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Summary. The importance of nonstationary modelling in time series analysis was borne out,
for example, by the recent financial crisis, which, as some authors argue, has been partly
caused by over-reliance on stationary time series models in financial risk management. Piece-
wise stationarity is the simplest form of departure from stationarity, and one basic task under
this assumption is time series segmentation.
In this paper, we propose a fast, well-performing and consistent method for segmenting a
piecewise-stationary, linear time series with an unknown number of breakpoints. The time
series model we use is the nonparametric Locally Stationary Wavelet model, in which a com-
plete description of the piecewise-stationary second-order structure is provided by wavelet
periodograms computed at multiple scales and locations. The initial stage of our method is a
new binary segmentation procedure, with a theoretically justified and rapidly computable test
criterion, which detects breakpoints in wavelet periodograms at each scale separately. It is
then followed by within-scale and across-scales post-processing steps, leading to consistent
estimation of the number and locations of breakpoints in the second-order structure of the
original process.
An extensive simulation study demonstrates good performance of our method in comparison
to the state of the art, and its application to the Dow Jones index indicates two breakpoints,
each corresponding to a significant event in the recent financial crisis. A complete R script,
implementing our methodology, is provided.

Keywords: binary segmentation, breakpoint detection, locally stationary wavelet model, piece-
wise stationarity, post-processing, wavelet periodogram.

1. Introduction

Stationarity assumption is appealing when analysing short time series. However, it is often
unrealistic in many circumstances, for example when observing time series evolving in nat-
urally nonstationary environments. One such example can be found in econometrics, where
price processes are considered to have time-varying variance in response to events taking
place in the market. For example, given the explosion of market volatility during the recent
financial crisis, it is unlikely that the same stationary time series model can accurately de-
scribe the evolution of market prices before and during the crisis. Indeed, Janeway (2009)
goes further and argues that the (over)use of stationary time series models in financial risk
management might have been a contributing factor in the crisis due to those models’ lack
of flexibility in reacting to rapid changes in the statistical properties of the markets. As a
taster, we note that some interesting findings resulting from the application of our method-
ology to financial data observed before and during the crisis are presented in Section 5 of
this paper.
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Exact or approximate piecewise stationarity is a well studied and arguably the simplest
form of departure from stationarity, and one task of interest when faced with data of this
form is to detect their structural breakpoints so that each segment between two breakpoints
can be modelled as approximately stationary.

Breakpoint detection has received considerable attention and many methods have been
developed which can be broadly categorized into two: retrospective (a posteriori) methods
and on-line methods. The on-line approach is employed in areas such as quality control,
where one wishes to detect changes in the process whilst monitoring is still in progress. A
survey of literature on the on-line segmentation of serially independent observations can be
found in Bhattacharya (1994). Methods for on-line segmentation of sequentially observed
time series include Ombao et al. (2004), who use approximation via autoregressive (AR)
processes, and Choi et al. (2008), who analyse the changing spectral characteristics of the
process.

On the other hand, the “a posteriori” approach takes into account the entire set of
observations at once and detects breakpoints which occurred in the past. The resulting
segmentation can be of interest e.g. from the point of view of forecasting, where information
from the last (approximately) stationary segment can be useful in forecasting the future.
Our interest in this article lies in the “a posteriori” segmentation category, and we propose
a retrospective segmentation procedure which achieves consistency in identifying multiple
breakpoints for a class of nonstationary processes.

Early segmentation literature was mostly devoted to testing the existence of a single
breakpoint in the mean or variance of independent observations (Chernoff and Zacks, 1964;
Sen and Srivastava, 1975; Hawkins, 1977; Hsu, 1977; Worsley, 1986). When the presence
of more than one breakpoint is suspected, an algorithm for detecting multiple breakpoints
is needed. In Vostrikova (1981), a “binary segmentation” procedure was introduced, a
computationally efficient multilevel version of the CUSUM test, which recursively locates
and tests for multiple breakpoints, producing consistent breakpoint estimators for a class of
random processes with piecewise constant means. However, the critical values of the tests
at each stage were difficult to compute in practice due to the stochasticity in previously
selected breakpoints. Venkatraman (1993) employed the same procedure to find multiple
breakpoints in the mean of independent and normally distributed variables and showed the
consistency of the detected breakpoints with the tests depending on the sample size only,
and thus being easier to compute. The binary segmentation procedure was also adopted to
detect multiple shifts in the variance of independent observations (Inclán and Tiao, 1994;
Chen and Gupta, 1997).

Various multiple breakpoint detection methods have been proposed for time series of
dependent observations. In Lavielle and Moulines (2000), least squares estimators of break-
point locations were developed for linear processes, extending the work of Bai and Perron
(1998). In the Bayesian framework, a number of procedures were studied for the segmenta-
tion of signals using piecewise constant linear regression models (McCulloch and Tsay, 1993;
Punskaya et al., 2002; Fearnhead, 2005). Adak (1998) and Ombao et al. (2001) proposed
methods which divided the time series into dyadic blocks and chose the best segmenta-
tion according to suitably tailored criteria. Whitcher et al. (2000, 2002) and Gabbanini
et al. (2004) suggested to segment long memory processes by applying the iterative cumu-
lative sum of squares (ICSS) algorithm (proposed in Inclán and Tiao (1994)) to discrete
wavelet coefficients of the process, which were shown to be approximately Gaussian and
decorrelated. Davis et al. (2006) developed the Auto-PARM procedure which found the
optimal segmentation of piecewise stationary AR processes via the minimum description
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length principle, later extended to the segmentation of non-linear processes in Davis et al.
(2008). Kokoszka and Leipus (2000) and Andreou and Ghysels (2002) studied the problem
of detecting structural shifts in the parameters of ARCH or GARCH models.

The aim of our work is to propose a well-performing, theoretically tractable and fast
procedure for segmenting piecewise stationary time series which are linear but otherwise do
not follow any particular parametric model. (We note that we use the term “segmentation”
interchangeably with “multiple breakpoint detection”.) The nonparametric model we use
for this purpose is the Locally Stationary Wavelet (LSW) model first proposed by Nason
et al. (2000) and later studied by Fryzlewicz and Nason (2006) and Van Bellegem and von
Sachs (2008). Our choice of model is motivated by several factors, which we explain in
Section 2 below. In the LSW model, the piecewise constant second-order structure of the
process is completely described by the local wavelet periodograms at multiple scales, and
it is those basic statistics that we use as a basis of our segmentation procedure.

To achieve the multiple breakpoint detection, we propose a binary segmentation method,
which we apply to wavelet periodograms at each scale separately, and then propose a within-
scale and across-scales post-processing procedure to obtain consistent estimators of break-
points in the second-order structure of the process. We note that wavelet periodograms
follow a multiplicative statistical model, but our binary segmentation procedure is different
from previously proposed binary segmentation methods for multiplicative models (Inclán
and Tiao, 1994; Chen and Gupta, 1997) in that it allows correlated data, which is essential
when working with wavelet periodograms. We also mention other unique ingredients of
our breakpoint detection procedure which lead to its good performance and consistency in
probability; these are: the theoretical derivation of our test criterion (which only depends on
the length of the time series and is thus fast to compute); and the novel across-scales post-
processing step, essential in combining the results of the binary segmentation procedures
performed for each wavelet periodogram scale separately.

We note that our method can simultaneously be termed “multiscale” and “multilevel”, as
the basic time series model used for our purpose is a wavelet-based, and thus a “multiscale”
model; and the core methodology to segment each scale of the wavelet periodogram in the
model is based on binary segmentation and is thus a “multilevel” procedure.

