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1 Introduction

In this paper, we are interested in the problem of detecting breakpoints in piecewise stationary au-
toregressive (AR) processes. For short time series, stationarity assumption is common. However, for
longer time series, this assumption is often unrealistic. Besides, many naturally occurring phenomena
cannot be modelled as stationary processes. Therefore modelling stochastic time series under nonstation-
ary assumption is often appealing, and finds its application in many areas, such as speech processing,
biomedical signal processing, and seismology to name a few.

Much literature exists on various models for nonstationary time series, such as Priestley (1965), Dahlhaus (1997)
(locally stationary processes), Adak (1998) (piecewise locally stationary processes), Nason et al. (2000)
(locally stationary wavelet processes), and Ombao et al. (2002) (the SLEX model).

In the analysis of nonstationary time series, it is common practice to assume certain conditions on the
time-varying structure of time series, so that meaningful estimation is attainable. The simplest approach
is to assume that the time series is, or can be well approximated by, a piecewise stationary process
(Adak (1998)). Several methods have been suggested for segmenting such nonstationary time series by
adapting existing on-line or a posteriori segmentation procedures. In this paper, we are interested in a
posteriori segmentation of given time series with all the data available from the past which enables the
prediction of future based on the last stationary piece.

One way of segmenting nonstationary time series is to develop test statistics based on the spectral repre-
sentation of given time series. In Ishii et al. (1979), the statistics measuring the difference between two
spectral densities were proposed, such as Kullback information, Bhattacharyya distance, and Chernoff
distance, so that it is possible to detect any change in the amplitude or frequency for the observed time
series. Ombao et al. (2001) introduced the Auto-SLEX method which uses the aforementioned SLEX
transform to obtain the SLEX periodogram and chooses the “best” segmentation minimising the cost of
estimated periodogram. Adak (1998) proposed the Tree-based Adaptive Segmented Spectrogram algo-
rithm (TASS), where a complete tree is constructed by recursively halving each segment of the data into
very short segments, and the distance between the estimated spectra from the left and right halves of the
segment is computed.

On the other hand, by assuming a parametric model, some papers focused on detecting the change in
parameters. In the context of multiple regression problem, Bai (1997) studied the least squares estima-
tion of the change in regressors. In Gombay (2008), testing statistics were developed which can detect
the change in any one of (p 4+ 2) parameters of an AR(p) time series, including the mean, the variance of
white noise, and p AR parameters. Instead of using the statistics process of quadratic form created from
the estimated white noise sequence, they suggested the test statistics based on the efficient score vector.
Under such a parametric model assumption, Lavielle (1998) addressed the off-line nonstationary process
segmentation problem by introducing a new random process that takes the value 1 at the change instants
and zero between two changes. Without any additional prior information, this change process is defined
as a sequence of Bernoulli variables and estimated as the maximum a posteriori (MAP) estimate based
on a penalized contrast function.

Davis et al. (2006) proposed the Auto-PARM procedure which adopted the minimum description length
(MDL) principle. Under the assumption that the time series is piecewise autoregressive, the Auto-PARM
finds the “best” combination of the number of breakpoints, their locations and AR orders of all stationary
segments by minimising the code length which is computed according to general coding rules. Also in the
paper, it was recalled that since locally piecewise stationary processes are well approximated by piecewise
stationary processes (Adak (1998)), locally stationary time series can also be approximated by piecewise
stationary processes. Besides, any zero-mean nondeterministic stationary process can be expressed as a
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sum of two uncorrelated processes, an infinite order moving-average process and a deterministic process
(Brockwell and Davis (1996)), which implies that AR processes can be used to approximate the weakly
stationary processes. Thus segmentation of piecewise stationary AR processes can be extended to the
approximation of locally stationary time series.

