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1 Motivation

The main statistical application of wavelets is in signal denoising (a.k.a. smoothing, non-

parametric function estimation). As a motivating example, consider the noisy signal in

Figure 1. Our objective is to try to remove the noise and get as close as possible to reveal-

ing the “true” structure of the signal. If you squint, you can probably tell that the signal is

composed of at least 5 different pieces. Let us see if some established smoothing methods

can tell us more.

The solid line in the top plot of Figure 2 is the result of smoothing the signal with a

rectangular kernel whose bandwidth has been optimised to minimise the mean-square error.

As we can see the smooth still has a noisy appearance. The rounded mean-square error is

784. If you want to try it yourselves, try the ksmooth function in R.
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The solid line in the bottom plot of Figure 2 is the result of smoothing the signal using the

“taut string” methodology of Davies & Kovac (2001). The reconstruction is good except

that two of the “dips” are not detected correctly. The rounded mean-square error is 1051.

The function to use is pmreg from the R package ftnonpar.

The solid line in the top plot of Figure 3 is the result of applying the “adaptive weights”

smoothing technique of Polzehl & Spokoiny (2000). The reconstruction is very good but

some considerable bias is apparent. The rounded mean-square error is 419. The function I

used was awsuni from the R package aws.

Finally, the solid line in the bottom plot of Figure 3 is a reconstruction which uses nonlinear

wavelet shrinkage with Haar wavelets, with a little twist. The reconstruction is probably

as good as it can be! The rounded mean square error is 176. We will cover the standard

nonlinear Haar shrinkage in this lecture course. We might or might not cover the little

twist, depending on our time.

2 Wavelets

Wavelets can be informally described as localised, oscillatory functions designed to have

several “attractive” properties not enjoyed by “big waves” — sines and cosines. Since their

“invention” in the early eighties (the term “wavelet” first appeared in Morlet et al., 1982),

wavelets have received enormous attention both in the mathematical community and in the

applied sciences. Several monographs on the mathematical theory of wavelets appeared: for

example Daubechies (1992), Meyer (1992), Mallat (1998) and Cohen (2003). Some of the

material in this section has been adapted from Vidakovic (1999), an excellent monograph

on the statistical applications of wavelets.

Formally, let ψa,b(x), a ∈ R \ {0}, b ∈ R be a family of functions being translations and
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Figure 1: Noisy signal.

dilations of a single function ψ(x) ∈ L2(R),

ψa,b(x) = |a|−1/2ψ

(

x− b

a

)

.

Note that ‖ψa,b(x)‖2 does not depend on (a, b) (typically ‖ψa,b(x)‖2 = 1). The function

ψ(x) is called the wavelet function or the mother wavelet. It is assumed to satisfy the

admissibility condition

Cψ =

∫ ∞

−∞

|Ψ(ω)|2
|ω| dω <∞, (1)

where Ψ(ω) is the Fourier transform of ψ(x). Condition (1) implies, in particular, that

0 = Ψ(0) =

∫

ψ(x)dx. (2)
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Figure 2: Top: the noisy signal of Figure 1 smoothed with a box kernel with an optimally
selected bandwidth (solid) and the true signal (dashed). Bottom: the noisy signal smoothed
using the taut string method (solid) and the true signal (dashed).
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Figure 3: Top: the noisy signal smoothed using “adaptive weights smoothing” (solid) and
the true signal (dashed). Bottom: the noisy signal smoothed via Haar wavelets (with a
little twist!) and the true signal (dashed).
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Condition (1) means that ψ(x) should be localised in frequency. On the other hand, condi-

tion (2) means that ψ(x) is localised in time, and also oscillatory. Hence the name “wavelet”.

The parameter b is the location parameter, and a is the scale parameter. It can be thought

of as a reciprocal of frequency.

2.1 Continuous wavelet transform

For any function f ∈ L2, its continuous wavelet transform is defined as a function of two

variables,

CWTf (a, b) = 〈f, ψa,b〉 =

∫

f(x)ψa,b(x)dx.