The paper is organised as follows. Section 2 explains the LSW model and justifies its
choice. Our breakpoint detection methodology (together with the post-processing steps) is
introduced in Section 3, where we also demonstrate its theoretical consistency. In Section
4, we describe the outcome of an extensive simulation study which demonstrates good per-
formance of our method in comparison with the state of the art. In Section 5, we apply our
technique to the segmentation of the Dow Jones index, which results in an exciting discovery
of two breakpoints: one coinciding with the initial period of the recent financial crisis, and
the other coinciding with the recent collapse of Lehman Brothers, a major financial services
firm. The proofs of our theoretical results are in the appendix.

Software (an R script) implementing our methodology is available from: http://www.

maths.bris.ac.uk/~mahrc/msml_technique.html.

2. Locally stationary wavelet time series

In this section, we first define the Locally Stationary Wavelet (LSW) time series model
(noting that our definition is a slight modification of Fryzlewicz and Nason (2006)), and then
justify its choice as an attractive framework for the purpose of developing our methodology
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for time series segmentation.

Definition 1. A triangular stochastic array {Xt,T}T−1
t=0 for T = 1, 2, . . . , is in a class

of Locally Stationary Wavelet (LSW) processes if there exists a mean-square representation

Xt,T =

−1
∑

i=−∞

∞
∑

k=−∞

Wi(k/T )ψi,t−kξi,k (1)

where i ∈ {−1,−2, . . .} and k ∈ Z are scale and location parameters respectively, ψi =
(ψi,0, . . . , ψi,Li

) are discrete, real-valued, compactly supported, non-decimated wavelet vec-
tors, and ξi,k are zero-mean, orthonormal, identically distributed random variables. Also
for each i ≤ −1, Wi(z) : [0, 1] → R is a real-valued, piecewise constant function with a finite
(but unknown) number of jumps. Let Li denote the total magnitude of jumps in W 2

i (z).
The functions Wi(z) satisfy

• ∑−1
i=−∞W 2

i (z) <∞ uniformly in z,

• ∑−1
i=−I 2−iLi = O(log T ) where I = log2 T .

The reader unfamiliar with basic concepts in wavelet analysis is referred, at this point,
to the excellent monograph by Vidakovic (1999). Throughout the paper, ξi,k are assumed
to follow the normal distribution; extensions to non-Gaussianity are possible but would
cause substantial technical difficulties in deriving our theoretical results. Comparing the
above definition with the Cramér’s representation of stationary processes, Wi(k/T ) is a
(scale- and location-dependent) transfer function, the wavelet vectors ψi are analogous to
the Fourier exponentials, and the innovations ξi,k correspond to the orthonormal increment
process. Small negative values of the scale parameter i denote “fine” scales where the wavelet
vectors are the most localised and oscillatory; large negative values denote “coarser” scales
with longer, less oscillatory wavelet vectors. By assuming that Wi(z) is piecewise constant,
we are able to model processes with a piecewise constant second-order structure where,
between any two breakpoints in Wi(z), the autocovariance function remains constant. The
Evolutionary Wavelet Spectrum (EWS) is defined as Si(z) = Wi(z)

2, and is in one-to-
one correspondence with the time-dependent autocovariance function of the process. Our
primary objective is to develop a consistent method for detecting breakpoints in the EWS,
and consequently provide a segmentation of the original time series {Xt,T}T−1

t=0 . We place
the following technical assumption on the breakpoints present in the EWS.

Assumption 1. The set of those locations z where (possibly infinitely many) functions
Si(z) contain a jump, is finite. That is, let B = {z; ∃ i limu→z− Si(u) 6= limu→z+ Si(u)},
then B = |B| <∞.

We further define the wavelet periodogram of the LSW time series.

Definition 2. Let Xt,T be an LSW process as in (1). The triangular stochastic array

I
(i)
t,T =

∣

∣

∣

∣

∣

∑

s

Xs,Tψi,s−t

∣

∣

∣

∣

∣

2

(2)

is called the wavelet periodogram of Xt,T at scale i.
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Fryzlewicz and Nason (2006) show that the expectation EI
(i)
t,T of the wavelet periodogram

is “close” (in the sense of the integrated squared bias converging to zero) to the function

βi(z) =
∑−1

j=−∞ Sj(z)Ai,j , where A is an invertible matrix related to the wavelet vectors in
(1) and (2). Further, each function βi(z) is piecewise constant with at most B jumps, all

of which occur in the set B. Besides, EI
(i)
t,T themselves are piecewise constant by definition,

except intervals of length O(2−i) around the discontinuities occurring in B.
The finiteness of B implies that there exists a fixed index I∗ < ⌊log2 T ⌋ such that each

breakpoint in B can be found in at least one of the functions Si(z) for i = −1, . . . ,−I∗, i.e.,
no further new breakpoints appear at scales coarser than −I∗. Thus, from the invertibility

of A and the closeness of βi(z) and EI
(i)
t,T , we conclude that every breakpoint is encoded in

the wavelet periodogram sequences at scales i = −1, . . . ,−I∗. Therefore our procedure for
detecting breakpoints in the autocorrelation structure ofXt,T only considers the wavelet pe-
riodograms at these scales. Since I∗ is fixed but unknown, in our theoretical considerations
we permit it to increase slowly to infinity with T .

A further reason for disregarding the coarse scales i < −I∗ is that the autocorrelation
within each wavelet periodogram sequence becomes stronger at coarser scales; similarly, the

intervals on which EI
(i)
t,T is not piecewise constant become longer. Thus, for coarse scales,

wavelet periodograms provide little useful information about breakpoints and can safely be
omitted.

We end this section by briefly summarising our reasons behind the choice of the LSW
model as a suitable framework for developing our methodology:

(i) The entire second-order structure of the process, which varies over time in a piecewise-
constant manner, is encoded in the (asymptotically) piecewise constant expectations
of the wavelet periodogram sequences. Thus, any breakpoints in the second order
structure must by definition be detectable by analysing the wavelet periodograms,
which are relatively easy to handle as they follow a multiplicative model and are
“localised” due to the compact support of the underlying wavelets.

(ii) Furthermore, due to the “whitening” properties of wavelets (see e.g. Vidakovic (1999),
Chapter 9), the wavelet periodogram sequences are often much less autocorrelated
than the original process.

(iii) The entire array of the wavelet periodograms at all scales is easily and rapidly com-
putable via the non-decimated wavelet transform, which helps keep the computational
load of our procedure to the minimum.

(iv) Last but not least, the use of the “rescaled time” z = k/T in (1) and the associated
regularity assumptions on the transfer functions Wi(z) permit us to establish rigorous
asymptotic properties of our procedure.

3. Binary segmentation algorithm

In this section, noting that each wavelet periodogram sequence follows a multiplicative
model as described in Section 3.1 below, we first introduce a binary segmentation algorithm
for such class of sequences. Binary segmentation is a computationally efficient tool which
searches for multiple breakpoints in a recursive manner (and can be classed as a “greedy”
and “multilevel” algorithm). Venkatraman (1993) applied the procedure to a sequence
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of independent normal variables with multiple breakpoints in its mean and showed that
the detected breakpoints were consistent in terms of their number and locations. In the
following, we aim at extending these consistency results to the multiplicative model where,
in addition, dependence between observations is permitted.

Our binary segmentation procedure is then applied to each wavelet periodogram se-
quence separately, and we establish a procedure which efficiently combines the breakpoint
detection outcomes across the scales. We show that the consistency attained for each pe-
riodogram sequence carries over to the consistency in detecting breakpoints in the overall
second-order structure of the process.

