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Abstract

This supplement discusses a number of aspects of the NSP method.
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1 Additional literature review

We first comment in more detail on the UD max and WD max tests of Bai and Perron

(1998) and Bai and Perron (2003) and their relationship to NSP. Bai and Perron (2003)

write:

A useful strategy is to first look at the UD max or WD max tests to see if at

least one break is present. If these indicate the presence of at least one break,

then the number of breaks can be decided based upon a sequential examination

of the sup F (l+ 1|l) statistics constructed using global minimizers for the break
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dates (i.e. ignore the test F (1|0) and select m such that the tests sup F (l +

1|l) are insignificant for l ≥ m. This method leads to the best results and is

recommended for empirical applications.

For the purpose of this discussion, we label the process above the ‘Improved Sequential

Procedure’ (ISP). Bai and Perron (2003) do not formulate or prove the inferential properties

of the m selected by ISP. For a procedure that selects the number of change-points, the

control of global significance would have to mean, in particular, a guarantee that the true

number of change-points is at least as high as the estimated number, with at least 1 − α

probability. NSP provides such a statement as a simple corollary of Theorem 2.1 in the main

paper, but ISP is a complex sequential process put together from separate, non-independent,

conditionally applied tests, and the exact guarantees for the resulting output (m) have not

been shown.

The next difference is that the UD max and WD max tests require the provision of the

maximum number of change-points, but NSP does not require this, thereby eliminating the

risk of providing too low a maximum by the user.

Furthermore, the ISP test only concerns the number of change-points, but not their loca-

tions: inference for locations in Bai and Perron (1998) and Bai and Perron (2003) is carried

out later, conditionally on the number of change-points and on their estimated locations.

Not only that, but also the obtained conditional confidence intervals are asymptotic in na-

ture and are only valid for large sample sizes (unknown to the user). By contrast, NSP

provides a single, clear, joint, finite-sample guarantee for the number of change-points and

for their locations: it flags up disjoint regions in the data, each of which must contain at

least one change-point with a global probability specified by the user. The NSP intervals of

significance serve as “unconditional” confidence intervals (in contrast to the conditional CIs

of Bai and Perron (1998) and Bai and Perron (2003), whose conditionality on the number

of estimated change-points and the estimated locations means that the user cannot be sure

whether they contain change-points with a certain probability). The NSP guarantees are

valid for any, even small, sample sizes.

Next, we discuss in more detail the most important high-level differences between NSP and
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the approaches of Fang et al. (2020) and Fang and Siegmund (2020).

(a) While Fang et al. (2020) and Fang and Siegmund (2020) perform change-point loca-

tion estimation as well as inference, NSP works on the principle of “inference without

location estimation”. This is a key property of NSP, which enables it to use an all-

purpose multiscale test, whose distribution under the null is stochastically bounded

by the scan statistic of the corresponding true residuals Zt, and is therefore inde-

pendent of the scenario and of the design matrix X used. This means that NSP is

ready for use with any user-provided design matrix X, and this will require no new

calculations or coding, and will yield correct coverage probabilities. This is in con-

trast to the approach taken in Fang et al. (2020) and Fang and Siegmund (2020), in

which, because of their focus on location estimation, each new scenario not already

covered would involve new and fairly complicated approximations of the null distri-

bution. (We note that outside the change-point context, the method for constructing

confidence intervals for groups of variables in sparse high dimensional regression by

Meinshausen (2015) shares with NSP the attractive property of providing valid error

control without assumptions on the design matrix.)

(b) While in Fang et al. (2020) and Fang and Siegmund (2020), the user needs to be able

to specify the significant signal shapes to look for, NSP searches for any deviations

from local model linearity with respect to specific regressors.

(c) Out of our scenarios, Fang et al. (2020) and Fang and Siegmund (2020) provide results

under our Scenario 1 and Scenario 2 with linearity and continuity. Their results do not

cover our Scenario 3 (linear regression with arbitrary X) or Scenario 2 with linearity

but not necessarily continuity, or Scenario 2 with higher-than-linear polynomials.

(d) Thanks to its double use of the multiresolution sup-norm (in the local linear fit, and

then in the test of this fit), NSP is able to handle regression with autoregression

practically in the same way as without, in a stable manner and on arbitrarily short

intervals, and does not suffer from having to estimate the unknown (nuisance) AR

coefficients accurately. This is of importance, as change-point analysis under serial
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dependence in the data is a problem known to be difficult, and NSP offers a new

approach to it, thanks to this feature.

Finally, we provide additional references on the use of scan statistics. In the literature,

scaled partial sum statistics acting directly on the data are often combined into variants

of scan statistics (Siegmund and Venkatraman, 1995; Arias-Castro et al., 2005; Jeng et al.,

2010; Walther, 2010; Chan and Walther, 2013; Sharpnack and Arias-Castro, 2016; König

et al., 2020; Munk et al., 2020). They are also used in estimators represented as the simplest

(from the point of view of a certain regularity or smoothness functional) fit to the data for

which the empirical residuals are deemed to behave like the true residuals (Frick et al.,

2014; Davies and Kovac, 2001; Davies et al., 2009; Li, 2016).

2 Discussion of the NSP algorithm

We now comment on a few generic aspects of the NSP algorithm as defined in the main

paper.

