2) The random innovations jj;k have mean 0 and E(jj;kjj0;k0 ) ¼ dj;j0dk;k0 .

(3) The amplitudes vj;k;T are real constants and 8j � �1 9 Wj [ C ½0; 1)ð Þ such that Sj is

Lipschitz-continuous with parameter Lj and

sup
z;j

Sj(z)2
�j ¼ D , 1 (9)

X�1

j¼�J

2�jLj ¼ O( log (T)) (10)

9{Cj}j��1 8T sup
k¼0;1;...;T�1

jvj;k; T �Wj(k=T)j � Cj=T (11)

X
j

Cj � 1 (12)

(4) The vectors cj ¼ (cj;0;cj;1; . . . ;cj;‘j); j ¼ �1;�2; . . . ;�J; lj � M2�j;M � 1, are

discrete wavelets.

It is now easy to verify that Gaussian TMWN with s Lipschitz satisfies the assumptions

of Definition 2 with vj;k;T ¼ Wj(k=T) ¼ s(k=T)2j=2.

Under the assumptions of Definition 2, the evolutionary wavelet spectrum Sj (z) and the

local autocovariance c(z; t) remain uniquely defined. The proof of this statement is iden-

tical to Nason et al. (2000), Theorem 1. We are also able to prove the following

proposition:

Proposition 2

With the asymptotics of Definition 2, kcT � ckL1 ¼ O(T�1 log (T)).

Throughout the rest of the paper, we will work with Definition 2, rather than Definition 1.
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Innovations jj;k

So far, we have considered jj;k i.i.d. N (0,1). Fryzlewicz & Nason (2004) argue that Gaus-

sian innovations in the LSW model account surprisingly well even for extreme events such

as those present in the Nikkei index (left-hand plot in Figure 2). Nevertheless, we believe

that, occasionally, other distributions of jj;k may need to be used: for example, a combi-

nation of skewed innovations and ‘skewed’ wavelets (i.e. such that
P

k c
3
j;k = 0) would be

able to pick up the often-observed skewness of the log-return data. However, the emphasis

in this article is on the non-stationarity of the log-return series, and not on the possible

non-Gaussianity of the innovations. Therefore, we restrict ourselves to Gaussian inno-

vations in the theoretical considerations, leaving an extension to other distributions as

an interesting direction for further study.

Trend

Throughout the paper, we assume E(Xt;T ) ¼ 0 (as is obvious from Definition 2). A more

thorough study would also incorporate trend m(t=T) in the model. This trend could then be

estimated by wavelet methods, see e.g. von Sachs & MacGibbon (2000).

Explanation of the Stylized Facts

In this section, we demonstrate that Gaussian LSW processes can successfully account for

the following stylized facts of financial log-returns:

. heavy tails of the ‘marginal’ distribution,

. negligible sample autocorrelations,

. non-negligible sample autocorrelations of the squares,

. clustering of volatility.

Heavy Tails of the ‘Marginal’ Distribution

In this subsection, we consider the sample second moment and the sample kurtosis:

mT
2 (X) ¼

1

T

XT�1

t¼0

X2
t;T

mT
4 (X) ¼

1

T

XT�1

t¼0

X4
t;T :

Figure 2. Left-hand plot: log-returns on daily closing values of Nikkei (5/6 Jan 1970–11/14 May

2001). Right-hand plot: log-returns on daily closing values of DJIA (3/4 Jan 1995–10/11 May 2001)
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For stationary Gaussian series, we could expect that mT
4 (X)= mT

2 (X)
� �2� 3. However, the

following demonstrates that this ratio is ‘spuriously’ distorted if the variance s2(z) of Xt;T

varies over time.

E mT
4 (X)

� �
¼

3

T

XT�1

t¼0

s4 t

T

� �
þ O( log (T)=T)

¼
3

T

XT�1

t¼0

s2 t

T

� �
�

1

T

XT�1

s¼0

s2 s

T

� � !2

þ 3
1

T

XT�1

t¼0

s2 t

T

� � !2

þO( log (T)=T)

¼
3

T

XT�1

t¼0

s2 t

T

� �
�

1

T

XT�1

s¼0

s2 s

T

� � !2

þ 3 E(mT
2 (X))

� �2
þO( log (T)=T)

For the purpose of this paragraph, denote the first summand in the above formula by A2.

Obviously, A2 ¼ 0 if and only if the variance of Xt;T is constant. Therefore, for a non-

constant s2(z), we will have

mT
4 (X)

mT
2 (X)2

� A2

(mT
2 (X))2

þ 3 . 3

The above formula provides a heuristic explanation of the fact that the marginal distri-

bution of processes with a non-constant variance appears heavy-tailed when the sample

fourth moment and the sample second moment are (incorrectly) applied to them.

Negligible Sample Autocorrelations

As in Mikosch & Starica (2004), we consider the sample autocovariance function

gT (X; h) ¼
1

T

XT�1�h

t¼0

Xt;TXtþh;T �
1

T

XT�1

t¼0

Xt;T

 !2

(13)

and the sample autocorrelation function

rt(X; h) ¼
gT (X; h)

gT (X; 0)
(14)

Also, we define the scalogram:

�Si ¼
1

T

XT�1

t¼0

Si
t

T

� �
(15)

The following proposition holds.