The methodology presented in this paper is developed primarily for a posteriori breakpoint detection in
piecewise stationary AR processes and therefore can be used in approximating locally stationary time
series. It proceeds in two stages; Firstly the given process X is transformed into (p + 1) sequences
which are “pre-estimates” for the autocovariance function at lags 0,1,---,p. Then based on each pre-
estimate sequence, we look for a piecewise constant function which has the minimum total variation,
among the piecewise constant functions with sensibly behaving estimated residuals. The breakpoints in
the estimated functions indicate the breakpoints in given time series process. It is shown later that our
estimated breakpoints are likely to be within a certain distance of true breakpoints, which converges to
zero with probability in rescaled time. Once we locate the breakpoints in sequences, and the distance
between two breakpoints is sufficiently large, standard parameter estimation methods, such as maximum
likelihood estimation or least squares estimation, can be applied to each segment.

This paper is organised as follows. In Section 2, we describe the basic setting for models of our inter-
est. Transformation and estimation procedures are developed and presented in Section 3 and Section 4,
with the description of their theoretical properties and computational implementation. We compare our
methodology with others through simulations of varying settings in Section 5.

2 Piecewise stationary AR models

For a piecewise stationary AR(p) process X, let m be the number of breakpoints, n;, j =1,---,m
be the jth breakpoints, ng = 1, and 7,,+1 = n. Then the process can be written as

Xt(l), formy=1<t<m
X(Q), form+1<t<

X, = .t m ST T2 (2.1)
Xt(mH), for np +1<t<nNpt1=n

where each Xt(j)is an AR process of order p, i.e.,

Xt(]) — ﬂtlet(z)l + Bt,QXt(Z)Q 44 /é,t,pXt(z)p + €. (22)

Be,i’s are piecewise constant and at each 7;, there exists at least one parameter function 3;; which has a
“Sump” in its value. The orders of segments do not have to be the same throughout the time but by assum-
ing that p is the maximum order, we can exploit the notation above. By defining that p = maxi<;<m+1 pj,
there is no problem in applying standard parameter estimation procedures such as the maximum likeli-
hood estimation or least squares estimation within each stationary segment (Brockwell and Davis (1996)).
Note that it is reasonable to assume that the breakpoints in 3; ; are sufficiently sparse over time and the
length of each stationary segment goes to infinity as the number of observations grows for the estimation
to be attainable; see, for example, Ombao et al. (2001) for further discussion. Condition on this distance
will be given later in Assumption 4.1.

Finally, the noise {e;, t = 1,2, -} is assumed to be a zero-mean random variable with variance o2. More
detailed assumption on the distribution of €; is discussed in Proposition 3.1.

3 Process transformation
Denote the time-varying autocovariance function of X; as v:(+), i.e.,

wr) = E(xVx2,),
for ¢t

77j—1+7"+17"'777j§ T:O,"'7p; j:17am+1
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so that ~;(-) changes in time in piecewise constant manner. Since the AR parameters ¢ 1, - - , 0t p satisfy

7:(0) (@) o wmp—1) Br.1 Y (1)

Ye(1) %(0) o mp—2) Br.2 7:(2)
. . . = . ) (3.3)

wp—-1) np-2) - 7:(0) Bt.p ¥ (p)
within each stationary segment of X, any break in ;; for ¢ =1, .-, p is reflected as a break in at least
one of v(r) for r =0, -+, p. Therefore our pre-estimate sequences are the localised estimates of v;(r) at

each t, i.e.,

Y = Xe Xp—r = E(Xe Xo—y) +{Xie X —E(X: X))}, r=0,---,p. (3.4)

Note that v;(r) and E (X; X;—,) are not always equivalent since for t = n;+1,--- ,n;+r;j =1,--- ,m;r =
1, ,p, E(X:X;—,) = 0. This “boundary” effect will be addressed later in Section 4.

Let v, = X4 X;—, — E(XyX;_,) then within each stationary segment of X;, v, is a zero-mean,
strong mixing (a-mixing) sequence with exponentially decaying mixing coefficients {a(k),k = 1,2,---}
(Davidson (1994)). We further assume that following condition is satisfied for v;.