Length check for [s, e] in line 2 Consider an interval [s, e] with e−s < p. If it is known

that the matrix Xs:e,· is of rank e − s + 1 (as is the case, for example, in Scenario 2, for

all such s, e) then it is safe to disregard [s, e], as the response Ys:e can then be explained

exactly as a linear combination of the columns of Xs:e,·, so it is impossible to assess any

deviations from linearity of Ys:e with respect to Xs:e,·. Therefore, if this rank condition

holds, the check in line 2 of NSP can be replaced with e − s < p, which (together with

the corresponding modifications in lines 5–10) will reduce the computational effort if p > 1.

Having p = p(T ) growing with T is possible in NSP, but by the above discussion, we must

have p(T ) + 1 ≤ T or otherwise no regions of significance will be found.

Sub-interval sampling Sub-interval sampling in lines 5–10 of the NSP algorithm is done

to reduce the computational effort. In the change-point detection literature (without infer-

ence considerations), Wild Binary Segmentation (WBS, Fryzlewicz, 2014) uses a random
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interval sampling mechanism in which all or almost all intervals are sampled at the start

of the procedure, i.e. with all or most intervals not being sampled recursively. The same

style of interval sampling is used in the Narrowest-Over-Threshold change-point detection

(note: not change-point inference) algorithm (Baranowski et al., 2019) and is mentioned

in passing in Fang et al. (2020). Instead, NSP uses a different, recursive interval sampling

mechanism, introduced in the change-point detection (not inference) context in Wild Bi-

nary Segmentation 2 (WBS2, Fryzlewicz, 2020). In NSP (lines 5–10), intervals are sampled

separately in each recursive call of the NSP routine. As argued in Fryzlewicz (2020), this

enables more thorough exploration of the domain {1, . . . , T} and hence better feature dis-

covery than the non-recursive sampling style. We note that NSP can equally use random or

deterministic interval selection mechanisms; a specific example of a deterministic interval

sampling scheme in a change-point detection context can be found in Kovács et al. (2023).

Our general preference is for NSP to be used with deterministic sampling as it leads to

reproducible results without the user having to fix the random seed.

Relationship to NOT The Narrowest-Over-Threshold (NOT) algorithm of Baranowski

et al. (2019) is a change-point detection procedure (valid in Scenarios 1 and 2) and comes

with no inference considerations. The common feature shared by NOT and NSP is that in

their respective aims (change-point detection for NOT; locating regions of global significance

for NSP) they iteratively focus on the narrowest intervals on which a certain test (a change-

point locator for NOT; a multiscale scan statistic on multiresolution sup-norm fit residuals

for NSP) exceeds a threshold, but this is where similarities end: apart from this common

feature, the objectives, scopes and modi operandi of both methods are different.

Focus on the smallest significant regions Some authors in the inference literature

also identify the shortest intervals (or smallest regions) of significance in data. For ex-

ample, Dümbgen and Walther (2008) plot minimal intervals on which a density function

significantly decreases or increases. Walther (2010) plots minimal significant rectangles

on which the probability of success is higher than a baseline, in a two-dimensional spatial

model. Fang et al. (2020) mention the possibility of using the interval sampling scheme from

5



Fryzlewicz (2014) to focus on the shortest intervals in their CUSUM-based determination

of regions of significance in Scenario 1. In addition to NSP’s new definition of significance

involving the multiresolution sup-norm fit (whose benefits are explained in Section 2.2 of

the main paper), NSP is also different from these approaches in that its pursuit of the

shortest significant intervals is at its algorithmic core and is its main objective. To achieve

it, NSP uses a number of solutions which, to the best of our knowledge, either are new

or have not been considered in this context before. These include the two-stage search for

the shortest significant subinterval (NSP routine, line 19) and the recursive sampling (lines

5–10, proposed previously but in a non-inferential context by Fryzlewicz (2020)).

Lack of penalisation for fine scales. Instead of using multiresolution sup-norms (mul-

tiscale scan statistics) as defined in the main paper, some authors, including Walther (2010)

and Frick et al. (2014), use alternative definitions which penalise fine scales (i.e. short in-

tervals) in order to enhance detection power at coarser scales. We do not pursue this route,

as NSP aims to discover significant intervals that are as short as possible, and hence we

are interested in retaining good detection power at fine scales. However, some natural pe-

nalisation of fine scales necessarily occurs in the self-normalised case; see Section 3.1 of the

main paper.

Upper bounds for p-values on non-detection intervals. By calculating the quan-

tity D[s,e] on each data section [s, e] delimited by the detected intervals of significance, an

upper bound on the p-value for the existence of a change-point in [s, e] can be obtained as

P (‖Z‖Ia > D[s,e]). If the interval [s, e] were considered by NSP before (as would be the case

e.g. if τL = τR = 0 and the deterministic sampling grid were used), from the non-detection

on [s, e], we would necessarily have P (‖Z‖Ia > D[s,e]) ≥ α.

Bottom-up implementation of NSP Our implementation of NSP is “bottom-up”, in

the sense that at each recursive stage, we consider the intervals [sm, em] in non-decreasing

order of their lengths, and exit the current recursive stage (if and) as soon as significance

is declared, rather than moving on to longer intervals. This aligns with the objective of
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looking for the shortest intervals (so the examination of longer intervals is unnecessary if

shorter significant intervals have been found). Any non-bottom-up implementation of NSP

would therefore unnecessarily be wasting computational resources. This is in contrast to,

for example, the region-based multiple testing method of Meijer et al. (2015), in which

the successive p-value adjustments (which lead to power improvements) are only possible

because of the top-down character of that approach.

