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Summary

In this paper, we consider the problem of pricing American vanilla options
in an incomplete market in which the stock price process is driven by a
diffusion with jumps of random magnitude. We use Schweizer’s minimal
equvalent martingale measure as the pricing measure.

We formulate the problem as a variational inequality, whose discretization
leads to a linear complementarity problem (LCP). We introduce a signifi-
cant modification to the discretization scheme proposed by Zhang [Zha97].
Moreover, we propose a new efficient linear programming (LP) algorithm
for solving the LCP’s which arise, and show that, on the whole, it performs
better than the standard iterative PSOR method.

Furthermore, we analyse how the numerical solution to the American put
pricing problem depends on the parameters of the model. We also investigate
how the distribution of the optimal exercise time for the American put varies
with the parameters.

The original ideas and results presented in this paper are the following.

1. The computation of Schweizer’'s minimal martingale measure for the
model in question, and the application of this measure (instead of Mer-
ton’s measure) to define the value of a derivative security in this model.

2. The modification of the discretization scheme for the implied varia-
tional inequality, introduced to eliminate the instability of the numer-
ical solution and to improve its properties.

3. The construction of an efficient LP algorithm for solving the arising
LCP’s, its detailed analysis and comparison with the PSOR algorithm.

4. A thorough analysis of the numerical solution to the American put
pricing problem (dependence on the parameters, comparison with the
Black-Scholes prices, distribution of the optimal exercise times).



Chapter 1

The Valuation of American
Options in the Jump-Diffusion
Model

1.1 Introduction

American stock options are the most widely traded derivative securities in
the world. Since the seventies, when they appeared on public exchanges,
their valuation has been a crucial problem in financial management. Due
to the early exercise feature of these financial products, it is impossible to
value them analytically for most payoff functions, even in the Black-Scholes
framework!. In order to price them, it is necessary to resort to numerical
methods.

In the Black-Scholes case, the problem of valuing both American vanillas
and American exotics numerically has been examined closely, and various
methods have been proposed. Karatzas and Shreve [KS98] enumerate the
following methods as the most popular ones currently in use:

e numerical solutions of partial differential equations and variational in-
equalities,

e binomial trees and their extensions,

e analytic approximations,

IThe important exception are perpetuities, i. e. options with infinite expiry date. They
can be priced analytically in both the Black-Scholes and the jump-diffusion model (see
[KS98] and [Mor99] for explicit formulae in the former and the latter model, respectively).
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e Monte Carlo simulation.

A survey of recent numerical techniques of pricing American options is pre-
sented in the paper by Broadie and Detemple [BD97].

Jaillet, Lamberton and Lapeyre [JLLI0] were the first to introduce the vari-
ational inequality approach to pricing American options in the Black-Scholes
model. They rely on the methodology of Bensoussan and Lions [BL78] to
obtain the main results. For an overview of variational inequality methods
in the context of American option pricing in the Black-Scholes model, see
Wilmott, Dewynne and Howison [WDH93].

The jump-diffusion model of the market was first introduced by Merton
[Mer76]. Merton, by assuming that the risk associated with the stock is
unpriced, attempts at valuing European options in his model, despite its in-
completeness. It is now well known that in incomplete markets option prices
are not unique and each equivalent martingale measure defines an arbitrage-
precluding price. Instead of using Merton’s equivalent martingale measure
(jump risk unpriced, diffusion risk priced like in the Black-Scholes model),
Schweizer [Sch95] suggests using the so-called minimal martingale measure
(MMM), which has the advantage of leaving the discounted stock price semi-
martingale “nearly intact”.

Zhang [Zha93], [Zha97] uses the methodology of variational inequalities to
price American options in Merton’s model. Her approach is based on the
theory of Bensoussan and Lions [BL78], [BL82], and Jaillet et al. [JLL9O0].

The discretization of the variational formulation leads to a linear comple-
mentarity problem (LCP), on which there is vast literature (see, for example,
Cottle, Pang and Stone [CPS92] or Murty [Mur97]). In principle, there are
two main approaches to solving LCP’s — one iterative and the other di-
rect. Probably the most popular iterative method is the projected successive
over-relazation (PSOR), considered in [WDH93] in the context of American
option valuation in the Black-Scholes model. Parametric principal pivoting

appears to be the most popular direct method. It is discussed at length in
[CPS92].

The numerical treatment of the LCP’s arising in Merton’s jump-diffusion
model is discussed in the paper by Huang and Pang [HP98]. The authors
argue that both algorithms (PSOR and parametric principal pivoting) can
be used to solve the LCP’s in question.

Some LCP’s can be equivalently formulated as linear programming (LP) prob-
lems. Dempster et al. [DHR98], [DH97]|, [DH99] take advantage of this equiv-
alence by employing the LP methodology to price American options in the



Black-Scholes model.

Our aim in this paper is to value American vanilla options in the jump-
diffusion model with jumps of random magnitude, using the linear comple-
mentarity approach. We use Schweizer’s minimal martingale measure as the
pricing measure. We modify the discretization scheme proposed by Zhang
[Zha97], and show that, after the modification, the numerical solutions to
the American option pricing problems behave “better” than those resulting
from the unmodified scheme. The arising LCP’s are solved by means of both
the standard PSOR method and a new LP technique.

The paper is organized as follows. In Chapter 1, we describe the jump-
diffusion model, define the option pricing problem, and then explicitly com-
pute Schweizer’s minimal martingale measure for the stock price process in
question. Subsequently, we formulate the problem in the language of linear
complementarity, using a different discrete approximation of the pdf of the
jump relative size than that proposed by Zhang [Zha97]. We solve the LCP’s
which arise by means of the standard PSOR method. In Chapter 2, we
propose a new linear programming method for solving the above-mentioned
LCP. We show its advantages and disadvantages, and conclude that the new
LP algorithm, while being comparable to PSOR in terms of accuracy, signifi-
cantly outperforms PSOR in terms of speed. Subsequently, we apply the new
algorithm to the valuation of the American put written on a dividend-paying
stock, using Schweizer’s measure as the pricing measure. In Chapter 3, we
discuss the most important numerical results. Namely, we analyse how the
computed price of the option depends on the parameters of the model, and
we study the optimal exercise times for the option. Finally, we discuss the
advantages of our approximation scheme over Zhang’s scheme.

The original ideas and results presented in this paper are the following.

1. The explicit computation of Schweizer’s minimal martingale measure
for the model in question, and the application of this measure (instead
of Merton’s measure) to define the value of an American option in this
model (Section 1.4).

2. The modification of the discretization scheme for the implied varia-
tional inequality, introduced to eliminate the instability of the numer-
ical solution and to improve its properties (subsection 1.6.3, Section

3.3).

3. The construction of a new efficient LP algorithm for solving the arising
LCP’s, its detailed analysis and comparison with the well-established
PSOR algorithm (Chapter 2).



4. A thorough analysis of the numerical solution to the American put
pricing problem (dependence on the parameters, comparison with the
Black-Scholes prices, distribution of the optimal exercise times: Chap-
ter 3).

1.2 The Jump-Diffusion Model

Throughout the paper, we are concerned with a financial market on which
there are two assets, S and S, traded continuously up to time 7" > 0. The
asset S9 is a bond and its price at time ¢ € [0, T] is given by

Sy = exp(rt),

where r is the constant risk-free interest rate. The uncertainty on the mar-
ket is generated by a probability space (€2, F,P), equipped with a filtration
{Fi}icro,r), such that Fp € F. The filtration {F;} is assumed to satisfy
the usual conditions. The asset S is a stock whose price is governed by the
following stochastic differential equation:

SO = Y (1 1)
g - udt+ath+d(z§ﬁl Uj), t e (0,7), '
where y is the spot price at time 0, W is a standard one-dimensional Brow-
nian motion, IN is a Poisson process with constant intensity A > 0, and
{U;}j>1 is a sequence of iid square integrable random variables with values
in (—1,00) (so as to keep the stock price positive). The drift coefficient p and
the volatility o are both constant. The variables U; represent the relative
amplitudes of jumps and the parameter A accounts for their frequency.

The processes {W;}icpo,r), {Nihicppry, and {Uj}js1 (the “process” {U;};>1
being in fact a sequence of random variables) are independent. We assume
that the stock S pays dividends at the (constant) rate ¢, where r > ¢ > 0.

Equivalently, the process S can be written in the following form:
S 1.2
= yrdiyodW+d (S0 U, B @), ter),

t

where p* = p+ AEF (U).

