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1 Financial time series

Let Pk, k = 0, . . . , n, be a time series of prices of a financial asset, e.g. daily quotes on a

share, stock index, currency exchange rate or a commodity. Instead of analysing Pk, which

often displays unit-root behaviour and thus cannot be modelled as stationary, we often

analyse log-returns on Pk, i.e. the series

yk = log Pk − log Pk−1 = log

(

Pk

Pk−1

)

= log

(

1 +
Pk − Pk−1

Pk−1

)

.

By Taylor-expanding the above, we can see that yk is almost equivalent to the relative

return (Pk − Pk−1)/Pk−1. The reason we typically consider log-returns instead of relative
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returns is the additivity property of log-returns, which is not shared by relative returns.

As an illustration, consider the time series of daily closing values of the ‘WIG’ index, which

is the main summary index of Warsaw Stock Exchange, running from 16 April 1991 to 5 Jan-

uary 2007. The data are available from http://bossa.pl/notowania/daneatech/metastock/

(page in Polish). The top left plot in Figure 1 shows the actual series Pk. The top right

plot shows yk.

The series yk displays many of the typical ‘stylised facts’ present in financial log-return

series. As shown in the middle left plot of Figure 1, the series yk is uncorrelated, here with

the exception of lag 1 (typically, log-return series are uncorrelated with the exception of the

first few lags). However, as shown in the middle right plot, the squared series y2
k is strongly

auto-correlated even for very large lags. In fact, in this example it is not obvious that the

auto-correlation of y2
k decays to zero at all.

It is also typical of financial log-return series to be heavy-tailed, as illustrated in the bottom

left plot of Figure 1, which shows the Q-Q plot of the marginal distribution of yk against

the standard normal.

Finally, the bottom right plot illustrates the so-called leverage effect: the series yk responds

differently to its own positive and negative movements, or in other words the conditional

distribution of |yk|
∣

∣

∣
{yk−1 > 0} is different from that of |yk|

∣

∣

∣
{yk−1 < 0}. The bottom right

plot of Figure 1 shows the sample quantiles of the two conditional distributions plotted

against each other. The explanation is that the market responds differently to “good” and

“bad” news, which is only too natural.

Statisticians “like” stationarity as it enables them to estimate parameters globally, using

the entire available data set. However, to propose a stationary model for yk which captures

the above “stylised facts” is not easy, as the series does not “look stationary”: the local

variance (volatility) is clearly clustered in bunches of low/high values. If we were to fit a

linear time series model (such as ARMA) to yk, the estimated parameters would come out
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as zero because of the lack of serial correlation property, which clearly would not be what

we wanted.

2 (G)ARCH models

2.1 Introduction

Noting the above difficulties, Engle (1982) was the first to propose a stationary non-linear

model for yk, which he termed ARCH (Auto-Regressive Conditionally Heteroscedastic; it

means that the conditional variance of yk evolves according to an autoregressive-type pro-

cess). Bollerslev (1986) and Taylor (1986) independently generalised Engle’s model to make

it more realistic; the generalisation was called “GARCH”. GARCH is probably the most

commonly used financial time series model and has inspired dozens of more sophisticated

models.

Literature. Literature on GARCH is massive. My favourites are: Giraitis et al. (2005), Bera

and Higgins (1993), Berkes et al. (2003), and the book by Straumann (2005). This chapter

is based on the latter three.

Definition. The GARCH(p, q) model is defined by

yk = σkεk

σ2
k = ω +

p
∑

i=1

αiy
2
k−i +

q
∑

j=1

βjσ
2
k−j, (1)

where ω > 0, αi ≥ 0, βj ≥ 0, and the innovation sequence {εi}
∞
i=−∞ is independent and

identically distributed with E(ε0) = 0 and E(ε2
0) = 1.

The main idea is that σ2
k, the conditional variance of yk given information available up to

time k − 1, has an autoregressive structure and is positively correlated to its own recent

past and to recent values of the squared returns y2. This captures the idea of volatility (=
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conditional variance) being “persistent”: large (small) values of y2
k are likely to be followed

by large (small) values.

