Wavelet Techniques for Time Series and
Poisson Data

By

Piotr Z. Fryzlewicz

A DISSERTATION SUBMITTED TO THE UNIVERSITY OF BRISTOL IN
ACCORDANCE WITH THE REQUIREMENTS OF THE DEGREE
OF DOCTOR OF PHILOSOPHY IN THE FACULTY OF SCIENCE

September 2003

Department of Mathematics






Abstract

This thesis considers the application of wavelet methods to a selection of problems
arising in non-stationary time series analysis and Poisson regression.

In the first part of the thesis, we attempt to provide an answer to the question
of whether and how wavelets can be useful in forecasting non-stationary time
series. To achieve this, we consider several theoretical and computational aspects of
forecasting in the Locally Stationary Wavelet (LSW) model (introduced by Nason
et al. (2000)), which uses discrete non-decimated wavelets as building blocks. We
propose a wavelet-based adaptive algorithm for forecasting non-stationary time
series. The performance of the algorithm is investigated by simulation.

Secondly, we apply the LSW framework to model financial log-returns. We show
that the LSW model accounts well for the stylised facts of log-return data. Several
examples clearly demonstrate the need for local modelling of financial data, and
also indicate the usefulness of wavelets as basic building blocks.

Next, we propose a multiscale algorithm for denoising the wavelet periodogram in
the LSW model, and investigate some of its theoretical properties. The idea of the
algorithm is to pre-process the data in the wavelet domain, in order to transform
a gamma-contaminated signal into an approximately Gaussian-contaminated one,
and then use one of the many denoising techniques available for Gaussian data.
Then, the inverse transformation yields an estimate of the original signal.
Finally, as another application of the same methodology, we propose an algorithm
for denoising Poisson-contaminated signals. We analyse some of its theoretical

properties, and use simulation to demonstrate its excellent performance.
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Chapter 1

Introduction

Wavelets can be casually described as oscillatory basis functions, cleverly con-
structed to possess several attractive features not enjoyed by “big waves” (sines
and cosines): for example multiscale structure, ability to represent a variety of
functions in a sparse manner, or simultaneous localisation in time and frequency.
These and other properties have recently led many researchers to investigate the
potential for using wavelets in various branches of statistics, such as time series
analysis or nonparametric regression. In this thesis, we also employ wavelets to
tackle a selection of problems arising in these two important areas of statistics.

In the introductory Chapter 2, we first review the basics of wavelet theory, and
then provide a survey of wavelet applications in time series analysis and nonpara-
metric regression. In particular, we describe the Locally Stationary Wavelet (LSW)
time series model (Nason et al. (2000)), whose various aspects are studied in Chap-
ters 3, 4 and 5. The LSW model uses wavelets as building blocks, which makes
it a potentially useful tool for modelling multiscale phenomena whose characteris-
tics evolve over time. Also, it uses the concept of rescaled time: the time-varying
second order quantities are modelled as functions defined on a compact interval,
which enables meaningful asymptotics. Chapter 2 concludes with a brief section
on estimating Poisson intensities by wavelet methods, which prepares the ground
for the material of Chapter 6.

The work of Chapter 3 is motivated by the interesting question of whether and
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Chapter 1. Introduction

how wavelets can help in forecasting non-stationary time series. We provide an
answer by considering various aspects of linear prediction in the Gaussian LSW
model. The rescaled time principle enables us to obtain a variety of asymptotic
results. In particular, we generalise the Yule-Walker equations (well known in the
stationary case), and derive Kolmogorov’s formula for one-step prediction error.
In the second half of Chapter 3, we analyse the properties of wavelet-based esti-
mators of the prediction matrix, and provide a complete algorithm for forecasting
non-stationary time series. Interesting and encouraging results are obtained by
applying the algorithm to a meteorological time series.

In Chapter 4, we model financial log-return series as LSW processes. In our
choice of model, we are motivated by several factors, including the comment made
in Calvet & Fisher (2001) that various economic agents operate at different time
scales, which may translate into a possible multiscale mechanism underlying finan-
cial log-returns. We slightly modify the definition of the LSW model to include the
time-modulated white noise, the simplest possible linear model for log-returns, as
a special case. We then exploit the rescaled time principle to provide a theoretical
explanation of the “stylised facts” of financial time series in the LSW framework.
We propose a generic algorithm for estimating the time-varying covariance struc-
ture of log-returns, and perform various analyses of log-return data in the LSW
framework. These seem to confirm the appropriateness of the LSW model for the
analysis of this type of data.

The work of Chapters 5 and 6 stems from a rather unexpected discovery that a
computationally straightforward modification of the Discrete Haar Transform can
be used to stabilise the variance of x? and Poisson data. Being able to denoise the
wavelet periodogram is essential for understanding the local second order structure
of the LSW series under consideration. In Chapter 5, we propose a transforma-
tion, called the Haar-Fisz transform, for stabilising the variance of the wavelet
periodogram in the Gaussian LSW model, and bringing its distribution closer to

normality. Several theoretical results are established, and the above properties
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of the Haar-Fisz transform are proved under a certain asymptotic regime. The
Haar-Fisz transform is shown to perform excellently in practice. Then, a denois-
ing methodology for the wavelet periodogram is proposed, which consists of taking
the Haar-Fisz transform of the periodogram, denoising the transformed vector us-
ing any technique suitable for Gaussian data, and taking the inverse Haar-Fisz
transform. Simulations and an example involving the Dow Jones series demon-
strate the usefulness of the technique.

The Haar-Fisz transform constitutes a “bridge” between Chapters 5 and 6. In
the latter, we propose a similar technique for stabilising the variance of sequences of
Poisson counts and bringing their distribution close to Gaussianity. The Haar-Fisz
transform for Poisson data is investigated theoretically for constant intensities, and
empirically for non-constant ones. It turns out that in this context, the Haar-Fisz
transform is a more effective Gaussianiser and variance stabiliser than the tradi-
tional square-root transform. A Haar-Fisz-based algorithm for Poisson intensity
estimation is proposed: its performance is shown to be typically better than, but
occasionally comparable to, that of the current state-of-the-art techniques.

Finally, Chapter 7 concludes with a summary of contributions and a few inter-

esting ideas for future research.
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Chapter 2

Literature review

This chapter provides an overview of the wavelet theory and reviews recent liter-
ature in the two areas of statistics studied in this thesis: time series analysis and
nonparametric regression. We place particular emphasis on evolutionary spectral

theory for time series and multiscale methods for Poisson data.

2.1 Wavelets

Wavelets can be informally described as localised, oscillatory functions designed to
have several attractive properties not enjoyed by “big waves” — sines and cosines.
Since their “invention” in the early eighties (the term “wavelet” appeared for the
first time in Morlet et al. (1982)), wavelets have received enormous attention both
in the mathematical community and in the applied sciences. Several monographs
appeared, both on the mathematical theory of wavelets (Meyer (1992), Daubechies
(1992), Chui (1992), Mallat (1998), Cohen (2003)), as well as on their applications
(Ruskai (1992), Jaffard et al. (2001)).

Formally, after Daubechies (1992), we define a wavelet to be any function ¢ €

L, (R) which satisfies the admissibility condition

/00 de < o0. (2.1)

o |l
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2.1. Wavelets

In this thesis, we only concentrate on those wavelet functions whose dyadic dila-

tions and translations
Vin(x) = 2P9(Pe — k), jkel (2.2)

form an orthonormal basis of Iy (R). Indices j and &k are commonly called scale (or
dilation) and location (or translation) parameters, respectively. Condition (2.1)

implies, in particular, that

/¢@mx:u (2.3)
R
While (2.1) can be viewed as a requirement that ¢ should be localised in frequency,
(2.3) can be interpreted as both localisation in time (as it implies ¢ € L; (R)) and
oscillation.

Haar (1910) considered an orthonormal basis which would later become arguably

the best-known wavelet system with the wavelet function of the form

T (2) = Tocacryoy — Lj1jo<o<tys (2.4)

We say that the wavelet ¢ has n vanishing moments if

/Ooka(x)dxzo for ke {0,1,...,n}. (2.5)

]

It is easy to see that " has 0 vanishing moments. Daubechies (1992, Chapter
6) identifies the Extremal Phase family: a collection of orthonormal wavelet bases
possessing different degrees of smoothness and numbers of vanishing moments.
This family of bases is indexed by the number of vanishing moments and the Haar
basis is its zeroth member. A review of this and other families of wavelets (in-
cluding Daubechies’ Least Asymmetric family) can be found in Vidakovic (1999),
Sections 3.4 and 3.5.

The vanishing moments property (2.5), together with the localisation properties
(2.1) and (2.3), imply that wavelets are often capable of representing signals in
a sparse manner. Coefficients d;; of the wavelet expansion of f € Ly(R) can
be expressed in the usual way as d;, = (f,v;x). Larger (smaller) values of j

correspond to finer (coarser) scale coefficients.
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Chapter 2. Literature review

2.1.1 Multiresolution analysis

In statistics, we are often faced with discretely-sampled signals and therefore we
need to be able to perform wavelet decomposition of vectors, rather than contin-
uous functions as above. The multiresolution analysis framework, first introduced
by Mallat (1989a,b), is commonly used to define discrete wavelet filters. The start-
ing point is a scaling function ¢ and a multiresolution analysis of L (R), i.e. a

sequence {V;},cz of closed subspaces of Ly (R) such that
e {¢(x — k)}rez is an orthonormal basis for Vp;
e ...CVyCVycViC...CLy(R);
o feV; = f(2)€ Vi
o N;Vi= {0}, U;V; = La(R).

