
On multi-zoom autoregressive time series models

Piotr Fryzlewicz

In classic linear time series autoregression (AR), the univariate time series Xt

under consideration is modelled as a linear but otherwise unconstrained function
of its own past values Xt−1, Xt−2, . . ., plus white-noise-like innovation εt. That is,

(1) Xt = a1Xt−1 + . . .+ apXt−p + εt.

In some situations, it appears to be a good idea to modelXt as depending explicitly
on some other features of its own past, rather than on the individual variables
Xt−1, . . . , Xt−p.

As an example, consider the problem of modelling mid- and high-frequency
financial returns, where Xt represents a fine-scale, e.g. one-minute, return on a
financial instrument. In the hope of improving the predictive power, the analyst
may wish to model Xt as depending not only on the past few one-minute returns,
but also perhaps on past returns on lower frequencies, such as one hour or one
day. Representing this in an unconstrained way as in (1) with a large value of p
would lead to obvious over-parameterisation.

Our proposed way to resolve this issue is to adopt what we call a “multi-zoom”
approach to time series analysis. The main idea of the approach is to include
as regressors for Xt features of the path X1, . . . , Xt−1 which “live” on multiple
time-scales, and hence correspond to considering the time series at different zoom
levels.

For example, in the financial time series context described above, we could
entertain a multi-zoom AR model of the form

(2) Xt = α1

1

τ1
(Xt−1 + . . .+Xt−τ1) + . . .+ αp

1

τp
(Xt−1 + . . .+Xt−τp) + εt,

where the time scales τk are such that 1 = τ1 < τ2 < . . . < τp. Note that
Xt−1 + . . .+Xt−τk represents the most recent τk-minute return. There is nothing
to stop τk, k > 1, from being large, e.g. of the order of tens or hundreds. The
number of scales p would typically be much smaller than the longest time scale
τp (note that the standard AR model (1) can always be rewritten in the form (2)
if we take τp = p). Including the regressors Xt−1 + . . . + Xt−τk , rather than the
individual variables Xt−s, corresponds to “zooming out” of the original time scale
on which the data were collected, and explicitly incorporating information from
coarser time scales. In this instance, the returns Xt−1 + . . .+Xt−τk represent the
multi-zoom “features” that we believe have some predictive power with respect to
Xt.

The following questions are of immediate methodological interest:

• Model identification and stationarity. We note that the multi-zoom AR
model in equation (2) is a particular, sparsely parameterised, instance of
the AR(τp) model. Therefore, stationarity (or otherwise) of multi-zoom
AR can be established via the usual route for AR processes.
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• Estimation of p, τk and αk. In the simplest case, the values of p and
{τk}

p

k=1
are chosen by the analyst, and only the coefficients {αk}

p

k=1
need

to be estimated. This can be done e.g. via OLS, or by performing an
unconstrained estimation for AR(τp) and then grouping the estimated co-
efficients into sections of piecewise constancy. If {τk}

p

k=1
are unknown,

the grouping can be achieved via change-point detection techniques. If p
is also unknown, change-point detection needs to be coupled with devices
for model choice based e.g. on thresholding or on the use of information
criteria.

• Use of other multi-zoom features. It is of interest to generalise model
(2) to other multi-zoom features, for example the wavelet coefficients of
the original price process at different scales, or nonlinear breakout-type
statistics (the latter being of interest in e.g. algorithmic trading). The
introduction of non-linearity introduces particularly challenging method-
ological questions of model identifiability and estimation. Note that the
linear dependence on non-linear features that this induces goes in the op-
posite direction to the non-linear dependence on linear features seen, for
example, in Generalised Linear Models.

• Applicability in financial statistics. Preliminary results suggest that multi-
zoom AR processes are good at explaining the apparent lack of serial
dependence in time series of financial returns, when measured via the
sample autocorrelation, which can be blind to multi-scale dependencies
such as those in (2) due to its single-scale nature. Moreover, empirically,
multi-zoom AR processes appear to have relatively good predictive power
for forecasting high- and mid-frequency financial returns.

The fact that multi-zoom AR processes can “mask” as white noise from the
point of view of the sample autocorrelation (and hence be potentially be attractive
from the point of view of modelling financial returns, which tend to exhibit this
empirical feature) is illustrated in Figure 1. Despite the model being far from
white noise, the sample autocorrelation fails to detect the serial dependence in the
process, which is in part due to the fact that this measure takes no account of the
multi-zoom structure of the model.

We are grateful to the workshop participants for pointing us to some other
related literature, and in particular to the models described in [3], [1], [2]. We
emphasize again that in contrast to these, our approach enables, in particular,
automatic selection of the relevant time-scales τk. This also sets it apart from the
autoregressive index models in [4].
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Figure 1. Left: sample path simulated from model (2) with
length n = 250, p = 2, τ1 = 1, τ2 = 10, α1 = 0.1, α2 = 0.5,
εt iid standard normal. Right: the sample autocorrelation of the
simulated sample path.
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