3.1. Generic multiplicative model
Recall that each wavelet periodogram ordinate is simply a squared wavelet coefficient of

a zero-mean Gaussian time series, distributed as a scaled χ2
1 variable and satisfies I

(i)
t,T =

EI
(i)
t,T ·Z2

t,T , where {Zt,T }T−1
t=0 are autocorrelated standard normal variables. Hence we first

develop a generic breakpoint detection tool for multiplicative sequences defined by

Y 2
t,T = σ2

t,T · Z2
t,T , t = 0, . . . , T − 1, (3)

where the following additional conditions hold.

(i) σ2
t,T is deterministic and “close” to a piecewise constant function σ2(t/T ) in the sense

that σ2
t,T is piecewise constant apart from intervals of length at most O(2I∗

) around

the discontinuities in σ2(z), and T−1
∑T−1

t=0 |σ2
t,T − σ2(t/T )|2 = o(log−1 T ), where the

latter rate comes from the rate of convergence of the integrated squared bias between

βi(t/T ) and EI
(i)
t,T (see Fryzlewicz and Nason (2006) for details), and from the fact

that our attention is limited to the I∗ finest scales only. Further, σ2(z) is bounded
from above and away from zero, with a finite but unknown number of jumps.

(ii) The vector {Zt,T}T−1
t=0 is multivariate normal with mean zero and variance one, and its

autocorrelation sequence is absolutely summable asymptotically; that is the function
ρ(τ) = supt,T |corr(Zt,T , Zt+τ,T )| satisfies ρ1

∞ <∞ where ρp
∞ =

∑

τ ρ
p(τ).

Once the breakpoint detection algorithm for the generic model (3) has been established, we
apply it to the wavelet periodograms; thus, the reader is invited to relate Y 2

t,T , σ2(z) and

σ2
t,T to I

(i)
t,T , βi(z) and EI

(i)
t,T , respectively.

3.2. Algorithm
The first step of the binary segmentation procedure is to find the likely location of a break-
point. We locate such a point in the interval (0, T − 1) as the one which maximizes the
absolute value of

Y
ν
0,T−1 =

√

T − ν

T · ν

ν−1
∑

t=0

Y 2
t,T −

√

ν

T · (T − ν)

T−1
∑

t=ν

Y 2
t,T . (4)

Yν
0,T−1 can be interpreted as a scaled difference between the partial means of two segments

{Y 2
t,T }ν−1

t=0 and {Y 2
t,T }T−1

t=ν , where the scaling is chosen so as to keep the variance Yν
0,T−1
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constant over ν in the idealised case of Y 2
t,T being i.i.d. Thus, it is a version of the well-

known CUSUM statistic. Once such a ν has been found, we use Yν
0,T−1 (but not only this

quantity; see below for details) to test the null hypothesis of σ2(t/T ) being constant over
{Y 2

t,T}T−1
t=0 . The test statistic and its critical value, or threshold, are established in such

a way that when a breakpoint is present, the null hypothesis is rejected with probability
converging to 1. If the null hypothesis is rejected, we continue the simultaneous locating and
testing of breakpoints on the two segments to the left and to the right of ν in a recursive
manner until no further breakpoints are detected. The algorithm is summarised below,
where j is the level index and l is the location index of the node at each level.

Algorithm

Step 1 Begin with (j, l) = (1, 1). Let sj,l = 0 and ej,l = T − 1.

Step 2 Iteratively compute Yb
sj,l,ej,l

as in (4) for b ∈ (sj,l, ej,l), and find bj,l which max-

imizes its absolute value. Let nj,l = ej,l − sj,l + 1, dj,l = Yb
sj,l,ej,l

, and mj,l =
∑ej,l

t=sj,l
Y 2

t,T /
√
nj,l.

Step 3 Perform hard thresholding on |dj,l|/mj,l with the threshold defined as tj,l = τT θ
√

logT/nj,l

so that d̂j,l = dj,l if |dj,l| > mj,l · tj,l, and d̂j,l = 0 otherwise. The choice of θ and τ is
discussed in Section 3.4.

Step 4 If either d̂j,l = 0 or max{bj,l−sj,l+1, ej,l−bj,l} < ∆T for l, stop the algorithm on the
interval [sj,l, ej,l]. If not, let (sj+1,2l−1, ej+1,2l−1) = (sj,l, bj,l) and (sj+1,2l, ej+1,2l) =
(bj,l +1, ej,l) and update the level j as j → j+1. Again, the choice of ∆T is discussed
in Section 3.4.

Step 5 Repeat Steps 2–4.

The set of detected breakpoints is {bj,l; d̂j,l 6= 0}. The test statistic |dj,l|/mj,l is a scaled
version of the test statistics in the ICSS algorithm (Inclán and Tiao, 1994; Whitcher et al.,
2000). However, the test criteria in those papers are derived empirically under the assump-
tion of independent observations and there is no guarantee that either algorithm produces
consistent breakpoint estimates. On the other hand, our algorithm permits the sequences
to be autocorrelated as in (3), and its test criterion enables the consistent identification of
the total number and locations of breakpoints as shown in Section 3.3, provided that the
true breakpoints are sufficiently scattered over time.

We also note the similarity between the statistic |dj,l|/mj,l (with the convention 0/0 = 0)
and the Fisz transform of Fryzlewicz and Nason (2006) and Fryzlewicz et al. (2006), the
difference being that the Fisz transform was only defined for the case b = 1

2 (ej,l + sj,l + 1)
(meaning the segments were split in half) and that it was not used for the purposes of
breakpoint detection.

3.2.1. Post-processing within a sequence

We further equip the procedure with an extra step aimed at reducing the risk of overesti-
mating the number of breakpoints. The ICSS algorithm in Inclán and Tiao (1994) has a
“fine-tune” step whereby if more than one breakpoint is found, each breakpoint is checked
against the adjacent ones to reduce the risk of overestimation. We propose a post-processing
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procedure performing a similar task within the single-sequence multiplicative model (3). At
each breakpoint, the test statistic is re-calculated over the interval between two neighbour-
ing breakpoints and compared with the threshold again. Denote the breakpoint estimates
as η̂p, p = 1, . . . , N̂ and η̂0 = 0, η̂N̂+1 = T . For each η̂p, we examine whether

∣

∣

∣
Y

η̂p

η̂p−1+1,η̂p+1

∣

∣

∣
> τT θ

√

logT · 1

(η̂p+1 − η̂p−1)

η̂p+1
∑

t=η̂p−1+1

Y 2
t,T .

If the above inequality does not hold, η̂p is removed and the same procedure is repeated with
the reduced set of breakpoints until the set does not change. Note that the fine-tune step of
the ICSS algorithm re-calculates both the location and test statistic at each iteration and
therefore the locations of breakpoints are subject to change after tuning. However in our
post-processing procedure, only the test statistic is re-calculated at existing breakpoints,
and thus their locations are preserved. We note that the post-processing does not affect the
theoretical consistency of our procedure as (a) the extra checks above are of the same form
as those done in the original algorithm of Section 3.2, (b) the locations of the breakpoints
that survive the post-processing are unchanged. The next section provides details of our
consistency result.

3.3. Consistency of detected breakpoints
In a breakpoint detection problem, it is desirable that the proposed procedure should (as-
ymptotically) correctly identify the total number and locations of breakpoints. In this
section, we first show the consistency of our algorithm for a multiplicative sequence as in
(3), which corresponds to the wavelet periodogram sequence at a single scale. Later, Theo-
rem 2 will show how this consistency result carries over to the consistency of our procedure
in detecting breakpoints in the entire second-order structure of the input LSW processXt,T .