If condition (1) is satisfied, then the following inverse formula (“resolution of identity”)

holds

f(x) = C−1
ψ

∫

R2

CWTf (a, b)ψa,b(x)a
−2dadb.

The parameter a is often restricted to be positive (as it can be viewed as the “inverse” of

frequency). If this is the case, then condition (1) becomes Cψ =
∫∞
0

|Ψ(ω)|2

ω dω < ∞, and

the resolution of identity becomes

f(x) = C−1
ψ

∫ ∞

−∞

∫ ∞

0
CWTf (a, b)ψa,b(x)a

−2dadb.

2.2 Examples of wavelets

2.2.1 Haar wavelets

The best-known example of wavelets are Haar wavelets introduced by Haar (1910) (but not

called by this name back then). They are given by

ψH(x) = I(0 ≤ x < 1/2) − I(1/2 ≤ x ≤ 1),
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which implies

ψHa,b(x) = a−1/2{I(b ≤ x < a/2 + b) − I(a/2 + b ≤ x ≤ a+ b)}

for a > 0, b ∈ R.

We say that the wavelet ψ has n vanishing moments if

∫ ∞

−∞
xkψ(x)dx = 0 for k ∈ {0, 1, . . . , n}.

It is easy to see that ψH has 0 vanishing moments. Thus, if f is constant on the interval

[b, a+ b], then, for Haar wavelets, CWTf (a, b) = 0.

We will be coming back to this example throughout the course.

2.2.2 Compactly supported Daubechies’ wavelets

Daubechies (1992, Chapter 6) identifies the Extremal Phase family of wavelet systems:

a collection of wavelet systems with compactly supported wavelet functions, possessing

different degrees of smoothness and numbers of vanishing moments. This family of systems

is indexed by the number of vanishing moments and the Haar system is its zeroth member.

A review of this and other families of wavelets, including Daubechies’ Least Asymmetric

family can be found in Vidakovic (1999), Sections 3.4 and 3.5.

Figure 4 shows graphs of Daubechies’ Extremal Phase wavelets with n = 0, 1, 2, 3, 4, 5

vanishing moments. Note that the higher the number of vanishing moments, the longer

the support and the higher the degree of smoothness. Except for Haar wavelets, explicit

formulae for other Daubechies’ wavelets are not available in the time domain.

Suppose now that over the support of ψa,b, f is a polynomial of degree less than or equal to

the number of vanishing moments of ψ(x). Then the corresponding CWTf (a, b) = 0. We

shall be coming back to this “sparsity” property of wavelets.
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vanishing moments.

8



2.3 Discrete wavelet transform

CWTf (a, b) is a function of two real variables so clearly it is a redundant transform. To

minimise the transform we might attempt to discretise the values of a and b so that the

invertibility of the transform is still retained. Such discretisation cannot be coarser than

the so-called critical sampling, or otherwise information will be lost. The critical sampling

defined by a = 2−j , b = k2−j , j, k ∈ Z, will produce a minimal basis for L2. Moreover,

under mild conditions on the wavelet function ψ, the resulting basis

{ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z} (3)

will be orthonormal. From now on, we will only be looking at wavelets for which it is the

case. All the wavelet functions mentioned so far satisfy this condition.

Other discretisation choices are possible but the above is particularly convenient as it en-

ables a fast implementation of the Discrete Wavelet Transform: a fast decomposition of

function or vectors with respect to the above basis (3). An elegant framework for this is

the multiresolution analysis introduced by Mallat (1989).

2.3.1 Multiresolution analysis

In statistics, we are often faced with discretely-sampled signals and therefore we need to

be able to perform wavelet decomposition of vectors, rather than continuous functions as

above. The multiresolution analysis framework is commonly used to define discrete wavelet

filters. The starting point is a scaling function φ and a multiresolution analysis of L2(R),

i.e. a sequence {Vj}j∈Z of closed subspaces of L2(R) such that

� {φ(x− k)}k∈Z is an orthonormal basis for V0;

� . . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . ⊂ L2(R);
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� f ∈ Vj ⇐⇒ f(2·) ∈ Vj+1;

�
⋂

j Vj = {0}, ⋃j Vj = L2(R).