Proposition 3.1. v, satisfies the Cramer’s condition, i.e., there exists a positive constant c satisfying
Elvg,|* < F2kIE (3.5)
forallk=3,4,---.

For instance, above condition is satisfied when ¢; follows Gaussian distribution. With this proposition,
we can establish the following property.

Lemma 3.1. Denote I as a family of subsets of {1,---,n} and let o be the standard deviation of vy,
within a stationary segment. Then there exists a positive constant T which satisfies

Pr | ma V| <oy/Tlogn | — 0 3.6
(12 [ | <v7en) o
for each r =0,1,--- | p within each stationary segment of X;.

Lemma 3.1 implies that all partial sums (including “multiscale”, wavelet-like ones) of v, can be
bounded by a term of order O(logn), like Gaussian distributed variables. This property is used as a
criterion in the estimation procedure to decide whether the estimated residuals are “Gaussian-like” or
not. The rate of convergence is of polynomial order.

4 Estimation procedure

In this section, we develop an estimation procedure generating a piecewise constant function for each
pre-estimate sequence with breakpoints, which indicate the structural breaks in X;.
Denote

Au = A T,0,7) = g max|w(iy, 0, 1)] < ov/7logn}, (4.7)

w(Yr, 7I = t,r — Gt 4.8
(3,9, 1) \/|TZ’Y 9t) (4.8)

tel

Since v, is not stationary throughout the time, neither is the scale o and its estimation is discussed
later in this section.

As (r) is piecewise constant and its breakpoints are sparse, we choose the estimate of v;(r), say ¢.r,
among the piecewise constant sequences which have multiresolution sums of estimated residuals bounded
by o/7logn, as v, in Lemma 3.1. Since what we are looking for is the estimate with sparse breakpoints,
we adopt the commonly used practice in linear regression problems with sparse solutions/near-solutions.
Donoho (2006) shows that if there exists any sufficiently sparse (near-)solution for a given linear regression
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problem, the solution with minimum /;-norm is a good approximation in the /5 sense. Besides, while the
procedure of looking for a solution with minimum [y-norm is intractable, minimising /;-norm changes the
problem into a computationally feasible convex problem. Therefore, instead of minimising [y-norm of
Y41, — Yt directly, our estimation procedure minimises the total variation of 4y, which is the same as
minimising the /;-norm.

In short, we find a function 4; , € A,, which has the minimum total variation

n—1
Z |ﬁ/t+1,7' - ’AYt,7'| : (4-9)
t=1

Since v, is piecewise stationary throughout ¢ = 1,--- ,n, the variance of v;, is not constant but

changes over time in piecewise constant manner as 7;(r) does. One way of estimating o, := var(v,,) is
to modify the method presented in Davies et al. (2008).

For sufficiently large constant C' > 1, let N = [n/Clogn]|, U§V=1 J;j ={1,--- ,n} where J;’s are disjoint
and of about equal size, for example, J; = {1,---,[Clogn]} and so on. Then
(1 . - . . .
61 = 14826 - median [T r — iyl FWinyr = Fin, 1,01}/ V2
fort € Jy = {41, - ,Jn. (4.10)

One the other hand, we can estimate the time-varying o? = var(v;,.) = var(%) as a straightforward
sample variance over a fixed window. Let b be a fixed integer indicating the window size. Then,

1/2
b / b

R 1 - 2 — 1 -
Ut(?,« =94 57 Z (%+j,7- - ’Yt,r) , where y; , = %1 Z Vetgre (4.11)

= j=—b

In Section 5, the results were obtained using the latter estimate (4.11) for oy, as it seemed to give
better performance than (4.10).
4.1 Theoretical performance of the methodology

We now show that the estimated function 44, from above method can detect the breakpoints in -y, (r)
with high probability. First, we need an assumption on the distance between two breakpoints.

Assumption 4.1. The length of each segment between two breakpoints, say d := d.,, satisfies
logn/d, — 0.
With this assumption, Theorem 4.1 is derived below.

