A wavelet-based model for forecasting non-stationary processes

S. Van Bellegem, P. Fryzlewicz and R. von Sachs
FNRS Research Fellow, Institut de statistique, Université catholique de Louvain, Belgium
Graduate Student, Department of Mathematics, University of Bristol, UK
Professor, Institut de statistique, Université catholique de Louvain, Belgium

Abstract. In this article, we discuss recent results on modelling and forecasting covariance non-stationary stochastic processes using non-decimated wavelets.

1. Introduction

In this article, we are concerned with data generated by a univariate, discrete-time stochastic process. We focus on the analysis of its covariance structure, and therefore we assume that the process is zero-mean. Zero-mean processes arise, for example, when the global trend has been removed from the data. Trend estimation is a well studied problem, and some recent methods use wavelets.

The autocovariance function of a process \(X_t\) is denoted by \(c_X(r,s) := \text{Cov}(X_r,X_s)\), and, for stationary processes, it depends on the distance between \(r\) and \(s\) only, i.e. \(c_X(r,s) = c_X(|r-s|)\). As it does not depend on any reference point in time, we say that the autocovariance function of a stationary process is homogeneous over time. All stationary processes \(X_t\) have the following Fourier representation:

\[
X_t = \int_{[-\pi, \pi]} A(\omega) \exp(i\omega t) dZ(\omega), \quad t \in Z,
\]

where \(A(\omega)\) is the amplitude, and \(Z(\omega)\) is a stochastic process with orthonormal increments [1]. Correspondingly, under mild conditions, the autocovariance function can be expressed as

\[
c_X(\tau) = \int_{[-\pi, \pi]} f_X(\omega) \exp(i\omega \tau) d\omega, \quad \text{where } f_X \text{ is the spectral density of } X_t \text{ [1].}
\]

The assumption of stationarity leads to an elegant theory from the point of view of both estimation and forecasting [1]. However, various studies based on statistical tests of stationarity have shown that many observed processes have a non-homogeneous autocovariance (spectral) structure [2, 3, 4]. Examples of such non-stationary processes abound e.g. in econometrics (returns on stock indices), biomedical statistics (electrocardiograms), meteorology (wind speed), and many other fields. The important question of how to model and forecast non-stationary processes arises, and one of the main motivations behind using wavelets here is that, being well-localised in both time and frequency, they have the potential to naturally handle phenomena whose spectral characteristics change over time.

2. The class of locally stationary wavelet processes and the wavelet spectrum

We now recall a definition of a class of zero-mean nonstationary processes built of non-decimated discrete wavelets [5], rather than harmonics \(\exp(i\omega t)\) like in (1).
A wavelet-based model for forecasting non-stationary processes

Definition 1 ([6]) A triangular stochastic array $X_{t,T}$ ($t = 0, \ldots, T - 1, T > 0$) is in the class of locally stationary wavelet (LSW) processes if there exists a mean-square representation

$$X_{t,T} = \sum_{j=-\lfloor \log_2 T \rfloor}^{\infty} \sum_{k=-\infty}^{\infty} w_{j,k:T} \psi_{jk}(t) \xi_{jk},$$

where j and k are scale and location parameters, respectively, $w_{j,k:T}$ are real constants, { $\psi_{jk(t)}$ } are a non-decimated family of discrete compactly supported wavelets [5]. ξ_{jk} is an orthonormal sequence of identically distributed zero mean random variables, and for each $j \leq -1$, there exists a Lipschitz-continuous function $W_{j}(z)$ on $[0, 1)$ such that

- $\sum_{j=-\infty}^{-1} W_j(z)^2 < \infty$ uniformly in $z \in [0, 1)$;
- the Lipschitz constants L_j satisfy $\sum_{j=-\infty}^{-1} 2^{-j} L_j < \infty$;
- there exists a sequence of constants C_j satisfying $\sum_{j=-\infty}^{-1} C_j < \infty$, such that, for all T,

$$\sup_{k=0, \ldots, T-1} |w_{j,k:T} - W_j(k/T)| \leq C_j/T.$$

By analogy with Dahlhaus [7], the time-varying quantity $W_j(z)$ is defined in rescaled time $z = t/T \in [0, 1)$. As the non-decimated wavelet system is overcomplete, the “amplitudes” $w_{j,k:T}$ are not uniquely defined and therefore not identifiable. However, due to the regularity of $W_j(z)$ in the rescaled time, the wavelet spectrum of $X_{t,T}$, defined by $S_j(z) := W_j(z)^2$, is unique. $S_j(z)$ measures the power of the process at a particular scale j and location z, and can be estimated by means of asymptotically unbiased multiscale estimators [6]. For stationary processes, $S_j(z)$ is independent of z for all j. Here, $j = -1$ denotes the finest scale.

