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1 Financial time series

Let Pi, £k =0,...,n, be a time series of prices of a financial asset, e.g. daily quotes on a
share, stock index, currency exchange rate or a commodity. Instead of analysing P}, which
often displays unit-root behaviour and thus cannot be modelled as stationary, we often

analyse log-returns on Py, i.e. the series

P P, — P
yk:long—long_lzlog< k)zlog(l—f—M).
Py Pr1

By Taylor-expanding the above, we can see that y; is almost equivalent to the relative

return (Py — Py—1)/Pr—1. The reason we typically consider log-returns instead of relative



returns is the additivity property of log-returns, which is not shared by relative returns.

As an illustration, consider the time series of daily closing values of the ‘WIG’ index, which
is the main summary index of Warsaw Stock Exchange, running from 16 April 1991 to 5 Jan-
uary 2007. The data are available from http://bossa.pl/notowania/daneatech/metastock/
(page in Polish). The top left plot in Figure 1 shows the actual series Py. The top right

plot shows yy.

The series y, displays many of the typical ‘stylised facts’ present in financial log-return
series. As shown in the middle left plot of Figure 1, the series y; is uncorrelated, here with
the exception of lag 1 (typically, log-return series are uncorrelated with the exception of the
first few lags). However, as shown in the middle right plot, the squared series y,% is strongly
auto-correlated even for very large lags. In fact, in this example it is not obvious that the

auto-correlation of yi decays to zero at all.

It is also typical of financial log-return series to be heavy-tailed, as illustrated in the bottom
left plot of Figure 1, which shows the Q-Q plot of the marginal distribution of y; against

the standard normal.

Finally, the bottom right plot illustrates the so-called leverage effect: the series yj responds
differently to its own positive and negative movements, or in other words the conditional
distribution of |yg||{yx—1 > 0} is different from that of |yx||{yx—1 < 0}. The bottom right
plot of Figure 1 shows the sample quantiles of the two conditional distributions plotted
against each other. The explanation is that the market responds differently to “good” and

“bad” news, which is only too natural.

Statisticians “like” stationarity as it enables them to estimate parameters globally, using
the entire available data set. However, to propose a stationary model for y; which captures
the above “stylised facts” is not easy, as the series does not “look stationary”: the local
variance (volatility) is clearly clustered in bunches of low/high values. If we were to fit a

linear time series model (such as ARMA) to yy, the estimated parameters would come out
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as zero because of the lack of serial correlation property, which clearly would not be what

we wanted.

2 (G)ARCH models

2.1 Introduction

Noting the above difficulties, Engle (1982) was the first to propose a stationary non-linear
model for yg, which he termed ARCH (Auto-Regressive Conditionally Heteroscedastic; it
means that the conditional variance of yj evolves according to an autoregressive-type pro-
cess). Bollerslev (1986) and Taylor (1986) independently generalised Engle’s model to make
it more realistic; the generalisation was called “GARCH”. GARCH is probably the most
commonly used financial time series model and has inspired dozens of more sophisticated

models.

Literature. Literature on GARCH is massive. My favourites are: Giraitis et al. (2005), Bera
and Higgins (1993), Berkes et al. (2003), and the book by Straumann (2005). This chapter

is based on the latter three.

Definition. The GARCH(p, q) model is defined by

Y = Ok€k
P q
2 2 2
Ok = w""zaiykfi"i_Zﬁjakfjv (1)
i=1 j=1
where w > 0, a; > 0, §; > 0, and the innovation sequence {g;}32__ is independent and

identically distributed with E(eg) = 0 and E(e3) = 1.

The main idea is that a,%, the conditional variance of yj given information available up to
time k£ — 1, has an autoregressive structure and is positively correlated to its own recent

past and to recent values of the squared returns y2. This captures the idea of volatility (=



conditional variance) being “persistent”: large (small) values of y,z are likely to be followed

by large (small) values.