Proposition 3

For an LSW process Xt;T , we have

E(gT (X; h)) ¼
X
i

�SiCi(h) (16)

By Lemma 1, the above quantity will be ‘close’ to Cd0(h) if �Si is ‘close’ to C2i. The

examples provided in the sixth section demonstrate that it is indeed often the case. This

would explain the often negligible sample autocorrelations of log-returns.
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Non-negligible Sample Autocorrelations of the Squares

The following proposition holds.

Proposition 4

For an LSW process Xt;T , we have

E(gT (X2; h)) ¼
1

T

XT�1

t¼0

s2 t

T

� �
�

1

T

XT�1

t¼0

s2 s

T

� � !2

þ
2

T

XT�1

t¼0

c2 t

T
; h

� �
þ O (hþ log (T))=Tð Þ

(17)

For the purpose of this paragraph, denote the first summand of formula (17) by A2, and

the second one by B2(h). Two spurious effects can potentially be observed here. If the var-

iance s2(z) is non-constant, A2 always gives a spurious positive contribution to the sample

autocovariance. Note that A2 is independent of h, which explains the fact that the sample

autocovariance of the squares often decays very slowly (a feature which cannot be picked

up by classical GARCH models, see again Mikosch & Starica, 2004). For extremely large

h, the remainder O(h=T) often makes the positive contribution of A2 less pronounced.

The second spurious effect is due to B2(h), which distorts the information about the local

autocovariance by averaging it over time. Things are not rectified in the case of the sample

autocorrelation, either: as an example, consider again TMWN. For a non-constant s2(z)

and h = 0, we have

rT (X2; h) ¼
gT (X2; h)

gT (X2; 0)

A2 þ 0

A2 þ B2(0)
.

0

B2(0)
¼ 0

while, obviously, we would expect a good estimate to return a value close to zero.

A similar mechanism works in the case of absolute values.

Clustering of Volatility

The ‘clustering of volatility’, or, in other words, a ‘slowly varying local variance’ is indeed

one of the features of LSW modelling.

Estimation

To estimate the spectrum, Nason et al. (2000) use the wavelet periodogram:

Ij;p ¼
X
t

Xt;Tcj;p�t

�����
�����
2

; j ¼ �1;�2; . . . ;�J; p ¼ 0; 1; . . . ; T � 1 (18)

where c is the same wavelet family which is used to build Xt,T. In our altered set-up

of Definition 2, we will also use the statistic defined by equation (18). The following

proposition holds.

Proposition 5

Let Xt,T satisfy Definition 2. We have

E(Ij;p) ¼
X�1

i¼�1

Si
p

T

� �
Aij þ O

2�j log (T)

T

� �
(19)
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where A is defined as in Nason et al. (2000):

Aij ¼
X
t

Ci(t)Cj(t)

In addition, if Xt,T is Gaussian, then

var (Ij;p) ¼ 2
X
i

Si
p

T

� �
Aij

 !2

þO
2�j log (T)

T

� �
(20)

The form of the remainder in equation (19) suggests that the estimator is more accurate

for finer scales, i.e. 2j � J.

Formula (19) suggests the following method of estimating the spectrum: we solve the

system of equations

Ij;k ¼
X
i

Ŝi;k Aij (21)

to obtain an asymptotically unbiased estimator Ŝj;k of the spectrum Sj(k=T) (see Nason

et al., 2000, for details).

However, formula (20) shows that the wavelet periodogram is not a consistent estimator and

needs to be smoothed to obtain consistency. We can either first solve (21), and then smooth Ŝj;k,

or first smooth Ij,k and then solve (21). Following Nason et al. (2000), we prefer the latter

option, as it is often easier to work out the distributional properties of Ij,k than those of Ŝj;k,

and therefore it is easier to justify the choice of smoothing parameters for Ij,k.

Smoothing the periodogram is by no means an easy task, due to the extremely low signal-

to-noise ratio (for Gaussian series, neglecting the remainders, we have E(Ij;k)=(var(Ij;k))
1=2

� 2�1=2), and a significant amount of autocorrelation present in Ij,k. Nason et al. (2000)

propose an adaptive wavelet smoothing method, which, however, does not perform particu-

larly well when applied to financial log-returns: this will be demonstrated later.

In the next subsection, we propose an alternative general methodology for smoothing

the wavelet periodogram. The subsection after looks at two specific methods of smoothing,

and the subsequent subsection deals with inverting equation (21) in an appropriate manner

to ensure the non-negativity of the estimated spectrum.

General Algorithm

The alternative approach, which we propose here, is based on the following observation.

Denote by {dj;k}
T�1
k¼0 the sequence of wavelet coefficients of Xt,T at scale j (so that

Ij;k ¼ d2
j;k). Often, financial log-returns exhibit little serial correlation (e.g. see the

example in the second section), so, by orthogonality of the decimated wavelets, the sequence

d�1;0; d�1;2; d�1;4; . . . ; d�1;T�2

as well as the sequence

d�1;1; d�1;3; d�1;5; . . . ; d�1;T�1

are each sequences of approximately uncorrelated random variables. At scale j, the same

phenomenon is observed for sequences

dj;i; dj;iþ2�j ; . . . ; dj;iþT�2�j ; i ¼ 0; 1; . . . ; 2�j � 1:

However, even if the original series Xt,T exhibits some form of autocorrelation, the

decimated sequences of wavelet coefficients will often be much less correlated. This is

the well-known ‘whitening’ property of wavelets, see e.g. Vidakovic (1999, Section 9.5.3).
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If Xt,T is Gaussian, then the lack of serial correlation in the decimated sequences also

means lack of dependence, which in turn implies that the corresponding decimated subse-

quences of the wavelet periodogram

Ij;i; Ij;iþ2�j ; . . . ; Ij;iþT�2�j ; i ¼ 0; 1; . . . ; 2�j � 1 (22)

are simply sequences of independent (gamma-distributed) random variables.