Denote the number of breakpoints in σ2(t/T ) by N and the breakpoints themselves by
0 < η1 < . . . < ηN < T − 1, with η0 = 0, ηN+1 = T − 1. The following assumption states
that the breakpoints ηp should be sufficiently scattered over time without being too close
to each other.

Assumption 2. For θ ∈ (1/4, 1/2) and Θ ∈ (θ + 1/2, 1), the length of each segment in
σ2(t/T ) is bounded from below by δT = O(TΘ). Further, the breakpoints cannot be too close
to each other, i.e., there exists some constant c > 0 such that,

max
1≤p≤N

{√

ηp − ηp−1

ηp+1 − ηp
,

√

ηp+1 − ηp

ηp − ηp−1

}

≤ c.

Theorem 1. Suppose that {Yt,T }T−1
t=0 follows model (3). Assume that

• infp

∣

∣σ2 (ηp/T )− σ2 (ηp+1/T )
∣

∣ ≥ ξ for some ξ > 0,

• supt |σ2(t/T )| ≤M for some M > 0.

Under Assumption 2, the number and locations of detected breakpoints are consistent. That

is, Pr(A) → 1 as T → ∞ where A =
{

N̂ = N ; |η̂p − ηp| ≤ O(ǫT ), 1 ≤ p ≤ N
}

; η̂p, p =

1, . . . , N̂ are detected breakpoints and ǫT = T 1/2 logT . (Interpreting this in the rescaled
time interval [0, 1], ǫT /T = T−1/2 logT .)



Time series segmentation 9

3.3.1. Post-processing across the scales

As mentioned in Section 2, we only consider wavelet periodograms I
(i)
t,T at scales i =

−1, . . . ,−I∗, choosing I∗ to satisfy 2I∗ ≪ ǫT = T 1/2 logT so that the bias between σ2
t,T

and σ2(t/T ) does not cause us harm in deriving the results of Theorem 1. Recall from our
previous discussion that any breakpoint in the second-order structure of the original process
Xt,T must be reflected in a breakpoint in at least one of the asymptotic wavelet periodogram
expectations βi(z) for i = −1, . . . ,−I∗, and vice versa: a breakpoint in one of the βi(z)’s
implies a breakpoint in the second-order structure of Xt,T . Thus, it is sensible to combine
the estimated breakpoints across the periodogram scales by, roughly speaking, selecting a
breakpoint as significant if it appears in any of the wavelet periodogram sequences. This
section describes a precise algorithm for doing this, and states a consistency result for the
final set of breakpoints arising from combining them across scales.

We first provide a general description of the algorithm, and then make it more precise
below. In the first stage, we produce a union of the sets of all breakpoints from scales
i = −1, . . . ,−I∗. In the second stage, we cluster them into groups depending on their
distance from one another. If there is a single scale containing representatives in each
group, we choose those as our final breakpoint estimates. If not, then the representative
breakpoint chosen from each group is the one that corresponds to the finest periodogram
scale at which it appears.

The complete algorithm follows. Let B̂i =
{

η̂
(i)
p , p = 1, . . . , N̂i

}

be the set of detected

breakpoints from the sequence I
(i)
t,T . Then the post-processing finds a subset of ∪−I∗

i=−1B̂i,

say B̂, as formulated below;

Step 1 Arrange all breakpoints into groups so that those from different sequences and
within the distance of ΛT from each other are classified as belonging to the same
group; and denote the groups by G1, . . . ,GB̂ .

Step 2 Find i0 = max
{

argmax−I∗≤k≤−1 N̂k

}

, i.e., the finest scale with the most break-

points.

Step 3 Check whether there exists η̂
(i0)
p0 for every η̂

(i)
p , i 6= i0, 1 ≤ p ≤ N̂i, which satisfies

∣

∣

∣
η̂
(i)
p − η̂

(i0)
p0

∣

∣

∣
< ΛT . If so, let B̂ = B̂i0 and quit the post-processing.

Step 4 Otherwise let B̂ =
{

ν̂p, p = 1, . . . , B̂
}

where each ν̂p ∈ Gp with the maximum i

(finest scale).

We set ΛT = ⌊ǫT /2⌋ in order to take into account the bias arising in deriving the results
of Theorem 1. As argued previously, breakpoints detected at coarser scales are likely to
be less accurate than those detected at finer scales; therefore, the above algorithm prefers
the latter. The across-scales post-processing procedure preserves the number of “distinct”
breakpoints and also their locations determined in the algorithm. Hence the breakpoints in
set B̂ are still consistent estimates of true breakpoints in the second-order structure of the
original nonstationary process Xt,T .

We acknowledge that the above is not the only possible way of combining the breakpoints
across scales which is still permitted by the theory and preserves consistency; however, we
advocate the above algorithm due to its good practical performance.
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Denote the set of the true breakpoints in the second-order structure of Xt,T by B =

{νp, p = 1, . . . , B}, and the estimated breakpoints by B̂ =
{

ν̂p, p = 1, . . . , B̂
}

.

Theorem 2. Suppose that Xt,T satisfies Assumption 1 and that νp, 1 ≤ p ≤ B, are
scattered over time as in Assumption 2. Further assume that the conditions in Theorem 1
hold for each βi(z). Then our estimated number and locations of breakpoints are consistent,
that is

Pr
{

B̂ = B; |ν̂p − νp| ≤ O(ǫT ), 1 ≤ p ≤ B
}

→ 1

as T → ∞.

3.4. Choice of ∆T , θ, τ and I∗

To ensure that each estimated segment is of sufficiently large length so as not to distort our
theoretical results, ∆T is chosen so that ∆T ≥ O(ǫT ). However, in practice our method
works well for smaller values of ∆T too; e.g. in the forthcoming simulation experiments,
∆T = O(

√
T ) is used. As θ ∈ (1/4, 1/2), we use θ = 0.256 (as we have found that the

method works best when θ is close to the lower end of its permitted range) and elaborate
on the choice of τ below (noting that our asymptotic theoretical results hold for any fixed
positive τ).

The selection of τ is not a straightforward task and to get some insight into the issue, a
set of numerical experiments was conducted. A vector of random variables X ∼ NT (0,Σ)
was generated where X = (X1, . . . , XT )T , then it was transformed into sequences of wavelet

periodograms I
(i)
t,T . The covariance matrix satisfied Σ = (σi,j)

T
i,j=1 where σi,j = ρ|i−j| such

that with varying ρ, the variables {Xt}T
t=1 were either independent or correlated. Then we

found b ∈ (1, T ) which maximised

I
b
i =

∣

∣

∣

∣

∣

√

T − b

T · b

b
∑

t=1

I
(i)
t,T −

√

b

T (T − b)

T
∑

t=b+1

I
(i)
t,T

∣

∣

∣

∣

∣

,

and computed Ui,ρ,T = Ib
i · {T−1

∑T
t=1 I

(i)
t,T ·T θ

√
logT}−1. This was repeated with a varying

covariance matrix (ρ = 0, 0.3, 0.6, 0.9) and sample size (T = 512, 1024, 2048), 100 times for
each combination.

The quantity Ui,ρ,T is the ratio between our test statistic |d1,1|/m1,1 and the time-
dependent factor T θ

√
logT appearing in our threshold defined in the Algorithm of Section

3.2. Ui,ρ,T is computed under the “null hypothesis” of no breakpoints being present in the
covariance structure of Xt, and its magnitude serves as a guideline as to how to select the
value of τ for each scale i to prevent spurious breakpoint detection in the null hypothesis
case. The results showed that the values of Ui,ρ,T and their range tended to increase for
coarser scales, due to the increasing dependence in the wavelet periodogram sequences. In
comparison to the scale factor i, the parameters ρ or T had relatively little impact on Ui,ρ,T .