The generalized Poisson process {Z;V:tl Ujtiepo,r) can be identified to a ran-
dom measure v(dt, dy), defined on [0,7] x R. As a result, the compensated
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process {Z;V:tl U; — AE(Uy )t}iepo,r is identified to the measure
o(dt,dy) = v(dt, dy) — A fu, (y)dtdy,

where fy, is the common pdf of the random variables Uy, Us, . ... Using this
notation, we can rewrite the model (1.2) as a stochastic integral equation:

t t t
S, = y+/ u*SS—ds—l—/ aSs—dWs—i—/ /Ss—yﬁ(ds,dy), te€[0,T]. (1.3)
0 0 o Jr

The model defined by the equivalent formulae (1.1), (1.2) and (1.3), is called
the jump-diffusion model of the market. It generalizes the standard Black-
Scholes model, obtained upon setting A = 0. Contrary to the latter, it is
not complete (provided that A > 0 and the jumps are non-zero with positive
probability), which essentially means that under the absence of arbitrage
oppurtunities, there are many equivalent martingale measures, i. e. proba-
bility measures equivalent to P under which the process {exp(dt)S;/ S} }ieo.ry
is a martingale 2. Due to its incompleteness, the model is naturally used for
modelling stock prices whose jumps arise from exogeneous events (such as
natural disasters or interest rate announcements), rather than those whose
jumps are intrinsic to the market. For a construction of non-Poissonian com-
plete markets with discontinuous stock prices (with jumps induced by the
trading noise), see the paper by Dritschel and Protter [DP99].

1.3 Equivalent Martingale Measures and Op-
tion Pricing

We begin by recalling a few definitions.

Definition 1.3.1 Let X be a semimartingale with Xq = 0. The quadratic
variation process of X, denoted by [ X, X| = {[X, X|; }s>0 is defined by

t
(X, X], = X? — 2/ X,-dX,.
0

Definition 1.3.2 Let A be a finite variation process with Ag = 0, with lo-
cally integrable total varjation?’. The unique predictable finite variation pro-
cess A such that A — A is a local martingale, is called the compensator of

A.

?For the terminology, see Karatzas and Shreve [KS98].
3For the terminology, see Protter [Pro90].
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Definition 1.3.3 Let X be a semimartingale such that its quadratic vari-
ation process [ X, X| is locally integrable. Then the conditional quadratic
variation of X, denoted by (X) = {(X)i}i>0, exists and it is defined to be
the compensator of [ X, X|.

Next, we define the stochastic exponential (also called the Doléans-Dade
exponential) of a semimartingale.

Definition 1.3.4 The stochastic exponential (the Doléans-Dade erponen-
tial) Y of a semimartingale X, X, = 0, is denoted by Y = £(X), and
is defined as the unique solution of the stochastic integral equation

t
Y, =1 +/ Y,-dX,.
0
Ezxplicitly, Y = E(X) is given by the following formula

Y; = exp (Xt - %[X, X]t> T (1+AX,)exp (—AXS 4 %(AXS)2> |

0<s<t

As mentioned in the paper by Pham [Pha97], each equivalent martingale
measure QP, which turns the process {exp(6t)S;/S? }ep,r) into a martingale,
can be characterized (in terms of its Radon-Nikodym density with respect to
the original measure P) in the following way:

dQ®
v E(D)r&E(J)r, (1.4)

where

t
D, = —/ 9.V, (1.5)
0

5= [ [ - votasan (1.6)

The predictable processes ¥ = {¥;}icio,r) and p = {pi(y)}wy)c,mxr are
linked by

pr—r+8=100+\ /R y(1 = pi(y)) fo, (y)dy, (L.7)

together with the conditions p;(y) > 0 and

aQr\
E” (d—]P’> =1.
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The process 9 is called the market price of diffusion risk and the process p
— the market price of jump risk. In the sequel, we limit ourselves to such
equivalent measures QP that the corresponding process p satisfies

VwoeQ ply) =ply) and pe L*(P).

By a Girsanov-type theorem, ¢ continues to be a homogeneous compensated
random measure under QP. Its characteristics become

NP = A/p(y)fm(y)dy (1.8)
R
RO = 7o pﬁf’) o) (1.9)
Furthermore,
t
Wt”:Wt+/ 9,ds (1.10)
0

is a Brownian motion under QP.

We denote by {S%(y)}s>: the cadlag version of the flow of the SDE (1.1).
Changing measures and applying the It6 formula to the equation (1.1), we
have almost surely under QP

St(y) = yexp <<r —6— "; — )\T’]EQP(UI)> (s—t)+a(WP WP))

NP
< [[ @+,

j=NP+1

where NP is a homogeneous Poisson process with intensity A\P. The variables
{U;};>1 have the common pdf ff; under QP.

Each equivalent martingale measure QP defines an admissible (i. e. arbitrage-
precluding) price of a given contingent claim. Given that S; = y, the price
at time ¢ of a European option expiring at time 7" is equal to

VE(ty) =E¥ [e "0 (7))

The function f defines the payoff from the option, eg in the case of the
call option we have f(z) = (x — K)', and in the case of the put option —
f(z) = (K—x)*, where K is the preset strike price. The arbitrage-precluding
price of the corresponding American option is given by

VE(ty) = sup E¥[e 770 £(S1(y))]. (1.11)

TESt,T
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Here, Sy r is the set of all stopping times with values in [¢, 7. It is known
that V¥(¢t,y) > f(y), and that the optimal stopping time for the problem
(1.11) is

7o (t,y) = inf{s € [t, T] : VI (s, Si(y)) = f(S;(¥))}-

In other words, it is optimal to exercise the option the moment the option
value falls to that of the payoff for immediate exercise. The domain [0,7") x
R, is divided into the continuation region CP:

CP = {(t,y) € [0,T) xRy : VI(t,y) > f(y)}

and the stopping region SP:

SP=[0,T) x R, \ C”.

We denote by V1, the price of the American call option:

VP (t,y) = sup E¥[e7" D (SL(y) — K)7],

TESt,T
and by V¥, the price of the American put option:

Vip(t.y) = sup E¥ [e "0 (K — S(y))"].

TESt,T

The continuation region and the stopping region for the American call are de-
noted by C, and 8%, respectively. The respective regions for the American
put are denoted by C%, and S%,. We have the following proposition.

Proposition 1.3.1 If § = 0, then the price of the American call option is
equal to the price of the Furopean call option:

Vie(t,y) =E¥ [e " 0(Sp(y) — K)*).
We then have 7;(t,y) =T and %, = 0.

The proof can be found in Merton [Mer73].
The following propositions can be proved by methods of Pham [Pha97].

Proposition 1.3.2 If § > 0, then for all t € [0,T) there exists a critical
stock price b (t) above which the American call should be exercised early.
We have

Che ={(t,y) € [0,T) xRy :y € (0,00(1))}-

11



Proposition 1.3.3 Similarly, for all t € [0,T), there exists a critical stock
price ¥ p(t) below which the American put should be exercised early. We
have

Chp ={(t,y) € [0,T) xRy 1y > b p(1)}.

Proposition 1.3.4 The function V5, (t) is nonincreasing, and the function
V5 (t) is nondecreasing on [0,T).

The functions V%, and b5, will be referred to as optimal exercise boundaries
or free boundaries.

1.4 Schweizer’s Minimal Martingale Measure

In order to price an American option in the jump-diffusion model, we have
to first select an appropriate measure QP, which boils down to choosing the
market price of jump risk p. Merton [Mer76] sets p = 1 (the jump risk
is “unpriced”). By the equation (1.7), the market price of diffusion risk 9
becomes i}
9= “—77"”,
o
which is identical to the market price of (diffusion) risk in the Black-Scholes
model (see Karatzas and Shreve [KS98]). Note that the characteristics of the

random measure 0 (equations (1.8), (1.9)) do not change.

Recently it has become standard to adopt Schweizer’s approach to select an
“optimal” equivalent martingale measure in an incomplete market. In his pa-
per [Sch95], Schweizer constructs the so-called minimal martingale measure
(MMM) and suggests it as the optimal pricing measure. For a given semi-
martingale Y (satisfying a mild structure condition), the MMM Q equivalent
to the original measure P is characterized as the one which minimizes

dP
=4 /Var | —
L3 < d@)

over all signed local martingale measures Q for Y. The MMM Qis, in a
sense, “as close as possible” to P, and therefore the process Y “changes as
little as possible” under Q. It is a strong argument in favour of the minimal
martingale measure as the measure used for converting discounted stock price

processes into martingales.

D(Q,P) := HZ% -1
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The minimal martingale measure for the jump-diffusion model with pre-
dictable coefficients (i. e. such that the jump component is modelled by
ptd Ny, where p is a predictable process and NN is a Poisson process) is com-
puted explicitly, for example, in the paper by Wiesenberg [Wie98]. In this
section, we compute the minimal martingale measure for the jump-diffusion
model with jumps of random magnitude (i. e. the model defined by the
equivalent formulae (1.1), (1.2) and (1.3)).

Schweizer’s algorithm [Sch95] for finding the minimal equivalent martingale
measure for the semimartingale Y goes as follows.