2.2 Basic properties
2.2.1 Uniqueness and stationarity

The answer to the question of whether and when the system of equations (1) admits a
unique and stationary solution is not straightforward and involves the so-called top Lya-
punov exponent associated with a certain sequence of random matrices. This is beyond the
scope of this course. See Bougerol and Picard (1992) for a theorem which gives a necessary
and sufficient condition for (1) to have a unique and stationary solution. Proposition 3.3.3

(b) in Straumann (2005) implies that it is the case if
P q
doai+d Bi<l. (2)
i=1 j=1
2.2.2 Mean zero
Define the information set
9:]{,120{61‘, —OO<i§k—1}.

In any model in which o} is measurable with respect to Fx_1 (which is the case in the

GARCH model (1)), the mean of y;, is zero:

E(yk) = E(O’ksk) = E[E(0k6k|?]€_1)] = E[O’kE(sﬂgk_l)] = E[O’kE(8k)] = E[(fk . 0] =0.



2.2.3 Lack of serial correlation

In the same way, we can show that yj is not correlated to yj1p for A > 0:

E(yryr+n) = E(Wroksneitn) = EEWrokincitn|FTitn—1)] = ElyroirnE(Eprn|Fitn—1)] = 0.

2.2.4 Unconditional variance

In order to compute E(yz), it is useful to consider an alternative representation of y,% First

define the sequence

Proceeding exactly like in Sections 2.2.2 and 2.2.3, we can show that Zj is a martingale
difference and therefore has mean zero (the “lack of serial correlation” property is more
tricky as it would require E(y{) < oo, which is not always true). The main point of this
definition is that for many purposes, Z can be treated as a “white noise” sequence: there are
a lot of results about martingale difference sequences which extend results on independent

sequences. See for example Davidson (1994).

We now proceed with our alternative representation. Write

yi = J]%—i-Zk
p q
= wH Y Qi+ Y Bioi i+ 2
i=1 j=1
p q q
= w+ Zaiyiﬂ‘ + Zﬁjyiﬁ' - Zﬁjzkfj + Z.
i=1 j=1 j=1

If we denote R = max(p,q), a; =0 for i > p and 3; = 0 for j > ¢, then the above can be

written as
R

q
Yr=w+ Z(ai + By — Zﬂjzk—j + Zy. 3)

i=1 j=1



In other words, y,% is an ARMA process with martingale difference innovations.

Using stationarity (which implies E(y}) = E(y;,,)), the unconditional variance is now easy

to obtain:

R

E() = w+ Y (wi+B)EWi) =Y BE(Zj) + E(Z)
=1 i=1

R
= wHEW)Y aitpi
=1

which gives
w
E(y) = :
1= i+ 6

This result shows again the importance of condition (2).

2.2.5 Heavy tails of y;

In this section, we argue that the GARCH model (1) can easily be heavy-tailed. For ease
of presentation, we only show it for the GARCH(1,1) model. We first assume the following
condition:

E(oel + 1) > 1 (4)

for some ¢ > 0. This condition is, for example, satisfied if e, ~ N(0,1) (but not only in

this case, obviously).

We write

Ory1 =w+ a1yp + fiog = w + (auer + B1)or,

which, using the independence of €5 of Fi_1, gives
E(0},,) = Elw + (aue} + B1)oi]"? > E[(are} + B1)op]? = Eare} + )2 E(of).

If E(o}) were finite, then by stationarity, it would be equal to (o). Then, simplifying,



we would obtain

1> E(aier + 51)Y?,

which contradicted assumption (4). Thus E(c}) is infinite, which also implies that E(y})

is infinite. Thus y; does not have all finite moments, so it is heavy-tailed.

2.3 Estimation
2.3.1 Some extra notation

The parameter vector will be denoted by 6, that is

0= (w,a1,...,0p,01,...,0).