2.2 Basic properties

2.2.1 Uniqueness and stationarity

The answer to the question of whether and when the system of equations (1) admits a

unique and stationary solution is not straightforward and involves the so-called top Lya-

punov exponent associated with a certain sequence of random matrices. This is beyond the

scope of this course. See Bougerol and Picard (1992) for a theorem which gives a necessary

and sufficient condition for (1) to have a unique and stationary solution. Proposition 3.3.3

(b) in Straumann (2005) implies that it is the case if

p
∑

i=1

αi +

q
∑

j=1

βj < 1. (2)

2.2.2 Mean zero

Define the information set

Fk−1 = σ{εi, −∞ < i ≤ k − 1}.

In any model in which σk is measurable with respect to Fk−1 (which is the case in the

GARCH model (1)), the mean of yk is zero:

E(yk) = E(σkεk) = E[E(σkεk|Fk−1)] = E[σkE(εk|Fk−1)] = E[σkE(εk)] = E[σk · 0] = 0.
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2.2.3 Lack of serial correlation

In the same way, we can show that yk is not correlated to yk+h for h > 0:

E(ykyk+h) = E(ykσk+hεk+h) = E[E(ykσk+hεk+h|Fk+h−1)] = E[ykσk+hE(εk+h|Fk+h−1)] = 0.

2.2.4 Unconditional variance

In order to compute E(y2
k), it is useful to consider an alternative representation of y2

k. First

define the sequence

Zk = y2
k − σ2

k = σ2
k(ε

2
k − 1).

Proceeding exactly like in Sections 2.2.2 and 2.2.3, we can show that Zk is a martingale

difference and therefore has mean zero (the “lack of serial correlation” property is more

tricky as it would require E(y4
k) < ∞, which is not always true). The main point of this

definition is that for many purposes, Zk can be treated as a “white noise” sequence: there are

a lot of results about martingale difference sequences which extend results on independent

sequences. See for example Davidson (1994).

We now proceed with our alternative representation. Write

y2
k = σ2

k + Zk

= ω +

p
∑

i=1

αiy
2
k−i +

q
∑

j=1

βjσ
2
k−j + Zk

= ω +

p
∑

i=1

αiy
2
k−i +

q
∑

j=1

βjy
2
k−j −

q
∑

j=1

βjZk−j + Zk.

If we denote R = max(p, q), αi = 0 for i > p and βj = 0 for j > q, then the above can be

written as

y2
k = ω +

R
∑

i=1

(αi + βi)y
2
k−i −

q
∑

j=1

βjZk−j + Zk. (3)
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In other words, y2
k is an ARMA process with martingale difference innovations.

Using stationarity (which implies E(y2
k) = E(y2

k+h)), the unconditional variance is now easy

to obtain:

E(y2
k) = ω +

R
∑

i=1

(αi + βi)E(y2
k−i) −

q
∑

j=1

βjE(Zk−j) + E(Zk)

= ω + E(y2
k)

R
∑

i=1

αi + βi,

which gives

E(y2
k) =

ω

1 −
∑R

i=1 αi + βi

.

This result shows again the importance of condition (2).

2.2.5 Heavy tails of yk

In this section, we argue that the GARCH model (1) can easily be heavy-tailed. For ease

of presentation, we only show it for the GARCH(1,1) model. We first assume the following

condition:

E(α1ε
2
k + β1)

q/2 > 1 (4)

for some q > 0. This condition is, for example, satisfied if εk ∼ N(0, 1) (but not only in

this case, obviously).

We write

σ2
k+1 = ω + α1y

2
k + β1σ

2
k = ω + (α1ε

2
k + β1)σ

2
k,

which, using the independence of εk of Fk−1, gives

E(σq
k+1) = E[ω + (α1ε

2
k + β1)σ

2
k]

q/2 ≥ E[(α1ε
2
k + β1)σ

2
k]

q/2 = E(α1ε
2
k + β1)

q/2E(σq
k).

If E(σq
k) were finite, then by stationarity, it would be equal to E(σq

k+1). Then, simplifying,
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we would obtain

1 ≥ E(α1ε
2
k + β1)

q/2,

which contradicted assumption (4). Thus E(σq
k) is infinite, which also implies that E(y2

k)

is infinite. Thus yk does not have all finite moments, so it is heavy-tailed.

2.3 Estimation

2.3.1 Some extra notation

The parameter vector will be denoted by θ, that is

θ = (ω, α1, . . . , αp, β1, . . . , βq).