The above argument can only be made rigorous if Xt,T is Gaussian TMWN. This is

obviously a simplifying assumption, as clearly not every log-return sequence can be ade-

quately modelled as such. However, it turns out that in practice, the assumption of the lack

of dependence in the decimated subsequences of the wavelet periodogram leads to estima-

tors which perform better numerically (on simulated data) and are visually more appealing

(on real data) than that proposed by Nason et al. (2000). In other words, the departure from

the TMWN setting often turns out not to be significant enough to prevent us from treating

the decimated subsequences of Ij,k as independent.

Having made the assumption of independence, we now proceed as follows:

Step 1. Fix j.

Step 2. For i ¼ 0; 1; . . . ; 2�j � 1, pick the decimated sequence

Ij;i; Ij;iþ2�j ; . . . ; Ij;iþT�2�j

and smooth it using a preselected method, with the smoothing parameter(s)

chosen by cross-validation (CV). CV stands a chance of performing well here,

due to the lack of dependence between the variables. For example, the technique

of Ombao et al. (2001) can be applied, as we are also dealing with a sample of

independent gamma variates, like in periodogram smoothing. In the next

section, we explore two other methods in which the smoothing parameter is

chosen by CV.

Step 3. Interpolate the smoothed sequence at all the points 0; 1; . . . ; T � 1 (e.g. using

linear interpolation). Denote the interpolated smoothed sequence by

~I
(i)

j;0; ~I
(i)

j;1; . . . ; ~I
(i)

j;T�1

Step 4. Finally, compute the estimate of the wavelet periodogram as the average of the

estimates ~I
(i)

j;� , for i ¼ 0; 1; . . . ; 2�j � 1:

Îj;k ¼
X2�j�1

i¼0

~I
(i)

j;k

For coarser scales, where it is not possible to smooth the decimated sequences

accurately as they are too short, we compute Îj;k as constant with respect to

k: Î j;k ¼ 1=T
PT�1

l¼0 Ij;l.

The estimates Îj;k can now be substituted into the system of linear equations

Îj;k ¼
X
i

Ŝi;kAij (23)

CV for dependent data. CV ‘as it is’ does not perform well when the errors are dependent

and some methods for correcting CV to this setting have been developed, see for example

Altman (1990). However, they all work for stationary noise and require an estimate of the

autocovariance. In our setting, finding such an estimate implies finding a pre-estimate of
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the wavelet spectrum itself. To avoid this nuisance, we prefer to work with independent

decimated subsequences.

Smoothing the Decimated Periodogram

In Step 2 of the algorithm, we apply a smoothing procedure to the decimated subsequences

of the wavelet periodogram. In this section, we advertise the use of two smoothing methods:

cubic B-splines (see Hastie & Tibshirani, 1990, for details) and translation-invariant linear

wavelet smoothing (see Donoho & Coifman, 1995, and Nason & Silverman, 1995).

The advantages of using cubic B-splines are the following.

. The method performs well.

. Most statistical packages provide a fast implementation of this method. For example,

we use the S-Plus routine smooth.spline, which automatically selects the smoothing par-

ameter by cross-validation.

. Numerical examples suggest that the method is fairly robust to the misspecification of

the local variance of the noise. This feature is particularly attractive: in our setting, the

variance of the noise depends on the function to be estimated (see formulas (19) and

(20)), and, therefore, an accurate estimate of the variance would require an accurate esti-

mate of the function. In practice, it seems sufficient to supply constant variance to

smooth.spline.

The advantages of using translation-invariant linear wavelet smoothing are as follows.

. The method performs well.

. The only smoothing parameter to be chosen is the ‘primary resolution’, above which all

the wavelet coefficients are set to zero, see Nason & Silverman (1995). As there are only

log2 (T) primary resolution levels to choose from, the choice is potentially easier than

the choice of bandwidth in kernel smoothing. We perform the selection by ‘leave-

half-out’ cross-validation as in Nason (1996), except that we choose the primary resol-

ution rather than the threshold.

. The method is fast, as in practice we choose the primary resolution for the wavelet per-

iodogram at the finest scale j ¼ �1, and then use the same primary resolution for all the

coarser scales j ¼ �2;�3; . . . ;�J.

Adaptive methods allowing the detection of abrupt changes in the wavelet periodogram

would clearly be an attractive alternative. The method proposed by Fryzlewicz & Nason

(2004), based on the Haar-Fisz transform, seems to be particularly promising in this context.

