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SUMMARY

We propose a locally stationary linear model for the evolutbf high-dimensional financial
returns, where the time-varying volatility matrix is molgel as a piecewise constant function
of time. We introduce a new wavelet-based technique fomesiing the volatility matrix, which 1
combines four ingredients: a Haar wavelet decompositiamniakice stabilization of the Haar
coefficients via the Fisz transform prior to thresholdingjas correction, and extra time-domain
thresholding, soft or hard. Under the assumption of spansi& demonstrate the interval-wise
consistency of the proposed estimators of the volatilityrixand its inverse in the operator
norm, with rates which adapt to the features of the targetirndd/e also propose a version of i
the estimators based on the polarization identity, whiaimjis a more precise derivation of the
thresholds. We discuss the practicalities of the algoritimeiuding parameter selection and how
to perform it online. A simulation study shows the benefitgshaf method, which is illustrated
using a stock index portfolio.

Some key wordsFinancial return; Haar—Fisz transformation; High dinmienality; Local stationarity; Sparsity; 2o
Thresholding; Volatility matrix; Wavelet.

1. INTRODUCTION

The estimation of volatility matrices, i.e., covariancetrices of multivariate asset returns, has
been a fundamental problem in financial statistics at ldaseghe seminal work of Markowitz
(1952, 1959). Allocating a Markowitz-efficient portfolia practice requires accurate estimations
of the associated volatility matrix and its inverse. In d&@otinteresting application, an estimate
of the volatility matrix is required in the estimation of facs and their loadings in the factor
analysis of panels of asset returns, see, e.g., Motta &Cdl1].

Volatility, be it univariate or multivariate, is a modelqoslendent quantity, and its interpretation
and estimation varies between models. For example, caoirgidéhe univariate situation, in the =
ARCH model (Engle, 1982) and its many subsequent variantadé & Hansen, 2005), volatil-
ity is understood as the variance of the returns processitcamal on its own past values; in
stochastic volatility modelling (Taylor, 1986; Andersdrag, 2009) it is the variance conditional
on a possibly external random process; in the non-statjoteterministic approach of Starica
& Granger (2005), Fryzlewicz (2005) and Fryzlewicz et aD@®), it is the unconditional local s
variance of the returns process.

The latter approach offers a particularly easy way of iniddg non-stationarity into volatil-
ity modelling. This is desirable, as some authors point bat the typical stylized facts of fi-
nancial returns data, i.e., heavy-tailed marginal distiilm and significant autocorrelation of
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absolute values and squares, can be better explained btingdo non-stationary models, see,
e.g., Mikosch & Starica (2004), Starica & Granger (2005) &ngzlewicz et al. (2008) for ar-
guments in the univariate case. Janeway (2009) goes futiteclaims that traditional models’
stationarity might have been a contributing factor in theerd financial crisis. In this work, we
consider multivariate volatility to be the local uncondital covariance matrix of asset returns,
which varies over time. Rodriguez-Poo & Linton (2001) andzééet al. (2006) both assume a
similar model, and use kernel smoothing for estimation.

When a fixed bandwidth is used, kernel volatility estimatats non-adaptive, which means
they evolve at the same speed, irrespective of the currerketneonditions, which many practi-
tioners find undesirable from the point of view of transattimsts. Thus, it makes sense to seek
more adaptive estimators of multivariate volatility, wiieould adjust their speed of evolution
as necessary. One such estimator is proposed by Hardleg(20@8B), who search for the longest
interval of approximate constancy of volatility via itexat hypothesis testing.

In this work, we model the time-varying multivariate voldyi as piecewise-constant, with the
number of change-points possibly increasing with the saraje and approaching each other
in rescaled time. This ensures that each component of oatilitgl matrix, viewed as a curve
over time, can approximate an arbitrary piecewise-contigucurve in the limit. We propose
a new wavelet-based technique for adaptive estimationeofithe-evolving correlation matrix
and covariance matrix of multivariate returns. The methouhltines Haar wavelets, nonlinear
wavelet thresholding and the variance-stabilizing Fiangformation. Haar wavelets are natural
here as they furnish estimators which automatically adat#rval-wise, to the piecewise con-
stant volatility in terms of their rates of convergence. §éestimators are fast to compute and
are also valid at the right-hand end of the data, i.e., attineent timet = T'.

We also propose an extra thresholding step in the time domdiich ensures that our estima-
tor remains useful also in the high-dimensional settingenghthe number of assets considered is
perhaps even higher than the effective number of obsensfar each asset, provided the target
volatility matrix is sparse. Bickel & Levina (2008) and El Kai (2008) proposed thresholding
estimators of a sparse stationary covariance matrix, antg\¥azZou (2010) adapted the for-
mer technique to the context of large stationary volatifitsitrix estimation for high-frequency
financial data. In this work, we consider low-frequency dhbt# in a non-stationary setting.

Classical function estimation via wavelet thresholdinghia function plus noise setting re-
quires that the standard deviation of the noise should bstanhover time. In our setting how-
ever, the standard deviation of the sample local crossriamee is a function of the local cross-
covariance itself, and thus variance stabilization is iregli We adapt and use the Haar—Fisz
technique (Fryzlewicz & Nason, 2004; Fryzlewicz, 2008imich, roughly speaking, empirical
wavelet coefficients are standardized by the local maximikatihood estimates of their own
standard deviations, which ensures variance stabilizalibis technique was applied to univari-
ate volatility estimation in Fryzlewicz et al. (2006); howee, critical and interesting differences
arise in the multivariate setting.

2. THE MULTIVARIATE MODEL

Let X;r(t=1,...,T), be ap-dimensional process of daily, or less frequent, log-regur
on financial instruments, with component§ ;1 for j = 1,...,p, wherep can be large and
possibly larger thafl”. Marginally, eachX; ; 7 is modelled as

Xjor=0;(t/T)ejy, (1)
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whereo;(u) is a positive left-continuous piecewise-constant furrctis « € (0, 1], bounded
from above and away from zero, with an unknown number of junfpsknown locations and

magnitudes. The vector random variables= (¢14,...,e,+)" are independent, and distributeds
ase; ~ N{0,['(t/T)}, where the elements of the x p matrix T'(t/T) = {p;;(t/T)}} ;-

are such thap; ;(u) =1, and p; ;(u) (¢ # j) is a left-continuous piecewise-constant function,
with an unknown number of jumps of unknown locations and nitades. LetX(¢/T) =
{ci;(t/T)}] =, denote the variance matrix ok;r, and let D(¢,T) be a diagonalp x p
matrix with o;(¢/T) (i = 1,...,p) on the diagonal. We have the decompositB(t/T) =
D(t/T)I'(t/T) D(t/T). Marginally, eachX;; r follows the univariate model of Fryzlewicz
et al. (2006).