1. Make sure that the semimartingale Y admits the decomposition
t
Yt:YO+Mt+/ asd(M)s, (1.12)
0

where M is a P-square-integrable local martingale with A, = 0. The
process « is predictable.

2. The Radon-Nikodym density of the minimal martingale measure Q for
Y is given by

dQ
= =ew, (1.13)
Fi
where .
L= —/ oM, (1.14)
0

3. If the process {fot a2d(M)s}ieror) is deterministic, then the MMM Q

minimizes
dP
=/ Var <—> (1.15)
o\ dQ

over all signed local martingale measures for Y.

p@P | -1

In our case, we have Y; = exp(dt)S;/S?, which can be decomposed into
Vi = S0+ M+ Ay,

where the martingale part M is equal to

t t Nu
M, = / Su-odW, +/ S.-d (Z U; — )\E]P’(Ul)u> ,
0 0 )

13



and the process A is equal to

t
A = / Su- (1" — 1+ 9)du.
0

Denoting by [X, X]¢ the continuous part of [ X, X|, we have

d(M), = d[M,M], =

—_——

= d([M, Mg+ ) (AMS)2> -

0<s<t
= S (0% + \E°(U}))dt.
By (1.12), we must have
dAt = O[td<M>t,

which yields
1 pwr—r+906

T S+ AR (U2)

a

We denote
w—r—+0

P = 2 IEUY)
Since the process {fot a2d(M)s}iefor) is deterministic, the MMM Q indeed
minimizes the “distance” defined by (1.15).

We now explicitly compute the Radon-Nikodym density of Schweizer’s MMM
for the process {exp(6t)S;/Sy }iepor).- Substituting for e and M in (1.14),

we obtain
t
Lt = —/ O{des
0

— —/tp <adWs +d (i U; — AEP(U1)3>)

j=1

t t N
0 0

j=

1
¢ ¢
= —/ padWs—l—/ /—pyﬁ(ds,dy).
0 0o JR

Comparing with (1.5) and (1.6), we get

t
D, = — / podW
0

t
J = //—pyﬁ(ds,dy),
0 R
14



which yields

Yy = po
ply) = 1—py.

Denote by \ and fUl the characteristics of the random measure v under the
MMM Q. By (1.8) and (1.9) we have

~

A= A1 - pE"(Uh))

fUl(y) = %JCUI ().

Furthermore, W, = W, + pot is a Brownian motion under Q (by (1.10)).
Denoting

f=r—05— \EQU),
the flow of the equation (1.1) becomes

2 N
Si(y) = yexp ((u — %) (s —t) +o(W, — Wt)) [T a+vp), s>t
j:Nt+1
(1.16)
where {Nt}te[O,T] is a Poisson process with intensity A. The jump relative
sizes Uy, Us, ... have the common pdf fUl under Q

Motivated by the above consideration, we introduce the following definition
of the price of an American option in the jump-diffusion model defined by
the eqivalent formulae (1.1), (1.2) and (1.3).

Definition 1.4.1 The price VA(t, y) of an American option at time t €
[0,T], given that the price of the underlying instrument at time t is equal
to y, is defined as follows

Va(t,y) = sup E¢[e "0 f(SL(y))],

TESt,T

where Sy is the set of all stopping times taking values in [t, T, Q s Schwei-
zer’s minimal martingale measure, r is the constant risk-free rate, f is the
payoff from the option, and {St(y)}s>¢ is the process defined by the equation
(1.16).

In other words, we define the price of an American option to be the arbitrage-
precluding price under Schweizer’s minimal martingale measure.

15



The prices of the American call and the American put computed under Q
are denoted by Vae and VAP, respectively. The respective free boundaries
defined in Propositions (1.3.2) and (1.3.3) are denoted by byc and byp. The
continuation region is denoted by C and the stopping region — by S. We
add the subscript AC' for the American call and AP for the American put.

In the sequel, it will be our aim to compute an accurate approximation of
V4, using the linear complementarity approach (see [HP98] for more details
on linear complementarity in the context of option pricing).

1.5 The Variational Inequality and the Com-
plementarity System

To introduce the variational inequality and the complementarity system ap-
propriate for our problem, we first make the usual logarithmic change of
variable. We set X; = log(S;) and = = log(y), and denote

Z; = log(1+1Uj)

b(x) = f(e)
Xiz) = x+<ﬂ—%2>(s—t)+aW W) + Z
w(ta) = suwp EQ[e"=D4( X1 (x))). (1.17)

We have Vy(t,y) = u*(t,log(y)).
We denote by C the logarithmic continuation region:

C={(t,x) €[0,T) xR :u*(t,z) > (x)}.

The logarithmic stopping region is denoted by S and defined to be the com-
plement of C'. We add the subscript AC' for the American call and AP for
the American put. We have

CA’AC’ = {(ta ZL') € [OaT) XR:z < log(l;AC(t)))}

CAP = {(ta 1‘) S [OaT) XR:z> log(bAP(t)))}

The functions log(bac) and log(bap) will be referred to as logarithmic optimal
exercise boundaries or logarithmic free boundaries.
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Assume that the random variables Z; have the common pdf g = g(z) under
Q. Since fu, is the pdf of the variables U; under Q, we have

g(x) = fUl(eI —1)e”.

The function u* = u*(¢,z) formally satisfies the following complementarity
system

U(Ta l’) - w(x)

U(t, l’) o w(x)

% + ,CBSU —+ Bu

(% + Lpsu+ Bu) (u— 1))

where Lpg is the standard Black-Scholes operator

r o? 0%u e o2\ Ou
U= ———" —— )= —ru
Bs 2 0x2 a x

(1.18)

VAN AVARI
oo oo

and B is an integral operator resulting from jumps

(Bu)(t,z) = A (/_OO ult,z + 2)g(2)dz — ult, x)) |

o0

The proof of this fact follows by dynamic programming and can be accom-
plished by methods of Bensoussan and Lions [BL78], [BL82], and Jaillet et
al. [JLLIO).

In order to formulate the problem (1.18) as a variational inequality, we in-
troduce the following function spaces:

H, = L*Re ), a>0
Va — {f € Ha : f, € Ha}' (119)

Here, f’ denotes the distributional derivative of f. The space V,, is a weighted
Sobolev space.

Furthermore, we introduce the following spaces of functions u = u(t, z) :
0, 7] x R R.

20,15 = {us [ el < oo
0.1 = {us [l < o).
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We denote by (-, ), the inner product on H,. We further define

2
a®(u,w) = % R%?—Zeaxdx—irr/lkuwe“"”'dx
o’a o2\ Ou
_ g h— ) 22 el
/R< 5 sign(z) + f1 5 ) R dx
b (u,w) = —/(Bu)we_o‘|‘”|dx.
R

The following theorem comes from the paper by Zhang [Zha97].
Theorem 1.5.1 Ifvy €V, for some a > 0 and if
Va>0 EZe7l < 00, (1.20)

then there exists a unique function uw € L*([0,T];Va) satisfying Ou/dt €
L*([0,T); Hy), such that

w(T,z) —¢(x) = 0
u(t,r) —¢(x) > 0
— (%, w—u) +a®*(u,w —u) + b*(u,w —u) > 0, YwéeVy,w> 1.

(1.21)
Furhtermore, the unique solution of the variational inequality (1.21) is equal
to the function u* = u*(t,x) defined by (1.17).

The proof follows by methods of Bensoussan and Lions [BL78], [BL82|, and
Jaillet et al. [JLL90].

The theorem below specifies some regularity results for the function u*.

Theorem 1.5.2 Assume that the condition (1.20) is satisfied. If the func-
tion v is Lipschitz continuous, and if the function f(x) = 1 (log(x)) is conver,
then the unique solution u = u* of the variational inequality (1.21) admits
distributional partial derivatives du/0t, Ou/dx, and 0*u/0x?, locally bounded
on [0,T) x R. The operator Bu is also locally bounded on [0,T) x R.

Furthermore, the function Ou/0x is continuous on [0,T) x R.

This theorem is stated and proved in Zhang [Zha97].

Theorem 1.5.2 provides a justification for the “strong” formulation (1.18).
Indeed, once we know that the (unique) solution u of the variational inequal-
ity (1.21) satisfies the regularity conditions specified in Theorem 1.5.2, we
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can rewrite the variational inequality (1.21) as the complementarity system
(1.18). For details, see the books by Bensoussan and Lions [BL78], [BL82].

As the problem (1.18) is easier to deal with numerically than the problem
(1.21), we shall from now on concentrate on the former one.

The following theorem concerns the behaviour of u* in the logarithmic con-
tinuation region.

Theorem 1.5.3 In the logarithmic continuation region é, the function u*
satisfies

ou*
8—12 +£BSU* +Bu* =0.

The proof can be found in the paper by Pham [Pha97].

We will now localize the complementarity system (1.18), and then discretize it
using the finite difference method. Then we will concentrate on the resulting
linear complementarity problem (LCP).