Estimating the Spectrum with Guaranteed Non-negativity

The evolutionary wavelet spectrum Sj(z) is a non-negative quantity so it would also be

desirable if Ŝj;k was guaranteed to be non-negative. This can be achieved, for example,

by replacing the system of equations (23) by a Linear Complementarity Problem (LCP;

see, for example, Murty, 1988):

AŜk � Îk

Ŝk � 0

(AŜk � Îk)Ŝk ¼ 0:

The above LCP can be solved using, for example, successive over-relaxation.
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Let ŜLCP
j;k denote the estimate of Sj(k=T) obtained using the LCP formulation, and ŜINV

j;k –

using the simple inversion of formula (23). By equation (7), we estimate the local variance

in each case by

ŝ2 k

T

� �(LCP)

¼
X�1

j¼�J

ŜLCP
j;k

ŝ2 k

T

� �(INV)

¼
X�1

j¼�J

ŜINV
j;k

In practice, ŝ2(k=T)(INV) is a much more accurate estimator of the local variance. In

order to combine this feature with the guaranteed non-negativity of the spectrum, we

rescale the LCP-based estimator to yield the final estimators of Sj(k=T) and s2(k=T):

Ŝj;k ¼ ŝ2 k

T

� �(INV) ŜLCP
j;k

ŝ2(k=T)(LCP)

ŝ2 k

T

� �
¼
X�1

j¼�J

Ŝj;k

(24)

As explained earlier, Ŝj;k depends on the method used for smoothing the wavelet period-

ogram. The next subsection compares the estimators based on cubic B-splines and linear

wavelet smoothing to those proposed by Nason et al. (2000).

Estimation – Numerical Results

The left-hand plot in Figure 3 shows a sample path from the Gaussian TMWN model with

the superimposed contrived time-varying standard deviation. We estimate the time-

varying local variance (the square of the time-varying standard deviation) by adding up

estimators of the Haar wavelet spectrum over scales (see formula (24)). The right-hand

plot shows the time-varying variance (solid line), the estimate obtained using spline

smoothing (dot-dashed line), the estimate obtained using translation-invariant linear

wavelet smoothing with Daubechies’ least asymmetric wavelet with 10 vanishing

moments (dotted line), and the estimate obtained using the adaptive method of Nason

et al. (2000) with default parameters (dashed line).

While the estimates which use our two methods almost coincide with each other and

with the true time-varying variance, the default estimate by Nason et al. (2000)

Figure 3. Left-hand plot: sample path from Gaussian TMWN model with time-varying standard

deviation superimposed. Right-hand plot: time-varying variance (solid), its estimate using splines

(dot-dashed), its estimate using linear wavelet scheme (dotted), and its estimate using the method

of Nason et al. (2000) with default parameters (dashed)
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oversmooths. This is due to the fact that the primary resolution (PR) in the latter method is

not chosen in a data-driven way but instead, a fixed PR is used.

For the same Gaussian TMWN process, we assessed the performance of our two

methods and the method by Nason et al. (2000) basing on 25 simulated sample paths.

We used two criterion functions – one for the Haar spectrum:

dS(Ŝ; S) ¼
1011

T

X�1

i¼�J

XT�1

t¼0

Ŝ
t

T

� �
� S

t

T

� �� �2

(25)

and the other for the variance

ds2 (ŝ2;s2) ¼
1011

T

XT�1

t¼0

ŝ2 t

T

� �
� s2 t

T

� �� �2

(26)

The values in Table 1 confirm our observation that the two estimators in which the choice

of the smoothing parameter is performed by cross-validation give very similar results.

Exploratory Data Analysis

In this section, we look at two examples of data analysis using the LSW methodology (the

examples are related to each other). The first one uses the Haar scalogram (see formula

(15)), and the other – the full evolutionary Haar wavelet spectrum.

Scalogram. In this example, we compute the Haar scalogram for four series:

. Xt,T: the last 1024 observations of the artificial simulated Gaussian TMWN of Figure 3,

. Ft,T: the last 1024 observations of the FTSE 100 series of Figure 1,

. Nt,T: the last 1024 observations of the Nikkei series of Figure 2,

. Dt,T: the last 1024 observations of the Dow Jones IA series of Figure 2.

Figure 4 shows logged scalograms for Xt,T, Ft,T, Nt,T and Dt,T (solid lines), plotted

against �j ¼ 1; 2; . . . ; 10. Dotted lines are theoretical log-scalograms of corresponding

time-modulated white noise processes with the same time-varying variances. As Xt,T actu-

ally is a time-modulated white noise process, and its log-scalogram is substantially

deviated from the corresponding dotted straight line for scales �6;�7; . . . ;�10, and

slightly deviated for scales 24, 25, we suspect that for a series of length 1024, the scalo-

gram is a relatively reliable estimator for scales �1;�2; . . . ;�5 (hence the vertical line at

2j ¼ 5), and a very reliable one for scales 21, 22, 23 (hence the vertical line at 2j ¼ 3).

