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Summary. We propose a new, generic and flexible methodology for nonparametric function
estimation, in which we first estimate the number and locations of any features that may be
present in the function, and then estimate the function parametrically between each pair of
neighbouring detected features. Examples of features handled by our methodology include
change-points in the piecewise-constant signal model, kinks in the piecewise-linear signal
model, and other similar irregularities, which we also refer to as generalised change-points.
Our methodology works with only minor modifications across a range of generalised change-
point scenarios, and we achieve such a high degree of generality by proposing and using a
new multiple generalised change-point detection device, termed Narrowest-Over-Threshold
(NOT). The key ingredient of NOT is its focus on the smallest local sections of the data
on which the existence of a feature is suspected. For selected scenarios, we show the
consistency and near-optimality of NOT in detecting the number and locations of generalised
change-points.
The NOT estimators are easy to implement and rapid to compute. Importantly, the NOT
approach is easy to extend by the user to tailor to their own needs. Our methodology is
implemented in the R package not.

Keywords: Break-point detection, knots, piecewise-polynomial, segmentation, splines.

1. Introduction

This paper considers the canonical univariate statistical model

Yt = ft + εt, t = 1, . . . , T, (1)

where the deterministic and unknown signal ft is believed to display some regularity across
the index t, and the stochastic noise εt is exactly or approximately centred at zero. Despite
the simplicity of model (1), inferring information about ft remains a task of fundamental
importance in modern applied statistics and data science. When the interest is in the
detection of “features” in ft such as jumps or kinks, then non-linear techniques are usually
required.

If ft is modelled as piecewise-constant and it is of interest to detect its change-points,
several techniques are available, and we only mention a selection. For Gaussian noise εt,
both non-penalised and penalised least squares approaches are considered by Yao and Au
(1989). For specific choices of penalty functions, see e.g. Yao (1988), Lavielle (2005) and
Davis et al. (2006). The Gaussianity assumption on εt is relaxed to exponential family
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distributions in Lee (1997), Hawkins (2001) and Frick et al. (2014). In particular, Frick
et al. (2014) also provide confidence intervals for the location of the estimated change-
points. Often this penalty-type approach requires a computational cost of at least O(T 2).
However, there are exceptions, such as the Pruned Exact Linear Time method (PELT;
Killick et al. (2012a)), which achieves a linear computational cost, but requires the further
assumption that change-points are separated by time intervals drawn independently from
some probability distribution, a scenario in which considerations of statistical consistency
are not generally possible. A nonparametric version of PELT is investigated by Haynes
et al. (2017). Another general approach is based on the idea of Binary Segmentation (BS;
Vostrikova, 1981), which can be viewed as a greedy approach with a limited computational
cost. Its popular variants include the Circular Binary Segmentation (CBS; Olshen et al.,
2004) and the Wild Binary Segmentation (WBS; Fryzlewicz, 2014). A selection of publi-
cations and software can be found in the online repository changepoint.info maintained by
Killick et al. (2012b).

More general change-point problems, in which ft is modelled as piecewise-parametric
(not necessarily piecewise-constant) between “knots”, the number and locations of which
are unknown and need to be estimated, have attracted less interest in the literature and
overwhelmingly focus on linear trend detection. Among them, we mention the approach
based on the least squares principle and Wald-type tests by Bai and Perron (1998), dynamic
programming using the L0 penalty (Maidstone et al., 2017), and trend filtering (Tibshirani,
2014; Lin et al., 2017). Finally, we mention a related problem of jump regression, where
the aim is to estimate the points of sharp cusps or discontinuities of a regression function.
As investigated in, e.g., Wang (1995) and Xia and Qiu (2015), it proceeds by estimating
the locations of features nonparametrically via wavelets or local kernel smoothing.

The aim of this work is to propose a new, generic approach to the problem of detecting
an unknown number of “features” occurring at unknown locations in ft. By a feature, we
mean a characteristic of ft, occurring at a location t0, that is detectable by considering a
sufficiently large subsample of data Yt around t0. Examples include: change-points in ft
when it is modelled as piecewise-constant, change-points in the first derivative when ft is
modelled as piecewise-linear and continuous, and discontinuities in ft or its first derivative
when ft is modelled as piecewise-linear but without the continuity constraint. We will
provide a precise description of the type of features we are interested in later. Moving
beyond ft only, our approach will also permit the detection of similar features present in
some distributional aspects of εt, for example in its variance. Since all types of features we
consider describe changes in a parametric description of ft, we use the terms “feature detec-
tion” and “change-point detection” interchangeably throughout the paper. Occasionally,
for precision, we will be referring to change-point detection in the piecewise-constant model
as the “canonical” change-point problem, while our general feature detection problem will
sometimes be referred to as a “generalised” change-point problem.

Core to our approach is a particular blend of “global” and “local” treatment of the data
Yt in the search for the multiple features that may be present in ft, a combination that
gives our method a multiscale character. At the first “global” stage, we randomly draw
a number of subsamples (Ys+1, . . . , Ye)

′, where 0 ≤ s < e ≤ T . On each subsample, we
assume, possibly erroneously, that only one feature is present and use a tailor-made contrast
function derived (according to a universal recipe we provide later) from the likelihood
theory to find the most likely location of the feature. We retain those subsamples for which
the contrast exceeds a certain user-specified threshold, and discard the others. Amongst
the retained subsamples, we search for the one drawn on the narrowest interval, i.e. one
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for which e− s is the smallest: it is this step that gives rise to the name Narrowest-Over-
Threshold (NOT) for our methodology. The focus on the narrowest interval constitutes
the “local” part of the method, and is a key ingredient of our approach which ensures that
with high probability, at most one feature is present in the selected interval. This key
observation gives our methodology a general character and allows it to be used, only with
minor modifications, in a wide range of scenarios, including those described in the previous
paragraph. Having detected the first feature, the algorithm then proceeds recursively to
the left and to the right of it, and stops, on any current interval, if no contrasts can be
found that exceed the threshold.

Besides its generic character, other benefits of the proposed methodology include low
computational complexity, ease of implementation, accuracy in the detection of the fea-
ture locations, and the fact that it enables parametric estimation of the signal on each
section delimited by a pair of neighbouring estimated features. Regarding the computa-
tional complexity, the fact that typical contrasts are computable in linear time leads to
a computational complexity of O(MT ) for the entire procedure; typically, only a limited
number of data subsamples, M , need to be drawn (we provide precise bounds later; with
finitely many change-points, one can take M = O(log T ) in general). Moreover, the entire
threshold-indexed solution path can also be computed efficiently, in typically close-to-linear
time, as observed from our numerical experiments. Regarding the estimation accuracy, in
the scenarios we consider theoretically, our procedure yields near-optimal rates of conver-
gence for the estimators of feature locations.

On a broader level, our methodology promotes the idea of fitting simple models on
subsets of the data (the local aspect), and then aggregating the results to obtain the overall
fit (the global aspect), an idea also present in the Wild Binary Segmentation method of
Fryzlewicz (2014). However, we emphasise that the way the simple models (here: models
containing at most one change-point or feature) are fitted in the NOT and WBS methods
are entirely different and have different aims. Unlike the WBS, the NOT methodology
focuses on the narrowest intervals of the data on which it is possible to locate the feature
of interest. It is this focus that enables NOT to extend beyond change-point detection
for a piecewise-constant ft, the latter being the sole focus of the WBS method. The
lack of the narrowest-interval focus in the WBS and BS methods means that they are
not applicable to more general feature detection, and we explain the mechanics of this
important phenomenon briefly in the following simple example.
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Fig. 1. Best `2 approximation of the true signal (dashed) via a triangular signal with a single
change-point, the location of which is fixed at the left change-point (left panel), halfway between
the true change-points (middle panel) and at the right change-point (right panel). Approximation
errors (in terms of squared `2 distance) are given in the top-right corners of the corresponding
panels.
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Consider a continuous piecewise-linear signal that has two change-points:

ft =


1

350 t, t = 1, . . . , 350,

1, t = 351, . . . , 650,
1001
350 −

1
350 t, t = 651, . . . , 1000.

