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SUMMARY

We propose a locally stationary linear model for the evolution of high-dimensional financial
returns, where the time-varying volatility matrix is modelled as a piecewise constant function
of time. We introduce a new wavelet-based technique for estimating the volatility matrix, which 10

combines four ingredients: a Haar wavelet decomposition, variance stabilization of the Haar
coefficients via the Fisz transform prior to thresholding, abias correction, and extra time-domain
thresholding, soft or hard. Under the assumption of sparsity, we demonstrate the interval-wise
consistency of the proposed estimators of the volatility matrix and its inverse in the operator
norm, with rates which adapt to the features of the target matrix. We also propose a version of 15

the estimators based on the polarization identity, which permits a more precise derivation of the
thresholds. We discuss the practicalities of the algorithm, including parameter selection and how
to perform it online. A simulation study shows the benefits ofthe method, which is illustrated
using a stock index portfolio.

Some key words: Financial return; Haar–Fisz transformation; High dimensionality; Local stationarity; Sparsity; 20

Thresholding; Volatility matrix; Wavelet.

1. INTRODUCTION

The estimation of volatility matrices, i.e., covariance matrices of multivariate asset returns, has
been a fundamental problem in financial statistics at least since the seminal work of Markowitz
(1952, 1959). Allocating a Markowitz-efficient portfolio in practice requires accurate estimation25

of the associated volatility matrix and its inverse. In another interesting application, an estimate
of the volatility matrix is required in the estimation of factors and their loadings in the factor
analysis of panels of asset returns, see, e.g., Motta et al. (2011).

Volatility, be it univariate or multivariate, is a model-dependent quantity, and its interpretation
and estimation varies between models. For example, considering the univariate situation, in the 30

ARCH model (Engle, 1982) and its many subsequent variants (Lunde & Hansen, 2005), volatil-
ity is understood as the variance of the returns process conditional on its own past values; in
stochastic volatility modelling (Taylor, 1986; Andersen et al., 2009) it is the variance conditional
on a possibly external random process; in the non-stationary deterministic approach of Starica
& Granger (2005), Fryzlewicz (2005) and Fryzlewicz et al. (2006), it is the unconditional local 35

variance of the returns process.
The latter approach offers a particularly easy way of introducing non-stationarity into volatil-

ity modelling. This is desirable, as some authors point out that the typical stylized facts of fi-
nancial returns data, i.e., heavy-tailed marginal distribution and significant autocorrelation of
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absolute values and squares, can be better explained by resorting to non-stationary models, see,40

e.g., Mikosch & Starica (2004), Starica & Granger (2005) andFryzlewicz et al. (2008) for ar-
guments in the univariate case. Janeway (2009) goes furtherand claims that traditional models’
stationarity might have been a contributing factor in the recent financial crisis. In this work, we
consider multivariate volatility to be the local unconditional covariance matrix of asset returns,
which varies over time. Rodriguez-Poo & Linton (2001) and Herzel et al. (2006) both assume a45

similar model, and use kernel smoothing for estimation.
When a fixed bandwidth is used, kernel volatility estimatorsare non-adaptive, which means

they evolve at the same speed, irrespective of the current market conditions, which many practi-
tioners find undesirable from the point of view of transaction costs. Thus, it makes sense to seek
more adaptive estimators of multivariate volatility, which would adjust their speed of evolution50

as necessary. One such estimator is proposed by Härdle et al. (2003), who search for the longest
interval of approximate constancy of volatility via iterative hypothesis testing.

In this work, we model the time-varying multivariate volatility as piecewise-constant, with the
number of change-points possibly increasing with the sample size and approaching each other
in rescaled time. This ensures that each component of our volatility matrix, viewed as a curve55

over time, can approximate an arbitrary piecewise-continuous curve in the limit. We propose
a new wavelet-based technique for adaptive estimation of the time-evolving correlation matrix
and covariance matrix of multivariate returns. The method combines Haar wavelets, nonlinear
wavelet thresholding and the variance-stabilizing Fisz transformation. Haar wavelets are natural
here as they furnish estimators which automatically adapt,interval-wise, to the piecewise con-60

stant volatility in terms of their rates of convergence. These estimators are fast to compute and
are also valid at the right-hand end of the data, i.e., at the current timet = T .

We also propose an extra thresholding step in the time domain, which ensures that our estima-
tor remains useful also in the high-dimensional setting, where the number of assets considered is
perhaps even higher than the effective number of observations for each asset, provided the target65

volatility matrix is sparse. Bickel & Levina (2008) and El Karoui (2008) proposed thresholding
estimators of a sparse stationary covariance matrix, and Wang & Zou (2010) adapted the for-
mer technique to the context of large stationary volatilitymatrix estimation for high-frequency
financial data. In this work, we consider low-frequency data, but in a non-stationary setting.

Classical function estimation via wavelet thresholding inthe function plus noise setting re-70

quires that the standard deviation of the noise should be constant over time. In our setting how-
ever, the standard deviation of the sample local cross-covariance is a function of the local cross-
covariance itself, and thus variance stabilization is required. We adapt and use the Haar–Fisz
technique (Fryzlewicz & Nason, 2004; Fryzlewicz, 2008), inwhich, roughly speaking, empirical
wavelet coefficients are standardized by the local maximum likelihood estimates of their own75

standard deviations, which ensures variance stabilization. This technique was applied to univari-
ate volatility estimation in Fryzlewicz et al. (2006); however, critical and interesting differences
arise in the multivariate setting.

2. THE MULTIVARIATE MODEL

Let Xt,T (t = 1, . . . , T ), be ap-dimensional process of daily, or less frequent, log-returns80

on financial instruments, with componentsXj,t,T for j = 1, . . . , p, wherep can be large and
possibly larger thanT . Marginally, eachXj,t,T is modelled as

Xj,t,T = σj(t/T ) εj,t, (1)
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whereσj(u) is a positive left-continuous piecewise-constant function of u ∈ (0, 1], bounded
from above and away from zero, with an unknown number of jumpsof unknown locations and
magnitudes. The vector random variablesεt = (ε1,t, . . . , εp,t)

T are independent, and distributed85

as εt ∼ N{0,Γ(t/T )}, where the elements of thep× p matrix Γ(t/T ) = {ρi,j(t/T )}
p
i,j=1

are such thatρi,i(u) ≡ 1, andρi,j(u) (i 6= j) is a left-continuous piecewise-constant function,
with an unknown number of jumps of unknown locations and magnitudes. LetΣ(t/T ) =
{ci,j(t/T )}

p
i,j=1 denote the variance matrix ofXt,T , and letD(t, T ) be a diagonalp× p

matrix with σi(t/T ) (i = 1, . . . , p) on the diagonal. We have the decompositionΣ(t/T ) = 90

D(t/T ) Γ(t/T )D(t/T ). Marginally, eachXj,t,T follows the univariate model of Fryzlewicz
et al. (2006).

Here,Σ(u), or alternatively the pair{D2(u),Γ(u)}, can be viewed as the time-dependent pa-
rameter of the proposed model. Note thatΣ(u) is defined over the interval(0, 1], which is com-
mon practice in nonparametric regression in order to enablemeaningful estimation theory. We 95

assume that the jumps inΣ(u) can approach each other in rescaled time, and thereforeΣ(u) can
approximate continuous or piecewise continuous volatility matrices. Piecewise-constant mod-
elling of multivariate volatilities was also considered byHärdle et al. (2003).

3. HAAR–FISZ ESTIMATION OF THE VOLATILITY MATRIX Σ(u)

3·1. Methodology and theory 100

We first consider the estimation of a single time-varying component of the matrixΣ(u), i.e.,
the functionci,l(u), from a single stretch of observations{Xi,t,TXl,t,T }

T
t=1. Our theoretical re-

sults concern the quality of the estimation of the entire matrix Σ(u) in the operator norm. The
starting point to our estimation procedure is the formulation

Xi,t,TXl,t,T = ci,l(t/T ) +Xi,t,TXl,t,T − ci,l(t/T ) = ci,l(t/T ) + ξi,l,t,T ,

where the noiseξi,l,t,T is such thatE(ξi,l,t,T ) = 0. The Gaussianity ofXt,T implies that 105

Var(ξi,l,t,T ) = ci,i(t/T )cl,l(t/T ) + c2i,l(t/T ). (2)

Our estimator ofci,l(u) will be based on Haar wavelets, which we briefly introduce below;
there are several excellent monographs on wavelets in statistics, including Vidakovic (1999).