Looking at the three finest scales (2j ¼ 1, 2, 3), it seems that Dow Jones and Nikkei are,

on average, reasonably close to TMWN. However, FTSE 100, which was ‘provisionally’

modelled as Gaussian TMWN in the second section, shows a substantial deviation from

this setting, especially at scale j ¼ 22, where the mean spectrum is clearly greater than

Table 1. Values of the criterion functions averaged over 25 simulations. ‘Default’ is the method of

Nason et al. (2000), ‘splines’ is our method using spline smoothing and ‘TI wavelets’ is our method

using translation-invariant linear wavelet scheme

Default Splines TI wavelets

Mean of ds2 1197 189 162

Mean of dS 460 227 232
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what it should be if FTSE 100 were to be close to TMWN. Indeed, to assess the validity of

this statement, we have simulated 1,000 sample paths of the standard white noise, and

computed the Haar scalogram for each of them. In each case, the empirical scalogram

for j ¼ 21 was larger than that for j ¼ 22, unlike the FTSE 100 case. The outcome of

this experiment seems to confirm our initial judgement that the deviation of the FTSE

100 from the TMWN setting is significant.

By formula (16), a large scalogram at scale j ¼ 22 implies a significant contribution of

the summand �S�2C�2(h) to the sample autocovariance. For Haar wavelets, C�2( � ) is sup-

ported on h ¼ �3; . . . ; 3, and is plotted in the left plot of Figure 5. It is positive for

h ¼ +1 and negative for h ¼ +2, +3. Therefore, if the contribution of the spectrum

at scale j ¼ 22 is significant enough, we can expect that the sample autocorrelation of

Ft,T will be significant positive for h ¼ 1, and significant negative for h ¼ 2, 3. The

right-hand plot in Figure 5 shows that this is indeed the case. The shape of the a.c.f. func-

tion of Ft,T is very similar to the structure of C22.

Figure 1 shows that the same pattern is present in the sample autocorrelation of

the whole FTSE 100 series, and not only in Ft,T (¼ the last 1024 observations of FTSE

100). However, the pattern is much less visible in the sample autocorrelation of the

standardized FTSE 100 (series Ẑt in Figure 1). This may suggest, for example, that this

autocorrelation structure (positive dependence at lag 1, negative at lags 2 and 3), may

be present in a stretch of high volatility, which has a significant contribution to the

sample autocorrelation of FTSE 100 (or, alternatively, to the scalogram). In Ẑt, the ‘stan-

dardized’ periods of high volatility contribute less to the sample autocorrelation than in the

original FTSE series, which would explain why the sample autocorrelation of Ẑt exhibits a

different dependence structure: it only indicates slight positive dependence at lag 1, but no

significant negative dependence at lags 2 or 3.

Figure 4. Solid lines: empirical log-scalograms of Xt,T (top left), Ft,T (top right), Nt,T (bottom left)

and Dt,T (bottom right), plotted against �j. Dotted lines: theoretical log-scalograms if the

processes were (time-modulated) white noise (not necessarily Gaussian). Dashed lines: �j ¼ 3,5

(see text for discussion)
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The above discussion clearly indicates the need for a local analysis of the FTSE 100

data. By looking at the full evolutionary Haar spectrum of FTSE 100, we are able to

find out where and how the local autocovariance structure changes over time.

Full evolutionary Haar spectrum analysis. Figure 7 shows the estimated evolutionary

Haar spectrum of Ft,T
0 ¼ the 2048 last observations of the FTSE index (plotted in

Figure 1). It seems that scale j ¼ 22 dominates from rescaled time z0 � 0.6 onwards

(this corresponds, roughly, to time t ¼ 1200, . . . , 2048). In particular, there is a huge

bump centred at z1 � 0.67: it is clearly the most visible feature in the ‘spectrum landscape’

of FTSE 100. Judging by the magnitude of the bump, it seems likely that even though scale

j ¼ 22 dominates over part of the time horizon only, ‘global’ tools (such as the scalogram

or the sample autocovariance computed for the whole sample) will also be affected, which

will give the false impression that scale j ¼ 22 dominates all the way through. Indeed, if

we compute the a.c.f. of F1,T
0 , F2,T

0 , . . . , F0
1200,T, it turns out that the effect of the sample

a.c.f. resembling the Haar autocorrelation function at scale j ¼ 22, now disappears. The

a.c.f. of the first 1,200 observations of Ft,T
0 is plotted in the left-hand plot of Figure 6. The

right-hand plot of Figure 6 shows the a.c.f. of the remaining part of Ft,T
0 , where scale

j ¼ 22 seems to dominate. This is reflected in the shape of the sample a.c.f. at lags 1,2,3.

The LSW model with the Haar basis seems to be ideally suited for modelling the FTSE

100 series on the interval z [ (0.6,1), as it provides a sparse representation of the local

covariance in that region: most of the ‘energy’ of the series is concentrated at scales

j ¼ 21 and 22.

The above demonstrates how important it is to analyse the log-return data locally, rather

than using global tools. There is no economic reason why log-returns should stay stationary

over long periods, and the above wavelet-based analysis shows that, indeed, they do not. The

Figure 6. Left-hand plot: sample a.c.f. of F0
1;T ; . . . ;F

0
1200;T . Right-hand plot: sample a.c.f. of

F0
1201;T ; . . . ;F

0
2048;T

Figure 5. Left-hand plot: C�2(h) for Haar wavelets for h ¼ 0; 1; . . . ; 5. Right-hand plot: sample

a.c.f. of Ft,T at lags 0; 1; . . . ; 5
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LSW framework provides appropriate tools not only for the local analysis of the log-return

data, but also for forecasting. This will be demonstrated in the following section.