We assume that there is a unique stationary solution to the set of equations (1). By

expanding o7 _ ; in (1), o7 can be represented as
(o @]

oh=co+ Y il (5)
i=1

(given that E(log o) < oo, which is a kind of a “stability condition”, but this is not
important for now). How to compute the coefficients ¢ in (5)7 They obviously depend on

the parameter . More generally, if the parameter is v = (z,s1,..., Sp,t1,...,tq), then:

e If ¢ > p, then

x
o) = T—t1—...— 1,
c(u) = s

co(u) = so+tier(u)



p(u) = sp+ticpi(u)+...+tp_1c1(u)

cpr1(u) = ticp(u) + ... +tpei(u)

cqu) = ticg—1(u)+... +tg—1c1(w)
o If ¢ < p, then
x

colw) = [ —
c(u) = s
co(u) = so+tici(u)

cqr1(u) = sqp1 +ticg(u) + ... +tgei(u)
cp(u) = sptticp_1(u) + ... +tgcp—q(u)

For ¢ > max(p, q),
CZ(’U,) = tlci,l(u) + tQCi,Q(’U,) + ...+ tqci,q(u)‘ (6)

2.3.2 Estimation via Quasi Maximum Likelihood

Define the parameter space

U={u:t1+...+ty < po,min(x,s1,...,5p, t1,...,tq) > u,max(x,s1,...,Sp,t1,...,tq) < U},

where pg, u, u are arbitrary but such that 0 < u <@, 0 < pg < 1, qu < pg. Clearly, U is a

compact set (it is a closed and bounded subset, of RPT4F1),



Quasi-likelihood for GARCH(p,q) is defined as

L@ = Y 5 {log wnw+ Lt

1<k<n

where

wi(u) = co(w) + D ci(w)yi,

1<i<oo
(in practice we truncate this sum, but let us not worry about it for now). Note that
Wi ((9) =0 l?;
If € is standard normal, then conditionally on Fi_1, yi is normal with mean zero and
variance wy(#). Normal log-likelihood for N (0, 0?) is
T 1 x?
logo™ ' — = +C~—=(logo®+ = ).
&9 202 © 2 < 8O T 2

Thus, if € are N(0,1) and the parameter is a general u, then the conditional likelihood of

Yy given Fp_q is

1 2
—3 {log w(u) + Y }

wg(u)

Summing over k, we get exactly L, (u). The quasi-likelihood estimator 0,, is defined as
0, = argmax, ey Ly, (u).

The estimator is called a “quasi”’-likelihood estimator as it will also be consistent if the

variables €} are not normally distributed.

In order to prove consistency, we first need to list a few assumptions.

Assumption 2.1 (i) €2 is a non-degenerate random variable.

10



(i) The polynomials

Alz) = aiz+ar®+ ...+ apa?
B(z) = 1—ﬁ1x—ﬁgx2—...—ﬂqxq
do not have common roots.

(11i) 0 lies in the interior of U. (This implies that there are no zero coefficients and that

the orders p and q are known!)

(iv)
E {5§(H§)} < 00

for some § > 0.
(v)
limt P2 <t)=0

t—0

for some > 0.

(vi)
E(g) =
(vii)
E {|eo*"} < o0

for some v > 0.

(viii)

Elyg|° < oo

11



for some § > 0.
We are now ready to formulate a consistency theorem for the quasi-likelihood estimator 0,.

Theorem 2.1 Under Assumptions 2.1 (i)—-(vi), we have

0, — 0 as.,

as n — oQ.

2.3.3 Consistency proof for the Quasi Maximum Likelihood estimator

Before we prove Theorem 2.1, we need a number of technical lemmas. These lemmas use,
in an ingenious and “beautiful” way, a number of simple but extremely useful mathematical
techniques/tricks, such as: mathematical induction, the Holder inequality, an alternative
representation of the expectation of a nonnegative random variable, a method for proving
implications, the Bonferroni inequality, the Markov inequality, the mean-value theorem,

ergodicity, the ergodic theorem and the concept of equicontinuity.

Lemma 2.1 For any u € U, we have

Ciu'

IN

ci(u) 0<i<oo (7)

IN

ci(u) < Copf? 0<i< o, (8)

for some positive constants Cy, Cs.