The set {V/2¢(22 — k)}rez is an orthonormal basis for V; since the map f
V2f(2-) is an isometry from Vj onto Vi. The function ¢ is in V; so it must have

an expansion
$(x) =V2) hp(2z—k), {l}r€lh, z€ER (2.6)
k

Once we have the scaling function ¢, we use it to define the wavelet function (also
called the mother wavelet) 1». We define the latter in such a way that {¢(z — k) }«
is an orthonormal basis for the space Wy, being the orthogonal complement of V;

in Vi:
Vi=V,® W (2.7)

Defining W; = span{v;; : k € Z}, we obtain that W; is the orthogonal comple-

ment of V; in Vj;. We can write

J
V3+1:V3@W]~=---=%@<®Wi), (2.8)
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2.1. Wavelets

or, taking the limit (recall that Uj V; is dense in Ly (R)),

Lo(R) =V @ (é Wi) =V, (é wi) _— 29)

1=jo

There are precise procedures for finding ¢ once ¢ is known (see Daubechies (1992),

Section 5.1). One possibility (Daubechies (1992), Theorem 5.1.1) is to set
thl k o(22 — k). (2.10)

It can be shown that the approprlate orthogonality conditions are satisfied.

2.1.2 Discrete Wavelet Transform

The nested structure of the multiresolution analysis can be exploited to construct
a fast decomposition-reconstruction algorithm for discrete data, analogous to the
Fast Fourier Transform of Cooley & Tukey (1965). The algorithm, called the
Discrete Wavelet Transform (Mallat (1989a,b)) produces a vector of wavelet co-
efficients of the input vector at dyadic scales and locations. The transformation
is linear and orthonormal but is not performed by matrix multiplication to save
time and memory.

We first describe a single reconstruction step, used in computing the inverse
Discrete Wavelet Transform (DWT). The following two sets are orthonormal bases
for Vi: {V20(22 — k) }rez, {d(x — k), (2 — 1) }riez. Using (2.6) and (2.10), we
obtain for any f € V;

f(z) = ZCOk¢$— +Zd0k¢$—

k

= Z(thcw—i—zm I dUk) V2¢(2x — 2k — 1)
= Z (Z hl/ 2k €0,k + Zhl l’-|—2k dO k) \/_d)(21‘ - l)

Writing the expansion w.r.t. the other basis as f(z) = Y., c14v2¢(2z — I') and

equating the coefficients, we obtain

= Z hi—akCo e + th vaon(—=1)" do, (2.11)
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which completes the reconstruction part: the coarser scale coefficients {cq 4}, {dox}
are used to obtain the finer scale coefficients {c; 4 }.

The decomposition step (used in the DWT) is equally straightforward: we have
e = [ 1@)le— ko
_ /OO F(2) S hiv/26 (20 — 2k — 1)da
—oo l
= Z th1,2k+z = Z Cl,lhl72k- (2-12)
!

l

Similarly,

dox = Z(_l)li%hlfHQkCl,l- (2.13)
.

The same mechanism works for each scale: {c;} gives {¢;_1} and {d;_,x} for
all j. On the other hand, {¢;s} can be reconstructed using {c; 1} and {d;_1 4}
for all 5. To start this “pyramid” algorithm, we only need to compute the scaling
coefficients c;;, at the finest scale of interest, say j = J. Indeed, when performing
wavelet decomposition of finite sequences, it is commonly assumed that our input
vector f = {f, 271 g a vector of scaling coefficients of a function f, i.e. f, =

n=0

cin = {f,dsn), where ¢;) = 2/2¢(29x — k). The DWT of f is given by
DWT(f) = (CU,O; dO,U) dl,O: dl,l: d2,07 s 7d2,37 s 7dJ71,07 s ;dJ—l,QJ—l—l)' (214)

Informally speaking, the wavelet coefficients d;; contain information on the local
oscillatory behaviour of f at scale j and location 277k, whereas the coefficient g

contains information on the global “mean level” of f. A few remarks are in order.

Decimation. Define

*
Cor = ch,lhl—k

l

ok = Z(—l)lfkhl—urkcu,

l

so that cj, is a convolution of ¢;, with hy, and dfj, is a convolution of

¢ with (=1)Fhi_. We have ¢ = ¢4y, and doj = df 4, coarser scale
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coefficients are decimated convolutions of finer scale coefficients with fixed
(scale-independent) filters. This is in contrast to the Non-decimated Wavelet
Transform where no decimation is performed, yielding a shift-invariant (but

redundant) transform: see Section 2.1.3 for details.

High-pass and low-pass filters. We define g, = (—1)¥h; ;. Due to its effect
in the frequency domain, gy (hy) is often referred to as a high-pass (low-
pass) filter in the wavelet literature (Daubechies (1992)). This motivates the
commonly used name for the wavelet and scaling coefficients: they are often

referred to as detail and smooth coefficients, respectively.

Example of the DWT. By simple algebra, ¢ (z) = Ij9<,<1} generates the Haar
wavelet ¥, with a low-pass filter hy s.t. hg = hy = 1/\/5, hr = 0 otherwise,
and a high-pass filter g, s.t. go = —¢1 = 1/v/2, gr = 0 otherwise. We shall

now decompose a four-element vector

(2,0, €15 €22, c23) = (1,1,2,3)
using the DWT with Haar wavelets. By (2.12) and (2.13), we obtain

co = 1/V2x1+1/V2x1=2
¢ o= 1/V2x2+41/V2x3=5/V2
dig = 1/V2x1-1/v/2x1=0
diy = 1/V2x2-1/V/2x3=-1/V2.

Continuing at the next coarser scale, we obtain

coo = 1/V2xV2+1/V2x5/V/2=1/2
dop = 1/V2xV2—1/V2x5/V2=-3/2.

The original vector (ca, €1, 2,2, C23) can now be easily reconstructed from

(0,0, do,0,d1,0,d1 1), (i.e. from the smooth coefficient at the coarsest scale and
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the detail coefficients at all scales) using the inverse DWT. As the DWT is

orthonormal, the inverse DW'T uses exactly the same filters as the DWT.

Note that the high-pass filter annihilates constants (recall that Haar wavelets
have vanishing moments up to degree 0). Wavelets with higher numbers of

vanishing moments are capable of annihilating polynomials of higher degrees.

Boundary issue. With wavelet filters longer than Haar, there often arises the
problem of what action to perform when the support of the filter extends
beyond the support of the input vector. Several solutions have been pro-
posed, including symmetric reflection of the input vector at the boundaries,
polynomial extrapolation, periodising the vector, padding it out with zeros,
etc. See Nason & Silverman (1994) for an overview. Cohen et al. (1993)
introduced wawvelets on the interval, i.e. wavelet bases for functions defined
on an interval as opposed to the whole real line. They also proposed a cor-
responding fast wavelet transform which uses filters adapted to the finite
support situation. The lifting scheme (see Section 2.1.4) offers a natural way

of dealing with the boundary problem.

Computational speed. O(n) operations are needed for the DWT which uses a
compactly-supported wavelet, where n is the size of the input sequence. This
is an advantage over the Fast Fourier Transform, which requires O(nlog(n))

operations.

2.1.3 Non-decimated Wavelet Transform

An undesirable property of the DWT is that it is not translation-invariant, and that
at any given scale, it only provides information about the input vector at certain
(dyadic) locations. Using the toy example above, the coefficient ¢ uses co and
¢o,1, while the coefficient ¢, uses ¢y and cy 3, but there is no coefficient which
would use, say, ¢o1 and 9. Motivated by this, Pesquet et al. (1996) introduce a

Non-decimated DWT (NDWT) which remedies this problem by computing wavelet
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coefficients at all possible locations at all scales (see also Nason & Silverman (1995),
Coifman & Donoho (1995)). Continuing the example of the previous section, the
NDWT of (ca0,C21,C29,¢23) = (1,1,2,3) which uses Haar wavelets is performed

as follows. We begin with

co = (1/V2,1/V2) - (ca0,¢21)
e = (1/V2,1/V2) - (ca1,¢20)
cre = (1/V2,1/V2) - (cap, c23)
e = (1/V2,1/V2) - (e23, ¢20),

where the “” denotes the dot product. The detail coefficients d,  are obtained
similarly by replacing the low-pass filter with the high-pass one. Note that we
implicitly assume “periodic” boundary conditions in the above (see the remark on
the “boundary issue” in Section 2.1.2). Before we proceed to the next stage, we

insert zeros between each two elements of the wavelet filters. Thus, we have

Coo = (1/\/5, 0, 1/\/5, 0) - (c10,€11, €12, C13)
Cop — (1/\/5: 0, 1/\/§a 0) - (€115 €1,2, €13, C1,0)
Cop = (1/\/5, 0, 1/\/5, 0) - (€12, €13, C1,0,€C1,1)
o3 = (1/\/5, 0, 1/\/§a U) : (01,3, C1,05 C1,1; 01,2),

and similarly for the detail coefficients. The insertion of zeros is necessary
since decimation is not performed. Were we to compute the NDWT at yet an-
other scale, we would use the filter (1/4/2,0,0,0,1/v/2,0,0,0) for the smooth
and (1/v/2,0,0,0,—1/4/2,0,0,0) for the detail. The computational speed of the
NDWT is O(nlog(n)), where n is the length of the input vector.