The set {
√

2φ(2x− k)}k∈Z is an orthonormal basis for V1 since the map f 7→
√

2f(2·) is an

isometry from V0 onto V1. The function φ is in V1 so it must have an expansion

φ(x) =
√

2
∑

k

hkφ(2x− k), {hk}k ∈ l2, x ∈ R. (4)

Once we have the scaling function φ, we use it to define the wavelet function (also called the

mother wavelet) ψ. We define the latter in such a way that {ψ(x− k)}k is an orthonormal

basis for the space W0, being the orthogonal complement of V0 in V1:

V1 = V0 ⊕W0. (5)

Defining Wj = span{ψj,k : k ∈ Z}, we obtain that Wj is the orthogonal complement of Vj

in Vj+1. We can write

Vj+1 = Vj ⊕Wj = . . . = V0 ⊕
(

j
⊕

i=0

Wi

)

, (6)

or, taking the limit (recall that
⋃

j Vj is dense in L2(R)),

L2(R) = V0 ⊕
(

∞
⊕

i=0

Wi

)

= Vj0 ⊕





∞
⊕

i=j0

Wi



 , ∀j0. (7)

There are precise procedures for finding ψ once φ is known (see Daubechies, 1992, Section

5.1). One possibility (Daubechies, 1992, Theorem 5.1.1) is to set

ψ(x) =
√

2
∑

k

h1−k(−1)kφ(2x− k). (8)
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It can be shown that the appropriate orthogonality conditions are satisfied.

2.3.2 Algorithm for the Discrete Wavelet Transform

The nested structure of the multiresolution analysis can be exploited to construct a fast

decomposition-reconstruction algorithm for discrete data, analogous to the Fast Fourier

Transform of Cooley & Tukey (1965). The algorithm, called the Discrete Wavelet Transform

(Mallat, 1989) produces a vector of wavelet coefficients of the input vector at dyadic scales

and locations. The transformation is linear and orthonormal but is not performed by matrix

multiplication to save time and memory.

We first describe a single reconstruction step, used in computing the inverse Discrete Wavelet

Transform (DWT). The following two sets are orthonormal bases for V1: {
√

2φ(2x−k)}k∈Z,

{φ(x− k), ψ(x − l)}k,l∈Z. Using (4) and (8), we obtain for any f ∈ V1

f(x) =
∑

k

c0,kφ(x− k) +
∑

k

d0,kψ(x− k)

=
∑

l

(

∑

k

hlc0,k +
∑

k

h1−l(−1)ld0,k

)

√
2φ(2x − 2k − l)

=
∑

l′

(

∑

k

hl′−2kc0,k +
∑

k

h1−l′+2k(−1)l
′

d0,k

)

√
2φ(2x− l′).

Writing the expansion w.r.t. the other basis as f(x) =
∑

l′ c1,l′
√

2φ(2x − l′) and equating

the coefficients, we obtain

c1,l′ =
∑

k

hl′−2kc0,k +
∑

k

h1−l′+2k(−1)l
′

d0,k, (9)

which completes the reconstruction part: the coarser scale coefficients {c0,k}, {d0,k} are used

to obtain the finer scale coefficients {c1,k}.
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The decomposition step (used in the DWT) is equally straightforward: we have

c0,k =

∫ ∞

−∞
f(x)φ(x− k)dx

=

∫ ∞

−∞
f(x)

∑

l

hl
√

2φ(2x − 2k − l)dx

=
∑

l

hlc1,2k+l =
∑

l

c1,lhl−2k. (10)

Similarly,

d0,k =
∑

l

(−1)l−2kh1−l+2kc1,l. (11)

The same mechanism works for each scale: {cj,k} gives {cj−1,k} and {dj−1,k} for all j.