3 Proofs of results of Section 2

Proof of Proposition 2.1. As [s, e] does not contain a change-point, there is a β∗ such that

Ys:e = Xs:e,·β
∗+Zs:e. Therefore, D[s,e] = minβ ‖Ys:e−Xs:e,·β‖Id

[s,e]
≤ ‖Ys:e−Xs:e,·β

∗‖Id
[s,e]

=

‖Zs:e‖Id
[s,e]

, which completes the proof. �

Proof of Theorem 2.1. The second inequality is implied by (5) in the main paper. We

now prove the first inequality. On the set ‖Z‖Id ≤ λα, each interval Si must contain a

change-point as if it did not, then by Proposition 2.1, we would have to have

DSi ≤ ‖Z‖Id ≤ λα. (1)

However, the fact that Si was returned by NSP means, by line 14 of the NSP algorithm,

that DSi > λα, which contradicts (1). This completes the proof. �

Proof of Proposition 2.2. The inequality is true because for any fixed β, the norm

‖Z −Xβ‖Id is a maximum over a larger set than the maximum in ‖Zs:e−Xs:e,·β‖Id
[s,e]

. We

now prove the equality. As [s, e] does not contain a change-point, there is a β∗ such that

Ys:e = Xs:e,·β
∗ + Zs:e. We have

D[s,e] = min
β
‖Ys:e −Xs:e,·β‖Id

[s,e]
= min

β
‖Xs:e,·β

∗ + Zs:e −Xs:e,·β‖Id
[s,e]

= min
β
‖Zs:e −Xs:e,·(β − β∗)‖Id

[s,e]
= min

β−β∗
‖Zs:e −Xs:e,·(β − β∗)‖Id

[s,e]
= min

β
‖Zs:e −Xs:e,·β‖Id

[s,e]
.

�
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Proof of Theorem 2.3. On the set minβ ‖Z−Xβ‖Id ≤ λα, each interval Si must contain

a change-point as if it did not, then by Proposition 2.2, we would have to have

DSi ≤ min
β
‖Z −Xβ‖Id ≤ λα. (2)

However, the fact that Si was returned by NSP means, by line 14 of the NSP algorithm,

that DSi > λα, which contradicts (2). This completes the proof. �

4 Estimated σ2, and other light-tailed distributions

We first show under what condition Theorem 2.2 in the main paper remains valid with an

estimated variance σ2, and give an estimator of σ2 that satisfies this condition for certain

matrices X and parameter vectors β(j). Similar considerations are possible for the light-

tailed distributions from the latter part of this section, but we omit them here. With

{Zt}Tt=1 ∼ N(0, σ2) rather than N(0, 1), the statement of Theorem 2.2 of the main paper

trivially modifies to limT→∞ P (max1≤s≤e≤T Us,e(Z) ≤ σ(aT + bT γ)) = exp(−e−γ). From

the form of the limiting distribution, it is clear that the theorem remains valid if γT −→
T→∞

γ

is used in place of γ, yielding

lim
T→∞

P

(
max

1≤s≤e≤T
Us,e(Z) ≤ σ(aT + bT γT )

)
= exp(−e−γ). (3)

With σ estimated via a generic estimator σ̂, we ask under what circumstances

lim
T→∞

P

(
max

1≤s≤e≤T
Us,e(Z) ≤ σ̂(aT + bT γ)

)
= exp(−e−γ). (4)

In light of (3), it is enough to solve for γT in σ(aT + bT γT ) = σ̂(aT + bT γ), yielding

γT = aT
bT

(
σ̂
σ − 1

)
+ σ̂

σγ. In view of the form of aT and bT defined in Theorem 2.2 of the main

paper, we have γT −→
T→∞

γ on a set large enough for (4) to hold if

∣∣∣∣ σ̂σ − 1

∣∣∣∣ = oP (log−1 T ), or equivalently

∣∣∣∣ σ̂2σ2 − 1

∣∣∣∣ = oP (log−1 T ). (5)

8



After Rice (1984) and Dümbgen and Spokoiny (2001), define σ̂2R = 1
2(T−1)

∑T−1
t=1 (Yt+1−Yt)2.

Define the signal in model (2) of the main paper by ft = Xt,·β
(j) for t = ηj +1, . . . , ηj+1, for

j = 0, . . . , N . The total variation of a vector {ft}Tt=1 is defined by TV (f) =
∑T−1

t=1 |ft+1−ft|.

As in Dümbgen and Spokoiny (2001), we have E{(σ̂2R/σ2 − 1)2} = O(T−1{1 + TV 2(f)}),

from which (5) follows, by Markov inequality, if

TV (f) = o(T 1/2 log−1 T ). (6)

By way of a simple example, in Scenario 1, TV (f) =
∑N

j=1 |fηj − fηj+1|, and therefore

(6) is satisfied if the sum of jump magnitudes in f is o(T 1/2 log−1 T ). Note that if f

is bounded with a number of change-points that is finite in T , then TV (f) = const(T ).

Similar arguments apply in Scenario 2, and in Scenario 3 for some matrices X.

Without formal theoretical justifications, we also mention two further estimators of σ2 (or

σ) which we use in our numerical work. In Scenarios 1 and 2, we use σ̂MAD, the Median

Absolute Deviation (MAD) estimator as implemented in the R routine mad, computed on

the sequence {2−1/2(Yt+1−Yt)}T−1t=1 . Empirically, σ̂MAD is more robust than σ̂R to the pres-

ence of change-points in ft, but is also more sensitive to departures from the Gaussianity

of Zt. In Scenario 3, in settings outside Scenarios 1 and 2, we use the following estimator.