Here,X(u), or alternatively the paif D?(u),T'(u)}, can be viewed as the time-dependent pa-
rameter of the proposed model. Note thdt:) is defined over the intervdD, 1], which is com-
mon practice in nonparametric regression in order to enaglaningful estimation theory. We o
assume that the jumps x(«) can approach each other in rescaled time, and ther&fargcan
approximate continuous or piecewise continuous vohatitiiatrices. Piecewise-constant mod-
elling of multivariate volatilities was also considered Wrdle et al. (2003).

3. HAAR-FISZ ESTIMATION OF THE VOLATILITY MATRIX X(u)
3-1. Methodology and theory 100

We first consider the estimation of a single time-varying ponent of the matrix:(u), i.e.,
the functionc; ;(u), from a single stretch of observatior{uXLt,TXl,t’T}thl. Our theoretical re-
sults concern the quality of the estimation of the entirerix&t(«) in the operator norm. The
starting point to our estimation procedure is the formolati

XigrXier = cig(t)T) + XipoXier — cig(t/T) = ciy(t)T) + &ie,rs

where the noisg; ; ; 1 is such that (&, ; . ) = 0. The Gaussianity ok, r implies that 105

Var(& o) = cii(t/T)e (t/T) + cfvl(t/T). (2)

Our estimator of; ;(u) will be based on Haar wavelets, which we briefly introduceolel
there are several excellent monographs on wavelets istatatiincluding Vidakovic (1999).

The input to our Haar-Fisz estimation algorithm is the VB({Wz‘,t,TXz,t,T}thli here, we
assume that’ is an integer power of two and denote= log, T'. The algorithm follows.

Stepl. For all of the following combinations of indiceén, v) = (i,4), (I,1), (i,1), compute 1o
the Haar decompositions ¢1X,, ; 7 X, 1}, Obtaining the quantitiesﬁ",;“), dﬁ",;“) and§§",;“)
as follows. Letsy,;“) =X, rrXokr (k=1,...,27). Foreachj = J —1,J —2,...,0, recur-
sively form vectorssg»"’“), d§"’“), §§"’“) with elements:

) 2_1/2(5("’“) + st

Gk j+1,2k—1 i) dg-?,;U):Q_l/Q(s("’“) ) ),

n,v

1,2k G41,2k—1 7 Sj412k
) = oU= D2 (g =1, 29,

Step2. Obtain the variance-stabilized coefficients via the Fiangformation

—1/2
@) _ @) | <) ) | (262
Fiw = dj {Sj,k: Sk T (%;k:) }
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Step3. Denoteug}j) = E(dﬁi;j)) Estlmatey(Z D py uﬁk = d]k I(|f; (” | > \) for scales

j=0,....J" with 2/" = 7'~ for somes € (0, 1), and Aglkl) =0 otherW|se wherd (-) is the
indicator function.

Step4. Take the inverse Haar transform @j‘i}j) to obtain an initial estimaté, ;(t/1") of the
covariance functiom; ;(t/T').

Stepb. Correct the estimate by replacing its value on each intarfzabnstancy by the local
average of the sequenQé(i,nTXl,t?T}tT:l over the same interval. Denote this bias-corrected
estimate by, ;(t/T).

Step6. If i # [, apply additional thresholding in the time domain, i.engtouct the final esti-
mate by either of the two operations

&) (¢/T) = &(t/T)I{|Ea(t/T)| > MEl2(t/T)e ) > (t/T)}  (hard thresholding)
e (t/T) = sign{@(t/T)} max{|&,(t/T)| — Mé&,. (t/T)))(t/T),0}  (soft thresholding)

denotingS™ (¢t/T) = {¢;, (h (t/T)}} =, andZt) (¢/T) _{ (/1)) il=1"

In view of (2) and the fact thag.f;f) is the local sample mean of the sgque{\ﬁ’qt?TXu,T}f:l
over the intervalt € [(k —1)2777 +1,...,k2777], the coefficientf(z’l) can be viewed as

a variance-stabilized, or studentized, version of the Hamefficient d( Y This variance-
stabilization step permits the use of a threshdlthdependent of scalg or location k. This
is in the spirit of the Haar—Fisz transform; see, e.g., lewitz & Nason (2004) and Fryzlewicz
(2008), both inspired by Fisz (1955). We refer to this vatestabilization as the Fisz transfor-

mation ofdé )tof k).

The bias correction in step 5 is non-standard in a wavelghasbn context, but essential for
the time-domain thresholding in step 6 to ensure that zevar@nces are estimated as exactly
zero with high probability, which helps reduce the overatireation error in the operator norm
under the assumption of sparsity.

As with the hard- and soft-thresholding covariance estimsaproposed for independent and
identically distributed data (Bickel & Levina, 2008; Rotamet al., 2009), our estimators are also
not guaranteed to be positive-definite in finite samples fioaritrary true covariance structure
and arbitrary\;. Even outside the estimation context, hard- or soft-ttoleldd covariance ma-
trices are not automatically positive-definite, as argureBickel & Levina (2008). However, as
our results later demonstrate, our estimators converg@dasidve definite limit with probability
tending to one. Alsox(*)(t/T") is guaranteed to be positive-definite for arbitrary finitepkes,
provided that\; is large enough. This is because unlike hard thresholdofgtteesholding is a
continuous operation and hence)asncreasesy.*) (t/T") converges continuously to the matrix
containingg¢; ;(t/1") on the diagonal and zeros elsewhere, which is positivedtefifiherefore,
>()(t/T) will necessarily be positive-definite from a certainonwards.

Shrinkage-type estimators for stationary covariance inetthave also been considered, e.g.,
in Haff (1980), Dey & Srinivasan (1985) and Ledoit & Wolf (280 In some nonparametric
models, one route to obtaining nonparametric functionrestirs which are exactly zero on
parts of their domain is through the fused lasso approaclibshirani et al. (2005), and our time
domain thresholding could in some cases serve as an altertathis technique.
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In order to analyse the behaviour of our estimator, we firsbduce some notation. For
anyp x p matrix M = (m@l)gl:l’ we denote its ordered eigenvaluesy.x (M) = A\ (M) >
co > Ap(M) = Amin(M). With ||v||2 denoting the, norm of a vectomw, the operator norm of s
M is defined ag|M|| = sup{||Mwvl|2 : ||v||2 =1}, and for symmetric matrices, e.g., covari-
ance matrices, is given byM || = maxi<;<, [Xi(M)]. It is well known (Golub & Van Loan,
1989, Section 2.3.3) that for symmetric matrices, we ha\l| < max; >, |m,,|. Further, let
3= (cu)ﬁ =1 be any constant volatility matrix. We define a class of spamestant volatil-
ity matrices ag{{co(p)} ={% : ¢;; =1, max; > ;_, I(c;y #0) < co(p)}, and a class of in- o
vertible sparse constant volatility matricestéscy(p),eo} ={X : £ € U{co(p)}, Amin(X) >
€0 > 0}. A dyadic interval is defined as any interval of the folifk — 1}277,k277] (j =
0,...,J —1;k=1,...,27). Our main result follows.