(2)

If we approximate ft using a piecewise-linear signal with only one change-point in its
derivative, then the best approximation (in terms of minimising the `2 distance) will result
in an estimated change-point at t = 500, which is away from the true ones at t = 350
and t = 650, as is illustrated in Figure 1. Therefore, taking the entire sample of data and
searching for one of its multiple change-points by fitting, via least squares, a triangular
signal with a single change-point, does not make sense. It is this issue that leads to the
failure of the BS and WBS methods for signals that are not piecewise constant. On the
other hand, NOT avoids this issue because of its unique feature of picking the narrowest
intervals, which are likely to contain only one change-point. To understand the mechanics
of this key feature, imagine that now ft is observed with noise. Through its pursuit of
the narrowest intervals, NOT will ensure that, with high probability, some suitably narrow
intervals around the change-points t = 350 and t = 650 are considered. More precisely,
by construction, they will be narrow enough to contain only one change-point each, but
wide enough for the designed contrast (see Section 2.3 for more on contrasts) to indicate
the existence of the change-point within both of them. The designed contrast function will
indicate the correct location of the change-point (modulo the estimation error) if only one
change-point is present in the data subsample considered, unlike in the situation described
earlier in which multiple change-points were included in the chosen interval. More details
on this example are presented in Section C.3 of the online supplementary materials.

Note that this example is different from the canonical change-point detection problem
(i.e. piecewise-constant signal with multiple change-points), where if we approximate the
signal using a piecewise-constant function with only one change-point, the change-point of
the fitted signal will always be among the true ones (Venkatraman, 1992). Since the latter
property does not hold in most generalised change-point detection problems, this highlights
the need for new methods with better localisation of the feature of interest, such as our
NOT algorithm. Fang et al. (2016) independently consider a related shortest-interval idea
in the context of the canonical change-point detection problem. However, they did not
consider it as a springboard to more general feature detection problems, which is the key
motivation behind NOT and its most valuable contribution.

The remainder of this paper is organised as follows. In Section 2, we give a mathematical
description of NOT. In particular, we consider NOT in four scenarios, each with a different
form of structural change in the mean and/or variance. For the development of both theory
and computation, in selected scenarios, we introduce the tailor-made contrast function
derived from the generalised likelihood ratio (GLR). Theoretical properties of NOT, such
as its consistency and convergence rates are also provided. In Section 3, we propose to
use NOT with the strengthened Schwarz Information Criterion (sSIC) and discuss its
computational aspects and theoretical properties. Section 4 discusses possible extensions of
NOT. A comprehensive simulation study is carried out in Section 5, where we compare NOT
with the state-of-art change-point detection tools. In Section 6, we consider data examples
of global temperature anomalies and London housing data. All proofs, together with details
on the construction of the contrast functions, the computational aspects and extension of
NOT, further discussion on model misspecification, as well as additional simulations and
real data example can be found in the online supplementary materials.
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2. The framework of NOT

2.1. Setup
To describe the main framework of NOT, we consider a simplified version of (1), where
Y = (Y1, . . . , YT )′ is modelled through

Yt = ft + σt εt, t = 1, . . . , T, (3)

where ft is the signal, and where σt is the noise’s standard deviation at time t. To facilitate

the technical presentation of our results, in Sections 2 and 3, we assume that εt
i.i.d.∼ N (0, 1).

In Section 4, we extend our framework to other noise types.
We assume that (ft, σt) can be partitioned into q+1 segments, with q unknown distinct

change-points 0 = τ0 < τ1 < . . . < τq < τq+1 = T . Here the value of q is not pre-
specified and can grow with T . For each j = 1, . . . , q + 1 and for t = τj−1 + 1, . . . , τj ,
the structure of (ft, σt) is is modelled parametrically by a local (i.e. depending on j)
real-valued d-dimensional parameter vector Θj (with Θj 6= Θj−1), where d is known and
typically small. To fix ideas, in the following, we assume that each segment of ft and σt
follows a polynomial. In addition, we require the minimum distance between consecutive
change-points to be ≥ d for the purpose of identifiability. (Otherwise, e.g. take ft to be
piecewise-linear with a known constant σt, in which case d = 2; if we had a segment of
length 1, then we would not be able to define a line based on a single point.) In other
words, (ft, σt) can be divided into q different segments, each from the same parametric
family of much simpler structure. Some commonly-encountered scenarios are listed below,
where the following holds inside the j-th segment for each j = 1, . . . , q + 1:

(S1) Constant variance, piecewise-constant mean:

σt = σ0 and ft = θj for t = τj−1 + 1, . . . , τj .

(S2) Constant variance, continuous and piecewise-linear mean:

σt = σ0 and ft = θj,1 + θj,2 t for t = τj−1 + 1, . . . , τj , with the additional constraint of

θj,1 + θj,2 τj = θj+1,1 + θj+1,2 τj

for j = 1, . . . , q.

(S3) Constant variance, piecewise-linear (but not necessarily continuous) mean:

σt = σ0 and ft = θj,1 + θj,2 t for t = τj−1 + 1, . . . , τj . In addition, fτj + θj,2 6= fτj+1

for j = 1, . . . , q.

(S4) Piecewise-constant variance, piecewise-constant mean:

ft = θj,1 and σt = θj,2 > 0 for t = τj−1 + 1, . . . , τj .

Since σ0 in (S1)–(S3) acts as a nuisance parameter, in the rest of this manuscript,
for simplicity we assume that its value is known. If it is unknown, then it can be esti-
mated accurately using the Median Absolute Deviation (MAD) method (Hampel, 1974).
More specifically, with i.i.d. Gaussian errors, the MAD estimator of σ0 is defined as
σ̂ = Median{|Y2 − Y1|, . . . , |YT − YT−1|}/{Φ−1(3/4)

√
2} in Scenario (S1), and as σ̂ =

Median{|Y1 − 2Y2 + Y3|, . . . , |YT−2 − 2YT−1 + YT |}/{Φ−1(3/4)
√

6} in Scenarios (S2) and
(S3). Here Φ−1(·) denotes the quantile function of the standard normal distribution. Note
that the MAD estimator is robust to any change-points present in the underlying signal ft,
due to its combination of working with the differenced data, and its use of the median. Fi-
nally, we note that a different procedure is proposed to estimate σ0 with dependent errors;
see Section 4.1 for more details.
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2.2. Main idea
We now describe the main idea of NOT formally; more details can be found in Section 2.4
where the pseudo-code of the NOT algorithm is given.

In the first step, instead of directly using the entire data sample, we randomly extract
subsamples, i.e. vectors (Ys+1, . . . , Ye)

′, where (s, e) is drawn uniformly from the set of pairs
of indices in {0, . . . , T − 1} × {1, . . . , T} that satisfy 0 ≤ s < e ≤ T . Let `(Ys+1, . . . , Ye; Θ)
be the likelihood of Θ given (Ys+1, . . . , Ye)

′. We then compute the generalised log-likelihood
ratio (GLR) statistic for all potential single change-points within the subsample and pick
the maximum, that is,

Rb(s,e](Y) = 2 log

[
supΘ1,Θ2

{
`(Ys+1, . . . , Yb; Θ

1)`(Yb+1, . . . , Ye; Θ
2)
}

supΘ `(Ys+1, . . . , Ye; Θ)

]
; (4)

R(s,e](Y) = max
b∈{s+d,...,e−d}

Rb(s,e](Y).

Note that here we also implicitly require e − s ≥ 2d, which comes from the identifiability
condition, because typically we need at least d observations to determine Θ1, and another
d observations to determine Θ2.