2.1.4 Recent extensions of wavelets

Since the late eighties, several extensions and modifications of wavelets have been

proposed. We only give a brief overview below.
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The construction of multidimensional wavelets is due to Mallat (1989a), who
also proposed a multivariate version of the DWT. Cohen et al. (1992) introduced
biorthogonal wavelets, where the decomposition and reconstruction steps use differ-
ent non-orthogonal bases which are however, in a certain sense, mutually orthog-
onal. Geronimo et al. (1994) formulated multiple wavelets which use translations
and dilations of more than one wavelet function. Lawton (1993) derived complez-
valued wavelets (although their construction was already mentioned in Daubechies
(1992); see also Lina & Mayrand (1995) for a detailed description and derivation of
complex Daubechies’” wavelets). Coifman et al. (1989) introduced wavelet packets:
redundant collections of linear combinations of wavelets capable of representing sig-
nals more economically than wavelets themselves. Wavelet packet coefficients are
rapidly computable by applying both low- and high-pass filters to both smooth
and detail coefficients, and can be searched for the “best basis” representation
(Coifman & Wickerhauser (1992)).

Donoho (2000) introduced orthonormal ridgelets, which form a basis of L, (R?)
and provide an efficient representation of so-called ridge functions, i.e. functions of
the form r¢(z) = r(x1 cos(f) + x4 sin(6)), where the ridge profile r is not necessarily
smooth. Curvelets (Candeés & Donoho (2001)), whose theory relies on ridgelets,
provide a near-optimal approximation of distributions in 2D which are integrals
along curves and which can be viewed as 2D extensions of the Dirac delta. Donoho
& Huo (2002) introduced beamlets, i.e. collections of line segments in 2D, occurring
at dyadic locations and scales and at a range of orientations; a beamlet transform
of a 2D function is a collection of integrals along beamlets.

The lifting scheme, proposed by Sweldens (1996) is a powerful way of generating
multiscale transforms of (possibly) unequally spaced data. The transform consists
of predict and update steps, is fast and can be performed “in place”. For particular
choices of filters, the lifting scheme generalises the (bi)orthogonal DWT or the
wavelet packet transform.

Some of the above extensions, as well as some others, are discussed in detail in
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Vidakovic (1999), Chapter 5.

2.1.5 Applications of wavelets

Wavelets and their extensions have been applied in a multitude of areas, such
as signal and image processing, data compression, computer graphics, astronomy,
quantum mechanics and turbulence: for a discussion of these and other areas of
application we refer the reader to the monographs by Ruskai (1992) and Jaffard
et al. (2001). An important field of application is numerical analysis, extensively
covered in Cohen (2003). One can venture to say that wavelets are indeed one
of those fortunate mathematical concepts that have almost become “household
objects”: for example, they were used in the JPEG2000 compression algorithm;
and multiscale subdivision schemes, related to wavelets, were employed in some
recent animated movies such as “A Bug’s Life” (Mackenzie (2001)). See Cohen
(2003), Chapter 2, for an overview of subdivision schemes and related topics.
Following Vidakovic (1999), who gives a comprehensive overview of wavelet
applications in statistics, we list some of the most important areas of statistics

where wavelets have been successfully applied:

time series analysis (see Section 2.2 for more details);

e non-parametric regression (see Section 2.3 for more details);

estimation of densities (Hall & Patil (1995), Donoho et al. (1996), Penev
& Dechevsky (1997), Pinheiro & Vidakovic (1997), Antoniadis et al. (1999),
Pensky (1999), Herrick et al. (2001)) and density functionals (Kerkyacharian
& Picard (1996), Prakasa Rao (1999));

deconvolution and inverse problems (Donoho (1995), Abramovich & Silver-
man (1998), Pensky & Vidakovic (1999), Walter & Shen (1999), Pensky
(2002));
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e statistical turbulence (see Farge et al. (1999) and Schneider & Farge (2001)

for reviews).

Abramovich et al. (2000) is a useful review article on statistical applications of
wavelets. We give a detailed review of wavelet applications in time series analysis
(with a particular emphasis on evolutionary spectral theory) and non-parametric

regression in Sections 2.2 and 2.3, respectively.

2.1.6 Summary

In this section, we briefly summarise the attractive features of wavelets shown or
mentioned in this chapter.

Due to their vanishing moments property and localisation in time, wavelets are
capable of representing certain functions, e.g. piecewise polynomials, in a sparse
manner. As the wavelet coefficients computed at locations where the function is
smooth will be zero, only a few significant coefficients will suffice to accurately ap-
proximate the function. Also, their simultaneous localisation in time and frequency
makes them potentially useful building blocks for phenomena whose spectral char-
acteristics evolve over time.

The multiscale structure inherent to wavelets serves two useful purposes: it
enables the construction of fast decomposition-reconstruction algorithms, and it
makes them a natural tool for analysing multiscale phenomena. The fact that
it is possible to construct orthonormal wavelet bases is extremely important in
statistics, where i.i.d. Gaussian noise in the time domain gets mapped to noise
with the same characteristics in the wavelet domain.

Also, in contrast to Fourier analysis where only one set of basis functions is

available, there are several families of wavelets to choose from.
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2.2 Time series analysis

2.2.1 Introduction

A time series is a collection of random variables {X;,¢t € D C Z}, with ¢ often
interpreted as time. Usually, D =N, D =Z or D = {1,2,...,T}. With a slight
abuse of terminology, an observed realisation of X; is also often referred to as a
time series. Time series arise is several areas of science and technology and time
series analysis (TSA) is one of the most widely studied branches of statistics, with
the Journal of Time Series Analysis dedicated solely to this important field. Two
recommendable monographs are Priestley (1981) and Brockwell & Davis (1987).
We say that a time series X, is stationary when (some of) its statistical properties
do not change through time, therefore enabling us, in most cases, to estimate its

parameters consistently. We say that X, is strict-sense stationary if
D
(Xtu s 7th) = (th-l-da s 7th+d)

for all n, t1,...,t, and d. Often, strict-sense stationarity is too difficult to verify
and/or too restrictive; one of the weaker concepts is that of covariance stationarity.
For a univariate, zero-mean time series X;, we define its covariance as yx(s,t) =
E(X,X;). We say that X; is covariance stationary if Yx(s,t) = vx (|t — s|).

It is well known (see e.g. Brockwell & Davis (1987), Theorem 4.8.2) that every
univariate, zero-mean, covariance stationary discrete-time process has the follow-

ing Cramér representation:
X, :/ Aw) expliwt)dZ(w), t€ T, (2.15)

where A(w) is the amplitude and Z(w) is a stochastic process with orthonormal
increments, i.e. E(dZ(w;)dZ(ws)) = dwidy,,—u,, where 4 is the Kronecker delta.
The parameter w can be interpreted as frequency: X; is a weighted linear combi-

nation of Fourier exponentials oscillating at various frequencies. Correspondingly,

under mild conditions (Brockwell & Davis (1987), Theorem 4.9.2), the covariance

33



Chapter 2. Literature review

function of X; can be expressed as

vx (1) = /_7r fx(w) exp(iwT)dw, (2.16)

where fx(w) := |A(w)|? is called the spectral density of X;.
Below we list two of the most commonly used time series models. All the

definitions given below hold for univariate, zero-mean processes.

ARMA models. ARMA (Autoregressive Moving Average) processes are ar-
guably the most popular time series models used in the applied sciences.

An ARMA(p, q) process X; is defined as
p q
Xt = Z Otht_j + &+ Z ﬁz’gt—i, (217)
j=1 i=1

where ¢; is a sequence of independent or uncorrelated identically distributed
r.v.s, often assumed Gaussian for tractability. Stationarity of an ARMA(p,

q) process is guaranteed by the condition that the polynomial
alz) =1—ajz— ... — a2 (2.18)

has no roots in the closed unit disk, e.g. X; = 0.9X, ;| 4 ¢; is stationary but
X; = X;_1 4+ &; is not. The spectral density of X, is given by
Ble™™)

a(e—iw)

2, (2.19)

0.2

" or

fx(w)

where 3(2) =1+ 12+ ...+ 3,2F and 0% = Var(g,).

ARMA (p, q) is an example of a so-called linear time series model, where X

and its innovations ¢; are related by a linear mapping.

GARCH models. Several authors have studied financial log-return series, i.e.
time series of the form X; = log(P,/P;,_ 1), where P; is a share price, a stock
index, or a currency exchange rate. It has been empirically observed that
most financial log-returns display the following features: the sample mean is
close to zero; the marginal distribution is heavy-tailed; the sample autocorre-

lations of X; are mostly insignificant but those of | X;|? decay only very slowly;
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finally there are “bursts” of high volatility (standard deviation) among peri-
ods of low volatility. These “stylised facts” imply that financial log-returns
cannot be modelled as stationary linear processes: to preserve stationarity,
various non-linear models have been proposed. The Autoregressive Condi-
tionally Heteroscedastic (ARCH) model was proposed by Engle (1982), and
Generalised ARCH (GARCH), its most popular extension — independently
by Bollerslev (1986) and Taylor (1986). The Stochastic Volatility (SV) model
was suggested by Taylor (1986) as an alternative to ARCH-type modelling.
The two families of models are by far the most widely used in practice and
there is massive literature on both of them; Cox et al. (1996) and Maddala

& Rao (1996) are two recommendable monographs.