1.6 Localization and Discretization — the Li-
near Complementarity Problem

1.6.1 Localization

To make the system (1.18) suitable for numerical solution, we localize it
by limiting it to the rectangle [0, 7] x [X!, X*] and introducing appropriate
boundary conditions. We introduce the function (-, -), defined on [0, 7] x R,
and satisfying the following localized complementarity system:

&(Ta SL') - w(x)

a(t, z) — ()

% + Lpst + Bu

(%% + Lpst+ Ba) (i — 1))
ﬂ(t,ib’) o w(x)

IVANAVARI
coocoo

on [0,7] x (]R\ (Xl,X“)) .

(1.22)
The function a(-,-) is well-defined, since the system (1.22) has a unique
solution, which can be shown using the methodology outlined in Section 1.5.
The following theorem holds.

Theorem 1.6.1 The function 4 = u(t,x) converges to u* = u*(t,z), uni-
formly on compact subsets of [0,T] x R, as (X!, X*) — (—o0,0).

19



The proof can be found in the paper by Zhang [Zha97].

1.6.2 Discretization of the Partial Differential Opera-
tor

In order to discretize the system (1.22) using the finite difference method, we
divide the interval [ X!, X“] into I subintervals of length Az = (X* — X!)/I,
and the interval [0, 7] into N subintervals of length At = T//N. To simplify
the notation, we skip the tilde in .

We approximate the partial derivatives du/0t and §?u/dz? in the following
way:

Ou u(t + At, z) — u(t, z)
Ot |01 At
Pu gu(t, x4+ Az) — 2u(t,x) + u(t,x — Azx)
0x* |4 1 (Az)?
Lo _H)u(t+At,x+(AA:cg)E); 2u(t + At, x) N
L oa- H)U(t + (AAt,xL;; Ax)

The parameter § € [0, 1] is usually set to 0 (which yields the so-called ezplicit
method), to 1/2 (the Crank-Nicholson method — particularly well suited for
equations), or to 1 (the implicit method). In the experiments, we use the
implicit method due to its good convergence properties.

The partial derivative du/0x is approximated using:

1. either the upwind scheme:

2

o if i — % >0,
ou du(t, r + Az) — 3u(t,z) — u(t,z + 2Ax)
— ~ 0 +
O | (1 1) 2Ax
4u(t + At,x + Az) — 3u(t + At, )
1—
+ (1-10) SAz +
—u(t + Atz + 2Ax)
1—
+ (1-9) 2Azx
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ou 4u(t,r — Az) — 3u(t,x) — u(t,r — 2Ax)
— ~ —0 +
O |4 1) 2Az
4u(t + At,x — Azx) — 3u(t + At, x)
- (1-9) SAz +
—u(t + At,z — 2Ax)
— (1—
(1-9) 2Ax

2. or the no-upwind scheme (the usual central difference):

ou u(t,r + Az) —u(t,z — Ax)
— ~ 0 +
O | (4 1) 2Azx
u(t + Atz + Az) — u(t + At,x — Ax)
1- .
+ (1-9) 2Ax

The upwind scheme is recommended by Huang and Pang [HP98]. It speeds
up the convergence of the iterative PSOR method (see Section 1.8 for the
algorithm), and forces convergence where the no-upwind scheme is unstable.
The linear programming method (Chapter 2) requires the use of the latter
scheme.

1.6.3 Discretization of the Integral Operator — a New
Scheme

To discretize the integral operator Bu = \ [ ult, x4+ 2)g(2)dz —u(t, z), we
approximate g = g(x) (the pdf of the jump relative size under Schweizer’s
measure) by
9(1Az)
9i = . )
Z Z{g(iAz)>0} g(iAz)Ax

(1.23)

so that we always have

> gidr=1. (1.24)

{9i>0}
Zhang [Zha97], and Huang and Pang [HP98| after her, simply set g; =
g(iAzx), which results in the fact that the discrete approximation {g;}4 >0
of the pdf ¢ = g(x) does not “integrate” exactly to one (Z{gpo} giAx # 1).
This may have adverse consequences for the accuracy of the numerical solu-
tion to the discretized system (1.22). It should be borne in mind that the
sequence {g; Az}, is, in a sense, a sequence of transition probabilities, and
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it is therefore essential that the condition (1.24) be fulfilled. Section 3.3 de-
scribes in brief what may happen if this condition is violated (which is the
case when Zhang’s [Zha97| approximation is used).

Bearing in mind that g;’s are defined by the equation (1.23), and denoting
; = Y(iAx), we discretize the operator B in the following way:

Bu|(m) ~ A < Z u(t,x + jAx)g;Ax — u(t,x)> +

j=—o0

+ 5\(1 —0) ( Z u(t + At, x4+ jAz)g; Az — u(t + At, x)) )

j=—o0

In the experiments, we set § = 1. Zhang [Zha97] uses the less accurate
substitution § = 0, calling the resulting scheme “semi-implicit” (with 6 = 1).
Each infinite sum 772 u(t + kAt, v + jAz)g;Ax for k = 0,1, is split up
into two:

o0

> ult+ kAt x4+ jAz)g Az = Y u(t+ kAt x4+ jAz)gAx

j=—00 je{1,2,.. 1—-1}—i

+ Z Vit jg;AT.

je{1,2,.. 1—1}—i

Obviously enough, the second term on the right-hand side is approximated
by a finite sum.

1.6.4 The Linear Complementarity Problem

The above discretization of (1.22) leads to a discrete problem, whose exact
solution will be denoted by {u!}, i = 0,1,...,I, n = 0,1,...,N. Each
element u} of the discrete solution will approximate the actual solution of
the problem (1.22):

ul' = a(nAt, X'+ iAg).

The discrete problem is in fact a sequence of linear complementarity problems

(LCP’s) and has the form:

un

Mu™ _|_qn+1
(u™ — )T (Mu” + ¢"*1)

(1.25)

1V Iv
o o
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for each n = N — 1,N — 2,...,0, with v = (u?,u},...,u?_ )T and ¢ =
(Y1, 19, ..., r_1)T. The column vector ¢"*! contains input from the previ-
ous time step and information about the boundary conditions. The square
matrix M is a sum of two matrices, M and G, where M is the result of
discretizing the partial differential operator —% — Lpg, and G is the result
of discretizing the integral operator —B. If the upwind scheme is used, then
M is a pentadiagonal (I — 1) x (I — 1) matrix of the form

c d e 0 0 --- 0
b ¢ d e - 0
b ¢ d e 0
0 a b ¢ e
0 0 a b c
0 0 0 a b ¢
where
0 o? +
@ = @(7‘“)
0o 20 (0% . +
b = ————=—— | ——/
2(Az)? Az \ 2
— L_FL‘Q_F& A_O-_2 +
N (Ax)?2  2Ax poo T
Ho? 20 (. o +
d p— —_— — — M__
2(Az)? Az 2

0 o2\t
¢ = @(“‘3) -

If the no-upwind scheme is used, then M is a tridiagonal matrix of the form

oo 0
a bV 0
M = : (1.27)
0 a b
0 0 d ¥V
where

S - Oo? N 0 A_U_Q

o(Ar)2  2az \M'T 2



The matrix G is given by

9o g1 g2 gz - gr-2
g1 Go G g2 - gr-3
—a N g—2 G- g g s 014
G=0\—frAg | 72 0 T _ (1.28)
g3—r1 g—2 gJ-1 9o a1
ga—-1 g-3 g-—2 g-1 9o

1.7 Matrix Classes and the LCP

We first recall definitions of some matrix classes.

Definition 1.7.1 A real matriv M = (m;)7,—, is said to be row strictly
diagonally dominant if

J#

Definition 1.7.2 A real matriz M = (my;);;_, is said to be column strictly
diagonally dominant if

Vi m; — Z |m]Z| > 0.
J#i

Definition 1.7.3 A real square matriz is said to be strictly diagonally dom-
inant if it is both row strictly diagonally dominant and column strictly diag-
onally dominant.

Definition 1.7.4 A real matriz M = (my;)7,_, is said to be coercive if

30 >0 VzeR* "Mz >Cz'x.

Definition 1.7.5 A real matriz M = (my;)};_, is said to be type Z if
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Consider an LCP of the form

v o>
Mv+qg > 0 (1.29)
(v =)' (Mv+gq) = 0

We have the following properties.

1. If a real square matrix is strictly diagonally dominant, then it is coer-
cive.

2. If the matrix M is coercive, then the LCP (1.29) has a unique solution
(see Zhang [Zha97]).

3. If M is a strictly diagonally dominant matrix, then the iterative PSOR
method for solving the LCP (1.29) (the method is described in detail
in Section 1.8) converges for all values of w € (0, ), where @ = @(M)
and 1 < @ < 2 (see Huang and Pang [HP98§]).