If constraints are in place between Θj and Θj+1 for any j = 1, . . . , q (e.g. as in (S2)),
the supremum in the numerator of (4) is taken over the set that only contains elements of
form Θ1 ×Θ2 satisfying these constraints. Otherwise, as in (S1), (S3) and (S4), (4) can
be simplified to

Rb(s,e](Y) = 2 log

{
supΘ `(Ys+1, . . . , Yb; Θ) supΘ `(Yb+1, . . . , Ye; Θ)

supΘ `(Ys+1, . . . , Ye; Θ)

}
.

The above procedure is repeated onM randomly drawn pairs of integers (s1, e1), . . . , (sM , eM ).

In the second step, we test all R(sm,em](Y) for m = 1, . . . ,M against a given threshold
ζT . Among those significant ones, we pick the one corresponding to the interval (sm∗ , em∗ ]
that has the smallest length. Once a change-point is found in (sm∗ , em∗ ] (i.e. b∗ that
maximises Rb(sm∗ ,em∗ ](Y), a function of b), the same procedure is then repeated recursively

to the left and to the right of it, until no further significant GLRs can be found. Note that
in each recursive step, one could reuse the previously drawn intervals, provided that they
fall entirely within each current subsegment considered.

After the process of estimating the change-points is completed, one can estimate the
signals within each segment using standard methods such as least squares or maximum
likelihood. Note that the estimation of knot locations in spline regression can be viewed
as a multiple change-point detection problem set in the context of polynomial segments
that are continuously differentiable but have discontinuous higher order derivatives at the
change-points between these segments; NOT can be used for this purpose.

Admittedly, in our framework, one could also use a deterministic scheme (e.g. that in
Rufibach and Walther (2010)) to pick a sufficiently rich family of intervals for multiscale
inference. However, one advantage of our approach is that through the use of randomness
in drawing the intervals, we avoid having to make a subjective choice of a particular
fixed design. Nevertheless, with a very large number of intervals drawn, the difference
in performance between the random and deterministic designs is likely to be minimal, an
observation also made in Fryzlewicz (2014).
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2.3. Log-likelihood ratios and contrast functions
In many applications, the GLR (4) in NOT can be simplified with the help of “contrast
functions” under the setting of Gaussian noise. In particular, these constructions mainly
involve taking inner products between the data and other deterministic vectors, which
greatly facilitates the development of both theory and computation, especially if these de-
terministic vectors are mutually orthonormal. In fact, the form of these contrast functions
is crucial in our theoretical development.

More precisely, for every integer triple (s, e, b) with 0 ≤ s < e ≤ T , our aim is to find
Cb(s,e](Y) such that:

(a) argmaxb Cb(s,e](Y) = argmaxbRb(s,e](Y),

(b) heuristically speaking, the value of Cb(s,e](Y) is relatively small if there is no change-

point in (s, e],
(c) the formulation of Cb(s,e](Y) mainly consists of taking inner products between the data

and certain contrast vectors.

In the following, we give the contrast functions corresponding to scenarios (S1) and (S2),
where the aforementioned properties are satisfied. Their details under scenarios (S3) and
(S4), as well as a comprehesive discussion on the construction, can be found in Section B
of the online supplementary materials. We note that this approach recovers the CUSUM
statistic in (S1), which is popular in this canonical change-point detection setting. One
can view the resulting statistics as generalisations of CUSUM under other scenarios.

2.3.1. Scenario (S1)
Here ft is piecewise-constant. For any integer triple (s, e, b) with 0 ≤ s < e ≤ T and

s < b < e, we define the contrast vector ψb(s,e] =
(
ψb(s,e](1), . . . , ψb(s,e](T )

)′
as

ψb(s,e](t) =


√

e−b
(e−s)(b−s) , t = s+ 1, . . . , b

−
√

b−s
(e−s)(e−b) , t = b+ 1, . . . , e

0, otherwise.

(5)

Also, if b /∈ {s+ 1, . . . , e− 1}, then we set ψb(s,e](t) = 0 for all t. As an illustration, plots of

ψb(s,e] with different (s, e, b) are shown in Figure 2a.

For any vector v = (v1, . . . , vT )′, we define the contrast function as

Cb(s,e](v) =
∣∣∣〈v,ψb(s,e]

〉∣∣∣ (6)

2.3.2. Scenario (S2)
Here ft is piecewise-linear and continuous. For any triple (s, e, b) with 0 ≤ s < e ≤ T and

s+ 1 < b < e, consider the contrast vector φb(s,e] =
(
φb(s,e](1), . . . , φb(s,e](T )

)′
with

φb(s,e](t) =


αb(s,e]β

b
(s,e]

[{
3(b− s) + (e− b)− 1

}
t−
{
b(e− s− 1) + 2(s+ 1)(b− s)

}]
, t = s+ 1, . . . , b

−α
b
(s,e]

βb
(s,e]

[{
3(e− b) + (b− s) + 1

}
t−
{
b(e− s− 1) + 2e(e− b+ 1)

}]
, t = b+ 1, . . . , e,

0, otherwise.

(7)
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Fig. 2. Plots of ψb(s,e] and φb(s,e] given by, respectively, (5) and (7) for s = 0, e = 1000 and several
values of b. Solid line: b = 125; dashed line: b = 500; dotted line: b = 750.

where αbs,e =

(
6

l(l2−1)
(
1+(e−b+1)(b−s)+(e−b)(b−s−1)

))1/2

, βbs,e =
(
(e−b+1)(e−b)
(b−s−1)(b−s)

)1/2
and l =

e− s. If b /∈ {s+ 2, . . . , e−1}, then we set φb(s,e](t) = 0 for all t. We illustrate the structure

of φb(s,e] in Figure 2b. The contrast function is then defined as

Cb(s,e](v) =
∣∣∣〈v,φb(s,e]

〉∣∣∣ . (8)

2.4. The NOT algorithm
Here we present the pseudo-code of a generic version of the NOT algorithm. The main
ingredient of the NOT procedure is a contrast function Cb(s,e](·), chosen by the user, de-

pending on the assumed nature of change-points in the data, e.g. as exemplified by our
scenarios (S1) and (S2) above, and scenarios (S3) and (S4) in Section B of the online
supplementary materials. In addition, some tuning parameters are needed: ζT > 0 is the
threshold with respect to which the contrast should be tested, while M is the number of
the intervals drawn in the procedure. Guidance on the choice of ζT and M is given in
Section 3. In particular, there we advocate an automatic choice of ζT by combining NOT
with an information-based criterion, thus making our procedure threshold-free.

To sum up, the input include the data vector Y, the set of FMT that contains all randomly
drawn sub-intervals for testing, and the global variable S for the set of estimated change-
points initialised with S = ∅. Then NOT is started recursively with (s, e] = (0, T ] and a
given ζT . Here the entire set of FMT that contains all random intervals is generated before
we start running Algorithm 1. In this way, we are better able to control the computational
complexity of the entire procedure.

2.5. Theoretical properties of NOT
In this section, we analyse the theoretical behaviour of the NOT algorithm in Scenarios
(S1) and (S2). We use infill asymptotics, which is standard in the literature on a posteriori
change-point detection. An attractive feature of our methodology is that proofs for other
scenarios can in principle be constructed “at home” by the user, by following the same
generic proof strategy as the one we use for these two scenarios.

First, we revisit the canonical change-point detection problem, (S1), where the signal
vector f = (f1, . . . , fT )′ is piecewise-constant. Here σ0 is assumed to be known. Otherwise,
one can plug in the MAD estimator, described in Section 2.1, without affecting the validity
of our theory. For notational convenience, we set σ0 = 1. For other values of σ0, our
theorems are still valid with only minor adjustments to the constants therein. Explicit
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Algorithm 1 NOT

Input: Data vector Y = (Y1, . . . , YT )′, FMT being a set of M left-open and right-closed
intervals, with each pair of start- and end- points drawn independently and uniformly
from the set of pairs of indices in {0, . . . , T − 1} × {1, . . . , T} that satisfy the conditions
outlined at the beginning of Section 2.2, S = ∅.