Proof. By induction. (7) and (8) hold for 0 < ¢ < max(p,q) if C; (C2) is chosen small

(large) enough. Let j > R and assume (7), (8) hold for all i < j. By (6),

cj(u) 2 u min cj y(u) > uChu/ ' = O

k yed

12



Also by (6),

cj(u) < (t1+...+1t;) max c;_(u) < poCop;
-q

5.

which completes the proof.

U-a/a _ C%)é/q’

Lemma 2.2 Suppose Assumptions 2.1 (iii), (v) and (vii) hold. Then for any 0 < v < ~y

we have

o2 \"
E { (sup k > } < 00.
uelU wk(u)
Proof. Take M > 1. We have

2
O

1] = = :
wp(w) i cwyi_,  Yim cilu)er_or_,

By definition of 0,%,

2 2 -
01 > Piog_i 1, 1<i<gq

2 2 ,
Ok—1 > QlYj_j—1, 1<i<p

O']%_l > w.

Hence
2 wt oy +...tapyi 4 Bior_ +...+ Byo}
o 1Wg—1 71+~ pYk—p 101 T - 99k —q
2 = 2
Ok—1 Ok—1
2 2 2
Q1€,_10%—1 Q2Yk—2 o3 o
< 1+ 5 . +—=+...+ L
Ok—1 QY11 Q2 Qp—1
2
S Kl(]' + 5k‘—1)a

13
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for some K7 > 1. This leads to

2
g M
O_zk‘ < Kl H (1+5z—j)7
k—i 1<j<M

for alli=1,..., M. Thus, using Lemma 2.1, (9) gives

1 . 1—}—@27,

2 2
— M M
W (u) Zz‘zl Ci (u)si—ial%—i 1<j<M Zi:l Ci (u)ei—z‘ Zi:l 524

)

for some Ky > 0, which is now independent of u (a uniform bound)! Thus, using the Holder

inequality,
2 v . 1+ 52 . v
E{(sup o ) } < E KéquSJSJA\//[[( k’*])
vy v/ o -2 o
< KyeE| [ a+eiy) E (Zei_Z)
1<j<M i=1
By the independence of the ¢;’s, and by Assumption 2.1 (vii),
gl
El I] a+¢y| ={EQ+)}" <.

1<j<M

It is now enough to show
vy

M _'y—u
E (Z 5%1) < 0.
i=1

Dealing with moments of sums can be difficult, but we will use a “trick” to avoid having to

do so. From 1st year probability, we know that for a nonnegative random variable Y,

EY:/PW>ﬂw

14



Thus if P(Y > t) < Kst~?2 for ¢ large enough, then EY < co. We will show

vy

M y—v
P (Zei_Z) >t | < Kst™?
=1

for t large enough. We have

vy

M v M
P> e, st =P (Y <t (10)
k—1 k—i =
i=1 =1

Obviously the following implication holds:

M
9 _ -y . 9 v

Zek‘—i St vy = \V/’L, 6k‘—’i St vy

i=1
so (10) can be bounded from above by

—v M
{P (gg gt”»T)} . (11)
Now, Assumption 2.1 (vii) implies
P(ek < 5) < Cs*,

for all s, for some C. Thus, we bound (11) from above by

uy=v)M

CMy™ " < Kqt72,

if M is chosen large enough, which completes the proof. O

Lemma 2.3 Suppose Assumptions 2.1 (iii) and (viii) hold. Then for any v > 0,

2931 Zcz(u)y£7 Y
E | sup = . < 0.
(uGU I+ Z;.il Ci (U)y,%ﬂ

15



Proof. For any M > 1, we have

Yoy ’Lci(u)yz—i D i1 Zci(u)yl?;—i Z?iMJrl ’Lci(u)y/%—i

1+ a(wy,  1+X 2 awyi;,  1+X2 alwyl,

M
1c;(u)y
ZZIZ()kl-i—E ici(u)yi_;

— M
Zz 161( )yk 7 i=M+1

< M+ Z ici(w)y?_,. (12)
i=M+1

We now recall another basic fact of probability. For a nonnegative variable Y, if P(Y >

t) ~ e~ then all moments of Y are finite, i.e. E|Y|” < oo for all v. Explanation:
ElY|” = /P(Y” > t)dt = /P(Y > tY7)dt ~ /eﬁt”"dt < oo.