The input to our Haar–Fisz estimation algorithm is the vector {Xi,t,TXl,t,T }
T
t=1: here, we

assume thatT is an integer power of two and denoteJ = log2 T . The algorithm follows.

Step1. For all of the following combinations of indices:(η, υ) = (i, i), (l, l), (i, l), compute 110

the Haar decompositions of{Xη,t,TXυ,t,T }
T
t=1, obtaining the quantitiess(η,υ)j,k , d(η,υ)j,k ands̃(η,υ)j,k

as follows. Lets(η,υ)J,k = Xη,k,TXυ,k,T (k = 1, . . . , 2J ). For eachj = J − 1, J − 2, . . . , 0, recur-

sively form vectorss(η,υ)j , d(η,υ)j , s̃(η,υ)j with elements:

s
(η,υ)
j,k = 2−1/2(s

(η,υ)
j+1,2k−1 + s

(η,υ)
j+1,2k), d

(η,υ)
j,k = 2−1/2(s

(η,υ)
j+1,2k−1 − s

(η,υ)
j+1,2k),

s̃
(η,υ)
j,k = 2(j−J)/2s

(η,υ)
j,k (k = 1, . . . , 2j).

Step2. Obtain the variance-stabilized coefficients via the Fisz transformation

f
(i,l)
j,k = d

(i,l)
j,k

{

s̃
(i,i)
j,k s̃

(l,l)
j,k +

(

s̃
(i,l)
j,k

)2
}−1/2

.
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Step3. Denoteµ
(i,l)
j,k = E(d

(i,l)
j,k ). Estimateµ(i,l)

j,k by µ̂
(i,l)
j,k = d

(i,l)
j,k I(|f

(i,l)
j,k | > λ) for scales115

j = 0, . . . J∗ with 2J
∗

= T 1−δ for someδ ∈ (0, 1), andµ̂(i,l)
j,k = 0 otherwise, whereI(·) is the

indicator function.

Step4. Take the inverse Haar transform ofµ̂
(i,l)
j,k to obtain an initial estimatêci,l(t/T ) of the

covariance functionci,l(t/T ).

Step5. Correct the estimate by replacing its value on each intervalof constancy by the local120

average of the sequence{Xi,t,TXl,t,T }
T
t=1 over the same interval. Denote this bias-corrected

estimate bỹci,l(t/T ).

Step6. If i 6= l, apply additional thresholding in the time domain, i.e., construct the final esti-
mate by either of the two operations

c̄
(h)
i,l (t/T ) = c̃i,l(t/T )I{|c̃i,l(t/T )| > λ1c̃

1/2
i,i (t/T )c̃

1/2
l,l (t/T )} (hard thresholding),

c̄
(s)
i,l (t/T ) = sign{c̃i,l(t/T )}max{|c̃i,l(t/T )| − λ1c̃

1/2
i,i (t/T )c̃

1/2
l,l (t/T ), 0} (soft thresholding),

denotingΣ̄(h)(t/T ) = {c̄
(h)
i,l (t/T )}

p
i,l=1 andΣ̄(s)(t/T ) = {c̄

(s)
i,l (t/T )}

p
i,l=1.125

In view of (2) and the fact that̃s(i,l)j,k is the local sample mean of the sequence{Xi,t,TXl,t,T }
T
t=1

over the intervalt ∈ [(k − 1)2J−j + 1, . . . , k 2J−j ], the coefficientf (i,l)
j,k can be viewed as

a variance-stabilized, or studentized, version of the Haarcoefficient d(i,l)j,k . This variance-
stabilization step permits the use of a thresholdλ independent of scalej or locationk. This
is in the spirit of the Haar–Fisz transform; see, e.g., Fryzlewicz & Nason (2004) and Fryzlewicz130

(2008), both inspired by Fisz (1955). We refer to this variance stabilization as the Fisz transfor-
mation ofd(i,l)j,k to f

(i,l)
j,k .

The bias correction in step 5 is non-standard in a wavelet estimation context, but essential for
the time-domain thresholding in step 6 to ensure that zero covariances are estimated as exactly
zero with high probability, which helps reduce the overall estimation error in the operator norm135

under the assumption of sparsity.
As with the hard- and soft-thresholding covariance estimators proposed for independent and

identically distributed data (Bickel & Levina, 2008; Rothman et al., 2009), our estimators are also
not guaranteed to be positive-definite in finite samples for an arbitrary true covariance structure
and arbitraryλ1. Even outside the estimation context, hard- or soft-thresholded covariance ma-140

trices are not automatically positive-definite, as argued in Bickel & Levina (2008). However, as
our results later demonstrate, our estimators converge to apositive definite limit with probability
tending to one. Also,̄Σ(s)(t/T ) is guaranteed to be positive-definite for arbitrary finite samples,
provided thatλ1 is large enough. This is because unlike hard thresholding, soft thresholding is a
continuous operation and hence asλ1 increases,̄Σ(s)(t/T ) converges continuously to the matrix145

containingc̃i,i(t/T ) on the diagonal and zeros elsewhere, which is positive-definite. Therefore,
Σ̄(s)(t/T ) will necessarily be positive-definite from a certainλ1 onwards.

Shrinkage-type estimators for stationary covariance matrices have also been considered, e.g.,
in Haff (1980), Dey & Srinivasan (1985) and Ledoit & Wolf (2003). In some nonparametric
models, one route to obtaining nonparametric function estimators which are exactly zero on150

parts of their domain is through the fused lasso approach of Tibshirani et al. (2005), and our time
domain thresholding could in some cases serve as an alternative to this technique.
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In order to analyse the behaviour of our estimator, we first introduce some notation. For
anyp× p matrixM = (mi,l)

p
i,l=1, we denote its ordered eigenvalues byλmax(M) = λ1(M) ≥

· · · ≥ λp(M) = λmin(M). With ‖v‖2 denoting thel2 norm of a vectorv, the operator norm of 155

M is defined as‖M‖ = sup{‖Mv‖2 : ‖v‖2 = 1}, and for symmetric matrices, e.g., covari-
ance matrices, is given by‖M‖ = max1≤i≤p |λi(M)|. It is well known (Golub & Van Loan,
1989, Section 2.3.3) that for symmetric matrices, we have‖M‖ ≤ maxl

∑

i |mi,l|. Further, let
Σ = (ci,l)

p
i,l=1 be any constant volatility matrix. We define a class of sparseconstant volatil-

ity matrices asU{c0(p)} = {Σ : ci,i = 1, maxi
∑p

l=1 I(ci,l 6= 0) ≤ c0(p)}, and a class of in- 160

vertible sparse constant volatility matrices asU{c0(p), ǫ0} = {Σ : Σ ∈ U{c0(p)}, λmin(Σ) ≥
ǫ0 > 0}. A dyadic interval is defined as any interval of the form({k − 1}2−j , k2−j ] (j =
0, . . . , J − 1; k = 1, . . . , 2j). Our main result follows.

THEOREM 1. Assume that the true volatility matrixΣ(u) satisfies the following:

(i) There exists a dyadic intervalI of length at least2−J∗

, such that for for eachi and l, the 165

functionci,l(u) is constant for allu ∈ I.
(ii) For eachi and l, if there are change-points inci,l(u) to the left or right ofI, then the nearest

one on either side is covered by a dyadic interval denotedJ 1
i,l on the left-hand side, and

J 2
i,l on the right-hand side, of length at least2−J∗

, containing no other change-point, not
intersecting withI and such that 170

min
i,l,m

∫

Jm
i,l

{

ci,l(u)− |Jm
i,l |

∫

Jm
i,l

ci,l(z)dz

}2

du ≥ C3T
−β, β ∈ [0, 1 − δ). (3)

Further, assume that diag−1/2{Σ(I)}Σ(I)diag−1/2{Σ(I)} ∈ U{c0(p)}, and that its sizep is
at most of orderO(T ζ) for some fixedζ > 0. Assume also that the elements of diag{(Σ(I)}
are uniformly bounded from below and above by constants. Recall the notation ρi,l(u) =

ci,l(u)c
−1/2
l,l (u)c

−1/2
i,i (u) and letc(A) = inf i,u∈A ci,i(u), c̄(A) = supi,u∈A ci,i(u). Let the thresh-

oldsλ andλ1 satisfy 175

C log1/2 T ≥ λ ≥

[

2

{

2 log p+ (1− δ) log T + log
1

ap,T

}]1/2

,

λ1 ≥

{

2T−1|I|−1

(

2 log p+ log
1

ap,T

)}1/2

,

λ1 ≤ {1 +̟/c(I)}−1

{

min
ρi,l(I)6=0

|ρi,l(I)| −̟/c̄(I)

}

,

for someC > 0, whereap,T tends to zero asT → ∞ but no faster thanO(T−ζ), and

̟ = 2c̄(I)

{

log p+ log c0(p) + log a−1
p,T

T |I|

}1/2

.