We assume that there is a unique stationary solution to the set of equations (1). By

expanding σ2
k−j in (1), σ2

k can be represented as

σ2
k = c0 +

∞
∑

i=1

ciy
2
k−i, (5)

(given that E(log σ2
0) < ∞, which is a kind of a “stability condition”, but this is not

important for now). How to compute the coefficients ck in (5)? They obviously depend on

the parameter θ. More generally, if the parameter is u = (x, s1, . . . , sp, t1, . . . , tq), then:

� If q ≥ p, then

c0(u) =
x

1 − t1 − . . . − tq

c1(u) = s1

c2(u) = s2 + t1c1(u)

. . .
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cp(u) = sp + t1cp−1(u) + . . . + tp−1c1(u)

cp+1(u) = t1cp(u) + . . . + tpc1(u)

. . .

cq(u) = t1cq−1(u) + . . . + tq−1c1(u)

� If q < p, then

c0(u) =
x

1 − t1 − . . . − tq

c1(u) = s1

c2(u) = s2 + t1c1(u)

. . .

cq+1(u) = sq+1 + t1cq(u) + . . . + tqc1(u)

. . .

cp(u) = sp + t1cp−1(u) + . . . + tqcp−q(u)

For i > max(p, q),

ci(u) = t1ci−1(u) + t2ci−2(u) + . . . + tqci−q(u). (6)

2.3.2 Estimation via Quasi Maximum Likelihood

Define the parameter space

U = {u : t1+. . .+tq ≤ ρ0,min(x, s1, . . . , sp, t1, . . . , tq) ≥ u,max(x, s1, . . . , sp, t1, . . . , tq) ≤ u},

where ρ0, u, u are arbitrary but such that 0 < u < u, 0 < ρ0 < 1, qu < ρ0. Clearly, U is a

compact set (it is a closed and bounded subset of R
p+q+1).
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Quasi-likelihood for GARCH(p,q) is defined as

Ln(u) =
∑

1≤k≤n

−
1

2

{

log wk(u) +
y2

k

wk(u)

}

,

where

wk(u) = c0(u) +
∑

1≤i<∞

ci(u)y2
k−i

(in practice we truncate this sum, but let us not worry about it for now). Note that

wk(θ) = σ2
k.

If εk is standard normal, then conditionally on Fk−1, yk is normal with mean zero and

variance wk(θ). Normal log-likelihood for N(0, σ2) is

log σ−1 −
x2

2σ2
+ C ∼ −

1

2

(

log σ2 +
x2

σ2

)

.

Thus, if εk are N(0, 1) and the parameter is a general u, then the conditional likelihood of

yk given Fk−1 is

−
1

2

{

log wk(u) +
y2

k

wk(u)

}

.

Summing over k, we get exactly Ln(u). The quasi-likelihood estimator θ̂n is defined as

θ̂n = argmaxu∈ULn(u).

The estimator is called a “quasi”-likelihood estimator as it will also be consistent if the

variables εk are not normally distributed.

In order to prove consistency, we first need to list a few assumptions.

Assumption 2.1 (i) ε2
0 is a non-degenerate random variable.
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(ii) The polynomials

A(x) = α1x + α2x
2 + . . . + αpx

p

B(x) = 1 − β1x − β2x
2 − . . . − βqx

q

do not have common roots.

(iii) θ lies in the interior of U . (This implies that there are no zero coefficients and that

the orders p and q are known!)

(iv)

E
{

ε
2(1+δ)
0

}

< ∞

for some δ > 0.

(v)

lim
t→0

t−µP (ε2
0 ≤ t) = 0

for some µ > 0.

(vi)

E(ε2
0) = 1.

(vii)

E
{

|ε0|
2γ
}

< ∞

for some γ > 0.

(viii)

E|y2
0|

δ < ∞
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for some δ > 0.

We are now ready to formulate a consistency theorem for the quasi-likelihood estimator θ̂n.

Theorem 2.1 Under Assumptions 2.1 (i)–(vi), we have

θ̂n → θ a.s.,

as n → ∞.

2.3.3 Consistency proof for the Quasi Maximum Likelihood estimator

Before we prove Theorem 2.1, we need a number of technical lemmas. These lemmas use,

in an ingenious and “beautiful” way, a number of simple but extremely useful mathematical

techniques/tricks, such as: mathematical induction, the Hölder inequality, an alternative

representation of the expectation of a nonnegative random variable, a method for proving

implications, the Bonferroni inequality, the Markov inequality, the mean-value theorem,

ergodicity, the ergodic theorem and the concept of equicontinuity.