We will show

(sup Z ici(u yk Z>t> e P

wel

Choose constants pé/q < ps < 1, pux > 1 such that p.pw < 1 and take M > My(Ca, ps, pix)

“large enough”. Then by (8) we have

(sup Z ici(u yk i >t> (C’g Z zpo/qyk i ) §P< Z piyi_i >t>.

i=M+1 i=M+1
(13)

o) —1
oodyi>t = Fi=M+1,...,0 yi_i>tp*z< p*i1> Pt
i=M+1 P

To see that this implication of the form p = ¢ is true, it is easy to show that g = —p.

Thus, by the Bonferroni inequality, (13) can be bounded from above by

o - -5
s 1% P .
R E R ) )= 3 P (225) ™).
P — 1 Prse — 1

1=M+1 i=M+1

16



Now using the Markov inequality, we bound the above by

)M5

— per\’ per \° (psp
— k% ' — k% * Mxxk
S Elyol?t 5(—) (0opes) = Elyo [t 5( ) (14)

=M1 Pax — 1 Pax — 1 1- (P*P**)5

We now take ¢ > 2max(Mp, 1) (it is enough to show the above for “large” t) and M =t/2.

Combining (12) and (14), we get

P (M + sup Z ici(w)yr_; > t) = P <sup Z ici(w)yr_; > t/2>

wel i1 uel i1
S (I R
which completes the proof. ]
Lemma 2.4 Let |-| denote the mazimum norm of a vector. Suppose that Assumptions 2.1

(i), (), (v), (viii) hold. Then

E sup [log wi(u) — log wi(v)] < oo
u,el U — U|
vi Vi

E sup < o0

u,velU |u - v’

wi(u) — wi(v)

Proof. The mean value theorem says that for a function f, we have

|[f(u) = fv)]

u =]

="l

where max(|§ — ul,|£ —v|) < |u—v|. Applying it to f(u) = y3/wi(u), we get

‘ vr R :|u_v" Yi ‘w;(f)‘.
wi(u)  wi(v) wi(§) | |wi(§)
Clearly

wi(u) = c(u) + Y (u)yi_s.
i=1

17



We now use a fact which we accept without proof. The proof is easy but long and is again

done by induction. If you are interested in the details, see Berkes et al. (2003), Lemma 3.2.

(] < C

Idi(w)| < Cici(u).

Using the above, we get

wy(u)

L+ >0 e (w)ys
wy, (u) '

< Kg
1+ Zfi1 Ci(u)y]%ﬂ'

sup
uelU

Given the above, Lemma 2.3 implies that

QT-HS
E (sup > < 00.
ucelU

On the other hand, by Lemma 2.2 and the assumptions of this lemma,

9\ 146/2 o2 N\ 10/
E (sup Yk ) = B(2)'2E (sup k ) < 0.
uet Wk (w) uel Wi (u)

~—

w(u
wy, ()

The Holder inequality completes the proof. The proof for log is very similar. O

Lemma 2.5 Suppose Assumptions 2.1 (iii), (iv) and (v) hold. Then

L) = L

n

sup — 0

uelU

almost surely, as n — oo, where

L(u) = —-1/2F (log wo(u) + wg(gu)) .

18



Proof. We start by stating the fact that if E|e2|® < oo for some § > 0, then there exists
a 6* > 0 such that E|y2|® < co and E|o2|®" < oo. The proof is beyond the scope of this

course. See Berkes et al. (2003), Lemma 2.3, for details.