THEOREM 1. Assume that the true volatility matriX(u) satisfies the following:

() There exists a dyadic interval of length at leas2~~", such that for for eacti and/, the s
functionc; ;(u) is constant for allu € Z.

(i) Foreachi andl, if there are change-points i ;(u) to the left or right ofZ, then the nearest
one on either side is covered by a dyadic interval dean;gpon the left-hand side, and
Jfl on the right-hand side, of length at leadt”", containing no other change-point, not
intersecting withiZ and such that 170

i,l,m

2
min / {Cz‘,l(u) - |~7¢T,7|/ Cz‘,l(z)dz} du>CsT™?, Be(0,1-0). )
Jm T

i,

Further, assume that diad/?{>(Z)}2(Z)diag™"/?>{2(Z)} € U{co(p)}, and that its size is
at most of orderO(T*) for some fixed, > 0. Assume also that the elements of di@y(Z)}
are uniformly bounded from below and above by constantsalR#éwe notation p; ;(u) =
cZ-J(u)cl_,ll/Q(u)cl-_;/2 (u) andletc(A) = inf; yea c;i(u), €(A) = sup; 4 cii(u). Letthe thresh-

olds A and \; satisfy 175

1 1/2
Clog?’T >\ > [2{210gp+(1—6)10gT—I—log—H ,
ap/]"

1 1/2
AL > {2T1|I|1 (210g p + log —>} ,
a

p, T

M < {1+w/g<z>}1{ min|pu(Z)| —w/cm},

pi1(Z)#0
for someC' > 0, wherea,, 1 tends to zero a§' — oo but no faster tharD(7T—¢), and

_ log p +log ¢o(p) +loga, 1 2
w = 2¢(Z : .
T|Z|

The following holds with probability of at lea$t— C'; a, 1 for some positive; :

(a) The estimato:(")(u) is constant foru € 7 and such that\"”(Z) = 0 if ¢;;(Z) = 0 and
& (Z) is alocal sample mean of the sequeRé§ , 7X; ;. r}+ over a subintervat/T" € K; ;

il

whereZ C IC“ andci,l(I) = CM(,C“), if Ci,l(I) 7& 0. 180
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(b) We have

log p +log ¢o(p) +log a,, - 2
T|Z| '

I=M(T) = (D] < 2¢0(p)(T) {

(c) If, in addition, diag */2{%(Z)}2(Z)diag~'/?{2(Z)} € U{co(p), €0}, then

_ 1/2
log p +log co(p) +log a; b )"
T|1]

IEP@D) ! = @) < Cacolp) {

for some positive’s.

The parametef, which appears in step 3 of the estimation algorithm and atspoe magni-
tudes ofJ* andf3, is required to be less than 1 for various technical reasookiding guaran-
teeing uniform strong asymptotic normality@f;j) andsgf}?. The lower its value, the less strict
the assumptions (i) and (ii) of Theorem 1, i.e. the largerdass of volatilitiesX:(«) for which
our method is applicable, but, potentially, the worse thierdsounds in statements (b) and (c).
The variance-type condition (3) specifies how large, or heslaited, the nearest change-point
needs to be before our estimator reacts to it.

The reason why is not allowed to grow exponentially with is thatlog(p)/(T|Z|) needs
to tend to zero to lead to consistency; however, the onlyraptian aboutZ is that|Z| > 79!
with § being possibly arbitrarily close to zero.

The application of the variance-stabilizing Fisz transfation in the computation of}f,;l)
allows the threshold to be independent af ;(u). The lower bound for the threshol is also
independent of; ;(u) as it is calibrated under the hypothesis that, locallyiu) = 0.

Parameteus,, 7 determines the probability with which the results of Theotehold; the higher
the desired probability, the worse the error bounds. Asersthtionary set-up of Bickel & Levina
(2008), the magnitude of the error bounds specifies how Festsparsity parameteg(p) is
permitted to grow withp before consistency fails.

The convergence rates in Theorem 1 dependZgnso the estimator exhibits interval-wise
adaptation to the features of the target matrix. In practieristically speaking, this means
that our estimator, whose explicit form appears in statertenof Theorem 1, will tend to be
based on longer samples of data, thereby leading to moréysthanging estimated volatility, in
periods when the true volatility is changing slowly or noalitand on shorter samples in periods
of rapid changes in volatility. To the practitioner, the ffipotential benefit of this property is
reduction of unnecessary transaction costs, incurred esudt of changes in estimated volatility,
in periods of slowly changing volatility, compared to natagtive estimators such as those based
on GARCH-type models or exponential smoothing. The secotehial benefit is faster reaction
to significant changes in volatility in comparison with nadaptive estimators.

The extra thresholding in the time domain ensures stablertibiity of our estimator and
hence accurate estimation of the precision matrix as eg@tein statement (c) of Theorem 1.
The latter is of importance in tasks such as optimal podfaliocation in Markowitz’'s mean-
variance paradigm. A similar consistency result can be tbated for thex(*) (u) estimator, but
we omit it for lack of space.

3:2. Alternative approach via polarization identity

In this section, we propose an alternative to the initiainestor ¢; ;(¢/7"), based on the po-
larization identity X; ; 7 X ;7 = 1/4 {(Xit1 + X14,7)* — (Xit,r — Xi¢,7)?}. Define an op-
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eratorF by ¢; ;(t/T) = f({Xi,t,TXz,t,T}?zl)- Note thatZ is a nonlinear smoothing operator,
since it involves the nonlinear operation of thresholdigg\bThus, in general, by the polariza-x
tion identity,

¢ (t/T) # i {FUKier + Xoer) o) = FUXier — Xiar) 3o -

In this section, we propose and motivate the following akive toc; ;(t/T):
e(t/T) = - {F Xier + Xi7)* Y1) = FUXier — Xier) Y1) }

= i {(}z‘,l (t/T) - 51‘_,12(75/T)} :

Both X“,T + X7 and X; .7 — X, 7 follow the multiplicative modeISXZtT + Xier =

o; l(t/T) il and X r — Xir = 0,,(t/T)e; L where the functlonsr ,(t/T) are piecewise
constant,ezvlvt are independentV (0, 1) and a (t/T) = a?(t/T) +al (t/T) £2¢;,(t/)T). s
Thus, to estimate:5?(¢/T), and therefore compu&fl t/T), we can use the algorithm §8-1
with {(X; .7 + XUZT)? L | as input. Itis possible to derive the exact distributionhaf torre-
sponding Haar—Fisz coefficients @X; ;7 £ X ; T)2 denotedf(i’l’i) here to differentiate them
from f(” , under the null hypothesis of the local constancyﬁf" (t/T') over the corresponding

sub-interval, which leads to a more accurate, non-asyiegptetection of the thresholdl. To see 2o
this, first note that

d(zvlvi)
f(z,l,i i,k
o(1+5—J)/2 (z}:i)

k—1/2)27-3 koJ—J
Zi (k;/l))QJ it19 t/T) zlt Zt (k—1/2)27-3+1 zl (t/T) zlt

k 122'] J k2J—J
ZE (k/l 97-i41 ¥ (t/T) zlt+Zt (k—1/2)27 3 +1 o2 (t/T)e

which, under the local hypothesis of constancyrélf2 (t/T), with a 2(t/T) # 0, leads to