Forecasting

Adaptive Forecasting Algorithm

A comparison of forecasting methods for daily Sterling exchange rates is provided by

Brooks (1997), who concludes that forecasts based on GARCH modelling are the most

reliable. Leung et al. (2000) find that probabilistic neural networks (Wasserman, 1993)

outperform other methods when applied to stock index returns. However, the input vari-

ables in their model include, apart from the data, a variety of other macroeconomic factors.

In this section, we only consider forecasts based on past values of the series, and compare

our methodology to forecasting based on GARCH modelling (for an overview of the latter

methodology, see e.g. Bera & Higgins, 1993).

A general algorithm for forecasting LSW processes was introduced by Fryzlewicz et al.

(2003), and we shall now briefly discuss it in our setting.

Suppose that Xt,T is a log-return series that we model as a Gaussian LSW process and

observe up to time t. For simplicity of presentation, we only consider one-step-ahead pre-

diction here. We denote the predictor by X̂tþ1;T . Our error measure is the Mean-Square

Prediction Error (MSPE):

MSPE(X̂tþ1;T ;Xtþ1;T ) ¼ E(X̂tþ1;T � Xtþ1;T )2

In this setting, the MSPE is minimized by the linear predictor

X̂tþ1;T ¼
Xt
s¼0

b(t)
s Xs;T (27)

Figure 7. Estimated evolutionary Haar spectrum of T ¼ 2048 last observations of FTSE 100 of

Figure 1. Smoothing uses TI linear wavelet scheme. X-axis shows the rescaled time z ¼ t=T , and

Y-axis shows the negative scale �j ¼ 1; 2; . . . ; 11
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where, asymptotically, the coefficients b(t)
s are found by solving the system of equations

Xt
m¼0

b(t)
m c

mþ n

2T
;m� n

� �
¼ c

t þ 1 þ n

2T
; t þ 1 � n

� �
(28)

for n ¼ 0,1, . . . , t (see Section 3.3 in Fryzlewicz et al., 2003). Obviously, the local

autocovariance c needs to be estimated from the data. This can be done using the pre-

viously-mentioned algorithm, but it appears that we can obtain more accurate forecasts

by estimating c using the principle of adaptive forecasting: the estimators of the fifth

section naturally suffer from edge effects and it is at the right edge where we require

the estimates to be particularly accurate in order that the forecasting algorithm should

perform well.

More precisely, we start with the unsmoothed estimate of the local autocovariance (see

Section 4.1 in Fryzlewicz et al., 2003):

ĉ(z; t) ¼
X�1

j¼�J

X
i

A�1
ij Ii;½zT �

 !
Cj(t) (29)

We will later smooth this estimate using Gaussian kernel with an appropriately selected

bandwidth.

As recalled in Fryzlewicz et al. (2003, Section 4.3), in theory, the best one-step ahead

linear predictor of Xtþ1;T is given by equation (27), where bt ¼ {b(t)
s }s¼0;1;...;t solves

equation (28). In practice, we estimate each of the prediction coefficients b(t)
s . As we incor-

porate more and more past observations into the linear predictor (e.g. in equation (27) we

incorporate the whole history of the process), the overall error in estimating the prediction

coefficients potentially increases, due to the non-stationarity of the process. On the other

hand, the theoretical prediction error MSPE(X̂tþ1;T ;Xtþ1;T ) decreases. In order to strike a

balance between these two types of error, Fryzlewicz et al. (2003) propose to ‘clip’ the

linear predictor at some lag in the past, i.e. to consider

X̂
(p)
tþ1;T ¼

Xt
s¼t�pþ1

b(t)
s Xs;T (30)

This is reminiscent of the classical idea of AR (p2 1) approximation for stationary pro-

cesses – here, p ¼ 1 loosely corresponds to TMWN, p ¼ 2 to time-varying AR (1), and so

on (the fact that p corresponds to AR (p2 1) and not to AR (p) is due to the specific form

of the autocovariance estimator ĉ).

Therefore, in order for the forecasting algorithm to work, we have to choose two ‘nui-

sance’ parameters: lag p and bandwidth h for the local autocovariance smoothing.

The choice is performed using the adaptive forecasting algorithm of Fryzlewicz et al.

(2003). Suppose that we observe the series up to time t and want to forecast Xtþ1;T , using

an appropriate pair (p, h). We move back by s observations, pretending that only

X0;T ;X1;T ; . . . ;Xt�s;T have been observed, and we choose the initial pair of parameters

(p0, h0). Then, we forecast Xt�sþ1;T using not only (p0, h0), but also the eight neighbouring

pairs of parameters: (p0 + 1; h0 + d); (p0; h0 + d); (p0 + 1; h0), for a fixed value of d.