Thus, the assumptions of this lemma mean that
Elyg|” < o0 (15)

for some §*. Using Lemma 2.1,

0<Cy < wk(u) <Cy |1+ Z pé)/qylzfi >
1<i<o0

which implies
5*

|log wo(u)| <log Co+1log [ 1+ > pf%i i | <A+B| Y o | |

1<i<oo 1<i<oo

which implies E|log wo(u)| < oo by (15).

s (wg?m) = Bl (wfu)) <o

Clearly, there exists a function g such that

By Lemma 2.2,

Yk = g(gkvgkflv .. ')7

and therefore yy, is stationary and ergodic by Theorem 3.5.8 of Stout (1974) (since {ey } is

stationary and ergodic as it is independent).

As E|L(u)| < oo, we can use the ergodic theorem, which says that for any u € U,

L L) — L(w)

19



almost surely.

Also,

sup [Ln() — Ln(v) —— < 1/2 3" 1,

where
i i

wi(u)  wi(v)

b

Again by Theorem 3.5.8 of Stout (1974), ny is stationary and ergodic. By Lemma 2.4,

Nk = Sup —— {Ilog wy(u) — log wy(v)[ + ‘
u,velU ’U,—’U’

FEny < 0. Using the ergodic theorem,

1 n
- Z ni = 0(1)
i=1
almost surely, showing that

'%Am__%@)ﬁéﬂ:

n n

0(1).

sup
u,velU

Thus the sequence of functions L,,(u)/n is equicontinuous. Also as shown earlier it converges
almost surely to L(u) for all w € U. This, along with the fact that U is a compact set,
implies that the convergence is uniform, which completes the proof. (Recall a well-known
fact of mathematical analysis: let f,, be an equicontinuous sequence of functions from a

compact set to R. If f,(z) — f(z) for all x, then f,, — f uniformly in z.) O

Lemma 2.6 Suppose the conditions of Theorem 2.1 are satisfied. Then L(u) has a unique

mazimum at 0.

Proof. wy(f) = o7. As Eed =1,

v (wé/?u)) - (wfu)) |

20



We have

=
N>
|
=
S
I
|

AR yt
1 = —F 1
(og JO+08)+2 (ogwo(u)—i-wo(u))

E

<E(log 02) + 1 — E(log wo(u)) — E ( % >>
E (log w;:(gu) - w;f(gu)) + 1>

+%E (#(Ou) —log#(ou)) .

The function x — log  is positive for all z > 0 and attains its minimum value (of 1) for

NI~ NI~ N~ N -

x = 1. Thus L(u) has a global maximum at 6.
Is the maximum unique?

Assume L(u*) = L(6) for some u* € U.

1 1 o2 o2
0=L0O)—Lu)=—-—=+-F USRS | 0 >
(6) - L(u") (Ou o5

When is it possible that E(X —log X) =1if X > 0?7 X —log X > 1, so it is only possible if
X =1 almost surely. Thus 02 = wo(u*) almost surely, so we must also have ¢;(0) = ¢;(u*)
for all i (we accept this “intuitively obvious” statement here without proof; see Berkes et al.

2003) for details). So we also have o2 = wy(u*) for all k. Let
k

* * * * * *
ut = (27,87, Syt ty).

On the one hand, by definition,

J]% =wi(0) =w+ oqy,%,l 4+ ...+ apy,%,p + ﬁlU;%A + ...+ ﬁqa,%fq.

21



On the other hand, by the above discussion,
ol =wp(u*) =" +siyi_;+ ...+ s;y,z_p +tior .t tZUI?;—q-

Equating coefficients (using the “uniqueness of GARCH representation”, also without proof:

see Berkes et al. (2003) for details), we have u* = 6, which completes the proof. O
We are finally ready to prove Theorem 2.1.

Proof of Theorem 2.1. U is a compact set. L, /n converges uniformly to L on U with
probability one (Lemma 2.5) and L has a unique maximum at v = 6 (Lemma 2.6). Thus by
standard arguments (best seen graphically!) the locations of the maxima of L, /n converge

to that of L. This completes the proof of the Theorem. O

Exercise: try to think why we need uniform convergence for this reasoning to be valid.

Would it not be enough if L, (u)/n converged pointwise to L(u) for all u?