In model (2) of the main paper, we estimate σ via least squares, on a rolling window basis,

using the window of size w = min{T,max([T 1/2], 20)}, to obtain the sequence of estima-

tors σ̂1, . . . , σ̂T−w+1. We take σ̂MOLS = median(σ̂1, . . . , σ̂T−w+1), where MOLS stands for

‘Median of OLS estimators’. The hope is that most of the local estimators σ̂1, . . . , σ̂T−w+1

are computed on change-point-free sections of the data, and therefore the median of these

local estimators should serve as an accurate estimator of the true σ. Empirically, σ̂MOLS is

a useful alternative to σ̂R in settings in which condition (6) is not satisfied.

Kabluchko and Wang (2014) provide a result similar to Theorem 2.2 of the main paper for

distributions of Z dominated by the Gaussian in a sense specified below. These include,

after scaling so that E(Z) = 0 and Var(Z) = 1, the symmetric Bernoulli, symmetric bino-

mial and uniform distributions, amongst others. We now briefly summarise it. Consider

the cumulant-generating function of Z defined by ϕ(u) = logE(euZ) and assume that for
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some σ0 > 0, we have ϕ(u) < ∞ for all u ≥ −σ0. Assume further that for all ε > 0,

supu≥ε ϕ(u)/(u2/2) < 1. Finally, assume

ϕ(u) =
u2

2
− κud + o(ud), u ↓ 0,

for some d ∈ {3, 4, . . .} and κ > 0. Typical values of d for non-symmetric and symmetric

distributions, respectively, are 3 and 4. Under these assumptions, we have

lim
T→∞

P

(
1

2

{
max

1≤s≤e≤T
Us,e(Z)

}2

≤ log
{
T log

d−6
2(d−2) T

}
+ γ

)
= exp(−Λd,κe

−γ),

for all γ ∈ R, where Λd,κ = π−1/2Γ(d/(d − 2))(2κ)2/(d−2). After simple algebraic manip-

ulations, this result permits a selection of λα for use in Theorem 2.1 of the main paper,

similarly to Section 2.3 of the main paper.

5 Importance of two-stage search for shortest interval of sig-

nificance

We next illustrate the importance of the two-stage search for the shortest interval of signif-

icance, whose stage two is performed in line 19 of the NSP algorithm via the call

[s̃, ẽ] := ShortestSignificantSubinterval(sm0 , em0 , Y,X,M, λα).

Consider the Blocks signal referred to in the main paper but with the much smaller noise

standard deviation σ = 1. A realisation Yt is shown in the left plot of Figure 1. All N = 11

change-points are visually obvious and hence we would expect NSP to return 11 intervals

[s̃i, ẽi], exactly covering the true change-points, for which we would have ẽi− s̃i = 1 for most

if not all i. As shown in the middle plot of Figure 1, the NSP procedure with no overlap

and with the same parameters as in Section 5.1 of the main paper returns 11 intervals

of significance with ẽi − s̃i = 1 for i = 1, . . . , 10 and ẽ11 − s̃11 = 2. The 11 intervals of

significance cover the true change-points.
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Figure 1: Left: realisation Yt of noisy Blocks with σ = 1. Middle: prominence plot of
NSP-detected intervals. Right: the same for NSP(1). See Section 5 for more details.

However, consider now an alternative version of NSP, labelled NSP(1), which only performs

a one-stage search for the shortest interval of significance. NSP(1) proceeds by replacing

line 19 of the NSP algorithm by

[s̃, ẽ] := [sm0 , em0 ].

In other words, [sm0 , em0 ] is not searched for its shortest sub-interval of significance, but

is added to S as it is. The output of NSP(1) on Yt is shown in the right plot of Figure 1.

The intervals of significance returned by NSP(1) are unreasonably long from the statistical

point of view, with ẽi − s̃i varying from 2 to 45. However, this has a clear explanation

from the point of view of the algorithmic construction of NSP(1). For example, in the first

recursive stage, in which [s, e] = [1, T ], the spacing of the (approximately) equispaced grid

from which the candidate intervals [sm, em] are drawn varies between 45 and 46. Therefore,

it is unsurprising that the first detection performed by NSP(1) is such that ẽi − s̃i = 45.

This issue would not arise in NSP, as NSP would then search this detection interval for its

shortest significant sub-interval. From the output of the NSP procedure, we can see that

this second-stage search drastically reduced the length of this detection interval, which is

unsurprising given how obvious the change-points are in this example. This illustrates the

importance of the two-stage search in NSP.

For very long signals, it is conceivable that an analogous three-stage search may be a better

option, possibly combined with a reduction in M to enhance the speed of the procedure.
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6 Self-normalised NSP – further discussion

We now outline the construction of Ẑ(k) for k = 1, 2, 3 so that (11) in the main paper is

guaranteed, and propose a suitable estimator of V 2
T for use in (11) in the main paper.

k = 1. Let (Ẑ
(1)
i+1, . . . , Ẑ

(1)
j ) be the ordinary least-squares residuals from regressing Y(i+1):j on

X(i+1):j,·, where j−i > p. As [s, e] contains no change-point, we have (Ẑ
(1)
i+1)

2+. . .+(Ẑ
(1)
j )2 ≤

Z2
i+1 + . . .+Z2

j and hence log1/2+ε{cV 2
T /((Ẑ

(1)
i+1)

2 + . . .+ (Ẑ
(1)
j )2)} ≥ log1/2+ε{cV 2

T /(Z
2
i+1 +

. . .+ Z2
j )}.

k = 2. We use

(Ẑ
(2)
i+1, . . . , Ẑ

(2)
j ) = (1 + ε)(Ẑ

(1)
i+1, . . . , Ẑ

(1)
j ), (7)

which guarantees (Ẑ
(2)
i+1)

2 + . . . + (Ẑ
(2)
j )2 ≥ Z2

i+1 + . . . + Z2
j for ε and j − i suitably large,

for a range of distributions of Zt and design matrices X. We now briefly sketch the ar-

gument justifying this for Scenario 1; similar considerations are possible in Scenario 2

but are notationally much more involved and we omit them here. The argument relies

again on self-normalisation. From standard least-squares theory (in any Scenario), we have

(Ẑ
(1)
(i+1):j)

>Ẑ
(1)
(i+1):j = Z>(i+1):jZ(i+1):j−Z>(i+1):jX(i+1):j,·(X

>
(i+1):j,·X(i+1):j,·)

−1X>(i+1):j,·Z(i+1):j .