_ o1

S (b—1/220 g2l E2
2(j+1—J)/2f(i,l,:|:) t=(k—1)27-741 z,l,t t=(k—1/2)27 =741 €1t
Js (k—1/2)27 i k2J—j :

D (kTy2 i 41 e+ e 1/2)27-3 41 &%

However, by Lemma 1 of Fryzlewicz et al. (200(‘2)<,J’+1—J)/2fJ.Z,;l’i in (4) is distributed as
2Y — 1, whereY ~ 3(277772,2/-i=2) Knowledge of this distribution can lead to the choice of
A based on the exact quantiles of the beta distribution; trigrasts with the results of Theorem s
where the choice of is based on strong asymptotic normality arguments. Thelalison of the
Haar—Fisz coefficients is only readily available in the cafsthe polarized estimatcﬁ’D ,(t/T);

(4)

indeed, it is not clear how to obtain the exact distributibrf ﬁc i.e., the Haar—Fisz coefficients
in the computation of the non-polarized estimatgt(t/T"), whem # 1.
As an example of how the knowledge of the dlSthbutIOﬂfﬁ; can help in selecting 2o

the threshold)\, which can possibly depend on the scaland will therefore be denoted by
)\], consider the case where the true volatility is const&it) = . To ensure that our ini-

tial polarized estimatoE” (u) = {& 1(t/T)};,—, is also constant with probability no less than

1 —ayr, it is sufficient to require thapr(U; ,U; , U }\f}i,;l’s)\ > );) < a, 7. Setting

se{+,—
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pr(|f](f,;l’s)| > S\j) to be independent of and using the Bonferroni inequality, the above is im-

plied by 2p?>T*—%pr(|20+1-7)/2 fj(.il;l’s)| > 2U+1=0)/2 \,) = a,, 7, which can easily be solved
numerically for eacly separately using the quantiles of the relevant beta disipil.

4. PRACTICALITIES, ONLINE ALGORITHM AND SIMULATION STUDY
4-1. Current interval of stationarity

In the following, we take(u) to denoteX(™) (u) or (%) (u), andé; ;(u) to denote the entries
of ¥(u). Having observed r, (s = 1,...,t), the practitioner will be particularly interested in
Y(t/T), the value of the estimator at the current timén the algorithm of;3-1, each estimate
¢;,1(t/T) is a possibly thresholded average{of;  7X; ; 1} over a certain interval'; ; ending
at s = t. Empirically, it has been found thai(¢/T) is more stably invertible if all of its entries
are, possibly thresholded, average$ &t , 7 X; s 7} over anintervall’KC ending ats = ¢ whose
length is constant overand!. In practice, we choosk to be the shortest out of the intervals
KCi; over alli andl.

In this and the following paragraph, we use the notafitdy to emphasize the dependence of
the common interval 'K, selected as above, on the current tiimk an online settingi(t/T)
will be recalculated with the arrival of each new obsernvatlg 7, leading to a certain sequence
of intervals of stationarity{ 7K, };. Let their lengths be denoted ¥ ;|. As an example, if the
sequencél'K;| progresses over timeas. . ., 64,64, 64,16, 64, 64, .. ., then the 16 is likely to
be the result of a type-I error, i.e. detection of a changetpehen there are none, and will lead
to the estimatok(¢/7") having an unnecessary blip for the correspondirifp rectify this, we
propose to use a smoothed versiorf@f;, denoted byl'K’; and constructed such tHAK; ends
att and|TK;| = Mode(|TKi—m+1], - .., |TK:]). We usem = 10 in the remainder of the paper.
This ensures elimination of blips such as those in the abeample.

Due to the dyadic structure of the Haar transform, the iaisf/C; are likely to be of dyadic
length, as in the example from the previous paragraph. Herwvévan online context, as a new
observation arrives, the interval of stationarity shouldally have the property that its length
either increases by one if no new change-point is detectedraps to the smallest permitted
length if a new change-point is detected. To enforce thipgty, we define interval$K;, end-
ing att and satisfyindTkC;| = |TK;_1| + 1if |TK;| = |TK:_1|, and|TK;| = |TK;| otherwise,
so that, e.g.|TK;| = (64,64, 64, 64, 16, 16) results in|TK;| = (64, 65, 66,67,16,17). The in-
tervalsTK; are used in the computation Bf«) in the remainder of the paper.

4.2. Selection of\;

Intuitively, the time-domain threshold; should be as small as possible while enabling stable
invertibility of X(¢/T). A natural candidate fon; is the lower bound of its permitted theo-
retical range from Theorem 1, that 27! |Z|~!(2log p + log a, 1-)}*/2. The lengthT’|Z| is
obviously unknown, but its nearest observable proxyis;|, which leads to our first proposed
choice of)\;, termed universal and defined By = {2|TK;|~!(21og p + log a;lT)}l/? Selec-
tion of a,, 7 is briefly discussed ii4-3. From our technical results in Appendix A, it can be seen
that the particular form of\{ is the effect of the Bonferroni inequality, and thdis is likely to
overestimate the amount of thresholding required.

Again from the technical results, it is apparent thatrepresents a bound, with high proba-
bility, on the entries of the sample correlation matrix aesi x p, for a sample of lengti’|Z|,
under the assumption that the true correlatiod,isthe identity matrix of sizep x p. A more
precise bound than that furnished by the Bonferroni inétyuein be obtained, e.g., by using
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the distributional results for the maximum entry of the segorrelation matrix, also called its
coherence, by Jiang (2004), based on the Chen-Stein P@ppooximation method; see alsaw
the refinements of this result in Li et al. (2012), Cai & Jia@§11) and Cai & Jiang (2012).

In §5, we use the following generic method for selecting To guard againsk being pos-
sibly too high, we start with\; = A} and gradually decrease it as long as a certain stability
condition is satisfied: for example, the condition numbex(f/T') is above a pre-specified pos-
itive constant, or the portfolio weights resulting frontt /T satisfy a certain desired constraintss
e.g. are not too unbalanced, which is a type of exposure reomista different form of which
was also discussed, e.g., in Fan et al. (2012)\Ylitself does not yield:(¢/T') satisfying the
desired stability condition); should be increased until the condition is satisfied: natedk);
increasesy.(¢/T) converges to a diagonal, and thus stably invertible, matrix

It is also possible to seledt; by applying the cross-validation technique of Bickel & Liesi 00
(2008) to the sample correlation matrix computed over therial T1C;.