Based on the above numerical experiments, we propose to use different values of τ in
Step 3 of the Algorithm of Section 3.2 and in the within-scale post-processing procedure of
Section 3.2.1. Denoting the former by τi,1 and the latter by τi,2, we choose τi,1 differently
for each i as the 95% quantile of Ui,ρ,T , and τi,2 as its 97.5% quantile. The numerical values
are summarised in Table 3.4.
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Table 1. Values of τ for each scale i = −1, . . . ,−6.
scale i −1 −2 −3 −4 −5 −6

τi,1 0.40 0.50 0.65 0.80 0.95 1.25
τi,2 0.45 0.60 0.75 0.90 1.10 1.35

Finally, we discuss the choice of I∗, i.e. the coarsest wavelet periodogram scale at
which we still apply our breakpoint detection procedure. Firstly, we detect breakpoints in
wavelet periodograms at scales i = −1, . . . ,−⌊log2 T/3⌋ and perform the across-scale post-

processing as described in Section 3.3.1, obtaining the set of breakpoints B̂ =
{

ν̂p, p = 1, . . . , B̂
}

.

Subsequently, for the wavelet periodogram at the next finest scale, we compute the quantity
Vp, p = 1, . . . , B̂ + 1 as

Vp = max
ν∈(ν̂p−1,ν̂p)

∣

∣

∣

∣

∣

∣

√

ν̂p−ν
(ν̂p−ν̂p−1)·(ν−ν̂p−1)

∑ν
t=ν̂p−1+1 I

(i)
t,T −

√

ν−ν̂p−1

(ν̂p−ν̂p−1)·(ν̂p−ν)

∑ν̂p

t=ν+1 I
(i)
t,T

∑ν̂p

ν̂p−1+1 I
(i)
t,T /(ν̂p − ν̂p−1)

∣

∣

∣

∣

∣

∣

where ν̂0 = −1 and ν̂B̂+1 = T − 1. Note that Vp is again of the same form as our basic

test statistic. Then Vp is compared to τi,1 · T θ
√

logT to see whether there are any further

breakpoints yet to be detected in I
(i)
t,T which have not been included in B̂. (This step is

similar to our within-scale post-processing.) If there is an interval [ν̂p−1 + 1, ν̂p] where Vp

exceeds the threshold, I∗ is updated as I∗ := I∗ + 1 and the above procedure is repeated
to update B̂ until either no further changes are made or I∗ ≥ ⌊log2 T/2⌋. This approach is
theoretically justified by Lemma 6 in the Appendix and shown to work well in our simulation
study.

4. Simulation study

In Davis et al. (2006), the performance of the Auto-PARM was assessed and compared
with the Auto-SLEX (Ombao et al., 2001) through simulation in various settings. The
Auto-PARM was shown to be superior to Auto-SLEX in identifying both dyadic and non-
dyadic breakpoints in piecewise stationary time series. Some examples from the paper were
adopted for the comparative study between our method and the Auto-PARM, alongside
some other new examples. In the simulations below, wavelet periodograms were computed
using Haar wavelets and both post-processing procedures (Section 3.2.1 and Section 3.3.1)
followed the application of the segmentation algorithm. In our examples, T = 1024 and
therefore I∗ was set as 3 at the start of each application of the algorithm, then updated
automatically if necessary, as described in Section 3.4. The algorithm was coded in R and
took 0.32 seconds on average to run on a 2.40-GHz Intel Core 2 processor when analysing
a realisation of length T = 1024.

4.1. Piecewise stationary AR process with clearly observable changes

This example is taken from Davis et al. (2006). The target nonstationary process was
generated from (5),
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Xt =







0.9Xt−1 + ǫt for 1 ≤ t ≤ 512,
1.68Xt−1 − 0.81Xt−2 + ǫt for 513 ≤ t ≤ 768,
1.32Xt−1 − 0.81Xt−2 + ǫt for 769 ≤ t ≤ 1024

(5)

where ǫt ∼ i.i.d. N (0, 1) in all examples. As seen in Figure 1 (a), there is a clear visual differ-
ence between the three segments in the model. Figure 1 (b) shows the wavelet periodogram
at scale −4 and the estimation results, where the dotted lines indicate the true breakpoints
(η1 = 512, η2 = 768) while the dashed lines indicate the detected ones (η̂1 = 512, η̂2 = 758).
Note that although initially the procedure returned three breakpoints, the within-sequence
post-processing (Section 3.2.1) successfully removed the false one. The experiment was
repeated 100 times and the final counts of breakpoints are given in Table 4.4.

time
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(a) X_t

time
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0
500

100
0

150
0

(b)

Fig. 1. (a) A realisation of model (5) and true (dotted) and detected (dashed) breakpoints; (b) Wavelet
periodogram at scale −4 and the breakpoint detection outcome, showing also the spurious break-
point which was later removed in post-processing.

4.2. Piecewise stationary AR process with less clearly observable changes
In this example, the piecewise stationary AR model is revisited, but its breakpoints are less
clear-cut, as seen in Figure 2 (a).

Xt =







0.4Xt−1 + ǫt for 1 ≤ t ≤ 400,
−0.6Xt−1 + ǫt for 401 ≤ t ≤ 612,
0.5Xt−1 + ǫt for 613 ≤ t ≤ 1024

(6)

Figure 2 (b) shows the wavelet periodogram at scale −1 for the realisation in the left
panel and also its breakpoint estimates (η̂1 = 372, η̂2 = 622). Both procedures achieved a
similarly good performance: our method accurately detected the two breakpoints in 97% of
the cases while the Auto-PARM performed well for all cases.
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Fig. 2. (a) A realisation of model (6) and true (dotted) and detected (dashed) breakpoints; (b) Wavelet
periodogram at scale −1 and the breakpoint detection outcome.

4.3. Piecewise stationary AR process with a short segment
This example is again from Davis et al. (2006). A single breakpoint occurs and one segment
is much shorter than the other.

Xt =

{

0.75Xt−1 + ǫt for 1 ≤ t ≤ 50,
−0.5Xt−1 + ǫt for 51 ≤ t ≤ 1024.

(7)

A typical realisation of (7), its wavelet periodogram at scale −3, and the estimation
outcome are shown in Figure 3, where the jump at η1 = 50 was correctly identified as
η̂1 = 49. Even though one segment is substantially shorter than the other, our procedure
was able to detect exactly one breakpoint in 94% of the cases and underestimation did not
occur even when it failed to detect exactly one.

4.4. Piecewise stationary unit-root-like process with changing variance
Financial time series, such as stock indices, individual share or commodity prices, or cur-
rency exchange rates, are for certain purposes (such as e.g. pricing of derivative instruments)
often modelled as random walk with a time-varying variance. Motivated by this, we gener-
ated a random-walk-like (but piecewise stationary) example from model (8) below, where
the variance has two breakpoints over time and the AR parameter remains constant and
very close to 1.

Xt =







0.999Xt−1 + ǫt for 1 ≤ t ≤ 400,
0.999Xt−1 + 1.5ǫt for 401 ≤ t ≤ 750,
0.999Xt−1 + ǫt for 751 ≤ t ≤ 1024.

(8)

Recall that the Auto-PARM is designed to find the “best” combination of the total
number and locations of breakpoints and adopts a genetic algorithm to traverse the vast
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Fig. 3. (a) A realisation of model (7) and true (dotted) and detected (dashed) breakpoints; (b) Wavelet
periodogram at scale −3 and the breakpoint detection outcome.