In Scenario 1, (X>(i+1):j,·X(i+1):j,·)
−1 = (j − i)−1, and hence

Z>(i+1):jX(i+1):j,·(X
>
(i+1):j,·X(i+1):j,·)

−1X>(i+1):j,·Z(i+1):j = Ui+1,j(Z)2. From the above, we ob-

tain

(Ẑ
(1)
(i+1):j)

>Ẑ
(1)
(i+1):j = Z>(i+1):jZ(i+1):j

(
1− Ui+1,j(Z)2

Z>(i+1):jZ(i+1):j

)

= Z>(i+1):jZ(i+1):j

(
1− 1

j − i
log1+2ε{cV 2

T /(Z
2
i+1 + . . .+ Z2

j )}

× I2ρ1/2,1/2+ε,c(ζ
se
T , V

2
i /V

2
T , V

2
j /V

2
T )
)
. (8)

In light of the distributional result (10) of the main paper, the relationship between the

statistic Iρ1/2,1/2+ε,c(W,u, v) and Rac̆kauskas and Suquet (2004)’s statistic UI(ρ1/2,1/2+ε,c),

as well as their Remark 5, we are able to bound sup0≤i<j≤T I
2
ρ1/2,1/2+ε,c

(ζseT , V
2
i /V

2
T , V

2
j /V

2
T )

by a term of order O(log T ) on a set of probability 1−O(T−1). Making the mild assumption
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that sup0≤i<j≤T log1+2ε{cV 2
T /(Z

2
i+1 + . . .+Z2

j )} � lT = oP (T log−1 T ) and continuing from

(8), we obtain (Ẑ
(1)
(i+1):j)

>Ẑ
(1)
(i+1):j ≥ Z>(i+1):jZ(i+1):j

(
1− C(j − i)−1lT log T

)
for a certain

constant C > 0, which can be bounded from below by Z>(i+1):jZ(i+1):j(1 + ε)−2, uniformly

over those i, j for which (j−i)−1lT log T → 0. This justifies (7) and completes the argument.

k = 3. Having obtained Ẑ
(1)
(i+1):j and Ẑ

(2)
(i+1):j as above, the problem of obtaining Ẑ

(3)
s:e to

guarantee

sup
s−1≤i<j≤e

|Ẑ(3)
i+1 + . . .+ Ẑ

(3)
j |√

(Ẑ
(2)
i+1)

2 + . . .+ (Ẑ
(2)
j )2 log1/2+ε{cV 2

T /((Ẑ
(1)
i+1)

2 + . . .+ (Ẑ
(1)
j )2)}

≤ sup
s−1≤i<j≤e

|Zi+1 + . . .+ Zj |√
(Ẑ

(2)
i+1)

2 + . . .+ (Ẑ
(2)
j )2 log1/2+ε{cV 2

T /((Ẑ
(1)
i+1)

2 + . . .+ (Ẑ
(1)
j )2)}

, (9)

which in turn guarantees the bound (11) in the main paper, is practically equivalent to

the multiresolution norm minimisation solved in Step 1 of Section 2.2 of the main paper

except it now uses a weighted version of the norm ‖ · ‖Ia
[s,e]

, where the weights are given

in the denominator of (9). This weighted problem is solved via linear programming just as

easily as Step 1 of Section 2.2 of the main paper, the only difference being that the relevant

constraints are multiplied by the corresponding weights.

We now discuss further practicalities of the self-normalisation. In the exposition of the main

paper, we use all intervals [i+ 1, j] ⊆ [s, e], i.e. the set Ia[s,e]. In practice, for computational

reasons, we compute the supremum on the LHS of (11) in the main paper over the dyadic

set Id[s,e], which does not alter the validity of the bound. Our empirical experience is that

the statistic on the LHS of (11) of the main paper is fairly robust to the choice of V 2
T , as the

latter only enters through the (close to) square-root logarithmic term in the denominator. In

addition, over-estimation of V 2
T for use on the LHS of (11) of the main paper is permitted as

it only strengthens the bound in (11) of the main paper. For these reasons, we do not dwell

on the accurate estimation of V 2
T here, but use the rough estimate V̂ 2

T = T
T−w+1

∑T−w+1
t=1 σ̂2t ,

where the σ̂t’s are the constituents of the σ̂MOLS estimator from Section 4. As clarified

earlier, the use of (7) requires that small values of j − i do not enter in the computation

of the supremum on the LHS of (11) of the main paper. In practice, however, we use
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Figure 2: Piecewise-constant signal from Dette et al. (2020) with Gaussian AR(1) noise
with coefficient 0.9 and standard deviation (1 − 0.92)−1/2/5 (light grey), NSP intervals of
significance (shaded red), true change-points (blue); see Section 7 for details.

all [i + 1, j] ∈ Id[s,e]. This is because the function Iρ1/2,1/2+ε,c(ζ
se
T , V

2
i /V

2
T , V

2
j /V

2
T ) naturally

penalises small scales (i.e. short intervals [i+ 1, j]) through the use of the logarithmic term

in the denominator. Therefore, in practice, short intervals [i+ 1, j] do not tend to achieve

the supremum on the LHS of (11) of the main paper and as a result, we have found further

exclusion of such short intervals unnecessary. Finally, we have experimented with ε in the

range [0.03, 0.1] and found little difference in practical performance. Our code uses ε = 0.03

as a default.