4-3. Simulation study

We investigate the performance of our method, in an onlimgesa, in a set-up wherk(u)
changes abruptly at a certain point. We consider the case where the change is caused by the
introduction of one common factor to = p/2 of the components oX; -, which can be viewed s
as a caricature of a situation where some of the markets slydokecome more highly correlated.

We simulatep-variate Gaussian return; o of length 7' = 2048. We are particularly in-
terested in the more challenging problem of estimating tlusszcovariance, rather than the
marginal volatility, so we use; ;(u) = 1 throughout. The returns are mutually uncorrelated for
t < 1024. Fort > 1025, we have covX; 1, X 1) = p?if 1 <i# j <m,and0 otherwise. o

Over the entire time horizoff’ = 2048, we apply a moving windowk, k + 255] for k =
1,...,1793, and for eaclt, compute our estimatcfr),(j) = %()(1), that is, compute the estimator
at the right edge, indexdd+ 255, of the currently available data. The competitor is thenestor
il(j), the sample covariance estimator over the intefival + 255], thresholded using the same
A1 asX(®), for a fair comparison. We do not use any of the selectiorsride); from §4-2 as all s
of them rely on the interval'kC;, which does not feature at all in the sample covariance astim

In computingi(s), we use) = 0.5, which leads to the 3 finest scales of the Haar transform

being disregarded and to the minimum length of the intereflsonstancy ofi,(j) being 8,
ap,256 = log*1/2(256), the same rate as that furnished by classical universastiblging in
one-dimensional wavelet setting, and= {2 (2log p + (1 — d)log T — log a,.7)}'/2, which
is the lower end of the permitted range ofrom Theorem 1. Soft thresholding has been found
to perform better than hard, and hence we use the former.dfopleteness, we note than an
alternative to this choice of would be to use the polarization identity approach, or synfijple-
tune so that, e.g., empirical residuals in model (1) for eaplass a certain test for independence
and identical distribution, as described in the univarGse in Fryzlewicz et al. (2006). a5

To quantify the estimation accuracy, we use the quantitiesSEM(®)
P2 i s IS8 — Sll3 MSESC)) = p 2 0170000 [0 — S}, MSE((S¢) "1} =
P2 s ISR ! = ()71 MSE{(2() 71} = p=2 1 oos | (517) 71 —
(Zx)"!||%, averaged over00 simulations, where|| - || denotes the Frobenius norm and
Y1 is the true volatility matrix at time + 255. The range ok in the summations correspondss
exactly to the first 250 trading days after the change in tHatiity matrix at ¢ = 1024, and
therefore these error measures are designed to capture uroadaptive and the non-adaptive
sample covariance estimator react to the change.
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From Table 1, it is clear that our adaptive estimaidt) outperforms the non-adaptive esti-
= mator3(®) for the higher values op, and is not much worse fqr = 0.3. This is unsurprising
as being able to react quickly to a change in the correlatiorttsire matters more if the change
is more significant. The results seem to be relatively rotitst respect to\; for the estimation
of 2. For the estimation oE, ', the differences between the two estimators are more rgriki
for the lower values of\1, as these lead to better control of the bias, although natrgo £ 50,
s« Where too low a value ok, is likely to lead to instabilities in terms of invertibility

Table 1.Left column: ratios of MSEZ(®)) to MSEX(®)), the mean-square error of our esti-
mator to the mean-square error of the sample covariancenestir, for dimensionality =
6,10, 20, 50, respectively. Right column: ratios of MSEZ(*)) 1} to MSH (£(#))~1}, the mean-
square error of the inverse of our estimator to the mean-sgaeor of the inverse of the sample
covariance estimator, for the same

Estimation of%;, Estimation ofs; !

A=01 X =02 XN=03 A=01 X =02 X=03
p=203 1.07 1.04 1.04 p=03 1.07 1.03 1.04
p=0.6 0.90 0.89 0.93 p=0.6 0.90 0.90 0.94
p=0.9 0.52 0.49 0.52 p=0.9 0.58 0.69 0.78

AM=01 X =02 XN=03 AM=01 X =02 XN=03
p=0.3 1.01 1.01 1.01 p=0.3 1.04 1.01 1.02
p=10.6 0.84 0.87 0.90 p=0.6 0.89 0.89 0.92
p=0.9 0.45 0.46 0.50 p=20.9 0.53 0.68 0.78

AM=01 X =02 XN=03 AM=01 X =02 XN=03
p=0.3 1.01 1.01 1.01 p=0.3 1.04 1.01 1.02
p=0.6 0.80 0.81 0.91 p=0.6 0.95 0.84 0.92
p=0.9 0.41 0.41 0.48 p=0.9 0.48 0.65 0.77

A=01 A =02 X=03 AM=01 X =02 X=03
p=03 1 1 1 p=0.3 1 1 1.01
p=0.6 0.71 0.79 0.83 p=20.6 0.98 0.96 0.92
p=209 0.40 0.41 0.41 p=0.9 0.75 0.63 0.72

5. EXAMPLE

We consider the multivariate series of log-returns on thly déosing values of 12 stock in-
dices: All Ordinaries, AMEX Major Market Index, Bovespa, BUCAC 40, DAX, Dow Jones
Industrial Average, FTSE 100, Hang Seng, NASDAQ Compodiigkei and S&P 500, on

«s 1 = 4097 trading days ending on 26 October 2012. Marginally, all tegn series have been
normalized so that their sample variance destays equals one.

As in §4-3, we apply a moving windowk, k + 255] for k = 1,. .., 3841, and for eaclk, com-
pute our estimatoi,(j) = 2(5)(1), that is, compute the estimator at the right edge, indéxed
255, of the currently available data. Except for, we use the same parameter values dglid.

= LetT\") be the associated correlation estimator, [&), = diag(S\*) /25" diag $:(*)) /2,
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To select);, we follow the advice from34-2 and aim to select the lowest value »f
that still guarantees stable invertibility (ft(s), or alternativelyf,(j). For \; taking values
1/10,2/10,...,9/10, we compute the condition numbey, defined as the ratio of the largest
and the smallest eigenvalues,fqﬂﬁ), and the ratid;, of the maximum and minimum compo-
nents of the vecto(f,(j))*ll, wherel is the column vector of ones of length The quantityb,  ss
is a measure of the balancedness of the associated Markowifplio. For \; < 4/10, some
large condition numbers;, lead to instabilities in the inversion d?,gs), which in turn lead to
some extremely large values &f. These numerical instabilities do not appear to be present f
A1 > 5/10, so our recommendation would be to setto 5/10 or 6/10 for this portfolio.