The zero-mean GARCH(p,q) model is specified as

Xt = UtZta teZ (220)
p q

of = ag+ Y aXPi+> B},
1=1 j=1

where Z; is symmetric i.i.d. with variance one and «;, 5; > 0. In other words,
the current standard deviation is a linear deterministic function of the past
squared returns and/or the past values of the variance. By contrast, in the
SV framework, the current variance is modelled as a stochastic function of

the past returns.

Strict-sense stationarity of a GARCH(p, ¢) process is guaranteed by the well

known conditions that ag > 0 and

p q
Y ai+) Bi<1, (2.21)
i=1 j=1

see Bougerol & Picard (1992). Davidson (2003) reviews some recent exten-
sions to the ARCH model, analyses their moment and memory properties,

and proposes a new model.
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2.2.2 Evolutionary spectral theory

Time series which cannot be modelled well as stationary processes arise in several
fields, e.g. biomedical TSA (Nason et al. (2000)) or geophysics (Sakiyama (2002)).
Also in finance, several authors agree that stationary nonlinear processes cannot
account well for some empirical characteristics of log-return data: see e.g. Mikosch
& Starica (2003), Kokoszka & Leipus (2000) (who look at change point detection
in ARCH models) or Hérdle et al. (2000) (who introduce a time-varying SV model
and look at the adaptive estimation of its parameters).

In this section, we review some of those time series models which assume that
the process under consideration can be “well approximated”, in some sense, by a
stationary model over a short stretch of time. An appropriate name for this concept
would be “local stationarity”; however, this term has already been reserved for a
subclass of processes possessing this characteristic so we avoid using it at this
stage. We only restrict ourselves to linear models and refer the reader interested
in non-stationary nonlinear models to the articles on financial time series listed
above.

Piecewise stationarity, possibly the simplest departure from stationarity, was
considered e.g. by Ombao et al. (2001a), who attempted to find “optimal” stretches
of stationarity in the series in a data-driven way. Several other approaches assumed
a smoother evolution of the second-order structure. Here, two subgroups can be

distinguished:

e time-domain approaches, which allow the coefficients of a parametric model,
e.g. AR, to vary slowly with time: Mélard & Herteleer-De Schutter (1989),
Dahlhaus et al. (1999), Grillenzoni (2000);

e frequency-domain approaches, which control the evolution of frequency-
dependent quantities over time: Priestley (1965), Battaglia (1979), Dahlhaus
(1997), Mallat et al. (1998), Swift (2000), Ombao et al. (2002).
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Dahlhaus (1996a) introduces an important concept of rescaled time into the anal-
ysis of non-stationary time series. In his class of Locally Stationary Fourier (LSF)
processes, X is modelled as a triangular stochastic array {X; 7}/, T = 1,2,...,
such that

Xy = / expicot) A () dZ (), (2.22)
and there exists a function A : [0,1] X (==, 7] — C, continuous in the first argu-

ment, such that

sup < % vT (2.23)

t,w

Atr() - 4 (3.0)
(see the paper for a complete definition). The time-rescaling in (2.23) is reminis-
cent of nonparametric regression where the function of interest is also defined on
a finite interval and possesses some degree of regularity, thus enabling asymptotic
considerations of e.g. consistency of the estimation procedure. In Dahlhaus’ ap-
proach, the longer the stretch of the series, the finer the grid ¢/T and therefore the
more information is gathered about A(u,w) and about the evolutionary spectral
density defined as f(u,w) := |A(u,w)]?. Kim (1998) provides various statistical
analyses of financial and macroeconomic data in the LSF framework.

The approach of Nason et al. (2000), which also adopts the rescaled time concept,

will be discussed in detail in Section 2.2.4.

2.2.3 Wavelets and time series

Wavelets, due to their attractive properties listed in Section 2.1.6, have been used
extensively in TSA. Reviews of wavelet methods in time series forecasting and
wavelet smoothing in TSA appear in separate sections (Section 2.2.5 and 2.3.2,
respectively). The paper by Nason & von Sachs (1999) reviews the use of wavelets
in TSA, and the comprehensive monograph of Percival & Walden (2000) cov-
ers, among others, wavelet analysis of long memory processes (see also Vidakovic

(1999), Section 9.5).
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Several authors use wavelets in hypothesis testing in TSA: for example, Neu-
mann & von Sachs (2000) propose a test for time series stationarity, Lee & Hong
(2001) construct a test for serial correlation, and Whitcher et al. (2002) propose
a test for variance homogeneity in long memory processes. Chiann & Morettin
(1999) define the wavelet periodogram for stationary processes as a sequence of
squared wavelet coefficients of the process; they also analyse some of its proper-
ties. Even though this wavelet-based analysis provides useful insight into the data,
it is the classical Fourier analysis that can be shown to be “optimal” for station-
ary processes, see e.g. Priestley (1965). Nason & Sapatinas (2002) use wavelet
packets to model a transfer function between two nonstationary time series. Wang
et al. (2001) and Audit et al. (2002), among others, use wavelets to estimate the
scaling exponent in self-similar processes. Bilen & Huzurbazar (2002) propose a
model-free method for detecting outliers in time series data using wavelets, Wong
et al. (2001) use wavelets to detect jumps and Li & Xie (1997) — hidden pe-
riodicities. Walden & Serroukh (2002) construct multi-resolution filters for the
analysis of matrix-valued time series. Whitcher (2001) proposes a method, based
on wavelet packets, for simulating Gaussian processes with unbounded spectra.
Serroukh et al. (2000) investigate time-scale properties of time series in various
models by estimating the variance of non-decimated wavelet coefficients (so-called
“wavelet variance”) at different scales. Rao & Indukumar (1996) look at higher
order moments of wavelet transforms of nonlinear signals.

In financial time series, Hong & Lee (2001) develop a test for ARCH effects using
a wavelet estimator of the spectral density of the squared residuals at frequency
zero. Struzik (2001) uses wavelets to examine the scaling properties of the S&P
index, and Gencay et al. (2001) — those of foreign exchange volatility. Ramsey
(1999) and Ramsey (2002) review the use of wavelet analysis in finance and eco-
nomics. Gengay et al. (2001) is an introductory monograph on wavelet methods

in finance and economics.
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2.2.4 The Locally Stationary Wavelet model

We now move on to describe the time series model whose various aspects are
studied in Chapters 3, 4 and 5 of this thesis. The Locally Stationary Wavelet

(LSW) model, due to Nason et al. (2000), is based on two main ingredients:

e following Dahlhaus (1996a), it adopts the rescaled time principle;

e it replaces the representation with respect to the Fourier basis by a repre-

sentation with respect to non-decimated discrete wavelets.

Before defining the LSW model, we first define compactly supported discrete
wavelet vectors. In what follows, j = —1 denotes the finest scale, j = —2 is
the second finest scale, etc. Following Nason et al. (2000), we define the discrete
wavelet vectors associated with filters {hy}, {gx} as ¥; = (¥j0,... ,¥jc;~1), where
w—l,n = On
Yin = O hnowtbjax for j<—1
k
Li = (27 =1)(Ny—1)+1

For example,
fn = 2j/2(]1{0§n§2*j*1—1} - H2*1*1§n§2*1—1)' (2-24)

The nondecimated collection 1; () of discrete wavelet vectors is formed by shifting

vectors 1, to all integer locations &:

Vik(t) == V4 k. (2.25)

We are now in a position to define the LSW model.

Definition 2.2.1 (Nason et al. (2000)) A  triangular  stochastic — array
(X, 7Yt for T = 1,2,..., is in the class of LSW processes if there exists
a mean-square representation

-1 00
Xyr = Z Z W) kWi (1) ks (2.26)

j=—J(T) k=—oc
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where ;i (t) are nondecimated discrete wavelet vectors, wj . are real constants,
J(T) = —min{j : £L; < T}, and {& i}k are zero-mean orthonormal identically
distributed random variables. Also, we assume that for each j < —1, there exists
a Lipschitz function W;(z) : [0,1] — R such that

-1
e ijfoo ‘W]P < OO’
e the Lipschitz constants L; satisfy
—1
> 27 < oo, (2.27)
j=—00

-1

e there exists a sequence of constants C; satisfying ijfoo

for each T,

C; < oo such that,

sup \wj,k;T—Wj(k/T)\ S C]/T for ] = —1,... ,—J(T) (228)
k=0,...,T—1

The representation in (2.26) can be viewed as a “wavelet counterpart” of the
classical Cramér representation (2.15). As wavelets are parametrised by scale
J and location k, the integration over frequencies in (2.15) is replaced by the
summation over j and k in (2.26). Thus, the representation becomes naturally
location-dependent (or, in this case, time-dependent).