4. Under mild conditions on the discretization steps Az and At, the
matrix M = M + G of the LCP (1.25) is strictly diagonally domi-
nant for both the upwind and the no-upwind discretization scheme.
Consequently, the LCP (1.25) has a unique solution for each n =
N —1,N —2,...,0. This solution can be found by the PSOR method.

The key property concerning type Z matrices (Definition 1.7.5) will be stated
in Chapter 2.

1.8 The PSOR Method

As mentioned in Section 1.1, there are two main approaches to solving LCP’s
of the form (1.29). The parametric principal pivoting (PPP) is probably the
most popular direct method (see Cottle, Pang and Stone [CPS92] and Huang
and Pang [HP98]). The projected successive over-relaxation (PSOR) is by
far the most popular iterative method. It is discussed, for example, in Murty
[Mur97] and, in the context of LCP’s arising in option pricing in the Black-
Scholes model, in Wilmott, Dewynne and Howison [WDH93|.

Consider again the LCP (1.29) and assume that the .Jx.J matrix M is strictly
diagonally dominant, so that the PSOR method is bound to converge. Denote
by o) — (™ ™ ) : : : .

y ol™ = (v; vy, ..., v;") the nth iterate (which approximates the original
solution to (1.29)). The PSOR algorithm goes as follows.
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1. Compute the (conservative) upper limit @ on the relaxation parameter
w using the following formula:

(1.30)

w= 2minﬂ
i D Il

If M is symmetric, set w = 2.

2. Pick any w € (0,@) and an arbitrary initial vector v(®) > 1. Choose a
suitable accuracy parameter £ > 0.

3. Forall j =1,2,...,J set

j—1 n
n n— w n n—
o = (3= (Sl + om0 )
¥

k=1 k=j
to obtain the successive iterates v(), v, . .

4. Terminate when dist(v™, v(®=1) < ¢, where dist(-,-) is an appropri-
ately defined distance function, and take v(™ to be the (approximate)
solution of the LCP (1.29).

Dewynne in his “Option pricing demonstration code”® uses the PSOR algo-

rithm with p ) (n1)
23:1 j|vj -, |

max (1,5, [of")))

Following Dempster et al. [DHR98], [DH97], [DH99] who test their linear pro-
gramming method against PSOR in the Black-Scholes framework, we com-
pare these two methods in the jump-diffusion setting. In Chapter 2, we first
propose a new LP algorithm appropriate for the jump-diffusion model, and
then examine its efficiency by comparing it with PSOR.

dist(v™, p(~V) = (1.31)

1.9 The Convergence Theorem

The aim of this section is to state the theorem which specifies the conditions
under which the solution of the LCP (1.25) converges to the solution of
the localized problem (1.22) (which in turn converges to the solution of the

4“Option pricing demonstration code”, ©Oxford Financial Software, 1996, is a freeware
for pricing American and European options in the Black-Scholes model. It is available at
http://www.maths.soton.ac.uk/staff/Dewynne/ofs-demol.html.
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original problem (1.18), see Theorem 1.6.1). Throughout this section, we
assume that the no-upwind scheme is used to discretize the problem (1.22),
and that Zhang’s [Zha97] method is used to approximate the pdf of the
jump relative size ¢ = g(x) (see subsection 1.6.3 for details). Similar results
can probably be obtained in the case of the upwind scheme and the new
approximation method for g.

After Zhang [Zha97], we introduce the following stability conditions: there
exist two constants 3; > 0, B, > 0 such that

8C2C2 At
1—(1-19) 012 2 B 2 o) (1.32)
_ At
1= 00,0 =00 s > o (1.33)
1—(5\(1—§)+r(1—9)> At—(1- 00221 o (1.34)
(Az)> = 7 '

where

c, = V5 when Az<1
Cy, = 3(c*+|p|+7)
C% — qua.

For a given solution (u?),i =1,2,...] —1,n=0,1,...,N — 1 of the LCP
(1.25) we define a piecewise constant function u} (¢,z) by

N I-1
up (t, @) = Z Z wy x4 Ap(im1/2), X1+ a2 (i4+1/2)] (T) L (n—1)atmag ().

n=1 =1

We further define the difference operator D:

Df(tz) = Aix [f <t,x+%> _y (t,x— %)] .

The following convergence theorem holds.

Theorem 1.9.1 Suppose that the piecewise constant function ul (t,x) was
created from the solution (ul') of the LCP (1.25), and the function @ is
the solution of the localized problem (1.22). Let 0,0 € [0,1]. Assume that
At/(Ax)? < 8, where B is a sufficiently small constant, so that the stabil-

ity conditions (1.32), (1.33) and (1.34) are satisfied. Suppose further that
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W € Vy, where V,, is the weighted Sobolev space defined by (1.19). We have,
as (At, Az) — (0,0),

uf(-,") — ﬂ(N,) strongly in  L*([0,T] x (X!, X¥))
Duf(-,-) — %(,) weakly in  L*([0,T] x (X', X*)).

The proof can be found in Zhang [Zha97].

The above theorem shows that in order to value an American option in the
jump-diffusion model, it suffices to solve an LCP of the form (1.25). In this
chapter, we have shown that this can be done using the PSOR method. In
Chapter 2, we propose a new method of solving the LCP (1.25), based on a
linear programming formulation of (1.25).
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Chapter 2

A New Linear Programming
Method

In this chapter, we first reformulate the discrete problem (1.25) as a linear
programming problem, and then propose an algorithm for solving the result-
ing linear program. Subsequently, we compare our algorithm with the PSOR
algorithm of Section 1.8. Throughout the chapter, we use the new approxi-
mation scheme for the pdf of the relative jump size g = g(x) (see subsection
1.6.3).

2.1 A Linear Programming Formulation of
the LCP

The following theorem comes from Dempster and Hutton [DH99].

Theorem 2.1.1 If the matrixz M s type Z, then the linear complementarity
problem (1.29) is equivalent to the following linear programming problem: for
a fized arbitrary column vector ¢ > 0,

minimize cLv
) v
subject to {

P (2.1)
Mv +q 0.

>
>

Under mild conditions on the discretization steps Az and At, the matrix
M = M + G of the LCP (1.25) is type Z for the no-upwind discretization
scheme. Therefore, the LCP (1.25) can be equivalently formulated as the
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sequence of linear programs
minimize ¢’ u”

subject to {

n

ut > (2.2)
Mun+qn+1 Z 0,

where c¢ is a fixed arbitrary column vector such that ¢ > 0.

2.2 DMotivation for the LP Algorithm

We first motivate the linear programming algorithm by making the following
observations.

1. The assertions of Propositions 1.3.2, 1.3.3, and 1.3.4 carry over to the
discrete case.

(a) Suppose that {ul’} is the solution of the discretized American
put problem of the form (1.25). For each time index n = N —
1,N —2,...,0 there exists a space index k, such that u] = 1);
for all i € {1,2,...,k,}, and u} > ¢; for all i € {k, + 1,k, +
2,...,1 —1}. Moreover, the “discrete” logarithmic free boundary
k, is nondecreasing, i. e. k, > k,  forn=1,2,..., N — 1.

(b) Similarly, if {ul} is the solution of the discretized American call
problem with 6 > 0, then for each n = N — 1, N — 2,...,0 there
exists [, such that u} > ¢; for alli € {1,...,1, — 1}, and u’ = ¢
for all i € {l,,l, +1,...,I —1}. The discrete logarithmic free
boundary [, is nonincreasing, i. e. [,, <[, ; forn=1,2,... N—1.

Figure 2.1 illustrates the behaviour of the free boundary for the Amer-
ican put. The continuation region lies above the boundary, and the
stopping region — below it.

2. Theorem 1.5.3 also has its discrete counterpart. To fix ideas, let us

: 0
concentrate on the American put. Suppose that the operator — —

Lps — B is discretized only in the logarithmic continuation region,
and let M*» denote the matrix resulting from this discretization. The
matrix M*» will operate on the vector u™* = (u | uft ... uf_;)7,
which is the part of the vector " lying in the logarithmic continuation

region. Denote by ¢"*t!*» the vector carrying input from the previous
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Figure 2.1: The calculated optimal exercise boundary for the American put,
with 4 = 0.15, r = 0.1, 6 = 0.02, 0 = 03, A =5, K = 2 and U; ~
Unif[—0.2,0.2]. The discretization is I = 100, N = 500, and the stock price
range is (0.01,5).

time step and information about the boundary conditions, resulting
from the above discretization. We have
Mkn/u/nakn + qn+1akn — O
)

form =N —1,N—2,...,0 (a discrete counterpart of the equality in
Theorem 1.5.3). Analogous equalities hold in the case of the American
call.

2.3 The LP Algorithm

Motivated by the remarks of Section 2.2, we propose a new algorithm for
solving the sequence of linear programs (2.2). The algorithm which we give
is suitable for the American put. An analogous one can be constructed for
the American call.