Output: Set of estimated change-points S ⊂ {1, . . . , T}.

To start the algorithm: Call NOT((0, T ], ζT )

procedure NOT((s, e], ζT )
if e− s ≤ 1 then STOP
else
M(s,e] :=

{
m : (sm, em] ∈ FMT , (sm, em] ⊂ (s, e]

}
if M(s,e] = ∅ then STOP
else
O(s,e] :=

{
m ∈M(s,e] : maxsm<b≤em Cb(sm,em](Y) > ζT

}
if O(s,e] = ∅ then STOP
else

m∗ :∈ argminm∈O(s,e]
|em − sm|

b∗ := argmaxsm∗<b≤em∗ C
b
(s∗m,e

∗
m](Y)

S := S ∪ {b∗}
NOT((s, b∗], ζT )
NOT((b∗, e], ζT )

end if
end if

end if
end procedure

expressions for all the constants (i.e. C,C1, C2, C3) are given in Section I.2 of the online
supplementary materials.

Theorem 1. Suppose Yt follow model (3) in Scenario (S1). Let δT = minj=1,...,q+1(τj −
τj−1), ∆f

j = |fτj+1−fτj |, fT = minj=1,...,q ∆f
j. Let q̂ and τ̂1, . . . , τ̂q̂ denote, respectively, the

number and locations of change-points, sorted in increasing order, estimated by Algorithm 1
with the contrast function given by (6). Then there exist constants C, C1, C2, C3 > 0 (not

depending on T ) such that given δ
1/2
T f

T
≥ C

√
log T , C1

√
log T ≤ ζT < C2δ

1/2
T f

T
and

M ≥ 36T 2δ−2T log(T 2δ−1T ), as T →∞,

P
(
q̂ = q, max

j=1,...,q

(
|τ̂j − τj |(∆f

j)
2
)
≤ C3 log T

)
→ 1. (9)

Given two sequences {AT }∞T=1 and {BT }∞T=1, we write AT ∼ BT when AT = O(BT )
and BT = O(AT ). In the simplest canonical case where we have finitely many change-

points with δT ∼ T and f
T
∼ 1, so the condition δ

1/2
T f

T
≥ C
√

log T is always satisfied
for a sufficiently large T . Theorem 1 indicates that the NOT procedure requires M =
O(log T ) many random intervals for consistent detection of all the change-points, which
leads to a total computational cost of O(T log T ) for the entire procedure. Furthermore,
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maxj=1,...,q

(
|τ̂j − τj |

)
= Op(log T ), which trails the minimax rate of Op(1) by only a

logarithmic factor. In addition, we note that the NOT procedure allows for δ
1/2
T f

T
, a

quantity that characterises the difficulty level of the problem, to be of order
√

log T . As
argued in Chan and Walther (2013), this is the smallest rate that permits change-point
detection for any method from a minimax perspective.

Next, we revisit Scenario (S2), in which the signal is piecewise-linear and continuous.
Again, we set σ0 = 1 for notational convenience. Explicit expressions of the constants
in the following theorem (i.e. C,C1, C2, C3) can be found in Section I.3 of the online
supplementary materials.

Theorem 2. Suppose Yt follow model (3) in Scenario (S2). Let δT = minj=1,...,q+1(τj −
τj−1), ∆f

j = |2fτj − fτj−1 − fτj+1|, fT = minj=1,...,q ∆f
j. Let q̂ and τ̂1, . . . , τ̂q̂ denote,

respectively, the number and locations of change-points, sorted in increasing order, esti-
mated by Algorithm 1 with the contrast function given by (8). Then there exist constants

C,C1, C2, C3 > 0 (not depending on T ) such that given δ
3/2
T f

T
≥ C
√

log T , C1
√

log T ≤
ζT < C2δ

3/2
T f

T
and M ≥ 36T 2δ−2T log(T 2δ−1T ), as T →∞,

P
(
q̂ = q, max

j=1,...,q

(
|τ̂j − τj |(∆f

j)
2/3
)
≤ C3(log T )1/3

)
→ 1. (10)

In the case in which we have finitely many change-points with δT ∼ T , we again need
M = O(log T ) random intervals for consistent estimation of all the change-points, leading
to the total computational cost of O(T log T ). In addition, when f

T
∼ T−1 (a case in

which ft is bounded), our theory indicates that the resulting change-point detection rate
of NOT is Op(T

2/3(log T )1/3), which is different from the rate of Op(T
2/3) derived by

Raimondo (1998) by only a logarithmic factor; moreover, under additional assumptions
and with a more careful but restrictive choice of ζT , this rate can be further improved to
Op(T

1/2(log T )1/2); see Section 3.4 and Lemma 9 in the online supplementary materials
for more details. Furthermore, we remark that in more general cases (i.e. number of
change-points increasing with T ) in Scenario (S2), the difficulty level of the problem in

Scenario (S2) can be charaterised by δ
3/2
T f

T
, a quantity analogous to δ

1/2
T f

T
in the setting

of (S1).
Both Theorem 1 and Theorem 2 imply that there exists an admissible range of thresholds

that would ensure consistent change-point detection. They pave the way for establishing
Theorem 3 and Theorem 4 in Section 3, which promote the automatic selection of the
threshold via an information criterion.

Finally, we emphasise again that the WBS will fail to estimate change-point consistently
in Scenario (S2), for reasons described in Section 1.

3. NOT with the strengthened Schwarz Information Criterion (sSIC)

3.1. Motivation
The success of Algorithm 1 depends on the choice of the threshold ζT . Although Theorem 1
and Theorem 2 state that there exists ζT that guarantee consistent estimation of the change-
points, this choice still typically depends on some unobserved quantities; furthermore, there
are many more general scenarios where a theoretically optimal threshold might be difficult
to derive.
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Note that for a given Y and FMT , each threshold ζT corresponds to a candidate model
produced by NOT. Therefore, if we could produce a “solution path” of candidate models
obtained from NOT along all possible thresholds, we could then try to select the best model
along the solution path via minimising an information-based criterion. In this sense, the
task of selecting the best threshold is equivalent to selecting the best model on the solution
path.

3.2. Algorithm 2: the NOT solution path algorithm
Denote by T (ζT ) = {τ̂1(ζT ), . . . , τ̂q̂(ζT )(ζT )} the locations of change-points estimated by
Algorithm 1 with threshold ζT and define the threshold-indexed solution path as the family
of sets {T (ζT )}ζT≥0. Note that this threshold-indexed solution path has the following
important properties. First, as a function ζT 7→ T (ζT ), it changes its value only at discrete

points, i.e. there exist 0 = ζ
(0)
T < ζ

(1)
T < . . . < ζ

(N)
T , such that T (ζ

(i)
T ) 6= T (ζ

(i+1)
T ) for any

i = 0, 1, . . . , N − 1, and T (ζT ) = T (ζ
(i)
T ) for any ζT ∈ [ζ

(i)
T , ζ

(i+1)
T ); and second, T (ζT ) = ∅

for any ζT ≥ ζ(N)
T .

However, the thresholds ζ
(i)
T are unknown and depend on the data, therefore naively

applying Algorithm 1 on a range of pre-specified thresholds typically does not recover the
entire solution path. Moreover, from the computational point of view, repeated applica-
tion of Algorithm 1 to find the solution path is not optimal either, because intuitively one

would expect the solutions for ζ
(i+1)
T and ζ

(i)
T to be similar for most i. These issues are

circumvented by Algorithm 2, which is able to compute the entire threshold-indexed solu-
tion path quickly, thus facilitating the study of a data-driven approach to the choice of ζT
in Section 3.3. The key idea of Algorithm 2 is to make use of information from T (ζ

(i)
T ) to

compute both ζ
(i+1)
T and T (ζ

(i+1)
T ) iteratively for every i = 0, . . . , N − 1. The pseudo-code

of Algorithm 2, as well as other relevant details, can be found in Section C.2 of the online
supplementary materials.