7 NSP with autoregression

We use the piecewise-constant signal of length T = 1000 from the first simulation setting

in Dette et al. (2020), contaminated with Gaussian AR(1) noise with coefficient 0.9 and

standard deviation (1 − 0.92)−1/2/5. A sample path, together with the true change-point

locations, is shown in Figure 2.

We run the AR version of the NSP algorithm (as outlined in Section 3.2 of the main paper),

with the following parameters: a deterministic equispaced interval sampling grid, M = 100,

α = 0.1, no overlap, σ̂2MOLS estimator of the residual variance. The resulting intervals are

shown in Figure 2; NSP intervals cover four out of the five true change-points, and there
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Table 1: Percentage of sample paths with the given numbers of NSP-detected intervals in
the autoregressive example of Section 7.

no. of intervals of significance 2 3 4 5

percentage of sample paths 11 32 42 15

are no spurious intervals.

We simulate from this model 100 times and obtain the following results. In 100% of the

sample paths, each NSP interval of significance covers one true change-point (which fulfils

the promise of Theorem 2.1 of the main paper). The distribution of the detected numbers

of intervals is as in Table 1; we recall that NSP, with a fixed significance level, does not

promise to detect the number of intervals equal to the number of true change-points in the

underlying process.

8 Computation of the NSP threshold by simulation

In a number of locations in the main paper, we mention the possibility of obtaining the

NSP thresholds by simulation. We now clarify how this is done. For example, to solve

P (‖Z‖Id > λα) = α

for λα (see e.g. Theorem 2.1 of the main paper) by simulation, we would simulate multiple

realisations of ‖Z‖Id and choose λα as the 100(1 − α)% empirical quantile of the sample.

We proceed similarly in Section 2.4, in which the task is to approximate the distribution of

minβ ‖Z −Xβ‖Id . It is important to note that this can easily be done for any distribution

of Z (assumed known), not just Gaussian. (If there is uncertainty regarding the distribution

of Z and there are a few plausible candidates, the corresponding threshold can be computed

for each of them and the largest one among them chosen for use in the NSP algorithm.)

This threshold selected as the empirical quantile of minβ ‖Z−Xβ‖Id , for the Gaussian case

in Scenarios 1 and 2, is implemented in the R package nsp and can be used upon setting

thresh.type = "sim" in the nsp_poly routine.

One remaining question is whether it is possible to use the standard (non-self-normalised)
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NSP without knowledge of the distribution of the innovations Z. Here, the following simple

practical procedure for determining the threshold via simulation may help.

1. Pre-estimate the time-varying signal Xβ via a localised moving-window fit; then pre-

estimate the innovations Ẑ.

2. Re-sample the innovations to estimate the distribution of the multiscale deviation

measure ‖Ẑ‖Id .

3. Use a suitable empirical quantile of this distribution as the NSP threshold.

9 Detection consistency and lengths of NSP intervals – proofs

and discussion

Proof of Theorem 4.1 (main paper). Assume initially that ft has a single change-

point η1. As NSP considers all intervals by the assumption of the theorem, it will certainly

consider intervals symmetric about the true change-point, i.e. [η1 − d + 1, η1 + d], for all

appropriate d. In Scenario 1, there is an explicit formula for the deviation measure D[s,e]

on any interval [s, e], given by

D[s,e] = max
τ∈{1,...,e−s+1}

1

2
√
τ

(
max

s1∈{s,...,e+1−τ}

s1+τ−1∑
t=s1

Yt − min
s1∈{s,...,e+1−τ}

s1+τ−1∑
t=s1

Yt

)
. (10)

Without loss of generality, assume fη1 > fη1+1. Representation (10) implies

D[η1−d+1,η1+d] ≥
1

2
√
d

(
max

s1∈{η1−d+1,...,η1+1}

s1+d−1∑
t=s1

Yt − min
s1∈{η1−d+1,...,η1+1}

s1+d−1∑
t=s1

Yt

)

≥ 1

2
√
d

 η1∑
t=η1−d+1

Yt −
η1+d∑
t=η1+1

Yt


≥ 1

2
|fη1+1 − fη1 |

√
d− ‖Z‖Ia . (11)

On the set ‖Z‖Ia ≤ λα, (11) is further bounded from below by 1
2 |fη1+1−fη1 |

√
d−λα. From

the definition of the NSP algorithm, detection on [s, e] is triggered by the event D[s,e] > λα,
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so detection on [η1 − d+ 1, η1 + d] is triggered if (note: not “only if” as we are using lower

bounds here) 1
2 |fη1+1 − fη1 |

√
d− λα > λα, or

|fη1+1 − fη1 |
√
d > 4λα. (12)

As NSP looks for shortest intervals of detection, the NSP interval of significance around η1

will definitely be no longer than 2d = |[η1−d+1, η1+d]|. However, from (12), it is sufficient

for detection to be triggered if d > 16λ2α
|fη1+1−fη1 |2

. This shows that the maximum length of

an NSP interval of significance will not exceed 2d̄, where d̄ =
⌈

16λ2α
|fη1+1−fη1 |2

⌉
+ 1. We now

turn our attention to the multiple change-point case. For each change-point ηj , define its

corresponding d̄j as in formula (13) of the main paper. Recall we are on the set ‖Z‖Ia ≤ λα.