1. Set ¢ =(1,1,...,1) € RI*!' where c is the constant positive vector in
the problem (2.2).

31



2. Assume that the previous time step solution u"*!' € R/*! is known.
Determine the free boundary k,41. Set j := kp41.

3. Temporarily set u" = (K, K,...,K)" € RI"'. In fact, the price of the
American put option is never greater than K (the strike price).

4. Introduce a temporary vector v = (vg,v1,...,vr)" and set it to zero.

5. Fort=0,1,...,7, set v; = ;. It is possible that k,, = j. Discretize the
operator —% — Lps — B in the hypothetical logarithmic continuation
region so that it is represented by an (I —j—1) x (I —j—1) matrix M7,
Cumulate in the vector ¢"*! the information about the previous time
step and the boundary conditions. Denote v/ = (v;11,vj49,...,v7-1)%.
Solve

M7y + ¢"th = 0.

6. Set
v = min(K — exp(X"), max(v, u")).

It is safe to do so, since the actual solution ™ at time step n will have
to satisfy these constraints anyway.

7. Check whether v is feasible, i. e. if
Mv° +¢"*t > 0.

If it is, then examine whether

T

C’U<CT

u”.
If so, then set u"” = v.

8. Unless 7 =0, set j := 7 — 1 and jump back to point 5.

2.4 Computational Details

To adequately explain the functioning of the algorithm, the following remarks
should be made.

(A) We have u" = ¢ (the payoff from the option). In the case of the

American put, we set ky = max{i : ¢; > 0}. In the case of the
American call, we set ky = min{i : ¢; > 0}.

32



(B)

The matrices M7 defined in point 5. of the algorithm, are in fact
submatrices of the main matrix M. They are formed by removing the
last 7—1 columns and j—1 rows from M. Therefore, the band structure
of M (see subsection 1.6.4) carries over to the matrices M7. Denote
by L the lower triangular, and by U — the upper triangular matrix,
resulting from the LU factorization of M. Similarly, denote by L’/ and
U’ the respective matrices resulting from the LU factorization of M.
It can be proved that L’ are formed by removing the last j — 1 columns
and rows from L, and U’ are formed by removing the last j —1 columns
and rows from U.

The systems of linear equations
Miv? 4 g™t = (2.3)

in point 5., are solved in the following way: first (at the beginning of
the algorithm), the matrix M is decomposed into the matrices L and
U, and then the matrices L7 and U7 are (rapidly) formed from L and
U. Equation (2.3) becomes

DU + g™ =0,

and this is solved by forward and backward substitution:

r = Ul
r = _(Lj)flanrl,j
v o= (U))'g.

The feasibility condition of point 7. is in fact hardly ever satisfied. In
practice, we set w = Mv°? + ¢"*! and check if

min(w;) > —&f
7

§ : n
w; Z —E9,

w; <0

or if

where 7,3 > 0. If either of these conditions is satisfied, we say that
v is feasible and proceed with the algorithm. It seems reasonable to
choose, for example

el = —min(z)
1
n — E
82 — - ZZ',
2; <0

where z; = Muth0 4 ¢gntt,
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(D) Tt has been observed that the algorithm produces the same result if it
is stopped once c¢!'v exceeds ¢fu™ for the first time (see point 7. of the
algorithm).

2.5 The Model and an Example

In the numerical analysis which follows, we consider models in which the
jump relative sizes U; are uniformly distributed under the original measure
P

U; ~ Unif[—a,a], where a € [0,1).

The LP algorithm of Sections 2.3, 2.4, and the PSOR algorithm of Section 1.8
were implemented in MATLAB 5.2 on a PC system with a 300 MHz processor
and 64 MB RAM, running under Windows 98. The distance function in
PSOR was taken to be that defined by (1.31). The parameter w was set to
1 in order to ensure convergence irrespective of the properties of the matrix
M, given that it is row strictly diagonally dominant (see Formula (1.30)).
The paramter ¢ of point 4. of the PSOR algorithm of Section 1.8 was set to
1078,

To give an example, we apply the LP algorithm to compute the price of the
American put in the model with the following set of parameters:

p o= 0.12 )

r = 0.1

6 = 0.01

c = 04 ' (2.4)
A = 50

a = 0.1.

/

The strike price K = 2 and the time horizon T" = 1/4. The discretization
parameters are: the stock price range = [0.01,10], I = 150, N = 500.

The jumps have intensity A = 50 (on average 50 jumps per year), and their
relative magnitudes are uniformly distributed on the interval [—0.1,0.1].
The price surface of the American put option in this model is plotted in
Figure 2.2. The price of the option at 1% and 3 months before the expiry
date is plotted in Figure 2.3. The free boundary (with the continuation
region above it, and the stopping region below it) is plotted in Figure 2.4.
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Figure 2.3: The payoff function and the price of the American put at 1% and
3 months before expiry; the parameters as in (2.4).
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Figure 2.4: The free boundary for the American put; the parameters as in
(2.4).

2.6 Accuracy of the Algorithm

Throughout the section, we denote by {u!} the solution obtained by means
of the LP algorithm, and by {v?} — by means of the PSOR algorithm. To
illustrate the accuracy of the LP algorithm, we consider the system with the
following set of parameters:

pw o= 0.11 )

r = 0.1

6 = 0.01

o = 0.3 (2:5)
A= 10

a = 0.1.

/

The strike price K is equal to 1, and the time horizon T is 1/2. We take
the stock price range to be [0.1,10]. We set N = 500 and consider various
choices of I.

1. I =160
The stability condition (1.33) is not satisfied (as the actual stability

36



condition for the new pdf approximation scheme is unknown, the in-
equality (1.33) serves as a “rough approximation” of the true stability
condition).

. I =150

The stability condition (1.33) is satisfied. We have max |u} — '] =
0.0009. As can be seen in Figure 2.5, the difference u} — v is positive
when the stock price is small (perhaps starting from around 1/2), which
may mean that the LP solution {u?} lifts off the payoff surface “sooner”
than the PSOR solution {v!} (eg the critical price implied by the LP
solution may be lower than the critical price implied by the PSOR
solution). Indeed, the free boundary derived from {ul'} is situated
below the free boundary derived from {v?} (illustration in Figure 2.6).
It is clear that the free boundary obtained from {u]'} is incorrect.

. I=110

The stability condition (1.33) is satisfied. We have max |ul' — v!'| =
0.0004. The difference uj — v is plotted in Figure 2.7. The difference
is nonpositive close to the expiry date, which corresponds to the cor-
rectness of the LP free boundary close to the expiry date (see Figure
2.8). Similarly, the positivity (for small values of the stock price) of
the difference for time to expiry greater than 0.17 corresponds to the
incorrectness of the LP free boundary in that interval.

. I =100

The stability condition (1.33) is satisfied. We have max |u} — o] =
0.00014. The difference u} — v! is nonpositive (Figure 2.9). We may
therefore expect the free boundary derived from the LP solution {u}}

to be correct. Indeed, the two free boundaries nearly coincide (Figure
2.10).

The pattern described above arises in all problems which have been consid-
ered. For small values of I, the difference between the LP solution and the
PSOR solution is nonpositive and both the implied free boundaries are cor-
rect (as in point 4.). For larger values of I, the difference is nonpositive close
to the expiry date, and nonnegative in the remaining part of the time interval
(for small values of the stock price), which corresponds to the incorrectness
of the LP free boundary in this subinterval (as in point 3.). The larger I gets,
the bigger part of the LP free boundary becomes “pushed down”. Eventu-
ally, the difference becomes nonnegative for small stock prices in the entire
time interval. The LP free boundary is then incorrect for all ¢ € [0, 7] (as in
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1'=150, N = 500

Difference in Option Prices: LP - PSOR

Time to Expiry
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Figure 2.5: The difference in option prices obtained by LP and PSOR; the
parameters as in (2.5), I = 150, N = 500.
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Figure 2.6: The correct PSOR free boundary and the incorrect LP free
boundary; the parameters as in (2.5), I = 150, N = 500.
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Figure 2.7: The difference in option prices obtained by LP and PSOR; the
parameters as in (2.5), [ = 110, N = 500.
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Figure 2.8: The correct PSOR free boundary and the partially correct LP
free boundary; the parameters as in (2.5), I = 110, N = 500.
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Figure 2.9: The difference in option prices obtained by LP and PSOR; the
parameters as in (2.5), I = 100, N = 500.
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Figure 2.10: The correct LP and PSOR free boundaries; the parameters as
in (2.5), I =100, N = 500.
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point 2.). When I exceeds a certain number, the stability condition (1.33)
ceases to be satisfied (as in point 1.).

To summarize, the LP algorithm is comparable, but marginally inferior to
PSOR in terms of accuracy. In its present version, it yields incorrect free
boundaries for larger values of I, but this imperfection can probably be
patched up without much trouble.