Lemma 2.1 For any u ∈ U , we have

C1u
i ≤ ci(u) 0 ≤ i < ∞ (7)

ci(u) ≤ C2ρ
i/q
0 0 ≤ i < ∞, (8)

for some positive constants C1, C2.

Proof. By induction. (7) and (8) hold for 0 ≤ i ≤ max(p, q) if C1 (C2) is chosen small

(large) enough. Let j > R and assume (7), (8) hold for all i < j. By (6),

cj(u) ≥ u min
k=1,...,q

cj−k(u) ≥ uC1u
j−1 = C1u

j.
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Also by (6),

cj(u) ≤ (t1 + . . . + tq) max
k=1,...,q

cj−k(u) ≤ ρ0C2ρ
(j−q)/q
0 = C2ρ

j/q
0 ,

which completes the proof. �

Lemma 2.2 Suppose Assumptions 2.1 (iii), (v) and (vii) hold. Then for any 0 < ν < γ

we have

E

{(

sup
u∈U

σ2
k

wk(u)

)ν}

< ∞.

Proof. Take M ≥ 1. We have

σ2
k

wk(u)
≤

σ2
k

∑M
i=1 ci(u)y2

k−i

=
σ2

k
∑M

i=1 ci(u)ε2
k−iσ

2
k−i

. (9)

By definition of σ2
k,

σ2
k−1 > βiσ

2
k−i−1, 1 ≤ i ≤ q

σ2
k−1 > αiy

2
k−i−1, 1 ≤ i ≤ p

σ2
k−1 > ω.

Hence

σ2
k

σ2
k−1

=
ω + α1y

2
k−1 + . . . + αpy

2
k−p + β1σ

2
k−1 + . . . + βqσ

2
k−q

σ2
k−1

≤ 1 +
α1ε

2
k−1σ

2
k−1

σ2
k−1

+
α2y

2
k−2

α1y2
k−1−1

+
α3

α2
+ . . . +

αp

αp−1
+ β1 +

β2

β1
+ . . . +

βq

βq−1

≤ K1(1 + ε2
k−1),
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for some K1 > 1. This leads to

σ2
k

σ2
k−i

≤ KM
1

∏

1≤j≤M

(1 + ε2
k−j),

for all i = 1, . . . ,M . Thus, using Lemma 2.1, (9) gives

σ2
k

wk(u)
≤

σ2
k

∑M
i=1 ci(u)ε2

k−iσ
2
k−i

≤ KM
1

∏

1≤j≤M

(1+ε2
k−j)

1
∑M

i=1 ci(u)ε2
k−i

≤ KM
2

∏

1≤j≤M(1 + ε2
k−j)

∑M
i=1 ε2

k−i

,

for some K2 > 0, which is now independent of u (a uniform bound)! Thus, using the Hölder

inequality,

E

{(

sup
u∈U

σ2
k

wk(u)

)ν}

≤ E

{(

KM
2

∏

1≤j≤M (1 + ε2
k−j)

∑M
i=1 ε2

k−i

)ν}

≤ KMν
2







E





∏

1≤j≤M

(1 + ε2
k−j)





γ




ν/γ 




E

(

M
∑

i=1

ε2
k−i

)−
νγ

γ−ν







γ−ν
γ

By the independence of the εi’s, and by Assumption 2.1 (vii),

E





∏

1≤j≤M

(1 + ε2
k−j)





γ

=
{

E(1 + ε2
0)

γ
}M

< ∞.

It is now enough to show

E

(

M
∑

i=1

ε2
k−i

)−
νγ

γ−ν

< ∞.

Dealing with moments of sums can be difficult, but we will use a “trick” to avoid having to

do so. From 1st year probability, we know that for a nonnegative random variable Y ,

EY =

∫

P (Y > t)dt.
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Thus if P (Y > t) ≤ K3t
−2 for t large enough, then EY < ∞. We will show

P





(

M
∑

i=1

ε2
k−i

)−
νγ

γ−ν

> t



 ≤ K3t
−2

for t large enough. We have

P





(

M
∑

i=1

ε2
k−i

)−
νγ

γ−ν

> t



 = P

(

M
∑

i=1

ε2
k−i ≤ t

−
γ−ν
νγ

)

(10)

Obviously the following implication holds:

M
∑

i=1

ε2
k−i ≤ t

−
γ−ν
νγ ⇒ ∀ i, ε2

k−i ≤ t
−

γ−ν
νγ ,

so (10) can be bounded from above by

{

P
(

ε2
0 ≤ t−

γ−ν
νγ

)}M
. (11)

Now, Assumption 2.1 (vii) implies

P (ε2
0 ≤ s) ≤ C̃sµ,

for all s, for some C̃. Thus, we bound (11) from above by

C̃M t−
µ(γ−ν)M

γν ≤ K3t
−2,

if M is chosen large enough, which completes the proof. �

Lemma 2.3 Suppose Assumptions 2.1 (iii) and (viii) hold. Then for any ν > 0,

E

(

sup
u∈U

∑∞
i=1 ici(u)y2

k−i

1 +
∑∞

i=1 ci(u)y2
k−i

)ν

< ∞.
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Proof. For any M ≥ 1, we have

∑∞
i=1 ici(u)y2

k−i

1 +
∑∞

i=1 ci(u)y2
k−i

=

∑M
i=1 ici(u)y2

k−i

1 +
∑∞

i=1 ci(u)y2
k−i

+

∑∞
i=M+1 ici(u)y2

k−i

1 +
∑∞

i=1 ci(u)y2
k−i

≤

∑M
i=1 ici(u)y2

k−i
∑M

i=1 ci(u)y2
k−i

+
∞
∑

i=M+1

ici(u)y2
k−i

≤ M +
∞
∑

i=M+1

ici(u)y2
k−i. (12)

We now recall another basic fact of probability. For a nonnegative variable Y , if P (Y >

t) ∼ e−βtα , then all moments of Y are finite, i.e. E|Y |ν < ∞ for all ν. Explanation:

E|Y |ν =

∫

P (Y ν > t)dt =

∫

P (Y > t1/ν)dt ∼

∫

e−βtα/ν
dt < ∞.

We will show

P

(

sup
u∈U

∞
∑

i=M+1

ici(u)y2
k−i > t

)

∼ e−βtα .

Choose constants ρ
1/q
0 < ρ∗ < 1, ρ∗∗ > 1 such that ρ∗ρ∗∗ < 1 and take M ≥ M0(C2, ρ∗, ρ∗∗)

“large enough”. Then by (8) we have

P

(

sup
u∈U

∞
∑

i=M+1

ici(u)y2
k−i > t

)

≤ P

(

C2

∞
∑

i=M+1

iρ
i/q
0 y2

k−i > t

)

≤ P

(

∞
∑

i=M+1

ρi
∗y

2
k−i > t

)

.

(13)

Now,

∞
∑

i=M+1

ρi
∗y

2
k−i > t ⇒ ∃ i = M + 1, . . . ,∞ y2

k−i > tρ−i
∗

(

ρ∗∗
ρ∗∗ − 1

)−1

ρ−i
∗∗

To see that this implication of the form p ⇒ q is true, it is easy to show that ¬q ⇒ ¬p.

Thus, by the Bonferroni inequality, (13) can be bounded from above by

∞
∑

i=M+1

P

(

y2
k−i > tρ−i

∗

(

ρ∗∗
ρ∗∗ − 1

)−1

ρ−i
∗∗

)

=

∞
∑

i=M+1

P

(

y2δ
k−i > tδ

(

ρ∗∗
ρ∗∗ − 1

)−δ

(ρ∗ρ∗∗)
−iδ

)

.
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Now using the Markov inequality, we bound the above by

∞
∑

i=M+1

E|y0|
2δt−δ

(

ρ∗∗
ρ∗∗ − 1

)δ

(ρ∗ρ∗∗)
iδ = E|y0|

2δt−δ

(

ρ∗∗
ρ∗∗ − 1

)δ (ρ∗ρ∗∗)
Mδ

1 − (ρ∗ρ∗∗)δ
(14)

We now take t > 2max(M0, 1) (it is enough to show the above for “large” t) and M = t/2.