In Figure 1, the largest peak in the marginal volatility of$8H 100 corresponds to the mos.
severe phase of the recent financial crisis; this is also VRTESE 100 and S&P 500 become
more correlated. There is a drop in the proportion of zerc%,(jﬁ around the same time, which
serves as yet another piece of evidence for the common wisklanmarkets tend to become
more correlated in times of crises. The adaptive charadténenestimators is apparent, with
some smooth sections but also some sharp jumps. 365
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A. PROOFS
Lemmas 1 and 2 concern the case where the marginal voiiif{«) are known and equal to one,
i.e., where the matriXD(u) is the identity matrix. In that case, the difference is that hﬁvef;f,;” =
dg;cl){l + (§§f;f))2}—1/2 and that the time-domain thresholding uses a constanthbices;. Lemma 3
reverts to the setting 6f3-1.

LEMMA 1. Assume that the true volatility matriXi(u) is constant and such thab(u) =X €
U{co(p)}, and that its sizey is at most of ordeiO(T*) for some fixed, > 0. Further, let the thresh-

olds) and, satisfyA > {2(2log p + (1 — 8)log T + log a, 1) }/2, a7
_ 1/2
log p + log ¢ +log a } 1/2
iy lesa| — 2{ g p+log <¥p) g p,T} > > {2T71 (210gp+10g ang)} 7
Ci,l '

wherea, 1 tends to zero a§ — oo but no faster tharO(7'~¢). The following holds with probability of
at leastl — C' ap 1 for some positive’; :

(@) Our estimatorE) (u) = £ is constant and such tha:?ﬁf})(t/T) =0if ¢;; =0 and Egﬁ)(ﬁ/T) =
-1 ZtT:LXi,t,TXl,t,T if ciy # 0.
(b) We have|S(") — 53| < 2¢o(p){log p + log co(p) + log a ;. }1/2T~1/2, 380
(c) If, in addition, X € U{co(p),e0}, then [|(Z))~1 — 51| < Coco(p){log p + log co(p) +
log a;fT}l/QT*W for some positive,.

Proof. Note thatégz)(t/T) will be constant if and only if allf;f,;l)| fall under the threshold. Using
the Bonferroni inequality, we have

J*

Jr 2
pr { Uy A)} <> 2pr (|31 > A) < maxpr (14530 > 2) €T, (AD)

j=0k=1 J=0
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Fig. 1. Various aspects of volatility estimates frdi.
Top left: the 8th diagonal component (if,(j), i.e. es-
timated marginal volatility of FTSE 100; top right: the
(8,12)th component of *), i.e. estimated correlation be-
tween FTSE 100 and S&P 500, with = 0.5; middle left:
length of the interval of stationarity in estimatilﬁ(s);
middle right: ¢, for A1 = 0.5 (solid), 0.6 (dashed)0.7
(dotted),0.8 (dotdash)0.9 (longdash); bottom lefth;, for
the same range of; ; bottom right: proportion of zeros in
52(*) for the same range of; .
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whereC, C1, Cs, . .. are generic fixed positive constants throughout the proefnéiv find a bound for zss
the right-hand side term under the assumption that C(log T')'/2. Of course the same bound will be
also valid for higher values of. Assessing first the probability term, we have

3 1, 1, /2 1, N ~(2, N
pqwm>gm@¢m>w1u<%} | H”wk%bﬁ%?cm<w
i, i, /2 ~(% N
o [0 {1 6P 1D - el 2 5]
X pr(|§§f}€l) — Ci,l' > SJ) (AZ)

By the convexity ofu(x) = 1 + 22,
1+ (8 (”)) > 1+ ¢+ 2¢0(3; (L )—c”) >1+c; 172|c”||s(l’)fci,l|. (A3)
Using this, we bound (A2) by

pr{Idi| > A1+ ¢ = 2leiald;) /2 + pr(sl) — el 2 85) = A+ B.

Starting with A, we have 390

i < /2
d(.’l) 1+02 7261' 0 !
RS LS Y i G (A%)
1/2 1+¢?
(1 +c§7l) i

Since ¢;; are Gaussian, there exigt > 0, v > 0 such thatE(|(e;te14 — cig)(1 + cil)*l/2|”) <
K"=2(n!)*, for all n > 3, uniformly overc;; € [-1,1]. Because of this, we are able to apply
Theorem 1 and the Corollary underneath it from Rudzkis ef{E378). In the notation of that pa-
per, computing first the quantith, we getA = 2(/=9)/2 /{2 max(K, 1)}. Since\ is logarithmic in

T, the parameteﬁ —0 unlformly over j as is detailed below, an2(/=7)/2 > 7%/2 \we have that s
AL+ ¢2) = 2]ei]d;) V2 (14 ¢2)) 712 = o[{20V=9)/2" T max(K, 1)~ }%], asT — oo, uniformly over;,

for all « > 0. By Theorem 1 from Rudzkis et al. (1978), we uniformly bouAd) from above by the
Gaussian tail probabilitg' exp{—X?/2 (1 + ¢Z, — 2|c;/6;)/(1 + c2,)}. Turning now toB3, we have

2(I=0)/2|550 _ ol 9-i)/25,
_ J.k " J
B= pr{ ATagE 2 v (A5)

The random variable on the left-hand side of the argumeihtsoptobability function in (A5) is almost the
same as that in (A4), except some different signs in the sumithiave no impact on our bounds. So, it iswo
boundable by the corresponding Gaussian tail probabitiien the same conditions ds In fact, we can
choose§j to be such that the thresholds in (A4) and (A5) are equal,adtiere is an exact match between
the convergence rates. Equating the thresholds, wa\yfet+ ¢?, — 2|c;,|0;) = 277762, which gives
o; = 27NN + 2779 (1 + ¢ )}/ — Aes ). Since is logarithmic inT', 6, is of orderO(T—%)
fora >0 unlformly overj. Thus, we bound + Bfromabovebyd + B =2 A < 2C exp{—-)?/2(1 + s
2, —2]ciald;)/(1+c2))} = 2C exp{—A2/2} exp{(N?|ci1|0;)/(1 + ¢2,)} < C1 exp{—A?/2}. Substi-
tuting this in (ALl), we bound it byC>, 7'~ exp(—A2/2). Thus, using the Bonferroni inequality again,
the probability offf,;l) not exceeding\ uniformly over all j, k,i,l can be bounded from above
by C3p*T'~% exp(—A?/2). Bounding this by the sequencg&a, r, we havel > {2(2log p + (1 —
8)log T +log a,, )}'/2, which proves the constancy of our estimafdt) with the required probability, s
for the range of\’s as in the statement of Lemma 1.