On the other hand, {cj,k} can be reconstructed using {cj−1,k} and {dj−1,k} for all j. To

start this “pyramid” algorithm, we only need to compute the scaling coefficients cj,k at the

finest scale of interest, say j = J . Indeed, when performing wavelet decomposition of finite

sequences, it is commonly assumed that our input vector f = {fn}2J−1
n=0 is a vector of scaling

coefficients of a function f , i.e. fn = cJ,n = 〈f, φJ,n〉, where φj,k = 2j/2φ(2jx − k). The

DWT of f is given by

DWT(f) = (c0,0, d0,0, d1,0, d1,1, d2,0, . . . , d2,3, . . . , dJ−1,0, . . . , dJ−1,2J−1−1). (12)

Informally speaking, the wavelet coefficients dj,k contain information on the local oscillatory

behaviour of f at scale j and location 2J−jk, whereas the coefficient c0,0 contains information

on the global “mean level” of f . A few remarks are in order.

Decimation. Define

c∗0,k =
∑

l

c1,lhl−k

d∗0,k =
∑

l

(−1)l−kh1−l+kc1,l,
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so that c∗0,k is a convolution of c1,k with hk, and d∗0,k is a convolution of c1,k with

(−1)kh1−k. We have c0,k = c∗0,2k and d0,k = d∗0,2k: coarser scale coefficients are

decimated convolutions of finer scale coefficients with fixed (scale-independent) filters.

This is in contrast to the Non-decimated Wavelet Transform where no decimation is

performed, yielding a shift-invariant (but redundant) transform: see Section 2.4 for

details.

High-pass and low-pass filters. We define gk = (−1)kh1−k. Due to its effect in the

frequency domain, gk (hk) is often referred to as a high-pass (low-pass) filter in the

wavelet literature. This motivates the commonly used name for the wavelet and scaling

coefficients: they are often referred to as detail and smooth coefficients, respectively.

Example of the DWT. By simple algebra, φH(x) = I(0 ≤ x ≤ 1) generates the Haar

wavelet ψH , with a low-pass filter hk s.t. h0 = h1 = 1/
√

2, hk = 0 otherwise, and a

high-pass filter gk s.t. g0 = −g1 = 1/
√

2, gk = 0 otherwise. We shall now decompose

a four-element vector

(c2,0, c2,1, c2,2, c2,3) = (1, 1, 2, 3)

using the DWT with Haar wavelets. By (10) and (11), we obtain

c1,0 = 1/
√

2 × 1 + 1/
√

2 × 1 =
√

2

c1,1 = 1/
√

2 × 2 + 1/
√

2 × 3 = 5/
√

2

d1,0 = 1/
√

2 × 1 − 1/
√

2 × 1 = 0

d1,1 = 1/
√

2 × 2 − 1/
√

2 × 3 = −1/
√

2.

Continuing at the next coarser scale, we obtain

c0,0 = 1/
√

2 ×
√

2 + 1/
√

2 × 5/
√

2 = 7/2

d0,0 = 1/
√

2 ×
√

2 − 1/
√

2 × 5/
√

2 = −3/2.
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The original vector (c2,0, c2,1, c2,2, c2,3) can now be easily reconstructed from (c0,0, d0,0, d1,0, d1,1),

(i.e. from the smooth coefficient at the coarsest scale and the detail coefficients at all

scales) using the inverse DWT. As the DWT is orthonormal, the inverse DWT uses

exactly the same filters as the DWT.

Note that the high-pass filter annihilates constants (recall that Haar wavelets have

vanishing moments up to degree 0). Wavelets with higher numbers of vanishing mo-

ments are capable of annihilating polynomials of higher degrees.

Boundary issue. With wavelet filters longer than Haar, there often arises the problem of

what action to perform when the support of the filter extends beyond the support of

the input vector. Several solutions have been proposed, including symmetric reflec-

tion of the input vector at the boundaries, polynomial extrapolation, periodising the

vector, padding it out with zeros, etc. See Nason & Silverman (1994) for an overview.

Cohen et al. (1993) introduced wavelets on the interval, i.e. wavelet bases for func-

tions defined on an interval as opposed to the whole real line. They also proposed

a corresponding fast wavelet transform which uses filters adapted to the finite sup-

port situation. The lifting scheme offers a natural way of dealing with the boundary

problem.