Like in the classical theory, wik;T (the square of the amplitude, or the transfer
function) constitutes a “wavelet spectrum” which measures the power of the series
at scale 7 and location k. Our aim will often be to make inference on this quantity;
however, if wik;T depends on j,k in an arbitrary fashion, there is no hope of
estimating it accurately: note that we only observe a single row of the triangular
array X;p, and there are of order J(T) x T = O(T'log(T)) parameters w3 ;..
to be estimated. Clearly, we cannot do a good job here unless we control the
evolution of this sequence, and this is where the rescaled time property (2.28)
comes into play. It ensures that for each 7, the sequence {wj,k;T}f;OI evolves slowly,
by requiring that it should be “close” to a sequence formed by sampling a regular
(here, Lipschitz continuous) function W;(z) on a finer and finer grid. This idea,
adopted from Dahlhaus (1996a), embeds inference in the LSW framework into the

nonparametric regression setting. Note that, unlike the classical setting, T — oo
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does not mean that more and more future observations arrive; the rows of { X}, r
are completely different stochastic processes, only linked to each other by the fact
that they possess the same asymptotic transfer function W;(z).

The asymptotic evolutionary wavelet spectrum S;(z) is defined in rescaled time

as

Si(2) = W;(2)? = lim w? LT )T (2.29)

Too

In the classical theory, the spectral density and the covariance function are Fourier
transforms of each other, see formula (2.16). It is possible to establish an analogous
relationship here. Let cr(z,7) denote the finite-sample covariance function of X, r

at lag 7 and rescaled time location z:

CT(Z, 7') = E(XLZTJ ,TX[ZTJ+T,T)' (230)

Further, let us recall the definition of autocorrelation wavelets ¥; from Nason et al.

(2000):
W(r) = ij,kwj,kﬂ-- (2.31)
k

The system {¥;}, is linearly independent, see Nason et al. (2000), Theorem 2.13.
Some other properties of {¥;}; will be discussed in Chapter 3. Let ¢(z,7) denote
the asymptotic local covariance function of X, r at lag 7 and rescaled time location
z, defined as a transform of {S;(z)}; with respect to the set of autocorrelation
wavelets:

c(z,7) = Si(2)¥,(7). (2.32)

j=—1

We quote the following result.
Theorem 2.2.1 (Nason et al. (2000)) Under the assumptions of Definition
2.2.1, ||lc — er||p, = O(T™Y).
Therefore, the asymptotic local covariance ¢ is a good approximation to the finite-

sample covariance ¢p. Formula (2.32) provides a multiscale decomposition of the
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covariance structure of X; . As U,(0) = 1 for all j, the local variance decomposes
as
o%(2) = c(2,0) =) _ S;(2). (2.33)
J

Also, the representation (2.32) is invertible: denoting

Aij =Y y(r)y(r), (2.34)

we obtain

Si(z) = (Z \pi(T)Ai,;) c(z,7) (2.35)

(see Nason et al. (2000), Theorem 2.15, for the proof of invertibility of A).
Proposition 2.17 of Nason et al. (2000) states that all stationary processes with
absolutely summable covariance are LSW processes; for them, the spectrum 5;
does not depend on the rescaled time z.
One way of performing inference on time-varying second-order quantities in the

LSW framework is by using the wavelet periodogram, defined below.

Definition 2.2.2 (Nason et al. (2000)) Let X;r be an LSW process con-
structed using the wavelet system 1. The triangular stochastic array

Z Xs,ij,t—s

is called the wavelet periodogram of X, at scale j.

2
70)

t,T

(2.36)

In practice, the wavelet periodogram is not computed separately for each scale j
but instead, we compute the full NDWT transform of the observed row of X,
with periodic boundary conditions, and then square the wavelet coefficients to
obtain I} for t =0,... ,T—1and j = —1,-2,...,—J(T).
We quote the following result:
Proposition 2.2.1 (Nason et al. (2000)) We have
-1
B =Y S (%) Aii+0(Q277)T). (2.37)
i=

— o0
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If, in addition, X, is Gaussian, then
1 2
Var (It(gl) =9 ( Y s (%) Ai,j) +0(279/T). (2.38)
i=—00
Formulas (2.37) and (2.38) imply that the wavelet periodogram is an inconsistent
but asymptotically unbiased estimator of a quantity which is a linear transform of
the wavelet spectrum. By (2.37), an estimate of S;(z) can be obtained by setting
Si(2) = ZZ;J_(? IE?TJ,TAi_,jl' Some properties of this estimator are analysed in
Nason et al. (2000).

Figure 2.1 shows an example of an LSW process whose spectrum is only non-zero
at scales —1 and —3. S_;(z) and S_3(z) (bottom plot) are chosen in such a way
that the local variance c(z,0) = 0?(z) is independent of z, but ¢(z,7) varies with
z for 7 =1,2,...,7. The top plot shows a sample path of length 512 simulated
from this spectrum using Haar wavelets and Gaussian innovations. It is visibly
non-stationary: the series oscillates more rapidly over the time intervals where the
finer-scale spectrum S ;(z) dominates.

In the original paper by Nason et al. (2000), the authors apply the LSW model to
a biomedical time series. In Chapter 4 of this thesis, we demonstrate the usefulness
of LSW modelling by considering various analyses of financial log-return data in

the LSW framework.

2.2.5 Forecasting

Forecasting the future behaviour of time series is, along with understanding the
data generating mechanism, one of the main aims of TSA, and two journals: Jour-
nal of Forecasting and International Journal of Forecasting publish articles devoted
exclusively to this important area. Having observed Xi,...,X;, the quantity of
interest to the analyst is often the predictor XHh of Xyyn (h > 0) which minimises

the Mean-Square Prediction Error (MSPE):

MSPE (X n, Xiin) = B(X i — Xipn)?. (2.39)
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Example of an LSW process

100 200 300 400 500

o

Scale

|||.II||| ........ _||‘|.""IHHMI“”..II- ......... ||||-||||‘I“I“H||I|""".III-_.udI||||||I||||||l“l.""l
T T T T T

0.0 0.2 0.4 0.6 0.8 1.0
Rescaled Time
Figure 2.1: Bottom plot: spectrum of an exemplary LSW process plotted against
the rescaled time. The y-axis shows negative scale —j. The spectrum is only non-

zero at scales —1 and —3. Top plot: a sample path of length 512 simulated from
this spectrum using Haar wavelets and Gaussian innovations.
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(2.39) is minimised by
XtJrh = E(Xt+h ‘Xla s :Xt) (2-40)

(see Brockwell & Davis (1987), Section 2.7). For Gaussian time series, X,,, can

be expressed as a linear combination of the past observations:

t

Xt—l—h = ZaiXi, (241)

i=1
where a; solve the so-called Yule-Walker equations
t
Cov(Xp, Xeyn) = Y _a; Cov(X,, X3), n=1,... ¢t (2.42)
i=1
which take a particularly simple form when X; is stationary. GARCH models
are used to forecast future volatility o;,, and not X, itself: note that in the
GARCH model specified by (2.20), the best mean-square predictor of X;,;, given
by (2.40), is simply zero. See Bera & Higgins (1993) for a discussion on forecasting
in ARCH-type models.

For non-stationary Gaussian models, various more sophisticated forecasting
techniques have been developed. Kalman filtering (see e.g. Chatfield (1996), Chap-
ter 10) updates the parameters of the model as new observations arrive and can
be used to produce forecasts. As well as being computationally fast, it exhibits
fast convergence when the underlying model is stationary but is also able to trace
the evolution of non-stationary models. Bayesian forecasting (West & Harrison
(1997)) also exploits the principle of “parameter updating”. Methods based on
neural networks are often applied to the forecasting of non-linear time series, es-
pecially in the engineering literature, see e.g. Zhang et al. (2001b). Several other
methods exist: the recent monograph by Chatfield (2000) provides a comprehen-
sive overview.

Wavelets have often been used in time series forecasting in conjunction with
neural network methods (Geva (1998), Milidiu et al. (1999), Hee et al. (2002),

Soltani (2002)). Combined wavelet + neural network techniques were used to
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forecast electricity demand data (Zhang & Dong (2001)), financial time series
(Zhang et al. (2001a)) and web traffic (Aussem & Murtagh (2001)). Some authors
have considered forecasting based on wavelet methods but not supplemented with
neural networks. The forecasting method proposed by Wong et al. (2003) relies on
the decomposition of the time series using wavelets into three summands: trend,
harmonic and irregular components. Li & Hinich (2002) use wavelets (and other
filter banks) to forecast seasonal patterns. Zheng et al. (2001) apply their SVH-
ARMA (state-dependent vector hybrid ARMA) technique to the forecasting of
vector time series constructed by taking the DWT of scalar time series. Masuda &
Okabe (2001) base their forecasting technique on the multiscale decomposition of
a time series. The method of Soltani et al. (2000) exploits the decorrelating prop-
erty of wavelets to forecast long-memory processes. Zheng et al. (2000) combine
wavelets and Kalman filtering by modelling wavelet coefficients as state variables
for the Kalman filter. Tkeda & Tokinaga (1999) use wavelets to forecast fractal
time series.

In Chapter 3 of this thesis, we consider several theoretical and practical aspects

of forecasting LSW processes reviewed in Section 2.2.4 above.