Theorem 4.1. Let v¢(r) has a breakpoint at time t = z. Then estimated piecewise constant function Yy ,
has a breakpoint at Z which satisfies

Pr(|2 — 2] < O(logn)) — 1.
Besides, let z1 and zo be two adjacent breakpoints in v:(r). Then
Pr TV 4eitog nyza—cs logn) (i) < 0(1)) — 1
for some positive constants c1 and co. The rate of convergence is the same as in Lemma 3.1.

Remark 4.1. In rescaled time interval [0,1], as in other nonparametric estimation literature, let s = t/n,
u=z/n, and & = £2/n. Then above result can be rewritten as

Pr <|ﬁu| <0 <1°g”)> 1,
n

P ( TV eyt 0y ety () < 0(1) — 1

As mentioned earlier, v(r) # E;, for t =n; +1,--- ,n; +m5 =1,--- ,m;r = 1,---,p. However,
it can be shown that this boundary effect does not have influence on the results in Theorem 4.1 due to
Assumption 4.1 and therefore it is theoretically ignorable.

and
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4.2 Implementation of the estimation algorithm

Throughout this section, we drop r from the notation when there is no confusion. We can rewrite
(4.9) as

n n
el = 3" 1A = Aemal = Y af + a7
t=1 t=1

where 40 = 0, 7, = % — %1 = z; —x; and z{ = max{0,2;}, x; = max{0, —2;}. Then

)
3
o 10 -~ 0 -1 0 - 0 ;
o B 11 -+ 0 -1 =1 - 0 at
: a : : x|’
o 11 1 -1 -1 -1 Ty
Ty
say, ¥ = (K,—-K)x.

Let L := (K, —K) and K’ be column-wise normalised K, i.e.,

1/vn 0 0
1/yn 1/y/n—=1 - 0

!

1/:\/77 1/Vn—-1 - 1

The condition of 4; in (4.7) and (4.8) can be rewritten as

K" (7 — Lx)| < oy/Tlogn, (4.12)

where ¥ = (91, -+ ,%n)? and the inequality applies coordinate-wise. Then the problem becomes min-
imising l;-norm of x subject to the inequality constraints (4.12) and can be solved by means of standard
linear programming techniques, see for example, Boyd and Vandenberghe (2004). This algorithm does
not cover multiresolution sums over all subsets of Z, but normalised columns of K’ naturally compute
the sums of residuals over selected supports I € {{1,---,n},{2,---,n},---,{n}} C Z. We obtain the
desired solution 4 by computing Lx.

Remark 4.2. Note that the constraint in (4.12) can be interpreted as a bound over transformation-
invariant residuals in a linear regression problem 5 = Lx. FEssentially this procedure works similarly
to the Dantzig selector (Candeés and Tao (2007)), since both are secking for a sparse solution with a
minimum lp-norm constraint and bounded estimated residuals. However K, the design matriz equivalent
in our problem, does not satisfy the “uniform uncertainty principle” conditions, which require that any
submatrix with S or fewer columns of K should behave as if it were almost orthogonal, where S denotes
the sparsity. Even though K does not meet these requirements, nonzero entries in our solution indicate
where breakpoints occur and highly correlated columns of K are adjacent to each other. Furthermore, K
is a n-by-n matriz, which means that the number of covariates and the number of observations are the
same, while the Dantzig selector also covers the cases when the number of covariates is larger than the
number of observations.

Remark 4.3. There remains the choice of 7. The choice of T = 2 can be also justified by the similarity
between our procedure and the Dantzig selector. See also Davies and Kovac (2001), where their choice
of T is 2.5. In Section 5, grid of values were used for T and with breakpoints obtained from each value,
the time series was fitted and the sum of squared residuals (RSS) were computed so that T with minimum
RSS was chosen.
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4.3 Post-processing

It is always of interest to tell which estimated breakpoints are significant and which ones are from
either the lj-norm constraint or irregular fluctuations in pre-estimate sequences/estimated scale o. In
this section, we introduce a post-processing procedure to serve this purpose by adapting the arguments
in the proof of Theorem 4.1. r is dropped from the subscript throughout this section.