3.3. Choice of ζT via the strengthened Schwarz Information Criterion (sSIC)
Suppose we have T (ζ(1)), . . . , T (ζ(N)) that form the NOT solution path, i.e. the collec-
tion of candidate models produced by Algorithm 2. We propose to select T (ζ(k)) that
minimises the strengthened Schwarz Information Criterion (sSIC; Liu et al. (1997), Fry-

zlewicz (2014)) defined as follows. Let k = 1, . . . , N , q̂k = |T (ζ
(k)
T )| and Θ̂1, . . . , Θ̂q̂k+1

be the maximum likelihood estimators of the segment parameters in model (3) with the

estimated change-points τ̂1, . . . , τ̂q̂k ∈ T (ζ
(k)
T ). Here for notational convenience, we have

suppressed the dependence of τ̂1, . . . , τ̂q̂k on ζ
(k)
T . Further, denote by nk the total number of

estimated parameters, including the locations of the change-points and free parameters in
Θ1, . . . ,Θq̂k+1 (N.B. the total number of the latter can be different from the dimensionality
of each Θj multiplied by the number of segments, as e.g. in (S2)). Then the strengthened
Schwarz Information Criterion (sSIC) is

sSIC(k) = −2

q̂k+1∑
j=1

log `(Yτ̂j−1+1, . . . , Yτ̂j ; Θ̂j) + nk logα(T ), (11)

for some pre-given α ≥ 1, with τ̂0 = 0 and τ̂q̂k+1 = T . When α = 1, we recover the
well-known Schwarz Information Criterion (SIC).
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One reason we use the sSIC here is to facilitate our theoretical development below. In
fact, once we obtain the NOT solution path via Algorithm 2, other criteria, such as MBIC
(Zhang and Siegmund, 2007), Minimum Description Length (MDL; Davis et al. (2006))
or Steepest Drop to Low Levels(SDLL; Fryzlewicz (2018b)) could conceivably be used for
model (or equivalently, threshold) selection.

3.4. Theoretical properties of NOT with the sSIC
In this section, we analyse the theoretical behaviour of NOT with the sSIC in Scenarios
(S1) and (S2). Here we focus on the situation where the number of change-points q is
fixed (i.e. does not increase with T ). This is typical for the theoretical development of
information-criteron-based approaches, and reflects the fact that such approaches tend to
work better in practice for signals with at most a moderate number of change-points. See
also Yao (1988). Again, for notational convenience, we set σ0 = 1. Our results below
provide theoretical justifications for using NOT with the sSIC. Crucially, in contrast to
Algorithm 1, here one does not need to supply a threshold.

Theorem 3. Suppose Yt follow model (3) in Scenario (S1). Let δT = minj=1,...,q+1(τj −
τj−1), ∆f

j = |fτj+1 − fτj | and f
T

= minj=1,...,q ∆f
j. Furthermore, assume that q does

not increase with T , δT /(log T )α
′ ≥ C1, f

T
≥ C2 and maxt=1,...,T |ft| ≤ C̄ for some

C1, C2, C̄ > 0 and α′ > 1. Let q̂ and τ̂1, . . . , τ̂q̂ denote, respectively, the number and
locations of change-points, sorted in increasing order, estimated by NOT (via Algorithm 2)
with the contrast function given by (6) and ζT picked via the sSIC using α ∈ (1, α′). Then
there exists a constant C (not depending on T ) such that given M ≥ 36T 2δ−2T log(T 2δ−1T ),
as T →∞,

P
(
q̂ = q, max

j=1,...,q
|τ̂j − τj | ≤ C log T

)
→ 1.

Theorem 4. Suppose Yt follow model (3) in Scenario (S2). Let δT = minj=1,...,q+1(τj −
τj−1), ∆f

j = |2fτj−fτj−1−fτj+1|, fT = minj=1,...,q ∆f
j. Furthermore, assume that q does not

increase with T , δT /T ≥ C1, f
T
T ≥ C2 and maxt=1,...,T |ft| ≤ C̄ for some C1, C2, C̄ > 0.

Let q̂ and τ̂1, . . . , τ̂q̂ denote, respectively, the number and locations of change-points, sorted
in increasing order, estimated by NOT (via Algorithm 2) with the contrast function given
by (8) and ζT picked via the sSIC using α > 1. Then there exists a constant C (not
depending on T ) such that given M ≥ 36C−21 log(C−11 T ), as T →∞,

P
(
q̂ = q, max

j=1,...,q
|τ̂j − τj | ≤ C

√
T log T

)
→ 1.

For a discussion of the optimality of the rates obtained in Theorems 3 and 4 regarding
the accuracy of the estimated change-point locations, see Section 2.5.

3.5. Computational complexity
Here we elaborate on the computational complexity of Algorithm 1 (see Section 2.4) and
Algorithm 2 (see Section 3.2 and Section C.2 of the online supplementary materials). For
both algorithms, the task of computation can be divided into two main parts. First,
we need to evaluate a chosen contrast function for all points in the M randomly picked
left-open and right-closed intervals with their start- and end-points in {0, . . . , T − 1} and
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{1, . . . , T} respectively. In the second part, we find potential locations of the change-points
for a single threshold ζT in the case of Algorithm 1 and for all possible thresholds in the
case of Algorithm 2.

Naturally, the computational complexity of the first part depends on the cost of com-
puting the contrast function for a single interval. In all scenarios studied in this paper,
this cost is linear in the length of the interval, i.e. the cost of computing {Cb(s,e](Y)}e−1b=s+1

is O(e − s). This is explained in detail in Section C.1 of the online supplementary mate-
rials. The intervals drawn in the procedures have approximately O(T ) points on average,
therefore the computational complexity of the first part of the computations is O(MT )
in a typical application. Importantly, as the calculations for one interval are completely
independent of the calculations for another, it is straightforward to run these computations
in an “embarrassingly parallel” manner. In addition, for the second part, as mentioned in
detail in the Section C.2 of online supplementary materials, its computational complexity
is typically less than O(MT ), thus bringing the total computational complexity of both
Algorithm 1 and Algorithm 2 to O(MT ).

Figure 3 shows execution times for the implementation of Algorithm 2, the NOT solution
path algorithm, implemented in the R package not, with the data {Yt}Tt=1 being i.i.d.
N (0, 1). The running times appears to scale linearly both in T (Figure 3a) and in M
(Figure 3b), which provides evidence that the computational complexity of Algorithm 2 in
this particular example is practically of order O(MT ).

Finally, we remark that the memory complexity of Algorithm 2 is also O(MT ), which
combined with its low computational complexity implies that our approach can handle
problems of size T in the range of millions.

0.1
1.0

10.0
100.0

102 103 104 105 106 107
T

(S1) (S2) (S3) (S4)

(a) fixed M = 10000

0.1
1.0

10.0
100.0

102 103 104 105 106 107
M

(S1) (S2) (S3) (S4)

(b) fixed T = 10000

Fig. 3. Execution times (in seconds) for the implementation of Algorithm 2 available in R package
not (Baranowski et al., 2016b), for various feature detection problems with the data Yt, t = 1, . . . , T
being i.i.d. N (0, 1). In a single run, computations for the input of the algorithm are performed in
parallel, using 8 cores of an Intel Xeon 3.6 GHz CPU with 16 GB of RAM. The computation times
are averaged over 10 runs in each case.

3.6. Other practical considerations
3.6.1. Choice of M
As can be seen in Theorem 1 and Theorem 2, the minimum required value for M grows
with T (i.e. at O(log T ), for a fixed number of well-spaced change-points). In practice,
when the number of observations is of the order of thousands, we would recommend setting
M = 10000. With this value of M , the implementation of Algorithm 1 provided in the R
not package (Baranowski et al., 2016b) achieves the average computation time not longer
than 2 seconds in all examples in Section 5 using a single core of an Intel Xeon 3.6 GHz
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CPU. This can be accelerated further, as the not package allows for computing the contrast
function over the intervals drawn in parallel using all available CPU cores.