2.3 Nonparametric regression

In this section, we consider the problem of estimating a function f : [0,1] — R

from noisy observations y; on an equispaced grid:

where the ¢;’s (“noise”) are r.v.’s with E(y;) = 0. Denoting the estimator by
f :1]0,1] = R, we are often only interested in the values of f on {i/n}",. The

performance of f is often measured by the Mean-Square Error (MSE):

A

1 .
MSE(f, f) = ~B|f - 1]}, (2.44)
Various subclasses of the problem can be identified, depending on the joint

distribution of {¢;}"; and on the smoothness of f. Linear methods produce an
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estimate f(i/n) by taking a linear transform of the observations: f(i/n) = By,
where B is a square matrix, and y = (y;,...,y,)’. Linear methods can often
be shown to be optimal in terms of MSE if the underlying function f is smooth.
For example, a linear method based on natural cubic splines is optimal for twice-
differentiable functions in the sense that the estimator minimises the penalised
sum of squares
1
S() = Yot = £/ +a [ (1) (2.45)
i=1

where the penalty term controls the “roughness” of f (see Green & Silverman
(1994)). For reviews of other nonparametric linear methods, including kernel

smoothing, see the monographs of Simonoff (1996) and Wand & Jones (1994).

2.3.1 Non-linear wavelet smoothing

For less regular (e.g. discontinuous) functions, linear smoothing performs inad-
equately, and non-linear smoothing methods are needed. In a seminal paper,
Donoho & Johnstone (1994) introduce the principle of a non-linear smoothing
method called wavelet thresholding. First, the signal is transformed via the DWT
to obtain d;j, = 6,4 + €, where d;i, (0, €i) is the DWT of y; (f(i/n), €).
Then, d; are shrunk towards zero (with the threshold chosen in an appropriate
manner), and finally the inverse DWT is taken to obtain an estimate of f. The

rationale behind this principle is twofold:

e As DWT is orthonormal, i.i.d. Gaussian noise in the time domain transforms

into i.i.d. Gaussian noise in the wavelet domain;

e Due to the vanishing moments property, wavelet coefficients 6;; correspond-
ing to the locations where the signal is smooth will be close to zero. On
the other hand, those (hopefully few) corresponding to discontinuities or
other irregularities will be significantly different from zero: the signal will be

represented sparsely in the wavelet domain. Therefore, we can expect that
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an appropriately chosen threshold will be able to accurately separate signal

from noise.

Two thresholding rules have been particularly commonly used and well-studied.

For a given threshold A, hard and soft thresholding shrink d;; to

djy = diallga; >0
dip = sgn(djr)([djr] — M)y,

respectively. The threshold introduced in Donoho & Johnstone (1994) was the
so-called universal threshold, A = am. The authors show that the MSE
of the soft thresholding estimator with the universal threshold is close (within
a logarithmic factor) to the ideal risk one can achieve by “keeping” or “killing”
the wavelet coefficients d; j using knowledge of the underlying signal. At the same
time, the universal threshold is an efficient noise suppressor as described in Section
4.2 of their paper.

In another ground-breaking paper, Donoho & Johnstone (1995) consider a non-
linear wavelet estimator with soft thresholding where the threshold selection proce-
dure is based on Stein’s shrinkage method for estimating the mean of multivariate
normal variables. They consider the behaviour of the estimator over a range of so-
called Besov spaces (see Triebel (1983)), which form an extremely rich collection
of functions with various degrees of smoothness (for certain values of the space
parameters, Besov spaces can be shown to contain other better known function
spaces such as Holder or Sobolev spaces or the space of functions with bounded
variation). The authors demonstrate that their estimator is simultaneously nearly
minimazx over a range of Besov balls, i.e. without knowing the regularity of the
function, it nearly achieves the optimal rate of convergence which could be achieved
if the regularity was known.

In most papers on the theory of non-linear wavelet estimation, it is assumed
that the standard deviation o of the noise is known. In practice, it needs to be

estimated from the data. For Gaussian data, the method recommended by several
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authors (see e.g. Johnstone & Silverman (1997)) computes the scaled Median
Absolute Deviation (MAD) on the sequence of wavelet coefficients at the finest
resolution level, thereby ensuring robustness.

More recently, other thresholding rules have been proposed. Nason (1996) uses
cross-validation as a means of selecting the threshold. Abramovich & Benjamini
(1996) set up wavelet thresholding as a multiple hypothesis testing problem and
propose an approach based on the so-called false discovery rate. Ogden & Parzen
(1996) also adopt the hypothesis testing point of view and use recursive likelihood
ratio tests to determine the threshold. Johnstone & Silverman (1997) consider
level-dependent universal thresholding for correlated Gaussian noise. Averkamp
& Houdré (2003) extend the approach of Donoho & Johnstone (1994) to other
noise distributions such as exponential, mixture of normals or compactly supported
distributions. Vanreas et al. (2002) consider stable wavelet transforms for denoising
data observed on non-equispaced grids. Barber & Nason (2003) develop various
thresholding procedures using complex-valued wavelets. Johnstone & Silverman
(2003) propose an empirical Bayes approach to the threshold selection problem.
Cai & Silverman (2001), among others, consider block thresholding: they propose a
thresholding procedure whereby wavelet coefficients are considered in overlapping
blocks and the action performed on the coefficients in the middle of the block
depends upon the data in the whole block.

Coifman & Donoho (1995) introduce translation invariant denoising: the full
NDWT transform of the data is taken, then the universal threshold is applied to
all resulting wavelet coefficients, and then an inverse NDW'T transform yields an
estimate of the signal. As the NDWT is redundant, there are many possible ways
of generating an inverse NDWT transform: the one proposed by the authors is
equivalent to taking the average over all possible DWT’s contained in the NDWT,
corresponding to all possible circular shifts of the data set (hence the name “trans-

lation invariant”).
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2.3.2 Wavelet shrinkage in time series analysis

Wavelet shrinkage has been used extensively in the time series context. Gao (1997)
proposes an algorithm for wavelet smoothing of the log-periodogram, using asymp-
totic normality of the wavelet coefficients at coarser scales, and adjusting the
thresholds for non-normality at finer scales (in this case, the noise is asymptoti-
cally independent but not Gaussian). Neumann (1996) considers wavelet smooth-
ing of a “tapered” periodogram for possibly non-Gaussian stationary time series,
basing his choice of thresholds on asymptotic normality arguments. Neumann &
von Sachs (1997) and von Sachs & Schneider (1996) propose thresholds for esti-
mating time-varying spectrum in Dahlhaus’ locally stationary time series model.
von Sachs & MacGibbon (2000) consider wavelet thresholding of signals contam-
inated with locally stationary noise. Nason et al. (2000) propose the following
threshold for shrinking the wavelet coefficients d; ; of the wavelet periodogram It(f)

of a Gaussian LSW process:

)\i’k,j,T = Var(di,k) IOg(T), (246)

where a pre-estimate of each Var(d, ;) is required, which can potentially hamper the
practical performance of the method. Also note that the threshold is independent
of j. Cristan & Walden (2002) consider wavelet and wavelet packet smoothing
of the (tapered and logged) periodogram, and conclude that the wavelet-based
algorithm performs adequately and therefore the use of wavelet packets is not
necessary (this article complements an earlier paper by Walden et al. (1998)).
Truong & Patil (2001) derive MSE’s of wavelet-based estimators of density and
autoregression functions in stationary time series which satisfy appropriate mixing
conditions. Dahlhaus & Neumann (2001) use wavelet shrinkage to estimate a
time-varying p-dimensional parameter of the spectral density function of a non-
stationary process. Hoffmann (1999) proposes a wavelet thresholding estimator of
the mean and conditional variance functions in a non-linear AR(1) model.

In Chapter 5 of this thesis, we propose a multiscale technique for denoising the
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wavelet periodogram of a Gaussian LSW process.

2.3.3 Wavelet and multiscale methods for Poisson data

Some authors have also considered the problem of estimating the intensity of a
Poisson process using a wavelet-based technique. The usual setting is as follows:
the possibly inhomogeneous one-dimensional Poisson process is observed on the
interval [0,7T), and discretised into a vector v = (vg,vy,...,vn_1), Where v, is
the number of events falling into the interval [nT/N, (n + 1)T/N), and N = 2/
is an integer power of two. Each v, can be thought of as coming from a Poisson
distribution with an unknown parameter \,, which needs to be estimated. Note
that in this case the “noise” v, — E(v,) is independent but not identically dis-
tributed. The approach proposed by Donoho (1993) consists in first preprocessing
the data using Anscombe’s (1948) square-root transformation, Av = 2,/v + 3/8,
so that the noise becomes approximately Gaussian. Then the analysis proceeds as
if the noise were indeed Gaussian, yielding (after applying the inverse square-root
transformation) an estimate of the intensity of the process.

Besbeas et al. (2004) report that the best performing methods currently avail-
able in literature are those based on translation-invariant multiscale Bayesian tech-
niques as described in Kolaczyk (1999a) and Timmermann & Nowak (1997, 1999).
Kolaczyk (1999a) introduces a Bayesian multiscale algorithm to estimate the dis-
cretised intensity. However, rather than transforming the data using a wavelet
transform, he considers recursive dyadic partitions, and places prior distributions
at the nodes of the binary trees associated with these partitions. The Bayesian
methods outperform earlier techniques in Kolaczyk (1997, 1999b), Nowak & Bara-
niuk (1999) and also the recent technique of Antoniadis & Sapatinas (2001) (since
the latter is equivalent to Nowak & Baraniuk (1999) for Poisson data). The article
by Sardy et al. (2004) describes a computationally intensive ;-penalised likelihood
method which can be used for estimating Poisson intensities.