Table 2. Summary of breakpoint detection from simulations; Our
method (CF) and the Auto-PARM (AP).

number of breakpoints
model (5) model (6) model (7) model (8)
CF AP CF AP CF AP CF AP

0 0 0 1 0 0 1 1 41
1 0 0 1 0 94 99 1 29
2 90 99 97 100 6 0 94 18

3 10 1 1 0 0 0 4 10
4 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 2

total 100 100 100 100 100 100 100 100

parameter space. However, due to the stochastic nature of the algorithm, the Auto-PARM
occasionally fails to return consistent estimates, which is not a desirable feature. This
instability was emphasised in this example, each run often returning different breakpoints.
For one typical realisation, it detected t = 21, 797 as breakpoints, and then only t = 741
in the next run on the same sample path. Besides, from Figure 4, which summarises and
compares the empirical distribution of the detected breakpoints by both methods over 100
repetitions, it is clear that the performance of Auto-PARM leaves much to be desired for
this particular example, whereas our method performs very well. We emphasise that this
is not to be taken as a criticism of Auto-PARM in general, which performed very well
in our other examples. Note that it was at scale −1 of the wavelet periodogram that
both breakpoints were consistently identified the most frequently. The computation of the
wavelet periodogram at scale −1 with Haar wavelets is a differencing operation and naturally
“whitens” the almost-unit-root process (8), clearly revealing any changes of variance in the
sequence. Finally, though inferior to Haar wavelets, performance achieved by our method
using other wavelets was also superior to Auto-PARM in this example.
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Fig. 4. Selection frequency for each t; (a) Our method (CF); (b) Auto-PARM (AP).

5. U.S stock market data analysis

5.1. Dow Jones weekly closing values 1970–1975
The time series of weekly closing values of the Dow Jones Industrial Average index between
July 1971 and August 1974 was studied in Hsu (1979) and revisited in Chen and Gupta
(1997). Historical data are available on www.google.com/finance/historical?q=INDEXDJX:

.DJI, where daily and weekly prices can be extracted for any time period. Both papers
concluded that there was a change in the variance of the index around the third week of
March 1973. For the ease of computation of the wavelet periodogram, we chose the same
weekly index between 1 July 1970 and 19 May 1975 so that the data size was T = 256 and
the above-mentioned time period was contained in this interval. The third week of March
1973 corresponds to η = 141 and our procedure detected η̂ = 142 as a breakpoint, which is
illustrated in Figure 5 (b).

5.2. Dow Jones daily closing values 2007–2009
We further investigated more recent daily data from the same source, between 8 January
2007 and 16 January 2009. Over this period, the global financial market experienced one
of the worst crises in history, covered extensively in the media. Our breakpoint detection
algorithm estimated two breakpoints (see the illustration in Figure 6), one occurring in
the last week of July 2007, and the other in mid-September 2008. The first breakpoint
(η̂1 = 135) coincided with the outbreak of the worldwide “credit crunch” as subprime
mortgage backed securities were discovered in portfolios of banks and hedge funds around
the world. The second breakpoint (η̂2 = 424) coincided with the bankruptcy of Lehman
Brothers, a major financial services firm, (September 14, 2008), an event which brought
even more volatility to the market.

We note that Wikipedia (http://en.wikipedia.org/wiki/Financial_crisis_of_2007-2009)
also mentions these two dates as milestones of the crisis:

“The financial crisis of 2007–2009 began in July 2007 when a loss of confidence
by investors in the value of securitized mortgages in the United States resulted
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Fig. 5. (a) Weekly average values of the Dow Jones IA index (July 1970–May 1975); (b) Wavelet
periodogram at scale −1 and the breakpoint detection outcome.

in a liquidity crisis that prompted a substantial injection of capital into finan-
cial markets by the United States Federal Reserve, Bank of England and the
European Central Bank. The TED spread, an indicator of perceived credit risk
in the general economy, spiked up in July 2007, remained volatile for a year,
then spiked even higher in September 2008, reaching a record 4.65% on October
10, 2008. In September 2008, the crisis deepened, as stock markets worldwide
crashed and entered a period of high volatility, and a considerable number of
banks, mortgage lenders and insurance companies failed in the following weeks.”
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Fig. 6. (a) Daily average values of the Dow Jones IA index (Jan 2007–Jan 2009); (b) Wavelet
periodogram at scale −1 and the breakpoint detection outcome.
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A. The proof of Theorem 1

The consistency of our algorithm is first proved for the sequence below,

Ỹ 2
t,T = σ2(t/T ) · Z2

t,T , t = 0, . . . , T − 1. (9)

Note that unlike in (3), the above model features the true piecewise constant σ2(t/T ).
Denote n = e− s+ 1 and define

Ỹ
b
s,e =

√
e− b√

n
√
b− s+ 1

b
∑

t=s

Ỹ 2
t,T −

√
b− s+ 1√
n
√
e− b

e
∑

t=b+1

Ỹ 2
t,T ,

S̃
b
s,e =

√
e− b√

n
√
b− s+ 1

b
∑

t=s

σ2(t/T )−
√
b− s+ 1√
n
√
e− b

e
∑

t=b+1

σ2(t/T ),

S
b
s,e =

√
e− b√

n
√
b− s+ 1

b
∑

t=s

σ2
t,T −

√
b− s+ 1√
n
√
e− b

e
∑

t=b+1

σ2
t,T .

Note that the above are simply inner products of the respective sequences and a vector
whose support starts at s, is constant and positive until b, then constant negative until e,
and normalised such that it sums to zero and sums to one when squared. Let s, e satisfy
ηp0

≤ s < ηp0+1 < . . . < ηp0+q < e ≤ ηp0+q+1 for 0 ≤ p0 ≤ B − q, which will always be
the case at all stages of the algorithm. In Lemmas 1–5 below, we impose at least one of
following conditions:

s < ηp0+r − CδT < ηp0+r + CδT < e for some 1 ≤ r ≤ q, (10)

{(ηp0+1 − s) ∧ (s− ηp0
)} ∨ {(ηp0+q+1 − e) ∧ (e− ηp0+q)} ≤ ǫT , (11)

where (as elsewhere in the paper) C is an arbitrary positive constant and ∧ and ∨ are the
minimum and maximum operators, respectively. We remark that both conditions (10) and
(11) hold throughout the algorithm for all those segments starting at s and ending at e
which contain previously undetected breakpoints. As Lemma 6 concerns the case when all
breakpoint have already been detected, it does not use either of these conditions.

The proof of the Theorem is constructed as follows. Lemma 1 is used in the proof of
Lemma 2, which in turn is used alongside Lemma 3 in the proof of Lemma 4. From the
result of Lemma 4, we derive Lemma 5 and finally, Lemmas 5 and 6 are used to prove
Theorem 1.

Lemma 1. Let s and e satisfy (10), then there exists 1 ≤ r ≤ q such that
∣

∣

∣
S̃

ηp0+r

s,e

∣

∣

∣
= max

s<t<e
|S̃t

s,e| ≥ O
(

δT /
√
T
)

. (12)

Proof. The equality in (12) is proved by Lemmas 2.2 and 2.3 in Venkatraman (1993). For
the inequality, note first that in the case of a single breakpoint in σ2(z) we can use the
constancy of σ2(z) to the left and to the right of the breakpoint to show that

∣

∣

∣
S̃

ηp0+r

s,e

∣

∣

∣
=

∣

∣

∣

∣

∣

√

ηp0+r − s+ 1
√
e− ηp0+r√

n

(

σ2(ηp0+r/T )− σ2((ηp0+r + 1)/T )
)

∣

∣

∣

∣

∣

,

which is bounded from below by O
(

δT /
√
T
)

. We remark that the order remains the same

in the case of multiple breakpoints. �
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Lemma 2. Suppose (10) holds, and further assume that S̃
ηp0+r

s,e > 0 for some 1 ≤ r ≤ q.
Then for any b satisfying |ηp0+r − b| = O(ǫT ) we have, for a large T , S̃

ηp0+r

s,e ≥ S̃b
s,e +2 logT.