Note first that even though the NSP interval of significance around ηj is guaranteed to be

of length at most 2d̄j , it will not necessarily be a subinterval of [ηj − d̄j + 1, ηj + d̄j ] (as

NSP simply looks for the shortest intervals of significance and interval symmetry around the

true change-point is not explicitly promoted). Therefore, in order that an interval detection

around ηj does not interfere with detections around ηj−1 and ηj+1, the distances ηj − ηj−1

and ηj+1 − ηj−1 must be suitably long, but this is guaranteed by Assumption 4.1 from the

main paper. This completes the proof. �

As an aside, note in addition that in the Gaussian case Zt ∼ N(0, 1), Theorem 2.2 of the

main paper implies λα = O(log1/2 T ); in fact for α = 0.05, we have λα ≤ 1.33
√

2 log T for

T ≥ 100, for α = 0.1, we have λα ≤ 1.25
√

2 log T over the same range of T .

Proof of Corollary 4.1 (main paper). From Lemma 1 in Yao (1988), we have

P (‖Z‖Ia ≤ σ(1 + ∆)
√

2 log T )→ 1

as T → ∞. This combined with the statement of Theorem 4.1 in the main paper proves

the result. �

Proof of Theorem 4.2 (main paper). Assume initially that ft has a single change-point
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η1. In the same way in which the NSP procedure is “blind” to constant shifts in the data

in Scenario 1, it is also invariant to the addition of linear trends in the piecewise-linear

Scenario 2. Assume, therefore, that we have added a linear trend to Yt in such a way that

the true signal is symmetric around the true change-point η1. The case that will lead to

the longest interval is one in which the change-point leads to a trapezoid shape of the true

signal (as in, for example, 1, 2, 3, 3, 2, 1) rather than one with a single peak or trough (e.g.

1, 2, 3, 2, 1). Therefore we assume the former case as the “worst case” (whether this is or

is not assumed will only lead to O(1) differences in the length of the NSP intervals, so

is irrelevant from the point of view of rates). Note that for such a trapezoid signal, the

location of η1 is unambiguous (in the cartoon example above, it must be at the first 3). For

such a transformed signal (a transformation which does not change the output of the NSP

algorithm), consider intervals symmetric around the true change-point, i.e. [η1−d+1, η1+d],

which will be considered by this version of NSP as it considers all intervals. We have

D[η1−d+1,η1+d] = min
f̃(η1−d+1):(η1+d)

‖Y(η1−d+1):(η1+d) − f̃(η1−d+1):(η1+d)‖Ia[η1−d+1,η1+d]
, (13)

where the minimum is taken with respect to all linear fits on [η1− d+ 1, η+ d]. Consider a

single scale τ . Observing that taking moving partial sums does not change the linearity of

f̃ , and continuing from (13), we have

D[η1−d+1,η1+d] ≥ min
f̃(η1−d+1):(η1+d)

max
s1∈{η1−d+1,...,η1+d+1−τ}

∣∣∣∣∣τ−1/2
s1+τ−1∑
t=s1

Yt − f̃(η1−d+1):(η1+d)

∣∣∣∣∣
≥ min

f̃(η1−d+1):(η1+d)

max
s1∈{η1−d+1,...,η1+d+1−τ}

∣∣∣∣∣τ−1/2
s1+τ−1∑
t=s1

ft − f̃(η1−d+1):(η1+d)

∣∣∣∣∣
− ‖Z‖Ia . (14)

Observe now that since ft is symmetric around η1, the minimising f̃ must be constant.

So restrict the class of candidate fits f̃ to constant. Denote the slope of ft before the
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change-point by ξ. We have

min
f̃(η1−d+1):(η1+d)

max
s1∈{η1−d+1,...,η1+d+1−τ}

∣∣∣∣∣τ−1/2
s1+τ−1∑
t=s1

ft − f̃(η1−d+1):(η1+d)

∣∣∣∣∣ =

τ1/2

2

(
1

τ
max

s1∈{η1−d+1,...,η1+d+1−τ}

s1+τ−1∑
t=s1

ft −
1

τ
min

s1∈{η1−d+1,...,η1+d+1−τ}

s1+τ−1∑
t=s1

ft

)
=

τ1/2

2
ξ(d− τ). (15)

Take τ = Cd for C ∈ (0, 1). (14) and (15) together imply D[η1−d+1,η1+d] ≥ C1ξd
3/2−‖Z‖Ia

for a certain universal constant C1. Therefore, on ‖Z‖Ia ≤ λα, detection on [η1−d+1, η1+d]

will be triggered if C1ξd
3/2 > 2λα, or in other words if d ≥ C2λ

2/3
α ξ−2/3, for a large enough

constant C2. This shows that the NSP interval of significance will be of length O(λ
2/3
α ξ−2/3).

We now discuss the slope ξ. Suppose before the symmetrisation the slopes around η1 were ξ1

and ξ2. After the symmetrisation, they are now ξ1+ξ3 and ξ2+ξ3 where ξ1+ξ3 = −(ξ2+ξ3),

which means ξ = |ξ1 − ξ2|/2 (w.l.o.g., ξ > 0). Typically, if ft = f(t/T ) for a certain

piecewise-linear function f(u) : (0, 1]→ R, then ξ = O(T−1). In the Gaussian case, we have

λα = O(
√

log T ). Therefore, if ξ = O(T−1), then the NSP interval of significance will have

the length O(T 2/3 log1/3 T ).