For an estimated breakpoint, say v, let

=%, Y2 =%+, V1= Ve—s V2i=Yug, 01 =0,_, 02 1= 0yq
and denote the lengths of two estimated segments before and after v as d; and ds. Then it follows that

R 201+/Tlogn . 201+/Tlogn

Hh——F—— < m<Hht+t—FF—,
Vi Vdp

. 209+/Tlogn . 209+/T logn

Yo-—F—— < Mm<ht—F——,
Vs Vs

with probability converging to 1, and therefore

= vl < i — 72|+2\/ﬂogn< )
N

As pointed out in the proof of Theorem 4.1, the distance between the true breakpoint and the estimated
breakpoint is bounded from below in the worst case as

(4.13)

4(o1 + 02)?7logn
(72 =m)?
From (4.13), the right-hand side of (4.14) can be replaced by

k>

(4.14)

4(o1 + 02)%rlogn
(A1 = Ae| + 2v/7Togn (01 / Vi + 02/ V) }

Then for each estimated breakpoint v, we can compute the intervals [v — kv + lAc] If an estimated
breakpoint is included in either of adjacent intervals apart from its own, it is likely that the corresponding
estimated breakpoints are actually of the same true breakpoint. Thus our post-processing procedure
computes these intervals for all estimated breakpoints and merge such two breakpoints into the one with
narrower interval. This procedure is conducted repeatedly until every breakpoint is located outside the
intervals other than its own.

2]%::

5 Simulation study

As the implementation of the methodology is still in progress, we only present simulation results for
illustrative purposes.
For the simulation experiment, the piecewise stationary AR(2) process with breakpoints in (5.15) was
repeatedly generated 50 times.

04X, 1 —0.6X,o+e, 1<t<150
X;={ 02X, | +e, 151 < ¢ < 300 (5.15)
0.5X1 + €, 301 <t < 450

Assuming the order of the process was known, we applied the breakpoint detection procedure with &
estimated as in (4.11). The & estimated as (4.11) seemed to work better than (4.10) since the former was
more likely to adjust to the fluctuation of the pre-estimate sequences than the latter. For 7, as mentioned
in the Remark 4.3, sequence 2,3,---,6 was given as candidates and the one with minimum RSS was
selected.

A typical realisation of the time series and the estimation result is given in Figure 1 (a). Vertical
dotted lines indicate the true breakpoint (at ¢ = 150, 300) and thicker dashed lines indicate the detected
breakpoint with our procedure. In Figure 1 (b) and (c), pre-estimate sequence of lags 1, 2 and the
estimated functions after post-processing (thicker) of time series in (a) are shown.

6/8



simulation 3

pre-estimate lagl
pre-estimate lag2

Figure 1: (a) An example of process (5.15) and detected breakpoints; (b) 5:1 and 4¢,1; (¢) F,2 and 4,2

Table 1: Summary of the estimated breakpoints from the process (5.15)

Number of Breakpoints Distance from Breakpoints
segments (%) true breakpoint (%)
t=150 t =300
0 0 [log(n)] =6 56 26
1 0 [2log(n)] = 12 70 42
2 88 [3log(n)] = 18 76 58
3 12 [4log(n)] = 24 78 74
> 3 0 [5log(n)] = 30 86 76
All 100

The results of the experiment is summarised in Table 1. The number of breakpoints detected and the
distance between the detected and true breakpoints are shown in the table.

In most cases, our procedure accurately estimated the number of breakpoints but sometimes over-
estimation was made with one more breakpoint. However, as shown in (3.3), any change in (3;;, i =
1,--+,pisreflected as a change in at least one of v;(r) sequences for r = 0, -, p. Therefore our method,
if it happens at all, will tend to oversplit rather than undersplit. In some cases, oversplitting may be
preferable over undersplitting as the latter can introduce nonstationarity bias (Ombao et al. (2001)).
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