Other recent contributions to the field of wavelet-based intensity estimation
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include Patil & Wood (2004), who concentrate on the theoretical MSE properties
of wavelet intensity estimators, where the intensity is a random process rather than
a deterministic function (or, after discretisation, a deterministic vector). Brillinger
(1998) gives a brief overview of wavelet-based methodology in the analysis of point
process data, and obtains an estimate of the autointensity function of the well-
known California earthquake data.

In Chapter 6 of this thesis, we propose a multiscale method for estimating
the discretised intensity function of an inhomogeneous one-dimensional Poisson

process.
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Forecasting LSW processes

In this chapter, we consider several theoretical and practical aspects of forecasting
Gaussian LSW processes. Some results of this chapter were used, in a modified
form, in the article by P. Fryzlewicz, S. Van Bellegem and R. von Sachs (2003)
“Forecasting non-stationary time series by wavelet process modelling” (Annals of
the Institute of Statistical Mathematics, 55, 737-764). Throughout the thesis, this
article will be referred to as Fryzlewicz et al. (2003). The results of the article
which are not due to the author are only quoted in this chapter (without proofs)
and their authorship is acknowledged.

The chapter is organised as follows. In Section 3.1, we investigate the minimi-
sation of the approximate Mean Square Prediction Error (MSPE) for a linear pre-
dictor in the LSW framework. The reason why approximate MSPE minimisation
is preferred is that it involves the uniquely defined asymptotic wavelet spectrum
{S;(2)},, unlike the exact MSPE which involves the unidentifiable finite-sample
parameters wj ;. In Section 3.2, we look in detail at the assumptions made in
deriving the results of Section 3.1. We identify an assumption which we find overly
restrictive and propose to circumvent the problem by introducing a modification
to the LSW model (we call the new class of processes “LSW,”). In Section 3.3, we
derive Kolmogorov’s formula for the one-step predicition error in the LSW, model.
In Section 3.4, we investigate the behaviour of the (unsmoothed) local covariance

estimator, used to estimate the entries of the approximate prediction matrix. We
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find that the estimator is asymptotically unbiased but inconsistent and thus needs
to be smoothed. In Section 3.5, we propose an algorithm for choosing values of the
nuisance parameters arising in the forecasting procedure (including the smoothing
parameter for the covariance estimator). Finally, in Section 3.6, we demonstrate
the performance of our forecasting algorithm on a time series of yearly values of

the wind speed anomaly index in a specific region of the Pacific.

3.1 Forecasting by approximate MSPE minimi-
sation

Assume that we have observed X 7, X1 7,... , X;—1r and want to predict X, ,_1 1
forh=1,2,...,T —t. As we are only dealing with Gaussian LSW processes, it is

legitimate to consider a linear h-step predictor

t—1

Xt-l—h—l,T = Z bi’l)l_S,TXs,T, (3.1)

s=0

where, ideally, we would like the coefficients {b,r}'_{ to minimise the MSPE:

E(Xt-l-h—l,T — Xpyhorr)? =
2

—J(T) t—1
h
El Y wiwr (Z b ks — ¢j,k—(t+h—1)) Eie | =

j=—1 keZ 5=0

t—1 2
h

Zwik;T (Z bgf)lfs,ij,k*S - wj,k—(t-l—h—l)) =
jsk s=0

T-1T-1

>(h) 7(h
gn,)Tbgz,%“ Z wjz,k;ij,kfmwj,kfm (3.2)

m=0 n=0 J.k

where

Bgf%ﬂ = b,@l_n’T for n=0, ,t—1
l;gf)T:—l for n=t—1+nh
B;MT =0 otherwise.
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Defining

= (h 7 (h 7(h
by = (bor. b))

(ET)m,n - COV(Xm,TaXn,T) = Zw?,k;ij,kfmwj,kfm
jk
we can write (3.2) as a quadratic form
N ~ ~ !
E(Xein-1 — Xepno1r)? = by Sy (b¥)> : (3.3)

However, (3.3) involves w,x.r's which, as we said earlier, are non-identifiable (a
given LSW process does not determine the sequence of w;.r’s uniquely), and
therefore cannot be estimated from the data. It is for this reason that in the LSW
framework, it is both elegant and useful in practice to approximate quantities
involving {w;j .}k by ones involving {W;(z)}; — an approach adopted in the
original paper by Nason et al. (2000). We shall now investigate the possibility of
approximating (3.3) by B}’”BT (Bgl))’, where

Brnn = 3 308 (5) temtison (3.4

j=—1 keZ
Note that both X7 and By are symmetric. We first show a result concerning the

spectral norms of By and its inverse. Denote
)i (w) = Z Y n exp(iwn). (3.5)

Lemma 3.1.1 Let [|[A| denote the spectral norm of a quadratic matriz A, and let
Sy =sup, Sj(z) and S; = inf, S;(2). If

. 2
ess sup Z Sil;(w)| < oo, (3.6)
Y
then ||Br|| is bounded in T. Similarly, if
. 2
ess ianﬁj Yi(w)| >0, (3.7)
J

then HB;IH is bounded in T .
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Proof. As Br is nonnegative definite, we have

2
= sup 2Bra/, (3.8)

lll[3=1

IBr| < |BY?

and

B ! -1
1B < HB 12 —supx T gy 22 :( inf xBTx'> C(3.9)

xa! = rBra’ |3=1

It remains to investigate the behaviour of the quadratic form xB7z’. Denote

= Z T, exp(iwn).

Simple algebra gives

2Bra = ZSj(k/T) (anwj,kn>
— Zs / 2 (w

ess sup {

IN

()| duw
() };ﬂ / () 2 do

which proves the first part of the Lemma. Similar steps (with obvious modifica-

IN

= esssup

tions) are used to prove the second part. 0]

Proposition 3.1.1 Let X1 and By arise from an LSW process satisfying

Z C,L; = op(1) (3.10)

j==J(T)
T Z Ej = or(1) (3.11)
j=—J(T)—

and assumption (3.7). We have

~ ~ / ~ - !
b5, (bg@) — b B, (bg”) (1+ or(1)). (3.12)
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-~ ~ ~ !/
Proof. We first consider an approximation by bth)BT (bgp) , where

) Py k
(BT)m,n = Z ZS] (f) wj,kfmwj,kfn- (313)

j=—1 keZ
We have

/

B (Br — ) (W) =

k (Y >
% (5 (5) ~ wer) Kb binmtyin <

m.n gk

k 7(h) 7(h
Y 5 (5) - e i vacmtiend . 319
mn gk

We know from Nason et al. (2000) that

k
Sj <T> - %Q',k;T

Thus, continuing from (3.14), we obtain

b (Br-5r) (B9)) < T30
k

m’n ji

<G
_T'

(3.15)

7(h) 7(h
bgn,)Tbgz,)ij,k*mwj,kfn :

(h)

2
= 71! ZC] Z <Z i)n}jT]I{Cj>k—n2[]}wj,kfn )
J k n
< 77! Z C; Z <B£Zh%“> i Z Lig,>k—n>0) Z U3 km
j n k m

= T (69) Y 0ie,
J

using the Cauchy inequality and the property that ), wik = 1. By assumption

(3.10), we arrive at
by (Br - or) (Bg@)’ N0 (ng)’oT(l). (3.16)

~ ~ ~ / - - !
Let us now turn to the approximation of bgl)BT (b;h)) by bgl)BT (bth)) . De-

noting

b (w) = expliwn)b), (3.17)
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we have
. - <\ = iy~
b (BT - BT) (b¥)> = > >TSS/ T) ket pnbor by
mn j=—J(T)-1 k
2
-3 s (St
j=—J(T)— n
o 2
S (zbnm )
j=—J(T)-1 k
- 2
= 9 Z / Pi(w)| dw
j=—J(T)—
AR (o |
< sup by’ (w) Z 5’3 o wj(w) dw
w j=—J(T
]2 = _
< |p2), 2 S
j=—J(T)-1
. RN _
< 1M (b§f’>) S,
j=—J(T)—1
- - !
= b () or(1), (3.18)
by assumption (3.11). Combining (3.16) and (3.18), we get
~ ~ / - - !
b (Br — o) (B{") = b (B or(1). (3.19)
Noting that
b (B(’”)' < b{"Br (b ) 1B (3.20)
T T ) = T .
and using the second result of Lemma 3.1.1 completes the proof. 0
Proposition 3.1.1 implies that there exists a sequence dr | 0 such that
~ ~ ! ~ ~ ~ !
b By (bg@) (1—dr) < B, (bg@) < BBy (b( )) (1+dr)  (3.21)

which in turn means that

!

~ ~ / ~ ~
infb™B, (b™) (1 - dy) < infb®™x, (bW
T T T T

= MSPE(XthLT, Xt+h—1,T)

IN

~ - !
infb{"' By (b{!') (1 + dr),
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3.1. Forecasting by approximate MSPE minimisation

where the infimum has been taken w.r.t. l;gh), e ,lN),@l. Thus, finding the h-
step prediction error is asymptotically equivalent to minimising Bgl)BT (ng)l
Like in the classical (stationary) setting, the minimisation is performed by simple
differentiation, yielding the system of prediction (or Yule-Walker) equations:

t—1 —0oc —00
PIULD DD I (%) rkontih-m = D D S; (%) Vit (e rem) ik

j=—1keZ

(3.22)
form=20,1,... .t — 1. Let B, denote the matrix of this system. By a standard
result in numerical analysis (Kress (1991), Theorem 5.3), the asymptotic stability
of inversion of the system (3.22) is governed by the so-called condition number,
defined by cond(Byr) = [|B.r| || Bi7|: if cond(B,r) < C < o0 as t — oo, then
the inversion is asymptotically numerically stable, i.e. “small” perturbations of
the entries of B; 7 lead to “small” perturbations of the solution. Using identical
reasoning as in Lemma 3.1.1, it can readily be shown that under assumptions (3.6)
and (3.7) we have cond(B;r) < C' < 0o as T — oo, uniformly in .