Since we know the actual value of Xt�sþ1;T , we are able to use a preset criterion to

compare the nine results obtained, and we set (p1, h1) to be the pair which gave the best fore-

cast out of the nine. In the next step, we use the pair (p1, h1), as well as its eight neighbours,

to forecast Xt�sþ2;T , and then we repeat the update step. We continue in this way until we

reach Xt,T, when we obtain the pair (ps, hs), which we use to perform the actual prediction.
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A variety of criteria can be used to compare the performance of the pairs of parameters

at each step. Denote by X̂
(p)
k;T (h) the estimate of Xk,T obtained using the pair (p, h). To fine-

tune the parameters for the accurate forecasting of the series Xt,T itself, a natural choice

would be to choose the pair that minimizes

d1(X; p; h) ¼ Xk;T � X̂
(p)
k;T (h)

��� ��� (31)

However, in order to give preference to forecasts that lie comfortably within the corre-

sponding prediction intervals, an alternative possibility would be to choose, for example,

the pair that minimizes

d2(X; p; h) ¼
jXk;T � X̂

(p)
k;T (h)j

P
(p)
k;T (h)

(32)

where P
(p)
k;T (h) is the length of the corresponding prediction interval. We used d1 in the

simulation study reported below.

Provided that the ‘training’ segment Xt�sþ1;T ; . . . ;Xt;T is long enough, (ps; hs) should

not depend significantly on the initial parameters (p0; h0). Fryzlewicz et al. (2003)

propose to set s to the length of the largest segment at the end of the series which does

not contain any visible breakpoints or ‘spikes’.

The updating step is in accordance with the principle of local stationarity: if a given pair

of parameters was ‘good’ for forecasting Xk,T, we can expect that the same pair, or one of

its neighbours, will also perform well in forecasting Xkþ1;T . In addition, once the par-

ameters have been fine-tuned on the training set, the forecasting can be performed

‘online’. Indeed, when observation Xtþ1;T becomes available, we only need to update

the pair (ps; hs) without having to perform the whole of the ‘training’ step on the past s

observations.

The algorithm can be modified by allowing more than one parameter update at each

step. Also, prior knowledge can be incorporated into the model by restricting or penalizing

certain regions of the parameter space for (p; h).

Dow Jones Example

In this section, we demonstrate the usefulness of the approach by comparing our fore-

casting methodology to forecasting based on GARCH modelling, on a fragment of the

Dow Jones IA series (denoted by Dt,T in the previous section 6 and plotted in Figure 2).

This brief simulation study does not aim to show that our approach is uniformly superior

to GARCH. Instead, we attempt to demonstrate a few interesting features of LSW

forecasting.

Suppose that we have already observed 1,105 values of the series, and want to perform

one-step-ahead prediction of the series along the segment D1106;T ; . . . ;D1205;T . In order to

do so, we employ the LSW methodology with Haar wavelets. We make an initial guess at

the values of p and h: we set (p; h) ¼ (1; 30) (default initial values in our software

package; see the next section for details on how to obtain the package). Further, we set

the criterion function to d1, and we allow one parameter update at each time point.

In addition, we limit the parameter space for p to the set {1; 2}, having empirically

found that the forecasting algorithm performs best on the given stretch of the series

when the upper limit for p is set to 2. As mentioned in the previous subsection, this

roughly corresponds to ‘switching’ between TMWN and time-varying AR(1) at each

time point, depending which model produces locally more accurate forecasts.
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We compare our method to forecasts obtained by modelling Dt,T as

. AR(1) þ GARCH(1, 1) – since AR(1) roughly corresponds to the upper limit for p

being equal to 2,

. AR(16) þ GARCH(1, 1) – since the AIC criterion indicates that the order of Dt,T along

the segment t ¼ 1105; . . . ; 1204 is equal to 16.

The orders (1, 1) of the GARCH part were selected ad hoc; however, they have no influ-

ence on point forecasts. The models were fitted using the garch routine from the S-Plus

garch module with default parameters.

The results of the experiment are presented in Figure 8. The top left plot shows the

actual series D1106;T ; . . . ;D1205;T (dotted line), the corresponding one-step-ahead forecasts

(thick solid line), and 95% prediction intervals (assuming Gaussianity; dashed lines), for

the AR(1) þ GARCH(1, 1) model. The top right plot shows the same for the AR(16) þ

GARCH(1, 1) model, and the bottom left plot – the same for the LSW model. The

bottom right plot in Figure 8 shows the actual series scaled by the factor of 2000

(dotted line), as well as the corresponding values h of the bandwidth used to forecast

the series. The bandwidth was allowed to change by +1 or remain the same. The fact

that it increases steadily starting from t ¼ 1160 may suggest that the time-varying

second order structure of Dt,T evolves more slowly in that region. In the LSW forecasting,

the stretches where p ¼ 1 wins over p ¼ 2 are indicated by one-step-ahead forecasts equal

to zero (as in TMWN forecasting). Non-zero forecasts indicate that p ¼ 2 is used to

perform prediction. The LSW model does an impressive job in picking up the spike at

t ¼ 1112, and also at capturing the local structure around t ¼ 1135. The Mean-Square Pre-

diction Errors and the Median Squared Prediction Errors for the three methods are given in

Table 2: the LSW method outperforms the other two.

For the LSW method, 92% of observations fall within the corresponding one-step-ahead

95% prediction intervals, whereas the analogous ratios for the AR(1) þ GARCH(1, 1) and

Figure 8. Top left, top right and bottom left: the actual series (dotted line), one-step ahead forecasts (solid

line) and 95% prediction intervals (dashed lines) for AR(1) þ GARCH(1, 1), AR(16) þ GARCH(1, 1)

and LSW, respectively. Bottom right: actual series �2000 and the evolution of bandwidth h
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AR(16) þ GARCH(1, 1) methods are 94% and 93%, respectively. Our slightly worse per-

formance is due to the fact that the d1 criterion only minimizes the distance between the

predicted value and the actual one, and does not take into account the prediction intervals.