The following holds with probability of at least1− C1 ap,T for some positiveC1:

(a) The estimator̄Σ(h)(u) is constant foru ∈ I and such that̄c(h)i,l (I) = 0 if ci,l(I) = 0 and

c̄
(h)
i,l (I) is a local sample mean of the sequence{Xi,t,TXl,t,T }t over a subintervalt/T ∈ Ki,l

whereI ⊆ Ki,l andci,l(I) = ci,l(Ki,l), if ci,l(I) 6= 0. 180
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(b) We have

‖Σ̄(h)(I)− Σ(I)‖ ≤ 2c0(p)c̄(I)

{

log p+ log c0(p) + log a−1
p,T

T |I|

}1/2

.

(c) If, in addition, diag−1/2{Σ(I)}Σ(I)diag−1/2{Σ(I)} ∈ U{c0(p), ǫ0}, then

‖(Σ̄(h)(I))−1 −Σ(I)−1‖ ≤ C2c0(p)

{

log p+ log c0(p) + log a−1
p,T

T |I|

}1/2

for some positiveC2.

The parameterδ, which appears in step 3 of the estimation algorithm and impacts the magni-
tudes ofJ∗ andβ, is required to be less than 1 for various technical reasons,including guaran-185

teeing uniform strong asymptotic normality ofd(i,l)j,k ands(i,l)j,k . The lower its value, the less strict
the assumptions (i) and (ii) of Theorem 1, i.e. the larger theclass of volatilitiesΣ(u) for which
our method is applicable, but, potentially, the worse the error bounds in statements (b) and (c).
The variance-type condition (3) specifies how large, or how isolated, the nearest change-point
needs to be before our estimator reacts to it.190

The reason whyp is not allowed to grow exponentially withT is that log(p)/(T |I|) needs
to tend to zero to lead to consistency; however, the only assumption aboutI is that|I| ≥ T δ−1

with δ being possibly arbitrarily close to zero.
The application of the variance-stabilizing Fisz transformation in the computation off (i,l)

j,k

allows the thresholdλ to be independent ofci,l(u). The lower bound for the thresholdλ1 is also195

independent ofci,l(u) as it is calibrated under the hypothesis that, locally,ci,l(u) = 0.
Parameterap,T determines the probability with which the results of Theorem 1 hold; the higher

the desired probability, the worse the error bounds. As in the stationary set-up of Bickel & Levina
(2008), the magnitude of the error bounds specifies how fast the sparsity parameterc0(p) is
permitted to grow withp before consistency fails.200

The convergence rates in Theorem 1 depend on|I|, so the estimator exhibits interval-wise
adaptation to the features of the target matrix. In practice, heuristically speaking, this means
that our estimator, whose explicit form appears in statement (a) of Theorem 1, will tend to be
based on longer samples of data, thereby leading to more slowly-changing estimated volatility, in
periods when the true volatility is changing slowly or not atall, and on shorter samples in periods205

of rapid changes in volatility. To the practitioner, the first potential benefit of this property is
reduction of unnecessary transaction costs, incurred as a result of changes in estimated volatility,
in periods of slowly changing volatility, compared to non-adaptive estimators such as those based
on GARCH-type models or exponential smoothing. The second potential benefit is faster reaction
to significant changes in volatility in comparison with non-adaptive estimators.210

The extra thresholding in the time domain ensures stable invertibility of our estimator and
hence accurate estimation of the precision matrix as evidenced in statement (c) of Theorem 1.
The latter is of importance in tasks such as optimal portfolio allocation in Markowitz’s mean-
variance paradigm. A similar consistency result can be formulated for thēΣ(s)(u) estimator, but
we omit it for lack of space.215

3·2. Alternative approach via polarization identity
In this section, we propose an alternative to the initial estimator ĉi,l(t/T ), based on the po-

larization identityXi,t,TXl,t,T = 1/4
{

(Xi,t,T +Xl,t,T )
2 − (Xi,t,T −Xl,t,T )

2
}

. Define an op-
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eratorF by ĉi,l(t/T ) = F({Xi,t,TXl,t,T }
T
t=1). Note thatF is a nonlinear smoothing operator,

since it involves the nonlinear operation of thresholding by λ. Thus, in general, by the polariza-220

tion identity,

ĉi,l(t/T ) 6=
1

4

{

F({(Xi,t,T +Xl,t,T )
2}Tt=1)−F({(Xi,t,T −Xl,t,T )

2}Tt=1)
}

.

In this section, we propose and motivate the following alternative toĉi,l(t/T ):

ĉPi,l(t/T ) =
1

4

{

F({(Xi,t,T +Xl,t,T )
2}Tt=1)−F({(Xi,t,T −Xl,t,T )

2}Tt=1)
}

=
1

4

{

σ̂+2
i,l (t/T )− σ̂− 2

i,l (t/T )
}

.

Both Xi,t,T +Xl,t,T and Xi,t,T −Xl,t,T follow the multiplicative modelsXi,t,T +Xl,t,T =
σ+
i,l(t/T )ε

+
i,l,t andXi,t,T −Xl,t,T = σ−

i,l(t/T )ε
−
i,l,t, where the functionsσ±

i,l(t/T ) are piecewise

constant,ε±i,l,t are independentN(0, 1), and σ± 2
i,l (t/T ) = σ2

i (t/T ) + σ2
l (t/T )± 2ci,l(t/T ). 225

Thus, to estimateσ± 2
i,l (t/T ), and therefore computêcPi,l(t/T ), we can use the algorithm of§3·1

with {(Xi,t,T ±Xl,t,T )
2}Tt=1 as input. It is possible to derive the exact distribution of the corre-

sponding Haar–Fisz coefficients of(Xi,t,T ±Xl,t,T )
2, denotedf (i,l,±)

j,k here to differentiate them

from f
(i,l)
j,k , under the null hypothesis of the local constancy ofσ± 2

i,l (t/T ) over the corresponding
sub-interval, which leads to a more accurate, non-asymptotic selection of the thresholdλ. To see 230

this, first note that

f
(i,l,±)
j,k =

d
(i,l,±)
j,k

2(1+j−J)/2s
(i,l,±)
j,k

= 2(J−j−1)/2

∑(k−1/2)2J−j

t=(k−1)2J−j+1
σ± 2
i,l (t/T )ε

± 2
i,l,t −

∑k 2J−j

t=(k−1/2)2J−j+1 σ
± 2
i,l (t/T )ε± 2

i,l,t
∑(k−1/2)2J−j

t=(k−1)2J−j+1
σ± 2
i,l (t/T )ε

± 2
i,l,t +

∑k 2J−j

t=(k−1/2)2J−j+1 σ
± 2
i,l (t/T )ε± 2

i,l,t

,

which, under the local hypothesis of constancy ofσ± 2
i,l (t/T ), with σ± 2

i,l (t/T ) 6= 0, leads to

2(j+1−J)/2f
(i,l,±)
j,k =

∑(k−1/2)2J−j

t=(k−1)2J−j+1
ε± 2
i,l,t −

∑k 2J−j

t=(k−1/2)2J−j+1 ε
± 2
i,l,t

∑(k−1/2)2J−j

t=(k−1)2J−j+1
ε± 2
i,l,t +

∑k 2J−j

t=(k−1/2)2J−j+1 ε
± 2
i,l,t

. (4)

However, by Lemma 1 of Fryzlewicz et al. (2006),2(j+1−J)/2f
(i,l,±)
j,k in (4) is distributed as

2Y − 1, whereY ∼ β(2J−j−2, 2J−j−2). Knowledge of this distribution can lead to the choice of
λ based on the exact quantiles of the beta distribution; this contrasts with the results of Theorem 1235

where the choice ofλ is based on strong asymptotic normality arguments. The distribution of the
Haar–Fisz coefficients is only readily available in the caseof the polarized estimator̂cPi,l(t/T );

indeed, it is not clear how to obtain the exact distribution of f (i,l)
j,k , i.e., the Haar–Fisz coefficients

in the computation of the non-polarized estimatorĉi,l(t/T ), wheni 6= l.