Combining (12) and (14), we get

P

(

M + sup
u∈U

∞
∑

i=M+1

ici(u)y2
k−i > t

)

= P

(

sup
u∈U

∞
∑

i=M+1

ici(u)y2
k−i > t/2

)

≤ E|y0|
2δ(t/2)−δ

(

ρ∗∗
ρ∗∗ − 1

)δ (ρ∗ρ∗∗)
tδ/2

1 − (ρ∗ρ∗∗)δ
≤ K4e

−K5t,

which completes the proof. �

Lemma 2.4 Let | · | denote the maximum norm of a vector. Suppose that Assumptions 2.1

(iii), (iv), (v), (viii) hold. Then

E sup
u,v∈U

1

|u − v|
|log wk(u) − log wk(v)| < ∞

E sup
u,v∈U

1

|u − v|

∣

∣

∣

∣

y2
k

wk(u)
−

y2
k

wk(v)

∣

∣

∣

∣

< ∞

Proof. The mean value theorem says that for a function f , we have

|f(u) − f(v)|

|u − v|
= |f ′(ξ)|,

where max(|ξ − u|, |ξ − v|) ≤ |u − v|. Applying it to f(u) = y2
k/wk(u), we get

∣

∣

∣

∣

y2
k

wk(u)
−

y2
k

wk(v)

∣

∣

∣

∣

= |u − v|

∣

∣

∣

∣

y2
k

wk(ξ)

∣

∣

∣

∣

∣

∣

∣

∣

w′
k(ξ)

wk(ξ)

∣

∣

∣

∣

.

Clearly

w′
k(u) = c′0(u) +

∞
∑

i=1

c′i(u)y2
k−i.
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We now use a fact which we accept without proof. The proof is easy but long and is again

done by induction. If you are interested in the details, see Berkes et al. (2003), Lemma 3.2.

|c′0(u)| < C̃

|c′i(u)| < C̄ici(u).

Using the above, we get

sup
u∈U

∣

∣

∣

∣

w′
k(u)

wk(u)

∣

∣

∣

∣

≤ K6

1 +
∑∞

i=1 ici(u)y2
k−i

1 +
∑∞

i=1 ci(u)y2
k−i

.

Given the above, Lemma 2.3 implies that

E

(

sup
u∈U

∣

∣

∣

∣

w′
k(u)

wk(u)

∣

∣

∣

∣

)
2+δ

δ

< ∞.

On the other hand, by Lemma 2.2 and the assumptions of this lemma,

E

(

sup
u∈U

y2
k

wk(u)

)1+δ/2

= E(ε2
k)

1+δ/2E

(

sup
u∈U

σ2
k

wk(u)

)1+δ/2

< ∞.

The Hölder inequality completes the proof. The proof for log is very similar. �

Lemma 2.5 Suppose Assumptions 2.1 (iii), (iv) and (v) hold. Then

sup
u∈U

∣

∣

∣

∣

1

n
Ln(u) − L(u)

∣

∣

∣

∣

→ 0

almost surely, as n → ∞, where

L(u) = −1/2E

(

log w0(u) +
y2
0

w0(u)

)

.
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Proof. We start by stating the fact that if E|ε2
0|

δ < ∞ for some δ > 0, then there exists

a δ∗ > 0 such that E|y2
0 |

δ∗ < ∞ and E|σ2
0 |

δ∗ < ∞. The proof is beyond the scope of this

course. See Berkes et al. (2003), Lemma 2.3, for details.

Thus, the assumptions of this lemma mean that

E|y2
0 |

δ∗ < ∞ (15)

for some δ∗. Using Lemma 2.1,

0 < C1 ≤ wk(u) ≤ C2



1 +
∑

1≤i<∞

ρ
i/q
0 y2

k−i



 ,

which implies

| log w0(u)| ≤ log C2 + log



1 +
∑

1≤i<∞

ρ
i/q
0 y2

k−i



 ≤ A + B

∣

∣

∣

∣

∣

∣

∑

1≤i<∞

ρ
i/q
0 y2

k−i

∣

∣

∣

∣

∣

∣

δ∗

,

which implies E| log w0(u)| < ∞ by (15).

By Lemma 2.2,

E

(

y2
0

w0(u)

)

= Eε2
0E

(

σ2
0

w0(u)

)

< ∞.

Clearly, there exists a function g such that

yk = g(εk, εk−1, . . .),

and therefore yk is stationary and ergodic by Theorem 3.5.8 of Stout (1974) (since {εk}k is

stationary and ergodic as it is independent).

As E|L(u)| < ∞, we can use the ergodic theorem, which says that for any u ∈ U ,

1

n
Ln(u) → L(u)
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almost surely.