2.4 Forecasting

By standard Hilbert space theory, the best point forecasts of y; under the Lo norm are

given by E(yr+r|Fx) and are equal to zero if A > 0 by the martingale difference property
of Yk -

The equation (3) is a convenient starting point for the analysis of the optimal forecasts for
y?. Again under the Ly norm, they are given by E(y} +n|Fk). Formally, this only makes
sense if K/ (yé) < 00, which is not always the case. However, many authors take the above as
their forecasting statistic of choice. It might be more correct (and interesting) to consider
Median(yj, ,|F%), which is the optimal forecast under the L; norm. This always makes
sense as F (yz) < oo as we saw before. However, it is mathematically far more tractable to

look at E(y,%+h]3”k), which is what we are going to do below.
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Take h > 0. Recall that E(Zg4pn|Fr) = 0. From (3), we get

R q
Yern = wH > (it B)Yirn—i— Y BiZkin—j + Ziin

=1 j=1
R q

EWinlFn) = w4 (@ +B)EWin—ilFs) = Y BiE(Zkrn—j|Fx) + E(ZrsnlFy)
i=1 j=1
R q

E(enlFr) = w+ Y (0 +B)EWiyn_ilFe) = > BiE(Zern—i|Fe). (16)
=1 j=1

The recursive formula (16) is used to compute the forecasts, with the following boundary

conditions:

E(y,€+h_i]3”k) is given recursively by (16) if h > i,

E(szrhfz’EFk) - ylerh,i if h < i,

E(Zy1n—j|Fk) = 0if h > j,

2.4.1 The asymptotic forecast

For h > p, (16) becomes

R
E(yisnlTe) = w + Y (0 + B)EWR il T, (17)
1=1

which is a difference equation for the sequence {E(y? alFk) e, Standard theory of

difference equations says that if the roots of the polynomial

p(z)=1— (a1 +B1)z—...— (ag + Br)z"
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lie outside the unit circle, then the solution of (17) converges to

w

1 - Zszl(ai + ﬁi)’

which is the unconditional expectation of y,%! In other words, as the forecasting horizon
gets longer and longer, the conditioning set F; has less and less impact on the forecast and

asymptotically, it “does not matter” at all.

2.4.2 Example: GARCH(1,1)

In this section, we obtain explicit formulae for forecasts in the GARCH(1,1) model. Using

formula (16) and the definition of Zj, we get

E(Yp1|Fr) = w + (a1 + B)yi — B1 2 = w + aryj + Pioy.

Substituting recursively into (17), we obtain

E(yl%Jrz’ka) = W[l + (a1 + B)Y + a1(ar + B1)yi + Bi(ar + Br)o}

E(yiislFr) = wl+ (a1 +81)" + (a1 + B1)% + ar(eq + B1)*yi + Biar + B1)%o;

h—1

EWiiplF) = w Z(Oél +B1)" + ar(on + B)" i+ Biea + B)" o,
=0

which clearly converges to w/(1 — a1 — (1) as h — 00, as expected.

2.5 Extensions of GARCH

There are many extensions of the GARCH model. Two of them, EGARCH and IGARCH

are probably the most popular and are covered in Straumann (2005). The Exponential
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GARCH (EGARCH) model reads
log o = o+ Blog oj_y +yer—1 + Slex—1].

The Integrated GARCH (IGARCH) process is a GARCH process for which Zf: L0 =1

2.6 Software for fitting GARCH models

Both S-Plus and R have their own packages containing routines for fitting and forecasting

GARCH models. The S-Plus module is called FinMetrics, is described on
http://www.insightful.com/products/finmetrics/

and is a commerical product. Sadly, it is much better than its (free) R counterpart, the

tseries package, available from
http://cran.r-project.org/src/contrib/Descriptions/tseries.html

The R package is only able to fit GARCH models, while the S-Plus module can fit GARCH,
EGARCH and a number of other models.

2.7 Relevance of GARCH models

Are GARCH models really used in practice? The answer is YES. Only recently, a big
UK bank was looking for a time series analyst to work on portfolio construction (risk

management). One of the job requirements was familiarity with GARCH models!
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