Computational speed. O(n) operations are needed for the DWT which uses a compactly-

supported wavelet, where n is the size of the input sequence. This is an advantage

over the Fast Fourier Transform, which requires O(n log(n)) operations.

2.4 Non-decimated Wavelet Transform

An undesirable property of the DWT is that it is not translation-invariant, and that at

any given scale, it only provides information about the input vector at certain (dyadic)

locations. Using the toy example above, the coefficient c1,0 uses c2,0 and c2,1, while the

coefficient c1,1 uses c2,2 and c2,3, but there is no coefficient which would use, say, c2,1 and

14



c2,2. Motivated by this, Pesquet et al. (1996) introduce a Non-decimated DWT (NDWT)

which remedies this problem by computing wavelet coefficients at all possible locations at

all scales (see also Nason & Silverman, 1995; Coifman & Donoho, 1995). Continuing the

example of the previous section, the NDWT of (c2,0, c2,1, c2,2, c2,3) = (1, 1, 2, 3) which uses

Haar wavelets is performed as follows. We begin with

c1,0 = (1/
√

2, 1/
√

2) · (c2,0, c2,1)

c1,1 = (1/
√

2, 1/
√

2) · (c2,1, c2,2)

c1,2 = (1/
√

2, 1/
√

2) · (c2,2, c2,3)

c1,3 = (1/
√

2, 1/
√

2) · (c2,3, c2,0),

where the “·” denotes the dot product. The detail coefficients d1,k are obtained similarly

by replacing the low-pass filter with the high-pass one. Note that we implicitly assume

“periodic” boundary conditions in the above (see the remark on the “boundary issue” in

Section 2.3.2). Before we proceed to the next stage, we insert zeros between each two

elements of the wavelet filters. Thus, we have

c0,0 = (1/
√

2, 0, 1/
√

2, 0) · (c1,0, c1,1, c1,2, c1,3)

c0,1 = (1/
√

2, 0, 1/
√

2, 0) · (c1,1, c1,2, c1,3, c1,0)

c0,2 = (1/
√

2, 0, 1/
√

2, 0) · (c1,2, c1,3, c1,0, c1,1)

c0,3 = (1/
√

2, 0, 1/
√

2, 0) · (c1,3, c1,0, c1,1, c1,2),

and similarly for the detail coefficients. The insertion of zeros is necessary since decimation

is not performed. Were we to compute the NDWT at yet another scale, we would use the

filter (1/
√

2, 0, 0, 0, 1/
√

2, 0, 0, 0) for the smooth and (1/
√

2, 0, 0, 0,−1/
√

2, 0, 0, 0) for the

detail. The computational speed of the NDWT is O(n log(n)), where n is the length of the

input vector.
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2.5 Visualisation of discrete and non-decimated wavelet transforms

Typically, the result of the DWT is depicted as a binary tree whose main node is the

coefficient d0,0 (scale 0, location 0), its “children” are the coefficients d1,0 and d1,1, and so

on. The DWT of the noisy vector of Figure 1 (using “DaubExPhase 2” wavelets) is shown

in the top plot of Figure 5. The numbers along the y-axis denote scale (j = 0 is the coarsest

scale; j = 10 = log2(2048) − 1 is the finest scale).

Contrary to the DWT where there are 2j coefficients at each scale j, the NDWT always

has n coefficients at each scale. Thus it is natural to display them as in the bottom plot of

Figure 5.

2.6 Recent (and less recent) extensions of wavelets

Since the late eighties, several extensions and modifications of wavelets have been proposed.

For more details and references on the following topics, see Vidakovic (1999), Chapter 5:

� multivariate version of the DWT

� biorthogonal wavelets (two mutually orthogonal wavelet bases neither of which is itself

orthonormal)

� multiwavelets (which use translations and dilations of more that one wavelet function)

� complex-valued wavelets

� wavelet packets (over-complete collections of linear combinations of wavelets; work by

applying both low- and high-pass filters to both smooth and detail coefficients; can

be rapidly searched for the “best basis” representation)

� lifting scheme: alternative construction of wavelets for irregularly spaced data.