Proof. Without loss of generality, assume ηp0+r < b. As in Lemma 1, we first derive the
result in the case of a single breakpoint in σ2(z). The following holds;

S̃
b
s,e =

√

ηp0+r − s+ 1
√
e− b

√
e− ηp0+r

√
b− s+ 1

S̃
ηp0+r

s,e , and (13)

S̃
ηp0+r

s,e − S̃
b
s,e =

(

1 −
√

ηp0+r − s+ 1
√
e− b

√
e− ηp0+r

√
b− s+ 1

)

S̃
ηp0+r

s,e

=

√

1 +
b−ηp0+r

ηp0+r−s+1 −
√

1 − b−ηp0+r

e−ηp0+r
√

1 +
b−ηp0+r

ηp0+r−s+1

S̃
ηp0+r

s,e

≥
1
2

(

b−ηp0+r

ηp0+r−s+1 +
b−ηp0+r

e−ηp0+r

)

√
2

S̃
ηp0+r

s,e ≥ 2 logT

for large T , applying the Taylor expansion in the last but one step, and Lemma 1 in the
last step. Similar arguments are applicable when b < ηp0+r. Since the order of (13) remains
the same in the case of multiple breakpoints, the lemma is proved. �

Lemma 3. Let n ≥ O(δT ). Assume ∃ b ∈ (s, e) satisfying

max

{

√

b − s+ 1

e− b
,

√

e− b

s− b+ 1

}

≤ c.

Then
∣

∣

∣
Ỹb

s,e − S̃b
s,e

∣

∣

∣
≤ logT with probability converging to 1 with T , uniformly over s, b, e.

Proof. We need to show that

Pr

(

1√
n

∣

∣

∣

∣

∣

e
∑

t=s

σ2(t/T )(Z2
t,T − 1) · ct

∣

∣

∣

∣

∣

> logT

)

−→ 0, (14)

where ct =
√
e− b/

√
b − s+ 1 for t ∈ [s, b] and ct =

√
b− s+ 1/

√
e− b otherwise. Let

{Ut}e
t=s be i.i.d. standard normal variables, V = (vi,j)

n
i,j=1 with vi,j = corr (Zi,T , Zj,T ),

and W = (wi,j)
n
i,j=1 be a diagonal matrix with wi,i = σ2(t/T ) · ct where i = t− s+ 1. By

standard results (see e.g. Johnson and Kotz (1970), page 151), showing (14) is equivalent to
showing that

∣

∣

∑e
t=s λt−s+1(U

2
t − 1)

∣

∣ is bounded by
√
n logT with probability converging to

1, where λi are eigenvalues of the matrix VW. Due to the Gaussianity of Ut, λt−s+1(U
2
t −1)

satisfy the Cramér’s condition, i.e., there exists a constant C > 0 such that

E
∣

∣λt−s+1(U
2
t − 1)

∣

∣

p ≤ Cp−2p!E
∣

∣λt−s+1(U
2
t − 1)

∣

∣

2
, p = 3, 4, . . . .

Therefore we can apply Bernstein’s inequality (Bosq, 1998) and bound the probability in
(14) by

2 exp

(

− n log2 T

4
∑n

i=1 λ
2
i + 2 maxi |λi|C

√
n log T

)

. (15)
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Note that
∑n

i=1 λ
2
i = tr (VW)2 ≤ c2 maxz σ

4(z)nρ2
∞. Also it follows that maxi |λi| ≤

cmaxz σ
2(z)‖V‖ where ‖ · ‖ denotes the spectral norm of a matrix, and ‖V‖ ≤ ρ1

∞ since V

is non-negative definite. Then the lemma follows as (15) is bounded from above by

exp

(

− n log2 T

4c2 maxz σ4(z)nρ2
∞ + 2cmaxz σ2(z)

√
n logTρ1

∞

)

−→ 0,

as ρp
∞ ≤ O(2I∗

), which can be made to be of order O(log T ), since the only requirement on
I∗ is that it converges to infinity but no particular speed is required. �

Lemma 4. Assume (10) and (11). For b = arg maxs<t<e |Ỹt
s,e|, there exists 1 ≤ r ≤ q

such that, for large T ,

|b− ηp0+r| ≤ ǫT . (16)

Proof. Let S̃s,e = maxs<t<e |S̃t
s,e|. From Lemma 3, Ỹb

s,e ≥ S̃s,e − logT and S̃b
s,e ≥ Ỹb

s,e −
logT , hence S̃b

s,e ≥ S̃s,e−2 logT . Assume (16) does not hold that b ∈ (ηp0+r +ǫT , ηp0+r+1−
ǫT ) for some r. From Lemma 2.2 in Venkatraman (1993), S̃t

s,e is either monotonic or

decreasing and then increasing between two breakpoints (on [ηp0+r, ηp0+r+1]), and S̃
ηp0+r

s,e ∨
S̃

ηp0+r+1

s,e > S̃b
s,e. Suppose S̃

ηp0+r

s,e > S̃b
s,e. Then there exists b′ ∈ (ηp0+r, ηp0+r + ǫT ] satisfying

S̃
ηp0+r

s,e − 2 logT ≥ S̃b′

s,e from Lemma 2. Since b > b′, we also get S̃
ηp0+r+1

s,e > S̃b
s,e (as S̃t

s,e is
locally increasing at t = b), and there will again be a b′′ ∈ [ηp0+r+1− ǫT , ηp0+r+1) satisfying

S̃
ηp0+r

s,e − 2 logT ≥ S̃b′′

s,e. Since b′′ > b, it contradicts that S̃b
s,e ≥ S̃s,e − 2 logT . Similar

arguments are applicable when b < ηp0+r and therefore the lemma follows. �

Lemma 5. Under (10) and (11), for b = argmaxs<t<e |Ỹt
s,e|,

Pr

(

∣

∣

∣
Ỹ

b
s,e

∣

∣

∣
< τT θ

√

logT · 1

n

e
∑

t=s

Ỹ 2
t,T

)

−→ 0.

Proof. From Lemma 4, there exists some r such that |b − ηp0+r| < ǫT . Denote m̃ =
∑e

t=s Ỹ
2
t,T /n and d̃ = Ỹ

b
s,e = d̃1 − d̃2 where

d̃1 =

√
e− b√

n
√
b− s+ 1

b
∑

t=s

Ỹ 2
t,T and d̃2 =

√
b − s+ 1√
n
√
e− b

e
∑

t=b+1

Ỹ 2
t,T .