As recalled in the Introduction, the autocovariance function of a stationary process is the Fourier transform of its spectral density. The next results shows an analogous link between the autocovariance function of an LSW process $X_{t,T}$, defined by $\psi_{j}(z, \tau) = \text{Cov}(X_{t,T}, X_{t+\tau,T})$, and its wavelet spectrum $S_j(z)$. We first define the autocorrelation wavelets $\Psi_j(\tau) = \sum_k \psi_{jk}(0) \psi_{jk}(\tau)$. They are symmetric with respect to τ and satisfy $\Psi_j(0) = 1$ for all scales. Also, like wavelets themselves, they enjoy good localisation properties.

Proposition 1 ([6]) Under the assumptions of Definition 1, $\| c_T - c \|_{L_2} = O(T^{-1})$, where

$$c(z, \tau) = \sum_{j=-\infty}^{-1} S_j(z) \Psi_j(\tau).$$

Function $c(z, \tau)$ is called the local autocovariance function (LACV) of $X_{t,T}$. Formula (3) is a multiscale representation of the nonstationary autocovariance function $c(z, \tau)$. The representation is unique because the set $\{ \Psi_j \}_j$ is linearly independent, [6]. By way of example, it can be proved [8] that $\sum_{j=-\infty}^{-1} 2^j |\Psi_j(\tau)| = \delta_0(\tau)$ holds, which implies, in particular, that the wavelet spectrum of (stationary) white noise is proportional to $S_j(z) = 2^j$.

3. Forecasting

We now want to forecast an LSW process h steps ahead, basing on t observations $X_{0:T}, \cdots, X_{t-1,T}$. We set $T = t + h$ and consider a linear predictor $\hat{X}_{t+h-1,T} = \sum_{s=0}^{t-1} b_{s+h} X_{s,T}$, where the coefficients b_{s+h} minimise the mean-square prediction error $E(\hat{X}_{t+h-1,T} - X_{t+h-1,T})^2$.

Proposition 2 ([8]) Assume \(h = o(T) \) and let the length of \(\psi_j \) be \(\ell_j \). Assume also:
\[
\sum_{\tau=0}^{\infty} \sup_{\tau} |c(z, \tau)| < \infty \quad \sum_{j<0} (C_j + \ell_j L_j) \ell_j < \infty \quad \text{ess inf}_{z\infty} \sum_{j<0} S_j(z) |\hat{\psi}_j(\omega)|^2 > 0,
\]
where \(\hat{\psi}_j(\omega) = \sum_{n=-\infty}^{\infty} \psi_j(n) \exp(\imath \omega n) \). The mean-square prediction error can be written as
\[
\tilde{b}^{(t,h)}/B^{(t+h:T)}(1 + o_T(1)),
\]
where \(B^{(t+h:T)}_{m,n} = c^{(n+m)/2}, n-m \), \(m, n = 0, \ldots t - 1 + h \), and \(\tilde{b}^{(t,h)} \) is the vector \((b^{(t,h)}_{-1}, b^{(t,h)}_{-h}, \ldots, b^{(t,h)}_{-h+1})\) with \(b^{(t,h)}_{-1}, \ldots b^{(t,h)}_{-h+1} = 0 \) and \(b^{(t,h)}_{-h} = 1 \).

In theory, the coefficients of \(\tilde{b}^{(t,h)} \) (and therefore \(b^{(t,h)} \)) are now found by minimising (4). In practice, however, the elements of \(B^{(t+h:T)} \) need to be estimated. It is easily observed [8] that Formula (3) suggests the following multiscale estimator of the LACV:
\[
\hat{\psi}_j^{(T)} = \sum_{s=0}^{T} \psi_j^{(s)}(s)
\]
where \(A_{mk} = \sum_{j=0}^{T} \psi_j^{(s)}(s) \). The above estimator is asymptotically unbiased [8]. Also, it can be shown by simulation, and by exact calculation in some particular cases, that the above estimator enjoys better Mean-Square Error properties than other commonly used (asymptotically) unbiased estimators of local covariance. However, it is not consistent (its variance does not go to zero with \(T \), [8]) and therefore has to be smoothed using e.g. a Gaussian kernel smoother with bandwidth \(g \). Moreover, in (4), we also require the values of \(c(k/T, \tau) \) for \(k = t, \ldots, t + h - 1 \). Motivated by its slow evolution, we extrapolate the LACV by one-sided smoothing of the estimated autocovariances with the same bandwidth \(g \). The next section discusses a data-driven method for choosing the smoothing parameter \(g \).