16



Wavelet Decomposition Coefficients

Standard transform Daub cmpct on ext. phase N=2
Translate

R
es

ol
ut

io
n 

Le
ve

l

10
9

8
7

6
5

4
3

2
1

0

0 256 512 768 1024

Wavelet Decomposition Coefficients

Nondecimated transform Daub cmpct on ext. phase N=2
Translate

R
es

ol
ut

io
n 

Le
ve

l

10
9

8
7

6
5

4
3

2
1

0

0 512 1024 1536 2048

Figure 5: Top: DWT of noisy vector of Figure 1. Bottom: its NDWT. Both using “DaubEx-
Phase 2” wavelets.
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Recently, more and more research effort has been spent trying to find sparse multiscale

representations of images. Here challenges are different from 1D because the types of sin-

gularities encountered in images are different. Those efforts have resulted in ridgelets,

curvelets, wedgelets, beamlets and possibly other ‘lets’.

A readable introduction to this topic can be found here:

http://www-stat.stanford.edu/~donoho/Lectures/CBMS/CBMSLect.html

2.7 Applications of wavelets

Wavelets and their extensions have been applied in a multitude of areas, such as signal and

image processing, data compression, computer graphics, astronomy, quantum mechanics

and turbulence: for a discussion of these and other areas of application see the monographs

of Ruskai (1992) and Jaffard et al. (2001). An important field of application is numerical

analysis, extensively covered in Cohen (2003). One can venture to say that wavelets are

indeed one of those fortunate mathematical concepts that have almost become “household

objects”: for example, they were used in the JPEG2000 compression algorithm and also to

compress the CIA fingerprint database. Multiscale subdivision schemes, related to wavelets,

were employed in some recent animated movies such as “A Bug’s Life”.

Following Vidakovic (1999), who gives a comprehensive overview of wavelet applications in

statistics, we list some of the most important areas of statistics where wavelets have been

successfully applied:

� time series analysis,

� non-parametric function estimation,

� density estimation,

� deconvolution and inverse problems,
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� statistical turbulence.

In Section 3, we describe how wavelets have been applied in nonparametric function esti-

mation.

3 Wavelets for nonparametric function estimation

The setup is

yi = f(i/n) + εi, i = 1, . . . , n,

where f(i/n) is unknown and needs to be estimated, and the noise εi is iid with E(εi) = 0,

var(εi) = σ2.

For irregular (e.g. discontinuous) functions, linear (e.g. kernel) smoothing performs inad-

equately, and non-linear smoothing methods are needed. In a seminal paper, Donoho &

Johnstone (1994) introduce the principle of a non-linear smoothing method called wavelet

thresholding. First, the signal is transformed via the DWT to obtain dj,k = θj,k+εj,k, where

dj,k, (θj,k, εj,k) is the DWT of yi (f(i/n), εi). Then, dj,k are shrunk towards zero (with

the threshold chosen in an appropriate manner), and finally the inverse DWT is taken to

obtain an estimate of f . The rationale behind this principle is twofold:

� As DWT is orthonormal, i.i.d. Gaussian noise in the time domain transforms into

i.i.d. Gaussian noise in the wavelet domain;

� Due to the vanishing moments property, wavelet coefficients θj,k corresponding to

the locations where the signal is smooth will be close to zero. On the other hand,

those (hopefully few) corresponding to discontinuities or other irregularities will be

significantly different from zero: the signal will be represented sparsely in the wavelet

domain. Therefore, we can expect that an appropriately chosen threshold will be able

to accurately separate signal from noise.
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Two thresholding rules have been particularly commonly used and well-studied. For a given

threshold λ, hard and soft thresholding shrink dj,k to

dhj,k = dj,kI(|dj,k| > λ)

dsj,k = sgn(dj,k)(|dj,k| − λ)+,

respectively. The threshold introduced in Donoho & Johnstone (1994) was the so-called

universal threshold, λ = σ
√

2 log(n). The authors show that the MSE of the soft threshold-

ing estimator with the universal threshold is close (within a logarithmic factor) to the ideal

risk one can achieve by “keeping” or “killing” the wavelet coefficients dj,k using knowledge

of the underlying signal. At the same time, the universal threshold is an efficient noise

suppressor as described in Section 4.2 of their paper.