Further, let µi = Ed̃i and wi = var(d̃i) for i = 1, 2, and define µ = Ed̃ and w = var(d̃).
Finally, tn denotes the threshold τT θ

√

logT/n. We need to show Pr(|d̃| ≤ m̃ · tn) → 0.
We first note that wi ≤ c2 supz σ

4(z)ρ2
∞. Using Markov’s and the Cauchy-Schwarz

inequalities, µ2 Pr(d̃ ≤ m̃ · tn) is bounded by

µ2 Pr
{

(d̃1 − µ1)(ctn − 1) + (d̃2 − µ2)(ctn + 1) + 2ctnµ1 ≥ (1 + ctn)µ
}

≤ 3(1 + ctn)−2
{

(ctn − 1)2w1 + (ctn + 1)2w2 + 4c2t2
nµ

2
1

}

≤ O

{

sup
z
σ4(z)

(

ρ2
∞ + τ2T 2θ logT

)

}

,

and since µ = S̃b
s,e = O

(

δT /
√
T
)

> T θ
√

logT , the conclusion follows. �
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Lemma 6. For some positive constants C, C′, let s, e satisfy either

(i) ∃ 1 ≤ p ≤ B such that s ≤ ηp ≤ e and [ηp − s+ 1] ∧ [e− ηp] ≤ CǫT or
(ii) ∃ 1 ≤ p ≤ B such that s ≤ ηp < ηp+1 ≤ e and [ηp − s+ 1] ∨ [e− ηp+1] ≤ C′ǫT .

Then for b = arg maxs<t<e |Ỹt
s,e| and large T ,

Pr

(

∣

∣

∣
Ỹ

b
s,e

∣

∣

∣
> τT θ

√

logT · 1

n

e
∑

t=s

Ỹ 2
t,T

)

−→ 0.

Proof. Let A =
{∣

∣

∣
Ỹb

s,e

∣

∣

∣
> τT θ

√
logT ·∑e

t=s Ỹ
2
t,T /n

}

and

B =

{

1

n

∣

∣

∣

∣

∣

e
∑

t=s

(

Ỹ 2
t,T − EỸ 2

t,T

)

∣

∣

∣

∣

∣

< h =
(ηp − s+ 1)σ2

1 + (e− ηp)σ
2
2

2n

}

,

where σ2
1 = σ2 (ηp/T ) and σ2

2 = σ2 ((ηp + 1)/T ). First we assume (i) holds. We have

Pr (A) = Pr (A |B ) Pr (B) + Pr (A |Bc ) Pr (Bc) ≤ Pr (A |B ) + Pr (Bc) .

The first part is bounded as

Pr (A |B ) ≤
Pr
(∣

∣

∣
Ỹb

s,e

∣

∣

∣
> τT θ

√
logT · 1

n

∑e
t=s

(

EỸ 2
t,T − h

))

Pr(B)
. (17)

We have

E

(

Ỹ
b
s,e

)2

≤ n
(

S̃
b
s,e

)2

≤ n · CǫT
n− CǫT

max
z
σ4(z)

and n ≥ O(δT ). Therefore by applying Markov’s inequality, the numerator is bounded by

E

(

Ỹ
b
s,e

)2

/(τh2T 2θ logT ) ≤ O
(

T 1/2−2θ log T
)

−→ 0.

Turning our attention to the denominator of (17), we need to show that

Pr(Bc) = Pr

(

1

n

∣

∣

∣

∣

∣

e
∑

t=s

σ2(t/T )(Z2
t,T − 1)

∣

∣

∣

∣

∣

> h

)

−→ 0.

This can be shown by applying Bernstein’s inequality as in the proof of Lemma 2, and the
lemma follows. Similar arguments are applied to prove the lemma when (ii) holds. �

We now prove Theorem 1. At the start of the algorithm, as s = 0 and e = T − 1, all
conditions for Lemma 5 are met and it finds a breakpoint within the distance of O(ǫT ) from
the true breakpoint, by Lemma 4. Under Assumption 2, both (10) and (11) are satisfied
within each segment until every breakpoint in σ2(t/T ) is identified. Then, either of two
conditions (i) or (ii) in Lemma 6 is met and therefore no further breakpoint is detected with
probability converging to 1.

Finally we study how the bias present in EI
(i)
t,T (= σ2

t,T ) affects the consistency. First we

define the autocorrelation wavelet Ψi(τ) =
∑∞

k=−∞ ψi,kψi,k+τ , the autocorrelation wavelet
inner product matrix Ai,j =

∑

τ Ψi(τ)Ψj(τ), and the across-scales autocorrelation wavelets
Ψi,j(τ) =

∑

k ψi,kψj,k+τ . Then it is shown in Fryzlewicz and Nason (2006) that the inte-

grated bias between EI
(i)
t,T and βi(t/T ) converges to zero.
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Proposition 1 (Propositions 2.1-2.2 (Fryzlewicz and Nason, 2006)). Let I
(i)
t,T

be the wavelet periodogram at a fixed scale i. Under Assumption 1,

T−1
T−1
∑

t=0

∣

∣

∣
EI

(i)
t,T − βi(t/T )

∣

∣

∣

2

= O(T−12−i) + bi,T , (18)

where bi,T depends on the sequence {Li}i. Further, each βi(z) is a piecewise constant
function with at most B jumps, all of which occur in the set B.

Suppose the interval [s, e] includes a true breakpoint ηp as in (10), and denote b =

argmaxt∈(s,e) |S̃t
s,e| and b̂ = arg maxt∈(s,e)

∣

∣St
s,e

∣

∣. Recall that EI
(i)
t,T remains constant within

each stationary segment, apart from short (of length O(2−i)) intervals around the discon-
tinuities in βi(t/T ). Suppose a jump occurs at ηp in βi(t/T ) yet there is no change in

EI
(i)
t,T for t ∈ [ηp − O(2−i), ηp + O(2−i)]. Then the integrated bias is bounded from below

by O(δT /T ) from Assumption 2, and Proposition 1 is violated. Therefore there will be a

change in EI
(i)
t,T as well on such intervals around ηp and EI

(i)
t1,T 6= EI

(i)
t2,T for t1 ≤ ηp−O(2−i)

and t2 ≥ ηp + O(2−i). Although the bias of EI
(i)
t,T in relation to βi(t/T ) may cause some

bias between b̂ and b, we have that |b̂− b| ≤ O(2I∗

) < ǫT holds for I∗ = O(log logT ), which
is an admissible rate for I∗. Besides, once one breakpoint is detected in such intervals, the
algorithm does not allow any more breakpoints to be detected within the distance of ∆T

from the detected breakpoint, by construction. Hence the bias in EI
(i)
t,T does not affect the

results of Lemmas 1–6 for wavelet periodograms at finer scales and the consistency still
holds for Y 2

t,T = σ2
t,T · Z2

t,T as in (3).

B. The proof of Theorem 2

From Assumption 1 and the invertibility of the autocorrelation wavelet inner product matrix

A, there exists at least one sequence of wavelet periodograms among I
(i)
t,T , i = −1, . . . ,−I∗

in which any breakpoint in B is detected. Suppose there is only one such scale, i0, for

νq ∈ B and denote the detected breakpoint as η̂
(i0)
p0

. After the across-scales post-processing,

η̂
(i0)
p0

is selected as ν̂q since no other η̂
(i)
p , i 6= i0, is within the distance of ΛT = O(ǫT ) from

either ν̂q or η̂
(i0)
p0 , and

∣

∣

∣
νq − η̂

(i0)
p0

∣

∣

∣
≤ ǫT with probability converging to 1 from Theorem 1.

If there are D(≤ I∗) breakpoints detected for νq, denote them as η̂
(i1)
p1 , . . . , η̂

(iD)
pD . Then for

any 1 ≤ a < b ≤ D,
∣

∣

∣
η̂
(ia)
pa − η̂

(ib)
pb

∣

∣

∣
≤
∣

∣

∣
η̂
(ia)
pa − νq

∣

∣

∣
+
∣

∣

∣
η̂
(ib)
pb

− νq

∣

∣

∣
≤ O(ǫT ), and only the one

from the finest scale is selected as ν̂q among them by the post-processing procedure. Hence
the across-scales post-processing preserves the consistency for the breakpoints selected as
its outcome.
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