As an example of how the knowledge of the distribution off
(i,l,±)
j,k can help in selecting 240

the thresholdλ, which can possibly depend on the scalej and will therefore be denoted by
λ̃j , consider the case where the true volatility is constant,Σ(u) = Σ. To ensure that our ini-
tial polarized estimator̂ΣP (u) = {ĉPi,l(t/T )}

p
i,l=1 is also constant with probability no less than

1− ap,T , it is sufficient to require thatpr(
⋃

i,l

⋃

j,k

⋃

s∈{+,−} |f
(i,l,s)
j,k | ≥ λ̃j) ≤ ap,T . Setting
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pr(|f
(i,l,s)
j,k | ≥ λ̃j) to be independent ofj and using the Bonferroni inequality, the above is im-245

plied by 2p2T 1−δpr(|2(j+1−J)/2 f
(i,l,s)
j,k | ≥ 2(j+1−J)/2 λ̃j) = ap,T , which can easily be solved

numerically for eachj separately using the quantiles of the relevant beta distribution.

4. PRACTICALITIES, ONLINE ALGORITHM AND SIMULATION STUDY

4·1. Current interval of stationarity
In the following, we takēΣ(u) to denoteΣ̄(h)(u) or Σ̄(s)(u), andc̄i,l(u) to denote the entries250

of Σ̄(u). Having observedXs,T , (s = 1, . . . , t), the practitioner will be particularly interested in
Σ̄(t/T ), the value of the estimator at the current timet. In the algorithm of§3·1, each estimate
c̄i,l(t/T ) is a possibly thresholded average of{Xi,s,TXl,s,T}s over a certain intervalTKi,l ending
at s = t. Empirically, it has been found that̄Σ(t/T ) is more stably invertible if all of its entries
are, possibly thresholded, averages of{Xi,s,TXl,s,T}s over an intervalTK ending ats = t whose255

length is constant overi and l. In practice, we chooseK to be the shortest out of the intervals
Ki,l over alli andl.

In this and the following paragraph, we use the notationTKt to emphasize the dependence of
the common intervalTK, selected as above, on the current timet. In an online setting,̄Σ(t/T )
will be recalculated with the arrival of each new observation Xt,T , leading to a certain sequence260

of intervals of stationarity{TKt}t. Let their lengths be denoted by|TKt|. As an example, if the
sequence|TKt| progresses over timet as. . . , 64, 64, 64, 16, 64, 64, . . ., then the 16 is likely to
be the result of a type-I error, i.e. detection of a change-point when there are none, and will lead
to the estimator̄Σ(t/T ) having an unnecessary blip for the correspondingt. To rectify this, we
propose to use a smoothed version ofTKt, denoted byT̃Kt and constructed such that̃TKt ends265

at t and| ˜TKt| = Mode(|TKt−m+1|, . . . , |TKt|). We usem = 10 in the remainder of the paper.
This ensures elimination of blips such as those in the above example.

Due to the dyadic structure of the Haar transform, the intervals ˜TKt are likely to be of dyadic
length, as in the example from the previous paragraph. However, in an online context, as a new
observation arrives, the interval of stationarity should ideally have the property that its length270

either increases by one if no new change-point is detected, or drops to the smallest permitted
length if a new change-point is detected. To enforce this property, we define intervals̄TKt, end-
ing att and satisfying| ¯TKt| = |T̄Kt−1|+ 1 if |T̃Kt| = | ˜TKt−1|, and|T̄Kt| = | ˜TKt| otherwise,
so that, e.g.,| ˜TKt| = (64, 64, 64, 64, 16, 16) results in| ¯TKt| = (64, 65, 66, 67, 16, 17). The in-
tervalsT̄Kt are used in the computation ofΣ̄(u) in the remainder of the paper.275

4·2. Selection ofλ1

Intuitively, the time-domain thresholdλ1 should be as small as possible while enabling stable
invertibility of Σ̄(t/T ). A natural candidate forλ1 is the lower bound of its permitted theo-
retical range from Theorem 1, that is,{2T−1|I|−1(2 log p+ log a−1

p,T )}
1/2. The lengthT |I| is

obviously unknown, but its nearest observable proxy is| ¯TKt|, which leads to our first proposed280

choice ofλ1, termed universal and defined byλu
1 = {2| ¯TKt|

−1(2 log p+ log a−1
p,T )}

1/2. Selec-
tion of ap,T is briefly discussed in§4·3. From our technical results in Appendix A, it can be seen
that the particular form ofλu

1 is the effect of the Bonferroni inequality, and thusλu
1 is likely to

overestimate the amount of thresholding required.
Again from the technical results, it is apparent thatλ1 represents a bound, with high proba-285

bility, on the entries of the sample correlation matrix of sizep× p, for a sample of lengthT |I|,
under the assumption that the true correlation isIp, the identity matrix of sizep× p. A more
precise bound than that furnished by the Bonferroni inequality can be obtained, e.g., by using
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the distributional results for the maximum entry of the sample correlation matrix, also called its
coherence, by Jiang (2004), based on the Chen–Stein Poissonapproximation method; see also290

the refinements of this result in Li et al. (2012), Cai & Jiang (2011) and Cai & Jiang (2012).
In §5, we use the following generic method for selectingλ1. To guard againstλu

1 being pos-
sibly too high, we start withλ1 = λu

1 and gradually decrease it as long as a certain stability
condition is satisfied: for example, the condition number ofΣ̄(t/T ) is above a pre-specified pos-
itive constant, or the portfolio weights resulting from̄Σ(t/T ) satisfy a certain desired constraint,295

e.g. are not too unbalanced, which is a type of exposure constraint, a different form of which
was also discussed, e.g., in Fan et al. (2012). Ifλu

1 itself does not yield̄Σ(t/T ) satisfying the
desired stability condition,λ1 should be increased until the condition is satisfied: note that asλ1

increases,̄Σ(t/T ) converges to a diagonal, and thus stably invertible, matrix.
It is also possible to selectλ1 by applying the cross-validation technique of Bickel & Levina 300

(2008) to the sample correlation matrix computed over the interval ¯TKt.

4·3. Simulation study
We investigate the performance of our method, in an online context, in a set-up whereΣ(u)

changes abruptly at a certain pointu0. We consider the case where the change is caused by the
introduction of one common factor tom = p/2 of the components ofXt,T , which can be viewed 305

as a caricature of a situation where some of the markets suddenly become more highly correlated.
We simulatep-variate Gaussian returnsXt,T of length T = 2048. We are particularly in-

terested in the more challenging problem of estimating the cross-covariance, rather than the
marginal volatility, so we useσi,i(u) ≡ 1 throughout. The returns are mutually uncorrelated for
t ≤ 1024. Fort ≥ 1025, we have cov(Xi,t,T ,Xj,t,T ) = ρ2 if 1 ≤ i 6= j ≤ m, and0 otherwise. 310

Over the entire time horizonT = 2048, we apply a moving window[k, k + 255] for k =

1, . . . , 1793, and for eachk, compute our estimator̄Σ(s)
k = Σ̄(s)(1), that is, compute the estimator

at the right edge, indexedk + 255, of the currently available data. The competitor is the estimator
Σ̆
(s)
k , the sample covariance estimator over the interval[k, k + 255], thresholded using the same