In another ground-breaking paper, Donoho & Johnstone (1995) consider a non-linear wavelet

estimator with soft thresholding where the threshold selection procedure is based on Stein’s

shrinkage method for estimating the mean of multivariate normal variables. They consider

the behaviour of the estimator over a range of so-called Besov spaces (Triebel, 1983), which

form an extremely rich collection of functions with various degrees of smoothness (for cer-

tain values of the space parameters, Besov spaces can be shown to contain other better

known function spaces such as Hölder or Sobolev spaces or the space of functions with

bounded variation). The authors demonstrate that their estimator is simultaneously nearly

minimax over a range of Besov balls, i.e. without knowing the regularity of the function,

it nearly achieves the optimal rate of convergence which could be achieved if the regularity

were known.

In most papers on the theory of non-linear wavelet estimation, it is assumed that the

standard deviation σ of the noise is known. In practice, it needs to be estimated from the

data. For Gaussian data, the method recommended by several authors (see e.g. Johnstone

& Silverman, 1997) computes the scaled Median Absolute Deviation (MAD) on the sequence
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of wavelet coefficients at the finest resolution level, thereby ensuring robustness.

More recently, other thresholding rules have been proposed. Nason (1996) uses cross-

validation as a way of selecting the threshold. Abramovich & Benjamini (1996) set up

wavelet thresholding as a multiple hypothesis testing problem and propose an approach

based on the so-called false discovery rate. Johnstone & Silverman (1997) consider level-

dependent universal thresholding for correlated Gaussian noise. Averkamp & Houdré (2003)

extend the approach of Donoho & Johnstone (1994) to other noise distributions such as expo-

nential, mixture of normals or compactly supported distributions. Vanreas et al. (2002) con-

sider stable wavelet transforms for denoising data observed on non-equispaced grids. Barber

& Nason (2004) develop various thresholding procedures using complex-valued wavelets.

Johnstone & Silverman (2005) propose an empirical Bayes approach to the threshold selec-

tion problem. Cai & Silverman (2001), amongst others, consider block thresholding: they

propose a thresholding procedure whereby wavelet coefficients are considered in overlapping

blocks and the action performed on the coefficients in the middle of the block depends upon

the data in the whole block. Antoniadis & Fryzlewicz (2006) propose a simple universal-

type thresholding procedure where the threshold values are modelled parametrically across

scales.

Coifman & Donoho (1995) introduce translation invariant denoising: the full NDWT trans-

form of the data is taken, then the universal threshold is applied to all resulting wavelet

coefficients, and then an inverse NDWT transform yields an estimate of the signal. As the

NDWT is redundant, there are many possible ways of generating an inverse NDWT trans-

form: the one proposed by the authors is equivalent to taking the average over all possible

DWT’s contained in the NDWT, corresponding to all possible circular shifts of the data set

(hence the name “translation invariant”).
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3.1 Simple example: Haar wavelets + piecewise constant regression func-

tion

In this section, we show how to prove mean-square consistency of a hard-thresholding uni-

versal estimator of a piecewise-constant regression function contaminated with independent

Gaussian N(0, 1) noise. The number of jumps in the function f is unknown but finite

(bounded by M). As before, dj,k, θj,k and εj,k are the Haar wavelet coefficients of yi, f(i/n)

and εi, respectively. The range of (j, k) is j = 0, . . . , J − 1 := log2 n− 1; k = 1, . . . , 2j . The

only smooth coefficient is indexed by (j, k) = (−1, 1). The wavelet noise coefficients εj,k are

iid N(0, 1) because the Haar transform is orthonormal.