2.7 Solution Times

The tables in this section contain MATLAB solution times of selected prob-
lems. To begin with, we illustrate the dependence of the solution times on
I. We set

p o= 0.12 )

r = 0.1

6 = 0.01

c = 0.3 ' (2.6)
A = 26

a = 0.1.

/

The strike price is K = 1. The stock price range is [0.1, 20], the time horizon
is T'=1/4, and the spatial discretization is N = 1000. Table 2.1 shows the

I | LP solution time | PSOR solution time
50 4.34 25.32
100 14.94 74.47
150 33.17 128.3
200 56.08 219.05
250 92.66 333.01
300 122.04 446.11
350 181.26 644.77

Table 2.1: Problem (2.6), solution times in seconds.

LP and PSOR solution times in seconds. The times are plotted in Figure
2.11. For both the LP and the PSOR method, we observe a nonlinearity of
the solution time as a function of I. However, as we have observed in this
and many other cases, the LP solution times are near-linear in the spatial
discretization, which cannot be said of the PSOR solution times.
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Figure 2.11: LP and PSOR solution times for problem (2.6), with varying I.
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Figure 2.12: LP and PSOR solution times for problem (2.7), with varying N.
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Subsequently, we illustrate the dependence of the solution times on N.
We set

p = 0.15 )

r = 0.1

6 = 0.02

c = 09 (2.7)
A = 50

a = 0.2.

/

The strike price is K = 1. The stock price range is [0.01, 5], the time horizon
is T = 1/12, and the time discretization is I = 100. Table 2.2 shows the

N | LP solution time | PSOR solution time
200 2.74 24.22
400 5.6 40.48
600 7.8 78.48
800 10.6 101.95
1000 13.13 132.81

Table 2.2: Problem (2.7), solution times in seconds.

LP and PSOR solution times in seconds. The times are plotted in Figure
2.12. The observed linearity of the LP solution time as a function of N is
intuitively justifiable. It has appeared it all of the problems tested.

What is important is that LP solution times are robust to changes in those
parameters which account for the volatility of the system: o, A and a. To
illustrate this, we consider the following problem

puo= 0.12
r = 0.1 (2.8)
o = 0.01.

We set the strike price to K = 1. The stock price range is [0.1, 20], the time
horizon T" = 1/4. The discretization is I = 200, and N = 1000. Table 2.3
gives the solution times for problem (2.8), for varying parameters o, A and
a. While the LP solution time is a constant function of these parameters,
the PSOR solution time is an increasing function of each of them.

To summarize, the LP method significantly outperforms PSOR in terms of
speed, even though an important part of the LP algorithm is the LU de-
composition of a substantially large matrix. The computational complexity
of the LU decomposition is O(I3/3), where I x I is the size of the matrix.
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PSOR solution time

o | M| a | LP solution time

0.1 0 51.63 139.84
0510 51.63 258.7
0.5(10 0.2 52.02 283.14
0.5 50 |0.2 51.74 297.26

Table 2.3: Problem (2.8), solution times in seconds.

However, due to the stability condition (1.33) (a similar stability condition
probably arises in the case of the new approximation scheme, see subsection
1.6.3), I is usually limited to a few hundred, unless the partition of the time
interval is very fine. Therefore, the size of the matrix is limited. In practice,
the LU decomposition of a 500 x 500 matrix is performed in about 3.5 seconds

by means of the MATLAB routine lu.
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Chapter 3

Numerical Results

In this chapter, we analyse the dependence of the price of the American put
on a variety of parameters. We also examine the densities of the optimal
stopping times for the American put problem.

Throughout the chapter, we use the new approximation scheme for the pdf
of the relative jump size g = g(x) (see subsection 1.6.3). The only exception
is Section 3.3, where we give examples of what may happen if we apply the
usual scheme (i. e. the one proposed by Zhang [Zha97]).

3.1 The Impact of the Parameters on the Op-
tion Price

It has to be emphasized that the examples quoted in this section illustrate
a general pattern which has appeared in all of the problems considered, not
only in the ones referred to below.

3.1.1 The Volatility Parameters

By “volatility parameters” we mean the three parameters o, A and a. How-
ever, the term “volatility parameter” is reserved for o.

The results obtained from the conducted experiments suggest that the price
of the American put is an increasing function of each of the volatility param-
eters o, X\ and a.

To illustrate the above statement, we consider the system with the following
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parameters:

po o= 0.11
r = 0.1 (3.1)
0 = 0.01.

The strike price is K = 1. We set the stock price range to [0.1,20] and the
time horizon to T = 1/4. The discretization is I = 500, N = 2000. We
denote by ul'(o, A, a) the computed price of the American put as a function
of the volatility parameters.

Figures 3.1 and 3.2 illustrate the fact that u? (o, A, a) is an increasing function
of . Similarly, Figures 3.3 and 3.4 suggest that the computed option price
increases with A\, and Figures 3.5 and 3.6 — that it increases with a.

Moreover, it has been observed that the option price is a continuous function
of all the volatility parameters.

3.1.2 The Drift

It is well-known that in the Black-Scholes case, the drift parameter p does
not influence the price of the derivative instrument. As should be expected,
this is not the case in the model with jumps. It has been observed that
the computed option price, as a function of the drift, increases with p if the
jumps in the model are big (= a is large). Conversely, it decreases with p
if the jumps are small. However, the differences between the option prices
computed for different drift parameters p (the other parameters fixed) are
small. Two illustrative examples are shown in Figures 3.7 and 3.8. We set

= 0.1
0.01
0.3
= 10

(3.2)

> 9 o 3
I

and compute the price of the option with K = 1 at 12 months before expiry
(the stock price range = [0.1,20], I = 500, N = 2000). Figure 3.7 shows the
difference between the option prices computed for p = 0.5 and p = 0, with
a = 0.1. Figure 3.8 shows the corresponding difference computed for a = 0.2.
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Figure 3.1: American put prices for varying ¢ at 3 months before expiry; the
parameters as in (3.1), A = 10, a = 0.1. The option price increases with o.
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Figure 3.2: American put prices for varying o at 3 months before expiry; the
parameters as in (3.1), A = 50, a = 0.2. The option price increases with o.
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Figure 3.3: American put prices for varying A at 3 months before expiry; the
parameters as in (3.1), 0 = 0.1, a = 0.1. The option price increases with \.
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Figure 3.4: American put prices for varying A at 3 months before expiry; the
parameters as in (3.1), 0 = 0.9, a = 0.2. The option price increases with A.
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Figure 3.5: American put prices for varying a at 3 months before expiry; the
parameters as in (3.1), 0 = 0.5, A = 10. The option price increases with a.
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Figure 3.6: American put prices for varying a at 3 months before expiry; the
parameters as in (3.1), 0 = 0.9, A = 50. The option price increases with a.
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Figure 3.7: Difference between the option prices computed for © = 0.5 and
p=0; “small” jumps: a = 0.1, the other parameters as in (3.2).
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Figure 3.8: Difference between the option prices computed for p = 0.5 and
= 0; “big” jumps: a = 0.2, the other parameters as in (3.2).
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3.2 Optimal Exercise Times

In this section, we analyse the distribution of the optimal exercise times for
the American put. As was mentioned before, the optimal exercise time is
the first moment the stock price enters the exercise region (located below the
free boundary in the case of the American put).

We assume that the spot price of the stock at time 0 is equal to Sy = 1. We
further assume that the risk-free rate r is equal to 0.1, and the dividend rate
0 is equal to 0.01. We consider the American put with 7" = 1, whose strike
price is equal to Sy, i. e. K = 1. For various choices of u, o, A and a, we
first compute the free boundaries (the stock price range = [0.1, 20], I = 500,
N =2000), and then run the stock price processes 10000 times to obtain the
approximate distributions of the optimal exercise times for the options.

We denote by 719000 (0, A, @, i) the samples of computed optimal exercise times
obtained in this way.

The impact of the volatility parameters on the distribution of the optimal
exercise time can be easily deduced from the data obtained. The following
tendencies are apparent.

1. As any of the volatility parameters o, A or a increases, more and more
options are exercised before the expiry date. An option still unexercised
at time T = 1 is useless (and worthless). The only options which are
“worth having” are those which are exercised during their lifetime. The
conclusion is that it is more likely that the option will be “useful” if
the market is volatile, i. e. if o, A or a are large.

2. As any of the volatility parameters increases, more and more options
are exercised later in the year.

However, if the diffusion volatility parameter ¢ “dominates” over the jump
volatility parameters A and a, the influence of A and a on the distribution
of the optimal exercise time is less apparent. Conversely, if the jump part
dominates, the impact of o is less clearly visible.

Representative histograms for varying o, the other parameters fixed, are
plotted in Figure 3.9. Similarly, histograms for varying A are shown in Figure
3.10, and histograms for varying a — in Figure 3.11.