λ1 asΣ̄(s), for a fair comparison. We do not use any of the selection rules forλ1 from §4·2 as all 315

of them rely on the interval¯TKt, which does not feature at all in the sample covariance estimator.
In computingΣ̄(s)

k , we useδ = 0.5, which leads to the 3 finest scales of the Haar transform

being disregarded and to the minimum length of the intervalsof constancy ofΣ̄(s)
k being 8,

ap,256 = log−1/2(256), the same rate as that furnished by classical universal thresholding in
one-dimensional wavelet setting, andλ = {2 (2 log p+ (1− δ) log T − log ap,T )}

1/2, which 320

is the lower end of the permitted range ofλ from Theorem 1. Soft thresholding has been found
to perform better than hard, and hence we use the former. For completeness, we note than an
alternative to this choice ofλ would be to use the polarization identity approach, or simply fine-
tuneλ so that, e.g., empirical residuals in model (1) for eachj pass a certain test for independence
and identical distribution, as described in the univariatecase in Fryzlewicz et al. (2006). 325

To quantify the estimation accuracy, we use the quantities MSE(Σ̄(s)) =

p−2
∑1274

k=1025 ‖Σ̄
(s)
k − Σk‖

2
F , MSE(Σ̆(s)) = p−2

∑1274
k=1025 ‖Σ̆

(s)
k − Σk‖

2
F , MSE{(Σ̄(s))−1} =

p−2
∑1274

k=1025 ‖(Σ̄
(s)
k )−1 − (Σk)

−1‖2F , MSE{(Σ̆(s))−1} = p−2
∑1274

k=1025 ‖(Σ̆
(s)
k )−1 −

(Σk)
−1‖2F , averaged over100 simulations, where‖ · ‖F denotes the Frobenius norm and

Σk is the true volatility matrix at timek + 255. The range ofk in the summations corresponds330

exactly to the first 250 trading days after the change in the volatility matrix at t = 1024, and
therefore these error measures are designed to capture how our adaptive and the non-adaptive
sample covariance estimator react to the change.
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From Table 1, it is clear that our adaptive estimatorΣ̄(s) outperforms the non-adaptive esti-
matorΣ̆(s) for the higher values ofρ, and is not much worse forρ = 0.3. This is unsurprising335

as being able to react quickly to a change in the correlation structure matters more if the change
is more significant. The results seem to be relatively robustwith respect toλ1 for the estimation
of Σk. For the estimation ofΣ−1

k , the differences between the two estimators are more striking
for the lower values ofλ1, as these lead to better control of the bias, although not so for p = 50,
where too low a value ofλ1 is likely to lead to instabilities in terms of invertibility.340

Table 1.Left column: ratios of MSE(Σ̄(s)) to MSE(Σ̆(s)), the mean-square error of our esti-
mator to the mean-square error of the sample covariance estimator, for dimensionalityp =
6, 10, 20, 50, respectively. Right column: ratios of MSE{(Σ̄(s))−1} to MSE{(Σ̆(s))−1}, the mean-
square error of the inverse of our estimator to the mean-square error of the inverse of the sample
covariance estimator, for the samep

Estimation ofΣk Estimation ofΣ−1
k

λ1 = 0.1 λ1 = 0.2 λ1 = 0.3
ρ = 0.3 1.07 1.04 1.04
ρ = 0.6 0.90 0.89 0.93
ρ = 0.9 0.52 0.49 0.52

λ1 = 0.1 λ1 = 0.2 λ1 = 0.3
ρ = 0.3 1.07 1.03 1.04
ρ = 0.6 0.90 0.90 0.94
ρ = 0.9 0.58 0.69 0.78

λ1 = 0.1 λ1 = 0.2 λ1 = 0.3
ρ = 0.3 1.01 1.01 1.01
ρ = 0.6 0.84 0.87 0.90
ρ = 0.9 0.45 0.46 0.50

λ1 = 0.1 λ1 = 0.2 λ1 = 0.3
ρ = 0.3 1.04 1.01 1.02
ρ = 0.6 0.89 0.89 0.92
ρ = 0.9 0.53 0.68 0.78

λ1 = 0.1 λ1 = 0.2 λ1 = 0.3
ρ = 0.3 1.01 1.01 1.01
ρ = 0.6 0.80 0.81 0.91
ρ = 0.9 0.41 0.41 0.48

λ1 = 0.1 λ1 = 0.2 λ1 = 0.3
ρ = 0.3 1.04 1.01 1.02
ρ = 0.6 0.95 0.84 0.92
ρ = 0.9 0.48 0.65 0.77

λ1 = 0.1 λ1 = 0.2 λ1 = 0.3
ρ = 0.3 1 1 1
ρ = 0.6 0.71 0.79 0.83
ρ = 0.9 0.40 0.41 0.41

λ1 = 0.1 λ1 = 0.2 λ1 = 0.3
ρ = 0.3 1 1 1.01
ρ = 0.6 0.98 0.96 0.92
ρ = 0.9 0.75 0.63 0.72

5. EXAMPLE

We consider the multivariate series of log-returns on the daily closing values of 12 stock in-
dices: All Ordinaries, AMEX Major Market Index, Bovespa, BUX, CAC 40, DAX, Dow Jones
Industrial Average, FTSE 100, Hang Seng, NASDAQ Composite,Nikkei and S&P 500, on
T = 4097 trading days ending on 26 October 2012. Marginally, all log-return series have been345

normalized so that their sample variance overT days equals one.
As in §4·3, we apply a moving window[k, k + 255] for k = 1, . . . , 3841, and for eachk, com-

pute our estimator̄Σ(s)
k = Σ̄(s)(1), that is, compute the estimator at the right edge, indexedk +

255, of the currently available data. Except forλ1, we use the same parameter values as in§4·3.
Let Γ̄(s)

k be the associated correlation estimator, i.e.,Γ̄
(s)
k = diag(Σ̄(s)

k )−1/2Σ̄
(s)
k diag(Σ̄(s)

k )−1/2.350
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To selectλ1, we follow the advice from§4·2 and aim to select the lowest value ofλ1

that still guarantees stable invertibility of̄Σ(s)
k , or alternativelyΓ̄(s)

k . For λ1 taking values
1/10, 2/10, . . . , 9/10, we compute the condition numberck, defined as the ratio of the largest

and the smallest eigenvalues, ofΓ̄
(s)
k , and the ratiobk of the maximum and minimum compo-

nents of the vector(Γ̄(s)
k )−11, where1 is the column vector of ones of lengthp. The quantitybk 355

is a measure of the balancedness of the associated Markowitzportfolio. Forλ1 ≤ 4/10, some

large condition numbersck lead to instabilities in the inversion of̄Γ(s)
k , which in turn lead to

some extremely large values ofbk. These numerical instabilities do not appear to be present for
λ1 ≥ 5/10, so our recommendation would be to setλ1 to 5/10 or 6/10 for this portfolio.

In Figure 1, the largest peak in the marginal volatility of FTSE 100 corresponds to the most360

severe phase of the recent financial crisis; this is also whenFTSE 100 and S&P 500 become
more correlated. There is a drop in the proportion of zeros inΣ̄

(s)
k around the same time, which

serves as yet another piece of evidence for the common wisdomthat markets tend to become
more correlated in times of crises. The adaptive character of the estimators is apparent, with
some smooth sections but also some sharp jumps. 365
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A. PROOFS

Lemmas 1 and 2 concern the case where the marginal volatilitiesσi(u) are known and equal to one,

i.e., where the matrixD(u) is the identity matrix. In that case, the difference is that we havef (i,l)
j,k = 370

d
(i,l)
j,k {1 + (s̃

(i,l)
j,k )2}−1/2 and that the time-domain thresholding uses a constant threshold λ1. Lemma 3

reverts to the setting of§3·1.