4. The forecasting algorithm

As mentioned before, we estimate the entries of \(B^{(t+h:T)} \) using (5) smoothed over \(k/T \) to achieve consistency. For simplicity, we choose the same bandwidth \(g \) for all \(\tau \). In this section and next, we only consider one-step-ahead forecasts.

Also, in practice, we only incorporate \(p \) past observations into the predictor, instead of the whole history of the process, which corresponds to only considering the bottom-right corner of \(B^{(t+h:T)} \). The motivation behind this is that the “clipped” predictor often performs much better in practice, while also being less computationally expensive.

We select \((g, p)\) by adaptive forecasting, i.e. we gradually update \((g, p)\) according to the success of prediction. We first move backwards by \(s \) observations and choose the initial parameters \((g_0, p_0)\) for forecasting \(X_{t-s:T} \). Next, we forecast \(X_{t-s+1:T} \) using not only \((g_0, p_0)\) but also the 8 neighbouring pairs \((g_0 + \delta \varepsilon_p, p_0 + \varepsilon_p)\), for \(\varepsilon_p \in \{-1, 0, 1\} \) and \(\delta \) fixed. As we already know the true value of \(X_{t-s:T} \), we compare the 9 forecasts using a pre-selected criterion, and update \((g, p)\) to be equal to the pair which gave the best forecast. We now use this updated pair, as well as its 8 neighbours, to forecast \(X_{t-s+1:T} \), and continue in the same manner until we reach \(X_{t-1:T} \). The updated pair \((g_1, p_1)\) is used to perform the actual prediction, and can itself be updated later if we wish to forecast \(X_{t+T}, X_{t+1:T}, \ldots \).

Various criteria can be used to compare the quality of the pairs of parameters at each step. Denote by \(\hat{X}_{t-i:T}(g, p) \) the predictor of \(X_{t-i:T} \) computed using pair \((g, p)\), and by \(P_{t-i:T}(g, p) \)
the length of the corresponding prediction interval. In [8], we propose the following criterion: choose the pair which minimises \[|X_{t-i, T} - \hat{X}_{t-i, T}(g, p)|/P_{t-i, T}(g, p). \] We suggest that the length \(s \) of the “training segment” be chosen in such a way that \(X_{t-i, p}, \ldots, X_{t-1} \) does not contain any apparent breakpoints observed after a visual inspection. To avoid dependence on the initial values \((p_0, g_0)\), the algorithm can be iterated a few times along the training segment, e.g. until at least 95% of the observations fall within their 95% prediction intervals.

5. Example

We apply the algorithm to forecast the wind anomaly index (denoted here by \(X_t \)), plotted on http://www.stats.bris.ac.uk/~mapzf/g24/wind.html. This time series has been studied in meteorology in order to understand the El Niño effect in a specific region of the Pacific. The length of the series is \(T = 910 \). By trial and error, we have found that the pair \((g_0, p_0) = (70/910, 7)\) produces accurate one-step-ahead forecasts for many segments of the series. However, the results for the segment \(X_{801}, \ldots, X_{840} \) using \((g_0, p_0)\) are extremely bad (only 5% of the observations fall within the 95% prediction intervals). Suppose that we want to forecast \(X_{841}, X_{842}, \ldots \). As we have no reason to believe that \((g_0, p_0)\) has a chance of performing well here, we run the algorithm of the previous section with \(s = 40, \delta = 1/910, \) and the criterion described in the previous section. Three iterations along the training segment (with the “new” \((g_0, p_0)\) always being set to the \((g_1, p_1)\) obtained in the previous iteration) are sufficient to obtain 95% coverage of the 95% prediction intervals. The updated parameters are \((g_1, p_1) = (114/910, 14)\). Indeed, they do an excellent job in forecasting \(X_{841}, \ldots, X_{848} \) one-step-ahead: over this segment, all the true values of \(X_t \) lie within their prediction intervals, and the main gain from using our procedure here is that the prediction intervals themselves are more than 15% narrower than those obtained from optimally fitted stationary ARMA models. A similar effect has been observed at several other points of the series. For other examples and more details, the reader is referred to [8].

References