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We would like to start by congratulating Professors Fan, Liao and Mincheva for the stimu-
lating and thought-provoking article.

The POET estimator is the sum of two parts: the non-sparse, low-rank part resulting
from the factor model, and the sparse part arising as a result of thresholding the “principal
orthogonal complement”. The estimator has been designed with a particular factor model in
mind, and therefore it is natural to ask, firstly, whether and how one could verify this model
assumption, and secondly, whether POET offers acceptable performance if the assumption
does not hold.

We may be wrong here, but we are unaware of a reliable technique for estimating the number
of factors K which works well except in the most “textbook” cases of the first few eigenvalues
being “visibly” larger than others. Even if a factor structure is present, the presence of both
stronger and less strong factors may well lead to the cut-off in the eigenvalues being less
obvious, in which case any inference for the number of factors may not be reliable. However,
it is important to get K right from the point of view of the usability of POET: the authors
warn us that POET may perform poorly if K is underestimated. It is therefore tempting to
ask whether POET may benefit from averaging over K as a possible guard against picking
one “wrong” (e.g. underestimated) value of K. Averaging may also be beneficial in cases
when the factor model assumption is not satisfied.

An appealing aspect of the construction of POET is the inclusion of the non-sparse part
(which is done in case the target matrix Σ is not sparse) and the sparse part (to ensure the
invertibility of the estimator). It is tempting to consider other possible estimators along
these lines. Motivated by POET, we propose an estimator of Σ of the form

Σ̂N = δ Σ̂sam + (1 − δ) t(Σ̂sam, λ),

1



Σ Σ−1

δ = 0 δ = 1
2 P δ = 0 δ = 1

2 P

L∞ 34 34 61 42 38 41

Fro 30 32 50 34 30 33

max 2.09 2.03 2.29 4.88 3.47 3.92

L2 10 9 19 17 15 17

Table 1: Averaged (and rounded except max) distances to Σ (left table) and Σ−1 (right
table) for Σ̂N with δ = 0, with δ = 1/2 and for the POET estimator (P), in the L∞, Frobe-
nius, max and spectral norms. Distances to Σ−1 were multiplied by 10 before averaging.
Best results boxed.

where Σ̂sam is the p × p sample covariance matrix, δ is a constant in [0, 1], λ is a p × p
matrix with nonnegative entries, and t(·, ·) is a function that applies soft, hard, or other
thresholding to each non-diagonal entry of its first argument, with the threshold value equal
to the corresponding entry of its second argument. λ will typically be parameterised by one
scalar parameter. Obviously, δ Σ̂sam and (1 − δ) t(Σ̂sam, λ) are the non-sparse and sparse
components, respectively.

Σ̂N performs “shrinkage of the sample covariance towards a sparse target”. To the best of
our knowledge, Σ̂N is a new proposal, although shrinkage towards some other targets has
been studied extensively before, notably by Ledoit and Wolf (2003), who propose shrinkage
towards a one-factor target and Schaefer and Strimmer (2005), who review and discuss six
commonly used targets. Some ideas for the “optimal” choice of δ are proposed in these
articles, and can be adopted in the context of Σ̂N , thereby reducing the number of “free”
parameters of the procedure to the single scalar parameter of the threshold matrix λ. These
findings will be reported in more detail elsewhere. If all new covariance estimators were
required to have ‘literary’ names (such as POET), we would name ours ‘NOVELIST’, for
‘NOVEL Integration of the Sample and Thresholded covariance estimators’. The benefits
of NOVELIST include simplicity, ease of implementation, and the fact that its application
avoids eigenanalysis, which is unfamiliar to many practitioners.

We now briefly exhibit the performance of POET versus NOVELIST on a simulated covari-
ance matrix Σ of size 100 × 100, available from http://stats.lse.ac.uk/fryzlewicz/

testcov.RData (use load("testcov.RData") in R, the variable name is testcov). Σ was
not generated from a factor model and is not sparse. The range of its diagonal elements
is [3.32, 7.09], while only 56 of the non-diagonal entries are larger than 1 in absolute value.
The sample size is n = 100, so Σ̂sam itself is not invertible. In NOVELIST, we use both
δ = 0 and δ = 1/2, and the constant matrix λ ≡ 1. In POET, we use K = 7, following
the authors’ advice, given in the R package POET, to choose a large K (in order to avoid
issues related to K being underestimated), but preferably smaller than 8. Both POET and
NOVELIST use soft thresholding. Other POET parameters are set to default. The data are
Gaussian, and there are N = 100 repetitions. Table 1 shows the results. POET performs
poorly for Σ: it is the worst in all norms by a large margin. NOVELIST with δ = 0 (which
reduces to the simple soft thresholding estimator) and with δ = 1/2 are hard to tell apart in
terms of their performance. However, as far as Σ−1 is concerned, NOVELIST with δ = 1/2
is the best, followed by POET and then by the simple soft thresholding. The overall clear
‘winner’ in this example is NOVELIST with δ = 1/2.
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By way of summary, POET is an elegant construction which combines parsimony of rep-
resentation in the low-rank component with sparsity in the thresholded part. This brief
discussion (a) attempts to list some research questions regarding POET which we believe
are worth exploring further, and (b) proposes a simple competitor. We found the article a
pleasure to read and thought it was written in a clear and pedagogical way. We are con-
vinced that POET will stimulate further research in the important field of large covariance
estimation. It therefore gives us great pleasure to second the vote of thanks for this paper.
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