LEMMA 1. Assume that the true volatility matrixΣ(u) is constant and such thatΣ(u) = Σ ∈
U{c0(p)}, and that its sizep is at most of orderO(T ζ) for some fixedζ > 0. Further, let the thresh-
oldsλ andλ1 satisfyλ ≥ {2(2 log p+ (1− δ) log T + log a−1

p,T )}
1/2, 375

min
ci,l 6=0

|ci,l| − 2

{

log p+ log c0(p) + log a−1
p,T

T

}1/2

≥ λ1 ≥
{

2T−1
(

2 log p+ log a−1
p,T

)}1/2

,

whereap,T tends to zero asT → ∞ but no faster thanO(T−ζ). The following holds with probability of
at least1− C1 ap,T for some positiveC1:

(a) Our estimatorΣ̄(h)(u) = Σ̄(h) is constant and such that̄c(h)i,l (t/T ) ≡ 0 if ci,l = 0 and c̄
(h)
i,l (t/T ) ≡

T−1
∑T

t=1 Xi,t,TXl,t,T if ci,l 6= 0.
(b) We have‖Σ̄(h) − Σ‖ ≤ 2c0(p){log p+ log c0(p) + log a−1

p,T }
1/2T−1/2. 380

(c) If, in addition, Σ ∈ U{c0(p), ǫ0}, then ‖(Σ̄(h))−1 − Σ−1‖ ≤ C2c0(p){log p+ log c0(p) +
log a−1

p,T }
1/2T−1/2 for some positiveC2.

Proof. Note thatc̄(h)i,l (t/T ) will be constant if and only if all|f (i,l)
j,k | fall under the thresholdλ. Using

the Bonferroni inequality, we have

pr







J∗

⋃

j=0

2j
⋃

k=1

(|f
(i,l)
j,k | > λ)







≤

J∗

∑

j=0

2jpr
(

|f
(i,l)
j,k | > λ

)

≤ max
j

pr
(

|f
(i,l)
j,k | > λ

)

CT 1−δ, (A1)
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Fig. 1. Various aspects of volatility estimates from§5.
Top left: the 8th diagonal component of̄Σ(s)

k , i.e. es-
timated marginal volatility of FTSE 100; top right: the
(8,12)th component of̄Γ(s)

k , i.e. estimated correlation be-
tween FTSE 100 and S&P 500, withλ1 = 0.5; middle left:
length of the interval of stationarity in estimatinḡΣ(s)

k ;
middle right: ck for λ1 = 0.5 (solid), 0.6 (dashed),0.7
(dotted),0.8 (dotdash),0.9 (longdash); bottom left:bk for
the same range ofλ1; bottom right: proportion of zeros in

Σ̄
(s)
k for the same range ofλ1.
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whereC,C1, C2, . . . are generic fixed positive constants throughout the proof. We now find a bound for 385

the right-hand side term under the assumption thatλ ≤ C(log T )1/2. Of course the same bound will be
also valid for higher values ofλ. Assessing first the probability term, we have

pr
(

|f
(i,l)
j,k | > λ

)

= pr

[

|d
(i,l)
j,k | > λ

{

1 + (s̃
(i,l)
j,k )2

}1/2

| |s̃
(i,l)
j,k − ci,l| < δ̃j

]

pr(|s̃
(i,l)
j,k − ci,l| < δ̃j)

+ pr

[

|d
(i,l)
j,k | > λ

{

1 + (s̃
(i,l)
j,k )2

}1/2

| |s̃
(i,l)
j,k − ci,l| ≥ δ̃j

]

× pr(|s̃
(i,l)
j,k − ci,l| ≥ δ̃j). (A2)

By the convexity ofu(x) = 1 + x2,

1 + (s̃
(i,l)
j,k )2 ≥ 1 + c2i,l + 2ci,l(s̃

(i,l)
j,k − ci,l) ≥ 1 + c2i,l − 2|ci,l||s̃

(i,l)
j,k − ci,l|. (A3)

Using this, we bound (A2) by

pr
{

|d
(i,l)
j,k | > λ(1 + c2i,l − 2|ci,l|δ̃j)

1/2
}

+ pr(|s̃
(i,l)
j,k − ci,l| ≥ δ̃j) = A+B.

Starting withA, we have 390

A = pr











|d
(i,l)
j,k |

(

1 + c2i,l

)1/2
> λ

(

1 + c2i,l − 2|ci,l|δ̃j

1 + c2i,l

)1/2










. (A4)

Since εi,t are Gaussian, there existK > 0, γ ≥ 0 such thatE(|(εi,tεl,t − ci,l)(1 + c2i,l)
−1/2|n) ≤

Kn−2(n!)1+γ , for all n ≥ 3, uniformly over ci,l ∈ [−1, 1]. Because of this, we are able to apply
Theorem 1 and the Corollary underneath it from Rudzkis et al.(1978). In the notation of that pa-
per, computing first the quantity∆, we get∆ = 2(J−j)/2/{2max(K, 1)}. Sinceλ is logarithmic in
T , the parameter̃δj → 0 uniformly over j as is detailed below, and2(J−j)/2 ≥ T δ/2, we have that 395

λ(1 + c2i,l − 2|ci,l|δ̃j)
1/2(1 + c2i,l)

−1/2 = o[{2(J−j)/2−1 max(K, 1)−1}a], asT → ∞, uniformly overj,
for all a > 0. By Theorem 1 from Rudzkis et al. (1978), we uniformly bound (A4) from above by the
Gaussian tail probabilityC exp{−λ2/2 (1 + c2i,l − 2|ci,l|δ̃j)/(1 + c2i,l)}. Turning now toB, we have

B = pr

{

2(J−j)/2|s̃
(i,l)
j,k − ci,l|

(1 + c2i,l)
1/2

≥
2(J−j)/2δ̃j
(1 + c2i,l)

1/2

}

. (A5)

The random variable on the left-hand side of the argument of the probability function in (A5) is almost the
same as that in (A4), except some different signs in the sum, which have no impact on our bounds. So, it is400

boundable by the corresponding Gaussian tail probability under the same conditions asA. In fact, we can
choosẽδj to be such that the thresholds in (A4) and (A5) are equal, so that there is an exact match between
the convergence rates. Equating the thresholds, we getλ2(1 + c2i,l − 2|ci,l|δ̃j) = 2J−j δ̃2j , which gives

δ̃j = 2j−Jλ[{λ2c2i,l + 2J−j(1 + c2i,l)}
1/2 − λ|ci,l|]. Sinceλ is logarithmic inT , δ̃j is of orderO(T−α)

for α > 0 uniformly overj. Thus, we boundA+B from above byA+B = 2A ≤ 2C exp{−λ2/2 (1 + 405

c2i,l − 2|ci,l|δ̃j)/(1 + c2i,l)} = 2C exp{−λ2/2} exp{(λ2|ci,l|δ̃j)/(1 + c2i,l)} ≤ C1 exp{−λ2/2}. Substi-
tuting this in (A1), we bound it byC2T

1−δ exp(−λ2/2). Thus, using the Bonferroni inequality again,

the probability of f (i,l)
j,k not exceedingλ uniformly over all j, k, i, l can be bounded from above

by C3p
2T 1−δ exp(−λ2/2). Bounding this by the sequenceC3ap,T , we haveλ ≥ {2(2 log p+ (1 −

δ) log T + log a−1
p,T )}

1/2, which proves the constancy of our estimatorΣ̄(h) with the required probability, 410

for the range ofλ’s as in the statement of Lemma 1.
We now show that̄c(h)i,l is zero if the true covarianceci,l is zero, uniformly overi, l, with the re-

quired probability. Under the scenario that all|f
(i,l)
j,k | ≤ λ, this is equivalent to showing that|s̃(i,l)0,1 | > λ1

for any i, l with probability not exceeding a multiple ofap,T . Using the same technique as above,
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for a fixed (i, l) we boundpr(|s̃(i,l)0,1 | > λ1) ≤ C4 exp(−λ2
1T/2). Thus, using the Bonferroni inequal-415

ity again, we havepr(maxi,l |s̃
(i,l)
0,1 | > λ1) ≤ C5p

2 exp(−λ2
1T/2). Bounding this byC5ap,T , we obtain

λ1 ≥ {2T−1(2 log p+ log a−1
p,T )}

1/2.
Finally, we show that applying such a thresholdλ1 does not ruin the estimation ofci,l in the caseci,l 6=

0. Under the scenario that all|f (i,l)
j,k | ≤ λ, this is equivalent to showing that|s̃(i,l)0,1 | < λ1 for anyi, l with

probability not exceeding a multiple ofap,T . For a fixed(i, l), we havepr(|s̃(i,l)0,1 | < λ1) ≤ pr(|s̃
(i,l)
0,1 −420

ci,l| > |ci,l| − λ1) ≤ pr{T 1/2|s̃
(i,l)
0,1 − ci,l|(1 + c2i,l)