We now show thaﬁgﬁ) is zero if the true covarianceg ; is zero, uniformly ovet, !, with the re-
quired probability. Under the scenario that |9fljf,;”| < A, this is equivalent to showing thagf’m > M
for any ¢,! with probability not exceeding a multiple of, r. Using the same technique as above,
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for a fixed (i,1) we boundpr(|§8f’f)| > A1) < Oy exp(—A2T/2). Thus, using the Bonferroni inequal-
ity again, we haver(max; |§f)f’ll)| > A1) < Csp? exp(—A?T/2). Bounding this byC5a,, 7, we obtain
A1 > {2771 (2log p + log a;lT)}l/Q.

Finally, we show that applying such a threshalddoes not ruin the estimation of; in the case; ; #
0. Under the scenario that abf](f,;l)| < ), this is equivalent to showing th&‘((f’f)| < Ap for anyi, with
probability not exceeding a multiple af, r. For a fixed(z, ), we havepr(|§f)f’f)| < A1) < pr(|§éf’f) -
cial > leial — M) < pr{T2(50%) — cigl(L+ c2)) 7Y% > TY%(Jesa] — M)(1 +¢2,)"/?}. Assuming
that the threshold on the right-hand side is so low that themabapproximation still works, which
is sufficient to consider as the worst-case scenario, we ddboe above byCs exp{—T/2 (|c;i| —
M)*(1+¢f)) 71} < Csexp{—T/4(|ci1| — M\1)*}. To obtain a uniform bound across the entire matrix,
we first find the number of non-zerg;’s. Recalling that> € U{cy(p)}, we haved . >, I(ci; # 0) <
Yo max; y o, I(cin # 0) < peo(p). Thus, by the Bonferroniinequality, we haye(min, ; |§f)f’ll)| <A) <
Copco(p) exp{—T/4 min,, ,0(|c;i1| — A1)?}. Bounding the above b§sa,, ', we get27~/2{log p +
log ¢o(p) + log a;lT}l/2 + A1 < ming, 20 ||, which is satisfied as the left-hand side has a lower or-
der of magnitude than the right-hand side by the assumptibhemma 1. This completes the proof of
statement (a) of Lemma 1.

For the proof of statement (b), we first calculate the err@sitimating the non-zero entries. Proceeding
as above, we have
pr(i,ﬁﬁai’;o &) — cial > As) < peo(p) max pr(|357 — cial > As)

= peo(p) max pr(TY2(55) —eia|(L+c2) Y2 > TV (1 + 2))~1?)

1/1

< Crpeo(p) maxexp[=TA3/{2(1 + ¢f))}]

< Crpeo(p) exp(=TA3/4).

Equating this toCa,, 7, we geths = 27~ /2{log p + log ¢o(p) + loga 1.}'/2, which shows that the
maximum error isA3 with the required large probability. On the other hand, wegehshown above
that our estimator has a zero error fgr; = 0, uniformly over the entire matrix with probability at

least 1 — Cya, 7. Putting together these two facts, we boufd™) — 3| < max; 33, e — ¢ =

max; Y, IEZ(-,}E) — cialI(cii # 0) < Asco(p) = 2¢0(p)T—/*{log p + log co(p) +loga, 1}/2,  which
completes the proof of statement (b) of Lemma 1.

Finally, statement (c) follows sindg~("))~ — £ ~1|| is of the same order d&(*) — X|| uniformly
over the clasé({c(p), €0}, as in the proof of Theorem 1 in Bickel & Levina (2008). O

LEMMA 2. Assume that the true volatility matriX(u) satisfies the following:

(i) There exists a dyadic interval of length at leas2~7", such that for for eacti and!, the function
¢i,1(u) is constant for alky € 7.

(i) Foreachiandl, if there are change-points iy ; (u) to the left or right ofZ, then the nearest one on
either side is covered by a dyadic interval denatgtl on the left-hand side, and? on the right-hand

side, of length at least—7", containing no other change-point, not intersecting witand such that

2
min / {Cz‘,z(U) — |jz”ll|/ ciyl(z)dz} du>CsT™ P, Bel0,1-9). (AB)
T T

i,l,m

Further, assume that(Z) € U{co(p)}, and that its size is at most of ordeO(7¢) for some fixed > 0.
Let the thresholds and )\, satisfy

1/2
Cllog T)'/? > X > {2 {2log p+(1—2¢)log T+ 10g“;,1TH ’
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_ 1/2 _ 1/2
(D) — 2 log p + log co(p) + log ap}T > > 2(2log p + log ap}T)
' T|Z| - T|z] ’

min
ci,i(T)#0

for someC > 0, wherea,, 1 tends to zero a§” — oo but no faster tharO(7=¢). The following holds
with probability of at least — C a,, 1 for some positive; : 450

(@) Our estimatox(® (u) is constant for, € 7 and such thaq(._};) (Z)=0if¢;;(Z) =0 andéz(._};) (Z)isa
local sample mean of the sequer¢g,; , + X, v} over a subintervat/T € i whereZ C Kiand
CZ'J(I) = CZ'J(ICN), if Ciyl(I) 7& 0.

(b) We have|S((Z) — S(T)| < 2¢0(p)(TIZ])~/(log p + log co(p) + loga, 1)'/2.

(c) If, inaddition,X(Z) € U{co(p), €0}, then 485

b . . log p + log co(p) + logalj_lT 1z
{EP@) @ < Caalp) o ’

for some positive’s.

Proof. If there is a change-point in; ; (u) to the left ofu,, then, denoting 7> = | 7| and decom-
posing the sampled version of;(u) via a discrete Haar wavelet decomposition over the intef\a,
at scaleg > j, we obtain that only up to one coefficient at each sgakenon-zero. By (A6) and due
to the orthonormality of the discrete Haar transform, the @i the squared Haar coefficients from thisso
decomposition is at leagt; T'~”. At each scalegj, the only possibly non-zero squared Haar coeffi-
cient is at most of orde2’—7, where the constants of proportionality are uniform overéhtire matrix

since|c; ;(u)] < 1. Thus the sum of squared coefficients over the ignored sciles1,...,J — 1 is
of orderO(27=7") = O(T?%) < C, T?. Thus, the sum of squared Haar coefficients over the norrégho
scalesjo, ..., J* mustbe atleasf; T'—# — C, T° > C5 T'~#. Therefore, the largest non-squared Haas

coefficient must be of magnitude of at le&7"}/2~#/210g~ /2 T, since there are at moktg, 7' de-
composition scales. Denote hy(i, ) the scale at which the largest coefficient occurs, and nate th
Jo < 41(3,1) < J*. Similarly denote its location b¥; (i, 1).

We wish to investigate if the coefficiem’jff’(li)yl)gkl(iyl) survives thresholding. If it does, then with prob-
ability one, there will be a change-point i;(u) at v = uo wherew, is the right endpoint ofﬁl; 470
thus, there will be a change-point i;(u) located between the intervdl and its nearest chahge-
point to the left. But, using the same technique as in the fpofoLemma 1, we can show that
pr(min, |f<”l. ) () | < A) < Crapr.