A modification of the comparison criterion would almost certainly lead to an improvement

over the (already good) ratio of 92%.

However, it must be mentioned that the prediction intervals in the LSW model are nar-

rower than the minimum of those in the AR(1) þ GARCH(1, 1) model and those in the

AR(16) þ GARCH(1, 1) model in 71% of the cases.

Conclusion

In this article, we have provided theoretical and empirical evidence that stock index

returns can be successfully modelled and forecast in the Locally Stationary Wavelet

(LSW) framework of Nason et al. (2000). Starting from a motivating example of the

FTSE 100 series being modelled as a Time-Modulated White Noise (TMWN), we have

slightly altered the definition of an LSW process to allow TMWN as a special case of a

general LSW process.

We have provided theoretical evidence that the LSW model, being linear and non-

stationary, can capture the most commonly observed stylized facts. In particular, we

have argued that the heavy tails of the marginal distribution, negligible sample autocorre-

lations, and non-negligible sample autocorrelations of the squares, are all effects which

can possibly be caused by applying stationary, global tools (such as the sample autocor-

relation) to the analysis of non-stationary data.

Furthermore, we have proposed a new general algorithm for estimating time-varying

second-order quantities in the LSW model. We have shown that our new algorithm,

specifically designed for financial log-returns, significantly outperforms the default algor-

ithm proposed by Nason et al. (2000) for general non-stationary time series.

In addition, we have provided two interesting examples of exploratory data analysis

using the LSW toolbox. By using the (global) scalogram and the (local) evolutionary

Haar spectrum, we have found that the daily FTSE 100 index displays a significant

local departure from the TMWN setting. Also, by examining the Haar spectrum, and

the shape of the autocovariance function of FTSE 100 over a certain region, we have dis-

covered that the Haar wavelet basis is ideally suited for the sparse modelling of FTSE 100

on that interval. The example has powerfully demonstrated that the financial log-return

data need to be analysed using local tools as all of their second order characteristics,

and not only variance, can vary over time.

Finally, we have provided evidence that financial log-returns can be successfully fore-

cast in the LSW framework using the adaptive forecasting algorithm proposed by Fryzle-

wicz et al. (2003). We have compared the forecasts obtained by the adaptive algorithm to

those obtained using GARCH modelling. We have found that the adaptive method has the

potential to accurately forecast some important local features of non-stationary log-return

data. In the example analysed (a fragment of the Dow Jones IA index), the LSW-based

technique has outperformed two GARCH-based methods.

Table 2. Mean-Square Prediction Error and Median Squared Prediction Error (�107 and rounded) in

forecasting D1106,T, . . . , D1205,T one step ahead, for the three methods tested

AR(1) þ GARCH(1,1) AR(16) þ GARCH(1,1) LSW

Mean SPE 878 857 839

Median SPE 404 375 298
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Future Ideas

In future work, we intend to examine other distributions of innovations jj;k (also combined

with ‘skewed wavelets’), as well as looking at the problem of forecasting volatility in the

LSW framework. After completing this work, we were made aware of the recent work of

Drees & Starica (2002) in which the authors proposed a simple non-stationary model for

stock returns, which also used the idea of a time-varying unconditional variance. It would

be of interest to investigate the possibility of combining the most attractive features of both

models to obtain a further improved linear framework for modelling financial log-returns.

Reproducible Research

The S-Plus routines written and used by the author, the data sets analysed in the paper, as

well as the contrived standard deviation function of Figure 3 can be downloaded from the

associated web page: http://www.ma.imperial.ac.uk/�pzf/fints/fints.html.
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Appendix A. Proofs

Proof of Proposition 3
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Now, using assumptions (9)–(12) and Cauchy inequality, we get
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Lemma A.1

With the assumptions of Lemma 1, we haveX�1

i¼�1

2iAij ¼ 1

Proof

Using Lemma 1,X
i

2iAij ¼
X
i

2i
X
t

Ci tð ÞCj tð Þ ¼
X
t

d0 tð ÞCj tð Þ ¼ 1
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Proof of Proposition 3

Very similar to the proof of Proposition 4 (see below).

Proof of Proposition 4

Define a zð Þ ¼
P

t c
2 z; tð Þ. By assumption (9) and Lemma A.1, we have
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Proof of Proposition 5

We use the orthonormality of jj;k, the fact that lj � M22j, assumptions (9)–(12), and

Lemma A.1.
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Let us now turn to the speed of convergence of
P�J�1

i¼�1 2iAij.
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Haar Wavelets

By Theorem 2 of Nason et al. (2000), we have Aij ¼ 2i 2�2j�1 þ 1
� �

, for i , j. Therefore,P�J�1
i¼�1 2iAij ¼ O 2�2j=T2

� �
.

Other Daubechies’ Compactly Supported Wavelets

There is a strong evidence that the above rate is also achieved for other Daubechies’ com-

pactly supported wavelets, see Remark 7 in Nason et al. (2000).

Thus, we finally obtain
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In addition, if Xt,T is Gaussian, then
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since j
P

i Si(p=T)Aijj � D by assumption (9).
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