Except (j, k) = (−1, 1) where we leave the coefficient intact, we estimate θj,k by

θ̂j,k = dj,kI(|dj,k| > λ),

where λ =
√

2 log n, ie λ is the universal threshold. Then the estimate f̂(i/n) is constructed

by applying the inverse Haar transform to θ̂j,k. We are interested in the mean-square error

MSE(f̂ , f) =
1

n

n
∑

i=1

E(f(i/n) − f̂(i/n))2. (13)

Lemma 3.1 (Parseval inequality) Let W be an orthonormal matrix, x a column vector,

and y = Wx. Then xTx = yT y.

Proof. As W is orthonormal, we have W−1 = W T . Thus yT y = xTW TWx = xTx. �

Applying this to (13), we obtain

MSE(f̂ , f) =
1

n

∑

j,k

E(θ̂j,k − θj,k)
2.
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Since f is piecewise constant, at most M coefficients θj,k at each scale j are non-zero. The

rest of them (corresponding to the intervals where f is constant), are zero. Remember that

Haar cofficients are local differences which “annihilate” constants!

Let us first look at the case θj,k = 0, so that dj,k is distributed as N(0, 1). We have

E(θ̂j,k − θj,k)
2 = Eθ̂2

j,k = Ed2
j,kI(|dj,k| > λ) =

√

2/π

∫ ∞

λ
x2 exp(−x2/2)dx

=
√

2/πλ exp(−λ2/2) + 2(1 − Φ(λ)),

where Φ is the cdf of the standard normal. By a “standard result”,

1 − Φ(λ) ≤ φ(λ)/λ,

where φ is the pdf of the standard normal. Thus

E(θ̂j,k − θj,k)
2 ≤

√

2/π exp(−λ2/2)(λ+ λ−1) = O

(

log1/2 n

n

)

.

We now move to the case θj,k 6= 0 and without loss of generality, we assume θj,k > 0.

E(θ̂j,k − θj,k)
2 = E(dj,kI(|dj,k| > λ) − θj,k)

2

= E(dj,kI(|dj,k| > λ) − θj,kI(|dj,k| > λ) + θj,kI(|dj,k| > λ) − θj,k)
2

≤ 2E(dj,kI(|dj,k| > λ) − θj,kI(|dj,k| > λ))2 + 2E(θj,kI(|dj,k| > λ) − θj,k)
2

≤ 2var(dj,k) + 2θ2
j,kP(|dj,k| ≤ λ) ≤ 2 + 2θ2

j,kP(dj,k ≤ λ)

= 2 + 2θ2
j,kP(λ+ θj,k − dj,k ≥ θj,k).

By Markov’s inequality,

P(λ+ θj,k − dj,k ≥ θj,k) ≤ E(λ+ θj,k − dj,k)
2/θ2

j,k.
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This gives

E(θ̂j,k − θj,k)
2 ≤ 2 + 2E(λ+ θj,k − dj,k)

2

≤ 2 + 4(λ2 + var(dj,k)) = 4λ2 + 6 = O(log n).

This finally gives

MSE(f̂ , f) =
1

n

∑

j,k

E(θ̂j,k − θj,k)
2

≤ O(1/n2) [smooth coefficient]

+ 1/n× n×O

(

log1/2 n

n

)

[coefficients with θj,k = 0]

+ 1/n× J ×M ×O(log n) [coefficients with θj,k 6= 0]

= O(n−1 log2 n).

3.2 Noise-free reconstruction property

Other than attaining the near-parametric MSE rate above, the universal threshold also

enjoys the “noise-free reconstruction” property: if the true signal f is constant, then the

estimate f̂ is also constant and equal to the sample mean of the data, with high probability.

For f̂ to be constant, we need all θ̂j,k’s to be zero with a high probability. This happens if

all dj,k’s exceed λ with a high probability. But if f is constant, then all dj,k’s are (indepen-

dent and) distributed as N(0, 1). The noise-free reconstruction property is implied by the

following fact:

lim
n→∞

P

(

max
j,k

|dj,k| >
√

a log n

)

= 0,

if and only if a ≥ 2. So the universal threshold is asymptotically the “lowest” threshold

satisfying the noise-free reconstruction property.
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