However, caution must be exercised for signals with a large expected number of change-
points, for which M may need to be increased. For example, Maidstone et al. (2017) found
that NOT with M = 105 offered better practical performance on the change-point-rich
signals they considered. In the most extreme scenario where one expects change-points to
occur very frequently with a large T , we would recommend picking M as large as possible
to match the available computational power and applying a penalty less stringent than the
sSIC. See Section F of the online supplementary materials.

3.6.2. Early stopping for NOT with the sSIC
If the number of change-points in the data is expected to be rather moderate, then it may
not be necessary to calculate sSIC for all k. In practice, solutions on the path correspond-
ing to very small values of ζT contain many estimated change-points. Such solutions are

unlikely to minimise (11). By considering |T (ζ
(k)
T )| ≤ qmax, we could achieve some com-

putational gains without adversely impacting the overall performance of the methodology.
As such, in all applications presented in this work we compute sSIC only for k such that

|T (ζ
(k)
T )| ≤ qmax with qmax = 25.

4. NOT under different noise types

In this section, we discuss how NOT can be extended to handle different noise types.
Section 4.1 deals with dependent noise, while Section 4.2 covers heavy-tailed noise. In
addition, we investigate the case of noise with slow-varying variance in Section D of the
online supplementary materials.

4.1. NOT under dependent noise
When the errors εt in model (3) are dependent with Eεt = 0 and Var(εt) = 1, the afore-
mentioned NOT procedure can still be applied as a quasi-likelihood-type procedure. Con-
ceivably, using NOT here would incur information loss. As is shown in Corollaries 1 and 2
in Scenarios (S1) and (S2), NOT is still consistent if we replace the noise’s i.i.d. assumption
in Theorems 1 and 2 by stationarity with short-memory. This new dependence assump-
tion is satisfied by a large class of stationary time series models, including autoregressive
moving average (ARMA) models. See also numerical examples in Section E of the online
supplementary materials, where we again select the thresholds automatically via sSIC.
Here we assume that σ0 = 1. However, if not, MAD-type estimators based on the simple
differencing are no longer appropriate for dependent data. We comment on this issue later.
The following corollaries give guidelines on the choice of the threshold, as well as guarantee
on the performance of NOT from a theoretical perspective.

Corollary 1. Suppose Yt follow model (3) in Scenario (S1), but with {εt} being a stationary
short-memory Gaussian process, i.e. the auto-correlation function of {εt}, denoted by ρk
for any lag k ∈ Z, satisfies

∑∞
k=−∞ |ρk| < ∞. Then, the conclusion of Theorem 1 still

holds (with different constants).

Corollary 2. Suppose Yt follow model (3) in Scenario (S2), but with {εt} being a station-
ary short-memory Gaussian process. The conclusion of Theorem 2 holds (with different
constants).
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In our theoretical development for the dependent noise setting, the smallest permitted
threshold to be used in the NOT algorithm depends linearly on σ0(

∑∞
k=−∞ |ρk|)1/2. This

quantity can also be viewed as a generalisation to the independent noise setting, where the
threshold is proportional to σ0 (since

∑∞
k=−∞ |ρk| = 1). More details of its derivation is

provided in Section I.6 of the online supplementary materials.
This poses a few challenges in the practical application of NOT to signals with dependent

noise: (i) the (pre-)estimation of the residuals εt in preparation for the estimation of their
long-run variance; (ii) the estimation σ0; and (iii) the estimation of σ0(

∑∞
k=−∞ |ρk|)1/2.

These problems are known to be difficult in time series analysis in general. A possible
solution is outlined below.

For (i), we have had some success with the wavelet-based method of Johnstone and
Silverman (1997), which was implemented in R package wavethresh (Nason, 2016); its
advantages are that it is specifically designed for dependent noise and that, being based
on nonlinear wavelet shrinkage, it is particularly suited for signals with irregularities, such
as (generalised) change-points. Here the Haar wavelet transform of the data is appropriate
in Scenario (S1), while a transform with respect to any wavelet that annihilates linear
functions is appropriate in Scenarios (S2) and (S3). Once the empirical residuals are
obtained from (i), we could then estimate σ0 in (ii) by its sample version, and estimate
σ0(
∑∞

k=−∞ |ρk|)1/2 in (iii) in a model-based way (e.g. using the autoregressive model with
its order p chosen by an information criterion).

Another possibility to estimate change-points under dependent noise is to use self-
normalising based statistics. See, for instance, Shao and Zhang (2010), Betken (2016),
Pešta and Wendler (2018) and Zhang and Lavitas (2018). These statistics could potentially
be fed into our NOT approach as well.

Finally, we mention two practical ways of reducing the dependence and making the series
closer to Gaussian, before applying NOT: (A) pre-average the data over non-overlapping
moving windows of size h, creating a new dataset of length bT/hc; the hope is that by
the law of large numbers, the pre-averaged noise will be closer to Gaussian and also less
serially dependent than the original noise; (B) add additional i.i.d. Gaussian noise to the
data, with mean zero and suitably chosen standard deviation; this will have a similar effect
as previously, i.e. it will bring the distribution of the data closer to Gaussian and reduce
the serial dependence within the data.

4.2. Extension of NOT under heavy-tailed noise
NOT appears to be relatively robust under noise misspecification. As is demonstrated later
in Section 5, it offers reasonable estimates when the noise is non-Gaussian but the Gaussian
contrast functions are used. We now discuss how its performance can be improved further
in the presence of heavy-tailed noise.

In Scenario (S1), we propose to apply the following new contrast function, defined for
Y and 0 < s < b < e < T as

C̃b(s,e](Y) =
〈
S(s,e](Y),ψb(s,e]

〉
(12)

in our NOT procedure. Here for any vector v = (v1, . . . , vT )′, the i-component of S(s,e](v)

is given by S(s,e](v)i = sign
(
vi − (e− s)−1

∑e
t=s+1 vt

)
and ψb(s,e] is defined by (5). (For

certain noise distributions, subtracting the sample median of v instead of the sample
mean would appear more appropriate.) The rationale behind (12) is to assign Ys+1 −
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1
e−s

∑e
t=s+1 Yt, . . . , Ye −

1
e−s

∑e
t=s+1 Yt (i.e. residuals for fitting a curve with no change-

point on a given interval) into two classes (±1, i.e. a two-point distribution, thus with
light tails) and apply the contrast function to their ±1 labels. Empirical performance of
NOT (via Algorithm 2) combined with (12) and sSIC is also illustrated in Section E of the
online supplementary materials.

5. Simulation study

5.1. Settings
We consider examples following (S1)–(S4) introduced in Section 2.3, as well as an extra
example satisfying

(S5) σt = σ0 and ft is a piecewise-quadratic function of t.

We simulate data according to Equation (3) using the test signals (M1) teeth, (M2)
blocks, (M3) wave1, (M4) wave2, (M5) mix, (M6) vol and (M7) quad, with the noise
following

(a) i.i.d. N (0, 1);

(b) i.i.d. N (0, 2);

(c) i.i.d. scaled Laplace distribution with zero-mean and unit-variance;

(d) i.i.d. scaled Student-t5 distribution with unit-variance;

(e) a stationary Gaussian AR(1) process of ϕ = 0.3, with zero-mean and unit-variance.

A detailed specification of our test models can be found in Section A of the online sup-
plementary materials. Figure 4 shows the examples of the data generated from models
(M1)–(M7), as well as the estimates produced by NOT in a typical run.

5.2. Estimators
We apply Algorithm 2 to compute the NOT solution path and pick the solution minimising
the sSIC introduced in Section 3.3 with α = 1 (which is equivalent to the SIC). In each
simulated example, we use the contrast function designed to detect change-points in the
scenario that the example follows, given in Section 2.3 and Section B of the online supple-
mentary materials under the assumption that εt is i.i.d. Gaussian. The resulting method
is referred to simply as ‘NOT’. In addition, for Scenario (S1) only, we also apply Algo-
rithm 2 combined with (12) and the SIC, which we call ‘NOT HT’. Here ‘HT’ stands for
‘heavy tails’. The number of intervals drawn in the procedure and the maximum number
of change-points for the SIC are set to M = 10000 and qmax = 25, respectively.