−1/2 > T 1/2(|ci,l| − λ1)(1 + c2i,l)
−1/2}. Assuming

that the threshold on the right-hand side is so low that the normal approximation still works, which
is sufficient to consider as the worst-case scenario, we bound the above byC6 exp{−T/2 (|ci,l| −
λ1)

2(1 + c2i,l)
−1} ≤ C6 exp{−T/4 (|ci,l| − λ1)

2}. To obtain a uniform bound across the entire matrix,
we first find the number of non-zeroci,l’s. Recalling thatΣ ∈ U{c0(p)}, we have

∑

i

∑

l I(ci,l 6= 0) ≤425
∑

imaxi
∑

l I(ci,l 6= 0) ≤ pc0(p). Thus, by the Bonferroni inequality, we havepr(mini,l |s̃
(i,l)
0,1 | < λ1) ≤

C6pc0(p) exp{−T/4 minci,l 6=0(|ci,l| − λ1)
2}. Bounding the above byC6ap,T , we get2T−1/2{log p+

log c0(p) + log a−1
p,T }

1/2 + λ1 ≤ minci,l 6=0 |ci,l|, which is satisfied as the left-hand side has a lower or-
der of magnitude than the right-hand side by the assumptionsof Lemma 1. This completes the proof of
statement (a) of Lemma 1.430

For the proof of statement (b), we first calculate the error inestimating the non-zero entries. Proceeding
as above, we have
pr( max

i,l:ci,l 6=0
|c̄

(h)
i,l − ci,l| > λ3) ≤ pc0(p)max

i,l
pr(|s̃

(i,l)
0,1 − ci,l| > λ3)

= pc0(p)max
i,l

pr(T 1/2|s̃
(i,l)
0,1 − ci,l|(1 + c2i,l)

−1/2 > T 1/2λ3(1 + c2i,l)
−1/2)

≤ C7pc0(p)max
i,l

exp[−Tλ2
3/{2(1 + c2i,l)}]

≤ C7pc0(p) exp(−Tλ2
3/4).

Equating this toC7ap,T , we getλ3 = 2T−1/2{log p+ log c0(p) + log a−1
p,T }

1/2, which shows that the
maximum error isλ3 with the required large probability. On the other hand, we have shown above
that our estimator has a zero error forci,l = 0, uniformly over the entire matrix with probability at435

least 1− C1ap,T . Putting together these two facts, we bound‖Σ̄(h) − Σ‖ ≤ maxl
∑

i |c̄
(h)
i,l − ci,l| =

maxl
∑

i |c̄
(h)
i,l − ci,l|I(ci,l 6= 0) ≤ λ3c0(p) = 2c0(p)T

−1/2{log p+ log c0(p) + log a−1
p,T }

1/2, which
completes the proof of statement (b) of Lemma 1.

Finally, statement (c) follows since‖(Σ̄(h))−1 − Σ−1‖ is of the same order as‖Σ̄(h) − Σ‖ uniformly
over the classU{c0(p), ǫ0}, as in the proof of Theorem 1 in Bickel & Levina (2008). �440

LEMMA 2. Assume that the true volatility matrixΣ(u) satisfies the following:
(i) There exists a dyadic intervalI of length at least2−J∗

, such that for for eachi and l, the function
ci,l(u) is constant for allu ∈ I.

(ii) For eachi and l, if there are change-points inci,l(u) to the left or right ofI, then the nearest one on
either side is covered by a dyadic interval denotedJ 1

i,l on the left-hand side, andJ 2
i,l on the right-hand445

side, of length at least2−J∗

, containing no other change-point, not intersecting withI and such that

min
i,l,m

∫

Jm
i,l

{

ci,l(u)− |Jm
i,l |

∫

Jm
i,l

ci,l(z)dz

}2

du ≥ C3T
−β, β ∈ [0, 1− δ). (A6)

Further, assume thatΣ(I) ∈ U{c0(p)}, and that its sizep is at most of orderO(T ζ) for some fixedζ > 0.
Let the thresholdsλ andλ1 satisfy

C(log T )1/2 ≥ λ ≥
[

2
{

2 log p+ (1 − δ) log T + log a−1
p,T

}]1/2

,
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min
ci,l(I) 6=0

|ci,l(I)| − 2

{

log p+ log c0(p) + log a−1
p,T

T |I|

}1/2

≥ λ1 ≥

{

2(2 log p+ log a−1
p,T )

T |I|

}1/2

,

for someC > 0, whereap,T tends to zero asT → ∞ but no faster thanO(T−ζ). The following holds
with probability of at least1− C1 ap,T for some positiveC1: 450

(a) Our estimator̄Σ(h)(u) is constant foru ∈ I and such that̄c(h)i,l (I) = 0 if ci,l(I) = 0 and c̄(h)i,l (I) is a
local sample mean of the sequence{Xi,t,TXl,t,T }t over a subintervalt/T ∈ Ki,l whereI ⊆ Ki,l and
ci,l(I) = ci,l(Ki,l), if ci,l(I) 6= 0.

(b) We have‖Σ̄(h)(I) − Σ(I)‖ ≤ 2c0(p)(T |I|)
−1/2(log p+ log c0(p) + log a−1

p,T )
1/2.

(c) If, in addition,Σ(I) ∈ U{c0(p), ǫ0}, then 455

‖{Σ̄(h)(I)}−1 − Σ(I)−1‖ ≤ C2c0(p)

{

log p+ log c0(p) + log a−1
p,T

T |I|

}1/2

for some positiveC2.

Proof. If there is a change-point inci,l(u) to the left ofu1, then, denoting2−j0 = |J 1
i,l| and decom-

posing the sampled version ofci,l(u) via a discrete Haar wavelet decomposition over the intervalTJ 1
i,l

at scalesj ≥ j0, we obtain that only up to one coefficient at each scalej is non-zero. By (A6) and due
to the orthonormality of the discrete Haar transform, the sum of the squared Haar coefficients from this460

decomposition is at leastC3 T
1−β. At each scalej, the only possibly non-zero squared Haar coeffi-

cient is at most of order2J−j , where the constants of proportionality are uniform over the entire matrix
since |ci,l(u)| ≤ 1. Thus the sum of squared coefficients over the ignored scalesJ∗ + 1, . . . , J − 1 is
of orderO(2J−J∗

) = O(T δ) ≤ C4 T
δ. Thus, the sum of squared Haar coefficients over the non-ignored

scalesj0, . . . , J∗ must be at leastC3 T
1−β − C4 T

δ ≥ C5 T
1−β. Therefore, the largest non-squared Haar465

coefficient must be of magnitude of at leastC6T
1/2−β/2 log−1/2 T , since there are at mostlog2 T de-

composition scales. Denote byj1(i, l) the scale at which the largest coefficient occurs, and note that
j0 ≤ j1(i, l) ≤ J∗. Similarly denote its location byk1(i, l).

We wish to investigate if the coefficientf (i,l)
j1(i,l),k1(i,l)

survives thresholding. If it does, then with prob-

ability one, there will be a change-point iñci,l(u) at u = u0 whereu0 is the right endpoint ofJ 1
i,l; 470

thus, there will be a change-point iñci,l(u) located between the intervalI and its nearest change-
point to the left. But, using the same technique as in the proof of Lemma 1, we can show that
pr(mini,l |f

(i,l)
j1(i,l),k1(i,l)

| < λ) ≤ C7ap,T .

Moreover, since all coefficientsf (i,l)
j,k computed over the interval of constancyTI fall under the

thresholdλ with probability at least1− C8ap,T by Lemma 1, we have that for alli and l, c̃i,l(I) = 475

(|TKi,l|)
−1
∑

t∈TKi,l
Xi,t,TXl,t,T , for a certainKi,l ⊇ I whereci,l(I) = ci,l(Ki,l), holds with proba-

bility at least1− C8ap,T .
Therefore, we have a similar situation to the framework of Lemma 1, where all̃ci,l(u) were, with

probability at least1− C8ap,T constant withu and equal to the sample means of{Xi,t,TXl,t,T }
T
t=1.