Also,

sup
u,v∈U

|Ln(u) − Ln(v)|
1

|u − v|
≤ 1/2

∑

1≤k≤n

ηk,

where

ηk = sup
u,v∈U

1

|u − v|

{

| log wk(u) − log wk(v)| +

∣

∣

∣

∣

y2
k

wk(u)
−

y2
k

wk(v)

∣

∣

∣

∣

}

.

Again by Theorem 3.5.8 of Stout (1974), ηk is stationary and ergodic. By Lemma 2.4,

Eη0 < ∞. Using the ergodic theorem,

1

n

n
∑

i=1

ηi = O(1)

almost surely, showing that

sup
u,v∈U

∣

∣

∣

∣

1

n
Ln(u) −

1

n
Ln(v)

∣

∣

∣

∣

1

|u − v|
= O(1).

Thus the sequence of functions Ln(u)/n is equicontinuous. Also as shown earlier it converges

almost surely to L(u) for all u ∈ U . This, along with the fact that U is a compact set,

implies that the convergence is uniform, which completes the proof. (Recall a well-known

fact of mathematical analysis: let fn be an equicontinuous sequence of functions from a

compact set to R. If fn(x) → f(x) for all x, then fn → f uniformly in x.) �

Lemma 2.6 Suppose the conditions of Theorem 2.1 are satisfied. Then L(u) has a unique

maximum at θ.

Proof. w0(θ) = σ2
k. As Eε2

0 = 1,

E

(

y2
0

w0(u)

)

= E

(

σ2
0

w0(u)

)

.
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We have

L(θ) − L(u) = −
1

2
E

(

log σ2
0 +

y2
0

σ2
0

)

+
1

2
E

(

log w0(u) +
y2
0

w0(u)

)

= −
1

2

(

E(log σ2
0) + 1 − E(log w0(u)) − E

(

σ2
0

w0(u)

))

= −
1

2

(

E

(

log
σ2

0

w0(u)
−

σ2
0

w0(u)

)

+ 1

)

= −
1

2
+

1

2
E

(

σ2
0

w0(u)
− log

σ2
0

w0(u)

)

.

The function x − log x is positive for all x > 0 and attains its minimum value (of 1) for

x = 1. Thus L(u) has a global maximum at θ.

Is the maximum unique?

Assume L(u∗) = L(θ) for some u∗ ∈ U .

0 = L(θ) − L(u∗) = −
1

2
+

1

2
E

(

σ2
0

w0(u∗)
− log

σ2
0

w0(u∗)

)

.

When is it possible that E(X − log X) = 1 if X > 0? X− log X ≥ 1, so it is only possible if

X = 1 almost surely. Thus σ2
0 = w0(u

∗) almost surely, so we must also have ci(θ) = ci(u
∗)

for all i (we accept this “intuitively obvious” statement here without proof; see Berkes et al.

(2003) for details). So we also have σ2
k = wk(u

∗) for all k. Let

u∗ = (x∗, s∗1, . . . , s
∗
p, t

∗
1, . . . , t

∗
q).

On the one hand, by definition,

σ2
k = wk(θ) = ω + α1y

2
k−1 + . . . + αpy

2
k−p + β1σ

2
k−1 + . . . + βqσ

2
k−q.
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On the other hand, by the above discussion,

σ2
k = wk(u

∗) = x∗ + s∗1y
2
k−1 + . . . + s∗py

2
k−p + t∗1σ

2
k−1 + . . . + t∗qσ

2
k−q.

Equating coefficients (using the “uniqueness of GARCH representation”, also without proof:

see Berkes et al. (2003) for details), we have u∗ = θ, which completes the proof. �

We are finally ready to prove Theorem 2.1.

Proof of Theorem 2.1. U is a compact set. Ln/n converges uniformly to L on U with

probability one (Lemma 2.5) and L has a unique maximum at u = θ (Lemma 2.6). Thus by

standard arguments (best seen graphically!) the locations of the maxima of Ln/n converge

to that of L. This completes the proof of the Theorem. �

Exercise: try to think why we need uniform convergence for this reasoning to be valid.

Would it not be enough if Ln(u)/n converged pointwise to L(u) for all u?

2.4 Forecasting

By standard Hilbert space theory, the best point forecasts of yk under the L2 norm are

given by E(yk+h|Fk) and are equal to zero if h > 0 by the martingale difference property

of yk.