We then compare the performance of NOT and NOT HT against the best competitors
available on CRAN. To the best of our knowledge, none of the competing packages can be
applied in all of Scenarios (S1)–(S5).

For change-point detection in the mean, the selected competitors from CRAN are:
changepoint (Killick and Eckley, 2014; Killick et al., 2016) implementing the PELT method-
ology proposed by Killick et al. (2012a), changepoint.np (Haynes et al., 2016) implementing
a nonparametric extension of the PELT methodology studied in Haynes et al. (2017), wbs
(Baranowski and Fryzlewicz, 2015) implementing the Wild Binary Segmentation proposed
by Fryzlewicz (2014), ecp (James and Matteson, 2014) implementing the e.cp3o method
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Fig. 4. Examples of data generated from simulation models outlined in Section A. Figure 4a– 4g:
data series Yt (thin grey), true signal ft (dashed black), f̂t being the least squares (LS) estimate
of ft with the change-points estimated by NOT (thick red). Figure 4h: centered data |Yt− f̂t| (thick
grey), true standard deviation σt (dashed black) and the estimated standard deviation σ̂t between
the change-points detected by NOT (thick red).

proposed by James and Matteson (2015), strucchange (Zeileis et al., 2002) implementing
the methodology of Bai and Perron (2003), Segmentor3IsBack (Cleynen et al., 2013) im-
plementing the technique proposed by Rigaill (2015), nmcdr (Zou and Lancezhange, 2014)
implementing the NMCD methodology of Zou et al. (2014), stepR (Pein et al., 2018) im-
plementing the SMUCE method proposed by Frick et al. (2014), and FDRSeg (Li et al.,
2017) implementing the FDRSeg method proposed by Li et al. (2016). We refer to the cor-
responding methods as, respectively, PELT, NP-PELT, WBS, e.cp3o, B&P, S3IB, NMCD,
SMUCE and FDRSeg.

Note that e-cp3o, NMCD, NOT, PELT and NP-PELT can be also used for change-point
detection in Scenario (S4), where change-points occur in the mean and variance of the data.
In addition, for Scenario (S4), we also include the Heterogeneous SMUCE method (Pein
et al., 2017) implemented in stepR (Pein et al., 2018), and the Segment Neighbourhoods
method (Auger and Lawrence, 1989) implemented in changepoint (Killick and Eckley, 2014;
Killick et al., 2016). We refer to them as HSMUCE and SegNeigh respectively.

Only the B&P method allows for change-point detection in piecewise-linear and piecewise-
quadratic signals (in particular, the WBS is not suitable for these settings as described in
Sections 1 and 2.5), hence we also study the performance of the trend filtering methodology
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of Kim et al. (2009) termed as TF hereafter, using the implementation available from the
R package genlasso (Taylor and Tibshirani, 2014), to have a broader comparison. See also
Lin et al. (2017). The TF method aims to estimate a piecewise-polynomial signal from the

data, not focusing on the change-point detection problem directly. Let f̂
(TF )
t denote the TF

estimate of the true signal ft, then the TF estimates of the change-points in Scenario (S2)

are defined as those τ for which |2f̂ (TF )
τ − f̂ (TF )

τ−1 − f̂
(TF )
τ+1 | > ε, where ε > 0 is a very small

number being the numerical tolerance level (more precisely, we set ε = 1.11× 10−15 in our
study). In the piecewise-quadratic case, the change-points are defined as those τ for which

the third order differences |f̂ (TF )
τ+2 − 3f̂

(TF )
τ+1 + 3f̂

(TF )
τ − f̂ (TF )

τ−1 | > ε. We note that both B&P
and TF require a substantial amount of computational resources in this study.

Finally, we remark that the tuning parameters for the competing methods are set to the
values recommended by the corresponding R packages, and the R code for all simulations
can be downloaded from our GitHub repository (Baranowski et al., 2016a).

5.3. Results
Here we only present the results under the setting where the noise is (a) i.i.d. standard
normal in Table 1. Additional results under the other above-mentioned noise settings can
be found in Section E of the online supplementary materials.

For each method, we show a frequency table for the distribution of q̂− q, where q̂ is the
number of the estimated change-points and q denotes the true number of change-points.
We also report Monte-Carlo estimates of the Mean Squared Error of the estimated signal,

given by MSE = E
{

1
T

∑T
t=1(ft− f̂t)2

}
. For all methods but TF, f̂t is calculated by finding

the least squares (LS) approximation of the signal of the appropriate type depending on

the true ft, between each consecutive pair of estimated change-points. For TF, f̂t used in
the definition of the MSE is the penalised least squares estimate of ft returned by the TF
algorithm.

To assess the performance of each method in terms of the accuracy of the estimated
locations of the change-points, we report estimates of the (scaled) Hausdorff distance

dH = T−1 Emax

{
max

j=0,...,q+1
min

k=0,...,q̂+1
|τj − τ̂k|, max

k=0,...,q̂+1
min

j=0,...,q+1
|τ̂k − τj |

}
,

where 0 = τ0 < τ1 < . . . τq < τq+1 = T and 0 = τ̂0 < τ̂1 < . . . τ̂q < τ̂q+1 = T denote,
respectively, true and estimated locations of the change-points. From the definition above,
it follows that 0 ≤ dH ≤ 1. An estimator is regarded as performing well when its dH is close
to 0. However, dH would be large when the number of change-points is under-estimated
or some of the estimated change-points are far away from the real ones. In addition, we
also report estimates of the inverse V-measure dV defined as

dV = 1− EV
(
{τ̂k}q̂+1

t=0 , {τk}
q+1
t=0

)
,

where V (·, ·) is the V-measure (with β = 1) proposed by Rosenberg and Hirschberg (2007)
for the evaluation of segmentation. An estimator is regarded as performing well when its
dV is close to 0. More specifically, 0 ≤ dV ≤ 1, and a perfect estimator has dV = 0, while
dV = 1 means none of the features are detected (i.e. q̂ = 0).

We find that in most of the simulated scenarios, NOT is among the most competitive
methods in terms of the estimation of the number of change-points, their locations, as



Narrowest-Over-Threshold Detection 19

Table 1. Distribution of q̂−q for data generated according to (3) with the noise term εt being i.i.d. N (0, 1)
for various choices of ft and σt given in Section A of the online supplementary materials and competing
methods listed in Section 5. Also, the average Mean-Square Error of the resulting estimate of the signal
ft, average Hausdorff distance dH , average inverse V-measure dV and average computation time in
seconds using a single core of an Intel Xeon 3.6 GHz CPU with 16 GB of RAM, all calculated over 100
simulated data sets. Bold: methods with the largest empirical frequency of q̂− q = 0 or smallest average
of dH or dV , and those within 10% of the highest or lowest accordingly.

q̂ − q
Method Model ≤ −3 −2 −1 0 1 2 ≥ 3 MSE dH × 102 dV time

B&P

(M1)

0 0 0 100 0 0 0 0.053 0.52 0.02 1.367
e-cp3o 0 0 0 100 0 0 0 0.089 0.65 0.041 0.12

FDRSeg 0 0 0 79 17 2 2 0.089 1.26 0.044 0.092
NMCD 0 0 0 98 2 0 0 0.095 0.77 0.044 1.14
NOT 0 0 0 97 3 0 0 0.055 0.6 0.021 0.047