Moreover, since all coefﬂmentﬁZ 2 computed over the interval of constan@yZ fall under the
threshoIdA with probability at Ieastl Csapr by Lemma 1, we have that for alland!, & ;(Z) = 4
(ITKi )~ Ztem le « X117, for a certainkC, ; O T wherec; ;(Z) = ¢;;(K;;), holds with proba-
bility at leastl — Cgap T.

Therefore, we have a similar situation to the framework ofmbea 1, where alF; ;(u) were, with
probability at leastl — Cga,  constant withu and equal to the sample means{d(’i,tyTlet,T}thl.
Here, the same kind of constancy holds but locally:éal(u) are constant for: € Z and each equals 4o
the sample mean ofX; ; 7 Xi ¢ 1}tex,, wherekC;; O Z. Thus, reproducing the argument of Lemma

1, we can show that with probability at least— Cya, r, we have thatéﬁz) (Z) =0 for all those
i and! for which ¢; (Z) = 0 if Ay > {277}|Z|~*(2log p +loga,, ;)}'/2. Similarly, with probabil-
ity at leastl — Cipa,,r, We have thaté(h)( ) =¢;,(Z) for all thoses,! for which ¢;;(Z) # 0 if

A1 < ming, (720 |cii(Z)| = 2(T|Z]) 1/2{10gp+10g co(p) +loga,, 1-}/2. This completes the proof s
of statement (a). The proofs of statements (b) and (c) pcbaealogously to those of the correspond-
ing statements in Lemma 1 by recalling thit ;| > |Z| and replacing” with T'|Z| where appropriaté&l
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LEMMA 3. Assume that the true volatility matriX:(u) =X is constant and such that
diag™/?(x)xdiag /(%) € U{co(p)}, and that its sizey is at most of ordetO(7¢) for some fixed
¢ > 0. Assume also that the elements of diagare uniformly bounded from below and above by con-
stants. Recall the notation ; = c;c; e c; —1/% and letc = inf; ¢; ; ande = sup; ¢; ;. Let the thresholds

Aand); satisfyd > [2{2log p+ (1 — §) log T + log %T}]uz,

_ 1/2
2(2lo, +loga "}
(1 + /o) (min |l — w/8) > M > | 8P Tlogapr) |
pii#0 T

wherea,, r tends to zero a§ — oo but no faster thar)(7¢), and

1/2
{logp+10g CO(p)JrlogaplT} !
w = 2C T ’ .

The following holds with probability of at least— C' a, 1 for some positive’; :

ws (@) Our estimators(™ (u) = £ is constant and such th&\ﬁh)(t/T) =0if¢;; =0and ‘(h)(t/T)

500

505

= thl XigrXierif ey # 0.

(b) We havg|S™) — S| < 2¢o(p)eT’~/2{log p + log co(p) + loga, 1}/
(c) If, in additon, diag!/?(x)udiag/3(2) € U{co(p), €0}, then [[(ZM)~1 —n-1| <

Caco(p)T~/*{log p + log co(p) + log a;lT}l/2 for some positive’s.

Proof. Proceeding as in the proof of Lemma 1, we have
pr (1751 3) = pe 121> 2 {0580 + 07} 1 4] et
LR i TR e NP PV SR Y
whereA = {|5:) — ¢,y < 8,857 — ci4] < 85,1583 — ca| < 8;}. Using (A3), we bound (A7) by
pr (14621 > 3 (s = B = )+ 2 2l } ) 4 )

1 ~ ~ 1/2
|d(z )| ciicry+ i — 0j(ciq+ ey — 05 + 2]eid])
S pr 1/2 >‘ : 2

(ciiciy+ ¢ ) / Ci,iClLL + ¢y

e < < (1,1 <
+pr(|sjf}€ — ¢l >0;) + pr(|s(Z 4 _ ciil > 6;) + pr(|s§7}€) —cri] > 65).

This leads to practically the same situation as in the préaeonma 1, and proceeding analogously, we
are able to bound the above by

A2 {Ci,icl,l +c) - 0;(cii 4 i — 85+ 2|cinl) }1

2 CiicLl + sz,l

2 25 (¢s — 5+ 2 2
:4Cexp (%) exp{)\ 6J(CZ7L+CZ,I 5] + |Ct,l|)} S CleXp (%)’

2(ciziciy +¢z))

4C exp

which leads to the same lower bound foas in the proof of Lemma 1.

We now show thaf( ) is zero if the true covarianag ; is zero, uniformly ovet, [, with the required
probability. For a ﬂxed(z 1), we use the same techmque as above with conditioning onethd s
{|s(()‘f) cii| < do, |50 V= el < o} to boundpr{|so 1)| > A\ (8§ (()Lf) ({l))l/Q} < Cyexp(—=MiT/2),
which leads to the same lower bound faras in the proof of Lemma 1.
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Finally, we show that applying such a threshold does not ruin the estimation ef ; in the case
¢ # 0. For a fixed(i, 1), using conditioning as above, we have 510

i (i) ~(1, (i, = 1/2 .
pr{l35 | < M550 )2} < pr [|S<(),’1l)| <A\ {(Cu + o) (c1a + 50)} ] +pr(A9).  (A8)

Arguing like in the proof of Lemma 1, there are no more thag(p) non-zero terms; ; and hence the
condition

(A9)

. [ log p +log co(p) + log a;_lT i
dg > 2¢ T /

guarantees that the terms(A°) in (A8) sum to at most a term of order, - across the entire matrix.
Using the lower bound faf, from (A9), we bound

; 3 N 1)2
pr {|§é1l)| <A1 {(sz +do)(c11 + 50)} }

e . 1/2
< pr |§é7’1l) —cig| > el — M {(Ci,i + do)(ci + 50)} ]

- . 1/2
T1/2|§éf’1l) el T1/? |:|pi,l| -\ {(1 +d00/cii) (1 + 50/01,1)} ]

(ciiciy+ ;)2 (1+p7,)"/?

:pr

o (T2 — il G |pit| — A max(1 + 8o/ i)
<p (Ci,icl,l +Cil)1/2 21/2 | .1 £0 Pil L 0/Cii s

which, analogously to the proof of Lemma 1, leads to 515

) {1og p+1og co(p) +loga, 1
T

1/2
} + A max(1 + go/Cz',i) < min |p; .,
i pi17#0

which agrees with the assumptions of Lemma 3. This comptheteproof of statement (a).
The proofs of statements (b) and (c) are like those of theogoals statements in Lemma 1, so we omit
them here. O

Proof of Theoreml. The proof uses Lemma 3 in the same way as the proof of Lemmas2Ligsema
1. The construction of the proof of Theorem 1 is analogoukab ¢f Lemma 2. We omit the details.[J s
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