Here, the same kind of constancy holds but locally: allc̃i,l(u) are constant foru ∈ I and each equals 480

the sample mean of{Xi,t,TXl,t,T }t∈Ki,l
whereKi,l ⊇ I. Thus, reproducing the argument of Lemma

1, we can show that with probability at least1− C9ap,T , we have that̄c(h)i,l (I) = 0 for all those

i and l for which ci,l(I) = 0 if λ1 ≥ {2T−1|I|−1(2 log p+ log a−1
p,T )}

1/2. Similarly, with probabil-

ity at least 1− C10ap,T , we have that̄c(h)i,l (I) = c̃i,l(I) for all those i, l for which ci,l(I) 6= 0 if

λ1 ≤ minci,l(I) 6=0 |ci,l(I)| − 2(T |I|)−1/2{log p+ log c0(p) + log a−1
p,T }

1/2. This completes the proof 485

of statement (a). The proofs of statements (b) and (c) proceed analogously to those of the correspond-
ing statements in Lemma 1 by recalling that|Ki,l| ≥ |I| and replacingT with T |I| where appropriate.�
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LEMMA 3. Assume that the true volatility matrixΣ(u) = Σ is constant and such that
diag−1/2(Σ)Σdiag−1/2(Σ) ∈ U{c0(p)}, and that its sizep is at most of orderO(T ζ) for some fixed
ζ > 0. Assume also that the elements of diag(Σ) are uniformly bounded from below and above by con-490

stants. Recall the notationρi,l = ci,lc
−1/2
l,l c

−1/2
i,i and letc = infi ci,i and c̄ = supi ci,i. Let the thresholds

λ andλ1 satisfyλ ≥ [2{2 log p+ (1− δ) log T + log a−1
p,T }]

1/2,

(1 +̟/c)−1( min
ρi,l 6=0

|ρi,l| −̟/c̄) ≥ λ1 ≥

{

2(2 log p+ log a−1
p,T )

T

}1/2

,

whereap,T tends to zero asT → ∞ but no faster thanO(T−ζ), and

̟ = 2c̄

{

log p+ log c0(p) + log a−1
p,T

T

}1/2

.

The following holds with probability of at least1− C1 ap,T for some positiveC1:

(a) Our estimatorΣ̄(h)(u) = Σ̄(h) is constant and such that̄c(h)i,l (t/T ) ≡ 0 if ci,l = 0 and c̄
(h)
i,l (t/T ) ≡495

1
T

∑T
t=1 Xi,t,TXl,t,T if ci,l 6= 0.

(b) We have‖Σ̄(h) − Σ‖ ≤ 2c0(p)c̄T
−1/2{log p+ log c0(p) + log a−1

p,T }
1/2.

(c) If, in addition, diag−1/2(Σ)Σdiag−1/2(Σ) ∈ U{c0(p), ǫ0}, then ‖(Σ̄(h))−1 − Σ−1‖ ≤
C2c0(p)T

−1/2{log p+ log c0(p) + log a−1
p,T }

1/2 for some positiveC2.

Proof. Proceeding as in the proof of Lemma 1, we have500

pr
(

|f
(i,l)
j,k | > λ

)

= pr

[

|d
(i,l)
j,k | > λ

{

s̃
(i,i)
j,k s̃

(l,l)
j,k + (s̃

(i,l)
j,k )2

}1/2

| A

]

pr(A)

+ pr

[

|d
(i,l)
j,k | > λ

{

s̃
(i,i)
j,k s̃

(l,l)
j,k + (s̃

(i,l)
j,k )2

}1/2

| Ac

]

pr(Ac), (A7)

whereA = {|s̃
(i,l)
j,k − ci,l| < δ̃j , |s̃

(i,i)
j,k − ci,i| < δ̃j , |s̃

(l,l)
j,k − cl,l| < δ̃j}. Using (A3), we bound (A7) by

pr

(

|d
(i,l)
j,k | > λ

{

(ci,i − δ̃j)(cl,l − δ̃j) + c2i,l − 2|ci,l|δ̃j

}1/2
)

+ pr(Ac)

≤ pr





|d
(i,l)
j,k |

(ci,icl,l + c2i,l)
1/2

> λ

{

ci,icl,l + c2i,l − δ̃j(ci,i + cl,l − δ̃j + 2|ci,l|)

ci,icl,l + c2i,l

}1/2




+pr(|s̃
(i,l)
j,k − ci,l| > δ̃j) + pr(|s̃

(i,i)
j,k − ci,i| > δ̃j) + pr(|s̃

(l,l)
j,k − cl,l| > δ̃j).

This leads to practically the same situation as in the proof of Lemma 1, and proceeding analogously, we
are able to bound the above by

4C exp

[

−
λ2

2

{

ci,icl,l + c2i,l − δ̃j(ci,i + cl,l − δ̃j + 2|ci,l|)

ci,icl,l + c2i,l

}]

= 4C exp

(

−
λ2

2

)

exp

{

λ2δ̃j(ci,i + cl,l − δ̃j + 2|ci,l|)

2(ci,icl,l + c2i,l)

}

≤ C1 exp

(

−
λ2

2

)

,

which leads to the same lower bound forλ as in the proof of Lemma 1.
We now show that̄c(h)i,l is zero if the true covarianceci,l is zero, uniformly overi, l, with the required505

probability. For a fixed(i, l), we use the same technique as above with conditioning on the set A =

{|s̃
(i,i)
0,1 − ci,i| < δ̃0, |s̃

(l,l)
0,1 − cl,l| < δ̃0} to boundpr{|s̃

(i,l)
0,1 | > λ1(s̃

(i,i)
0,1 s̃

(l,l)
0,1 )1/2} ≤ C4 exp(−λ2

1T/2),
which leads to the same lower bound forλ1 as in the proof of Lemma 1.
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Finally, we show that applying such a thresholdλ1 does not ruin the estimation ofci,l in the case
ci,l 6= 0. For a fixed(i, l), using conditioning as above, we have 510

pr{|s̃
(i,l)
0,1 | < λ1(s̃

(i,i)
0,1 s̃

(l,l)
0,1 )1/2} ≤ pr

[

|s̃
(i,l)
0,1 | < λ1

{

(ci,i + δ̃0)(cl,l + δ̃0)
}1/2

]

+ pr(Ac). (A8)

Arguing like in the proof of Lemma 1, there are no more thanpc0(p) non-zero termsci,l and hence the
condition

δ̃0 ≥ 2c̄

{

log p+ log c0(p) + log a−1
p,T

T

}1/2

(A9)

guarantees that the termspr(Ac) in (A8) sum to at most a term of orderap,T across the entire matrix.
Using the lower bound for̃δ0 from (A9), we bound

pr

[

|s̃
(i,l)
0,1 | < λ1

{

(ci,i + δ̃0)(cl,l + δ̃0)
}1/2

]

≤ pr

[

|s̃
(i,l)
0,1 − ci,l| > |ci,l| − λ1

{

(ci,i + δ̃0)(cl,l + δ̃0)
}1/2

]

= pr









T 1/2|s̃
(i,l)
0,1 − ci,l|

(ci,icl,l + c2i,l)
1/2

>

T 1/2

[

|ρi,l| − λ1

{

(1 + δ̃0/ci,i)(1 + δ̃0/cl,l)
}1/2

]

(1 + ρ2i,l)
1/2









≤ pr

[

T 1/2|s̃
(i,l)
0,1 − ci,l|

(ci,icl,l + c2i,l)
1/2

>
T 1/2

21/2

{

min
ρi,l 6=0

|ρi,l| − λ1 max
i

(1 + δ̃0/ci,i)

}

]

,

which, analogously to the proof of Lemma 1, leads to 515

2

{

log p+ log c0(p) + log a−1
p,T

T

}1/2

+ λ1 max
i

(1 + δ̃0/ci,i) ≤ min
ρi,l 6=0

|ρi,l|,

which agrees with the assumptions of Lemma 3. This completesthe proof of statement (a).
The proofs of statements (b) and (c) are like those of the analogous statements in Lemma 1, so we omit

them here. �

Proof of Theorem1. The proof uses Lemma 3 in the same way as the proof of Lemma 2 uses Lemma
1. The construction of the proof of Theorem 1 is analogous to that of Lemma 2. We omit the details.� 520
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