The mean optimal exercise time Tig00 (0, A, a, 1) appears to increase with o,
A and a. However, in some cases the increasing trend is not clearly visible.
Tables 3.1, 3.2 and 3.3 show the evolution of the mean optimal exercise times
which correspond to the respective histograms.
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Figure 3.9: Optimal exercise time histograms for varying o; the other pa-
rameters: A =10, a = 0.1, p = 0.11.

o | Tio000(0,10,0.1,0.11)
0.1 0.7944
0.3 0.8127
0.5 0.8245

Table 3.1: The mean optimal exercise times for varying o; the other param-
eters: A =10, a = 0.1, p = 0.11. The inreasing tendency is apparent.
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Figure 3.10: Optimal exercise time histograms for varying A; the other pa-
rameters: 0 = 0.1, a = 0.1, p = 0.11.

A | T10000(0.1,1,0.1,0.11)
0 0.7546
10 0.7944
20 0.8111

Table 3.2: The mean optimal exercise times for varying A; the other param-
eters: 0 = 0.1, a = 0.1, u = 0.11. The increasing tendency is apparent.
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Figure 3.11: Optimal exercise time histograms for varying a; the other pa-
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rameters: o = 0.5, A =20, p = 0.11.

Table 3.3: The mean optimal exercise times for varying a; the other param-
eters: 0 = 0.5, A =20, p = 0.11. We do not observe an increasing tendency;
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@ | Fr0000(0.5, 20, a, 0.11)
0 0.8180

0.1 0.8197

0.2 0.8185

this is so because o dominates over A and a.
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Figure 3.12: Optimal exercise time histograms for
rameters: 0 = 0.3, A =10, a = 0.2.
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varying p; the other pa-

| Tio000(0.3,10,0.2, p)
0 0.7793

0.11 0.8184

0.5 0.9243

Table 3.4: The mean optimal exercise times for varying u; the other param-
eters: 0 = 0.3, A =10, a = 0.2. A very strong increasing tendency.
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As should be expected, the infuence of the drift parameter ;1 on the distribu-
tion of the optimal exercise time is substantial. Obviously enough, the larger
i, the more options “survive” unexercised until the expiry date. Represen-
tative histograms for varying p are shown in Figure 3.12. The mean optimal
exercise time increases with y and the increasing trend is very conspicuous,
see Table 3.4.

3.3 Inaccuracy of Zhang’s Discretization
Scheme

As was mentioned in subsection 1.6.3, the approximation scheme for the pdf
of the jump size g = g(x) which was proposed by Zhang [Zha97], yields
serious numerical errors.

Firstly, for some choices of the parameters of the model, the option price
computed using Zhang’s scheme

(a) exceeds the strike price K,

(b) is a non-convex function of the stock pricel,

even though the stability conditions (1.32), (1.33) and (1.34) are satisfied,
and the matrix of the LCP in question is strictly diagonally dominant and
type Z. A representative example is shown in Figure 3.13. The parameters
are

p = 0.11 )

r = 0.1

6 = 0.01

c = 0.3 ' (3.3)
A = 10

a = 0.2.

/

The strike price K is equal to 2. The stock price range is [0.1, 10], the time
horizon is T'= 1/2, and the discretization is I x N = 130 x 500. In this case,
Zhang’s approximation scheme produces the characteristic “hump” for I’s
around 130. The behaviour illustrated in Figure 3.13 is typical for systems
with large volatility parameters. Even if Zhang’s approximation scheme is

!The convexity property of the American put price is well-known, see for example Pham
[Pha97].

56



Zhang's Scheme vs the New Scheme
T

T
—— LP & PSOR New Scheme
—— PSOR Zhang's Scheme
—— LP Zhang's Scheme

15

Option Price

0.5

0 I I I I I I
0.5 1 15 2 25 3 35 4

Stock Price

Figure 3.13: The option price computed under the “new” approximation
scheme, and the (apparently incorrect) price computed using Zhang’s scheme.
The parameters as in (3.3). The “correct” LP and PSOR prices coincide.

used, there is no hump in the PSOR option price when the system is little
volatile?.

By contrast, it has been observed that the option price computed using our
approximation scheme is always lower than K, and is a convex function of
the stock price, regardless of the parameters of the model and regardless of
the discretization parameters.

Moreover, the option price computed under Zhang’s scheme is not always an
increasing function of the jump intensity A. To illustrate the above statement,
we consider the following system:

po= 0.11

r = 0.1

0 = 0.01 (3.4)
c = 09

a = 0.1.

2The fact that the LP option price computed under Zhang’s scheme is constant for
small stock prices (see Figure 3.13) is due to the cutoff performed in point 6 of the LP
algorithm (Section 2.3).
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Option Prices for Varying A under Zhang's Scheme
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Figure 3.14: Under Zhang’s approximation scheme, option prices can de-
crease with A when o is large. The parameters as in (3.4).

The strike price K is equal to 1. The stock price range is [0.1, 20], the time
horizon is T = 1/4, and the discretization is I x N = 150 x 500. The option
prices for varying A\, computed under Zhang’s scheme, are plotted in Figure
3.14. As X increases, the corresponding option price decreases.

When o is smaller, it often happens that the option price computed under
Zhang’s scheme intersects the Black-Scholes price (see Figures 2 and 3 in
[Zha97]). Finally, for extremely small ¢’s, Zhang’s price increases with \.

Lastly, when Zhang’s approximation scheme is used, the computed option
price is not a continuous function of @ at a = 0. Namely, as a | 0, the
resulting option price converges to a limit which is lower than the Black-
Scholes price.

To demonstrate once more the advantage of the new approximation scheme
over Zhang’s scheme, we discuss Proposition 5.1 from Pham [Pha97], who
argues that for a fixed market price of jump risk p, the price of the American
put in the jump-diffusion model is a nondecreasing function of \. We recall
that in our case we have
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Figure 3.15: When the new scheme is applied, the option price increases with
A for p fixed, as it should according to Pham’s proposition.

pr—=r+46
o2+ B (U2) T
i) +0
o2+ )\a2/3y.
To keep p fixed, we set
uw = 0.09
r = 0.1 (3.5)
0 = 0.01.
We further set
o = 03
a = 0.1 } (3.6)

The strike price is K = 1. The time horizon is T = 1/4, the stock price range
is [0.1,20], and the discretization is I x N = 150 x 500. Figure 3.15 shows
two differences between the option prices for A = 20 and A = 10, computed
using Zhang’s approximation scheme and our scheme. The difference under
Zhang’s scheme is not at all nonnegative, as it should be according to Pham’s
proposition. By contrast, the difference under the new scheme is nonnegative
for all stock prices.
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It has to be mentioned that the approximation scheme proposed in this pa-
per is still far from ideal, since the corresponding Schweizer’s measure is
computed for continuously distributed jumps, and not for their discretized
counterparts. The scheme would probably be even more accurate if the min-
imal martigale measure was computed directly for the discrete problem.

Another important remark is that for extremely fine discretizations, the dif-
ference between the both schemes ceases to be significant, since the dis-
cretized pdf g = g(x) integrates nearly to one in Zhang’s scheme (while it
always integrates exactly to one in our scheme, see subsection 1.6.3 for de-
tails).

The application of Zhang’s scheme also distorts the free boundary for fine
discretizations when the LP algorithm is used (see Section 2.6).

60



Conclusions

In the paper, we have proposed a new linear programming (LP) algorithm for
solving linear complementarity problems arising from the variational formu-
lation of American option pricing problems in the jump-diffusion model. We
have shown that the new method is much faster than the standard PSOR
algorithm, and, more importantly, it is robust to parameter changes and
near-linear in the spatial discretization. However, for certain choices of pa-
rameters, it distorts the free boundary, and therefore there is still scope for
the improvement of its accuracy.

Moreover, we have explicitly computed Schweizer’s minimal martingale mea-
sure for the price process in question, and we have used it used throughout
the paper as the pricing measure.

We have introduced a modification to the discretization scheme proposed by
Zhang [Zha97|, thanks to which we have eliminated the serious numerical
inaccuracy of Zhang’s scheme. Namely, we have erradicated an instability
which was arising for certain discretization parameters in highly volatile sys-
tems, and we have restored the correct dependence of the computed option
price upon the jump intensity A. Moreover, we have obtained continuity of
the option price as a function of the maximum relative jump size a.

We have applied both algorithms (PSOR and LP) to the valuation of the
American put. We have shown that the numerical solution to the put pricing
problem, under the corrected approximation scheme, is an increasing function
of the volatility parameters o, A and a. These results, while contradicting
those obtained by Zhang, are consistent with the theoretical results of Pham

[Pha97].

We have also analysed the distribution of the optimal exercise times for
the American put and found that the higher the volatility parameters, the
more options are exercised before the expiry date. An increase in any of the
volatility parameters also increases the mean optimal exercise time.

We are convinced that the thought-provoking results reported here will pro-
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vide much stimulation for researchers in the area.
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