The equation (3) is a convenient starting point for the analysis of the optimal forecasts for

y2
k. Again under the L2 norm, they are given by E(y2

k+h|Fk). Formally, this only makes

sense if E(y4
k) < ∞, which is not always the case. However, many authors take the above as

their forecasting statistic of choice. It might be more correct (and interesting) to consider

Median(y2
k+h|Fk), which is the optimal forecast under the L1 norm. This always makes

sense as E(y2
k) < ∞ as we saw before. However, it is mathematically far more tractable to

look at E(y2
k+h|Fk), which is what we are going to do below.
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Take h > 0. Recall that E(Zk+h|Fk) = 0. From (3), we get

y2
k+h = ω +

R
∑

i=1

(αi + βi)y
2
k+h−i −

q
∑

j=1

βjZk+h−j + Zk+h

E(y2
k+h|Fk) = ω +

R
∑

i=1

(αi + βi)E(y2
k+h−i|Fk) −

q
∑

j=1

βjE(Zk+h−j|Fk) + E(Zk+h|Fk)

E(y2
k+h|Fk) = ω +

R
∑

i=1

(αi + βi)E(y2
k+h−i|Fk) −

q
∑

j=1

βjE(Zk+h−j|Fk). (16)

The recursive formula (16) is used to compute the forecasts, with the following boundary

conditions:

� E(y2
k+h−i|Fk) is given recursively by (16) if h > i,

� E(y2
k+h−i|Fk) = y2

k+h−i if h ≤ i,

� E(Zk+h−j |Fk) = 0 if h > j,

� E(Zk+h−j |Fk) = Zk+h−j if h ≤ j.

2.4.1 The asymptotic forecast

For h > p, (16) becomes

E(y2
k+h|Fk) = ω +

R
∑

i=1

(αi + βi)E(y2
k+h−i|Fk), (17)

which is a difference equation for the sequence {E(y2
k+h|Fk)}

∞
h=p+1. Standard theory of

difference equations says that if the roots of the polynomial

p(z) = 1 − (α1 + β1)z − . . . − (αR + βR)zR
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lie outside the unit circle, then the solution of (17) converges to

ω

1 −
∑R

i=1(αi + βi)
,

which is the unconditional expectation of y2
k! In other words, as the forecasting horizon

gets longer and longer, the conditioning set Fk has less and less impact on the forecast and

asymptotically, it “does not matter” at all.

2.4.2 Example: GARCH(1,1)

In this section, we obtain explicit formulae for forecasts in the GARCH(1,1) model. Using

formula (16) and the definition of Zk, we get

E(y2
k+1|Fk) = ω + (α1 + β1)y

2
k − β1Zk = ω + α1y

2
k + β1σ

2
k.

Substituting recursively into (17), we obtain

E(y2
k+2|Fk) = ω[1 + (α1 + β1)

1] + α1(α1 + β1)y
2
k + β1(α1 + β1)σ

2
k

E(y2
k+3|Fk) = ω[1 + (α1 + β1)

1 + (α1 + β1)
2] + α1(α1 + β1)

2y2
k + β1(α1 + β1)

2σ2
k

. . .

E(y2
k+h|Fk) = ω

h−1
∑

i=0

(α1 + β1)
i + α1(α1 + β1)

h−1y2
k + β1(α1 + β1)

h−1σ2
k,

which clearly converges to ω/(1 − α1 − β1) as h → ∞, as expected.

2.5 Extensions of GARCH

There are many extensions of the GARCH model. Two of them, EGARCH and IGARCH

are probably the most popular and are covered in Straumann (2005). The Exponential
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GARCH (EGARCH) model reads

log σ2
k = α + β log σ2

k−1 + γεk−1 + δ|εk−1|.

The Integrated GARCH (IGARCH) process is a GARCH process for which
∑R

i=1 αi+βi = 1.

2.6 Software for fitting GARCH models

Both S-Plus and R have their own packages containing routines for fitting and forecasting

GARCH models. The S-Plus module is called FinMetrics, is described on

http://www.insightful.com/products/finmetrics/

and is a commerical product. Sadly, it is much better than its (free) R counterpart, the

tseries package, available from

http://cran.r-project.org/src/contrib/Descriptions/tseries.html

The R package is only able to fit GARCH models, while the S-Plus module can fit GARCH,

EGARCH and a number of other models.

2.7 Relevance of GARCH models

Are GARCH models really used in practice? The answer is YES. Only recently, a big

UK bank was looking for a time series analyst to work on portfolio construction (risk

management). One of the job requirements was familiarity with GARCH models!
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