NOT HT 0 0 0 97 3 0 0 0.057 0.67 0.022 0.06
NP-PELT 0 0 0 82 18 0 0 0.071 0.91 0.029 0.017

PELT 0 0 0 100 0 0 0 0.054 0.52 0.02 0.002
S3IB 0 0 0 88 10 1 1 0.057 0.8 0.022 0.092

SMUCE 0 0 0 100 0 0 0 0.085 0.58 0.039 0.047
WBS 0 0 0 93 7 0 0 0.057 0.69 0.021 0.077
B&P

(M2)

100 0 0 0 0 0 0 0.127 5.85 0.128 29.897
e-cp3o 100 0 0 0 0 0 0 0.197 7.1 0.132 2.057

FDRSeg 0 1 30 59 6 3 1 0.029 1.31 0.031 1.784
NMCD 0 15 53 32 0 0 0 0.034 2.07 0.036 4.313
NOT 0 4 43 50 3 0 0 0.025 1.44 0.025 0.079

NOT HT 2 8 44 40 6 0 0 0.031 2.05 0.033 0.141
NP-PELT 0 2 13 58 17 7 3 0.028 1.58 0.031 0.219

PELT 5 36 48 11 0 0 0 0.032 3 0.035 0.004
S3IB 0 5 34 59 1 1 0 0.024 1.31 0.024 0.318

SMUCE 55 41 4 0 0 0 0 0.069 3.38 0.061 0.018
WBS 0 4 35 53 8 0 0 0.026 1.35 0.025 0.14
B&P

(M3)
0 0 100 0 0 0 0 0.218 3.7 0.133 53.978

NOT 0 0 0 99 1 0 0 0.015 0.98 0.053 0.38
TF 0 0 0 0 0 0 100 0.017 8.38 0.211 46.489

B&P
(M4)

0 0 4 96 0 0 0 0.063 2.53 0.132 61.631
NOT 0 0 0 100 0 0 0 0.016 1.15 0.07 0.399
TF 0 0 0 0 0 0 100 0.016 4.49 0.146 47.794

B&P
(M5)

0 0 0 100 0 0 0 0.021 2.44 0.088 117.894
NOT 0 0 0 99 1 0 0 0.021 2.49 0.088 0.352
TF 0 0 0 0 0 0 100 0.027 6 0.26 58.816

e-cp3o

(M6)

11 12 12 33 20 5 7 0.145 6.91 0.164 1.707
HSMUCE 97 3 0 0 0 0 0 0.091 12.77 0.209 0.049

NMCD 0 0 18 70 12 0 0 0.06 4.04 0.068 4.206
NOT 0 0 13 85 2 0 0 0.047 2.6 0.048 0.454

NP-PELT 0 0 1 19 26 24 30 0.126 3.17 0.068 0.276
PELT 9 18 31 37 5 0 0 0.069 8.17 0.087 0.011

SegNeigh 0 0 3 49 36 10 2 0.053 1.98 0.048 17.237
B&P

(M7)
0 0 0 100 0 0 0 0.024 1.98 0.068 28.93

NOT 0 0 0 100 0 0 0 0.023 1.87 0.065 0.245
TF 0 0 0 0 0 0 100 0.052 23.29 0.442 42.717
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well as the true signal. Importantly, it is very fast to compute, which gives it a particular
advantage over its competitors in Scenarios (S2), (S3) and (S5). Finally, NOT with the
contrast function derived under the assumption that the noise is i.i.d. Gaussian is relatively
robust against the misspecification in εt, when the truth is either correlated or heavy-tailed.

6. Real data analysis

6.1. Temperature anomalies

We analyse the GISS Surface Temperature anomalies data set available from GISTEMP
Team (2016), consisting of monthly global surface temperature anomalies recorded from
January 1880 to June 2016. The anomaly here is defined as the difference between the
average global temperature in a given month and the baseline value, being the average
calculated for that time of the year over the 30-year period from 1951 to 1980; for more
details see Hansen et al. (2010). This and similar anomalies series are frequently studied
in the literature with a particular focus on identifying change-points in the data, see e.g.
Ruggieri (2013) or James and Matteson (2015).
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1880 1900 1920 1940 1960 1980 2000 2020
time

(a) data

-0.50

-0.25
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0.50

1880 1900 1920 1940 1960 1980 2000 2020
time

(b) residuals

Fig. 5. Change-point analysis for the GISSTEMP data set introduced in Section 6.1. Figure 5a:
the data series Yt (thin grey) and f̂t estimated using change-points returned by NOT (thick red).
Figure 5b: residuals ε̂t = Yt − f̂t.

The plot of the data (Figure 5a) indicates the presence of a linear trend with several
change-points in the temperature anomalies series. The corresponding changes are not
abrupt, therefore we believe that Scenario (S2) with change-points in the slope of the
trend is the most appropriate here. To detect the locations of the change-points, we apply
NOT (via Algorithm 2) with the contrast given by (8), combined with the SIC to determine
the best model on the solution path.

The NOT estimate of the piecewise-linear trend and the corresponding empirical resid-
uals are shown in Figure 5. We identify 8 change-points located at the following dates:
March 1901, December 1910, July 1915, June 1935, April 1944, December 1946, June 1976
and May 2015. Previous studies conducted on similar temperature anomalies series (ob-
served at a yearly frequency and obtained from a different source), report change-points
around 1910, 1945 and 1976 (see Ruggieri (2013) for an overview of a number of related
analyses). In addition to the change-points around these dates, NOT identifies two peri-
ods, 1901–1915 and 1935–1946, with local deviations from the baseline. We also observe
a long-lasting upward trend in the anomalies series starting in December 1946. Finally,
NOT indicates that the slope of the trend is increasing, with the most recent change-point
in May 2015.
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6.2. UK House Price Index
We analyse monthly percentage changes in the UK House Price Index (HPI), which provides
an overall estimate of the changes in house prices across the UK. The data and a detailed
description of how the index is calculated are available online from UK Land Registry
(2016). Fryzlewicz (2018a), who proposes a method for signal estimation and change-
point detection in Scenario (S1), used this data set to illustrate the performance of his
methodology. We perform a similar analysis, assuming the more flexible Scenario (S4),
allowing for changes both in the mean and the variance, which, we argue, leads to additional
insights and better-interpretable estimates for this dataset.
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Fig. 6. Change-point analysis for the monthly percentage changes in the UK House Price Index
from January 1995 to May 2016. Figure 6a, 6c and 6e: the monthly percentage changes Yt and
the fitted piecewise-constant mean f̂t, between the change-points estimated with NOT. Figure 6b,
6d and 6f: |Yt − f̂t| and the fitted piecewise-constant standard deviation σ̂t, between the change-
points estimated with NOT.

As in Fryzlewicz (2018a), we analyse the percentage changes in the HPI for three London
boroughs, namely Hackney, Newham and Tower Hamlets, all of which are located in East
London. Hackney and Tower of Hamlets border on the City of London, a major business
and financial district, with the latter being home to Canary Wharf, another important
financial centre. On the other hand, Newham, located to the east of Hackney and Tower
Hamlets, hosted the London 2012 Olympic Games which involved large-scale investment
in that borough.

Figure 6 shows monthly percentage changes in HPI for the analysed boroughs and the
corresponding NOT estimates, obtained using the contrast function for Scenario (S4). As
recommended in Section 3.3, we set the number of intervals drawn in the procedure to
M = 10000 and choose the threshold that minimises the SIC. For better comparability,
NOT is applied with the same random seed for each data series.

In contrast to Fryzlewicz (2018a), whose TGUH method estimates at least 10 change-
points in each HPI series, we detect just a few change-points in the data, facilitating
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the interpretation of the results. Furthermore, for all three boroughs, NOT estimates two
change-points (one around March 2008 and one around September 2009) that could possibly
be linked to the 2008–2009 financial crisis and its impact on the housing market. Estimated
standard deviations for that period are much larger than the estimates corresponding to
the other segments of piecewise-constancy, suggesting that the market is more volatile
during 2008–2009, and thus in this example Scenario (S4) may be more relevant than (S1)
considered in Fryzlewicz (2018a).
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