In the multiple change-point case, the argument about the relevance of Assumption 4.1

from the proof of Theorem 4.1 (main paper) still applies here, and this completes the proof

of the theorem. �

Proof of Corollary 4.2 (main paper). The argument is identical to the proof of Corol-

lary 4.1 from the main paper. �

10 NSP with autocorrelated innovations

Scenario 4 permits the use of NSP in settings in which autocorrelation is present, but this is

done through the use of the lagged response as an additional covariate, rather than through

allowing the innovations Zt to be autocorrelated. We now briefly explore the case in which
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the Zt’s themselves are serially correlated. This presents an alternative to the discussion of

Section 2.3 of the main paper.

Suppose that Zt can be modelled as an autoregressive process as follows.

Ut = Zt − a1Zt−1 − . . .− arZt−r =: a(L)Zt,

where Ut is independent (not necessarily identically distributed) noise distribution accept-

able to NSP in Scenarios 1, 2 or 3, and L is the lag operator. We propose the following

iterative scheme which builds on the NSP procedure for independent innovations. We use

the (most general) language of Scenario 3.

Clearly, if the user knew r and (a1, . . . , ar), they would be able to transform the regression

problem (2) from the main paper into

a(L)Yt = a(L)Xt,·β
(j) + Ut for t = ηj + 1 + r, . . . , ηj+1,

a(L)Yt = a(L)Xt,·β
(j,t) + Ut for t = ηj + 1, . . . , ηj + r. (16)

Due to the smoothing action of the filter a(L), this now only approximates a piecewise-

constant parameter regression setting, as it features the short “smooth transition” sections

indexed t = ηj + 1, . . . , ηj + r. However, the presence of these smooth transitions does not

spoil the applicability of NSP, with the intervals of significance obtained on the regression

problem (16) having a similar interpretation as in the case of exactly abrupt transitions.

In practice, r or (a1, . . . , ar) will be unknown to the analyst. We suggest the following

scheme, in which these are treated as nuisance parameters and estimated from the data, as

in Fang and Siegmund (2020).

1. Similarly to Fang and Siegmund (2020), estimate r and (a1, . . . , ar) (to obtain, re-

spectively, r̂ and â = (â1, . . . , âr̂)) on a stretch of the data believed to contain no

change-points.

2. Transform the regression problem using the estimated operator â(L) to obtain a prob-

lem of the form (16).
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Figure 3: Left: scaled interest rate data (black) with a change-point fit obtained in R
package breakfast (red); middle: residuals from the fit; right: their sample acf.

3. Run NSP suitable for independent innovations on the transformed problem, to obtain

a set S of the NSP intervals of significance.

4. Re-estimate r and (a1, . . . , ar) on the longest stretch of data outside the NSP intervals

of significance.

5. Go back to step 2. and iterate until no changes are seen in the NSP intervals of

significance.

11 Additional arguments regarding the real-data analysis

In this section, we show that the application of NSP to the real-data examples of Section 6

of the main paper is justified as the errors do not exhibit significant serial correlation in the

interest rate case or conditional heteroskedasticity in the price series case. Figure 3 demon-

strates this for the interest rate data (note NSP was used on the scaled data shown in Figure

3, where the scaling had been performed to remove heteroscedasticity). Figure 4 shows this

for the Newham house price data example (the presence of significant autocorrelation in

the squared empirical residuals could have been indicative of heteroscedasticity).

12 Discussion

We conclude with a brief discussion of a few speculative aspects of NSP.
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Figure 4: Left: concatenated residuals from two linear regression fits, before and after the
change-point (time t = 60, as in the paper), in the Newham house price data; right: the
sample acf of their squares.

Possible use of NSP in online monitoring for changes NSP can in principle be

used in the online setting, in which ‘alarm’ should be raised as soon as Y starts deviating

from linearity with respect to X. In particular, consider the following simple construction:

having observed (Yt, Xt), t = 1, . . . , T , successively run NSP on the intervals [T − 1, T ],

[T − 2, T ], . . . , until either the first interval of significance is discovered, or [1, T ] is reached.

This will provide an answer to the question of whether the most recently observed data

deviates from linearity and if so, over what time interval.

Using and interpreting NSP in the presence of gradual change If NSP is used in

the absence of change-points but in the presence of gradual change, obtaining a significant

interval means that it must (at global significance level α) contain some of the period of

gradual change. However, this does not necessarily mean that the entire period of gradual

change is contained within the given interval of significance. Note that this is the situation

portrayed in Section 5.2 of the main paper, in which the simulation model used is a ‘gradual

change’ model from the point of view of the NSP0 method, but an ‘abrupt change’ model

from the point of view of NSP1 and NSP2.
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Possible use of NSP in testing for time series stationarity It is tempting to ask

whether NSP can serve as a tool in the problem of testing for second-order stationarity of

a time series. In this problem, the response Yt would be the time series in question, while

the covariates Xt would be the Fourier basis. The performance of NSP in this setting will

be reported in future work.

Does the principle of NSP extend to other settings? NSP is an instance of a

statistical procedure which produces intervals of significance (rather than point estimators)

as an output. It is an interesting open question to what extent this emphasis on “intervals

of significance before point estimators” may extend to other settings, e.g. the problem of

parameter inference in high-dimensional regression.
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