Note that no assumption concerning the asymptotic behaviour of ¢ has been
made, and indeed, no such assumption is needed for the results of this section to
hold.

It is interesting to observe that the entries of (B; 1), are not exactly asymptotic
local covariances of X;r, as they cannot generally be represented in the form
c(z,m—n) =37 Sj(2)¥;(m—n) for any z. However, they can be approximated

by e.g. ¢((m+n)/2T, m — n) in the following sense:

‘(Bt’T)m’n—C<m+n m—n) =

?7
3 k m+n
jzz—lkezz <Sj <T> % (7)) Vjk-mVjk—n| <
0 "
Z Z Sj <T> - Sj <m27—;n> W}j,k—mwj,k_ﬂ . (323)
j=—1keZ

We know from Nason et al. (2000) that |S;(z) —S;j(2+0)| < L;j6/T. Also, the ;s

are compactly supported, so 0 < £k —m < £; and 0 < k — n < L;, which implies
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Chapter 3. Forecasting LSW processes

0<k—(m+n)/2 <L, Therefore, (3.23) can be bounded from above by

T! Z Lj»cj Z |¢j,k—m¢j,k—n‘ < T Z Lj‘cj Zwik

j=—1 ke j=—1 k

= 7! f LiL;

j=—1

= O(T),

using the Cauchy inequality in the first step, the property that >, wik =1in
the second step, and the definition of the LSW process in the final one (note that
L; = O(277)). Thus, the entries of B,z are uniformly close to the corresponding
asymptotic local covariances.

If the second-order structure of the process was known, the system of prediction
equations (3.22) could be solved e.g. using the innovations algorithm (see Brock-
well & Davis (1987), Section 5.2) to yield the prediction coefficients {lN)Slh) i
However, in practice the second-order structure needs to be estimated from the

data: see Section 3.4 for details of the estimation procedure.

3.2 A closer look at the results of Section 3.1

In this section, we investigate whether the assumptions of Lemma 3.1.1 and Propo-
sition 3.1.1 can be regarded as “restrictive” and if so, what can be done to relax

them.

3.2.1 Assumptions of Lemma 3.1.1

First of all, note that assumptions (3.6) and (3.7) are “LSW counterparts” of the
classical assumptions from stationary time series theory that the spectral density
be bounded from above and bounded away from zero (respectively). Indeed, let

X be a stationary LSW process with wavelet spectrum {S;};, covariance y(7) and
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3.2. A closer look at the results of Section 3.1

spectral density f(w). We have

/7r f(w) exp(iwn)dw =
"1
/n % Z Z S;W,(7) exp(—iwT) exp(iwn)dw =
- —~ -
/?5%E:E:%g;wM%MTWMM%MHW4WW+k”wMMme:
n — <
[ 5 Es i
J

for all n, so that

/ — Y (1) exp(—iwT) exp(iwn)dw =

2
‘ exp(iwn)dw

2

Di(w)|  ae. (3.24)

1
flw) = 7 ; Sj
and assumptions (3.6) and (3.7) simplify as
0 < essinf f(w) < esssup f(w) < 0.

Note that in the LSW case, it is necessary to use “ess inf” instead of “inf”, due to

the following fact:

ITICIN®] N AN O
= Z Si(2) | D Vi
_ 67 (3.25)

using the property that >, 1, = 0.

There arises a natural question whether there exist LSW processes for which
(3.7) is satisfied, even though, as we have shown in (3.25), the same condition with
“ess inf” replaced by “inf” is not satisfied by any LSW process. The (reassuring)
answer is yes: S. Van Bellegem shows in Fryzlewicz et al. (2003) that standard
white noise is an LSW process with S; = 27, so, by (3.24), we must have

1:22j
J

2

i (w) a.e. (3.26)
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Chapter 3. Forecasting LSW processes

for any system of compactly supported Daubechies’ wavelets ¢;, and, clearly, (3.7)
is then satisfied. Let us now give an example of a class of LSW processes for which

(3.7) does not hold. We first define sparse LSW processes.

Definition 3.2.1 An LSW process X, r with spectrum {S;(z)}; is said to be sparse
if Sj(z) =0 for all j except for a finite set.

Proposition 3.2.1 No sparse LSW process satisfies (3.7).

Proof. Let D = {j : S;(2) # 0}. Being a Fourier transform of a finite-length

vector, t;(w) is continuous for all j, so 32 ., S;(2) [¢);(w)]? is continuous as a finite

JjED

sum of continuous functions. Therefore,

essmfZS ) |4 (w \_mfZS ) [4;(w)* =0, (3.27)

JjED JjED

and (3.7) is violated. O

This is certainly bad news from the point of view of the philosophy of LSW
modelling. Indeed, sparse LSW processes which have an economical representation
in the model and are therefore appealing, are “badly behaved” as far as forecasting
is concerned: for them, the system of prediction equations (3.22) cannot be solved
numerically in a stable manner. One of the avenues for future research might be
to investigate how this situation can be remedied by modifying the definition of

an LSW process.

3.2.2 Assumptions of Proposition 3.1.1

A purely technical assumption (3.10) controls the evolution of the sequence {C}};.
An assumption like this is inevitable in the context of approximating the finite-
sample MSPE b5 (b)) by b{"Br (b))

On the other hand, assumption (3.11), controlling the “tail behaviour” of the

sequence {Ej };, is extremely restrictive. Indeed, even the white noise process does
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3.2. A closer look at the results of Section 3.1

not satisfy it: noting that J(T) = O(logy(T)), we obtain

T i 21 =TO(T™") = O(1) # or(1). (3.28)

j=—J(T)—1
By inspecting the proof of Proposition 3.1.1, it is easy to see why there is a need to
control the tail behaviour of {S;};. The underlying reason is that in the definition
of an LSW process, X, r is only built of wavelets at the J(7) finest scales (i.e.
the summation over j only goes from —1 to —J(T)), whereas the asymptotic
quantities such as ¢(z,7), or indeed BQ)BT (Bg@): typically involve the wavelet

spectrum at all scales, i.e. {S;(2)};2%,. Therefore, without controlling the “tail”

—0oC

j——; in one way or another, we cannot hope to achieve the

of the sequence {5;(2)
desired rates of convergence.

However, no assumption controlling the tail of {S;(2)};22, is made in the orig-
inal paper by Nason et al. (2000). To illustrate the implications of this fact, note
that the result of Proposition 2.11 from Nason et al. (2000) does not formally hold

without such an assumption. Let us first recall the statement of the proposition.

Proposition 3.2.2 (Nason et al. (2000)) As T — oo, uniformly in T € Z and
2 € (0,1), |er(z7) — oz )| = O(T ).

It is easy to find a counterexample to the above proposition. Consider a stationary
process with w;,.r = W;(z) = —1/j. This process is LSW in the sense of Nason
et al. (2000), and

er(50) - c(z,0) = 3 1, (3.29)

J(T)—1 J

which behaves like

© 1 1
log(T) ¥ x

and this disproves the authors’ claim.

=log (T) # O(T™"), (3.30)

An easy way to avoid such “tail considerations” altogether is to assume that

the summation over j in the definition of an LSW process ranges from —1 to —oo,
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Chapter 3. Forecasting LSW processes

even in the finite sample situation. Indeed, this is also implicitly done in the proof
of Proposition 2.11 in Nason et al. (2000) (thereby enabling the authors to achieve
the claimed rate of O(T1)).

For completeness, we give the amended definition below. Note the subscript in

“LSWQ” ]

Definition 3.2.2 A triangular stochastic array {X;r}i—g", for T =1,2,..., is in
the class of LSWy processes if there exists a mean-square representation

-1 o0
Xir = Z Z Wi ek ()€ ks (3.31)

j=—oc k=—00

where ;1 (t) are nondecimated discrete wavelet vectors, wj . are real constants,
and {&; 1}k are zero-mean orthonormal identically distributed random variables.
Also, we assume that for each j < —1, there exists a Lipschitz function W;(z) :
[0,1] = R such that

-1
* Zj:—oo ‘W]‘P < 0%,
e the Lipschitz constants L; satisfy
-1
> 27 < oo, (3.32)
j=—00

-1

e there exists a sequence of constants C; satisfying ijfoo

for each T,

C; < oo such that,

L wike —W;(k/T)| < C5/T V3. (3.33)
In other words, all “building blocks” 1); are included in the construction of X, r,
even in the finite sample case. What lends credibility to the above definition is the
fact that similar approach was adopted in Dahlhaus’ theory of locally stationary
processes, where the entire set of building blocks {exp(iwt)},c(—x,- was used to
construct X, r, even in the finite sample situation.
Note that if the word “LSW?” is replaced by “LSW,” in Proposition 3.1.1, then
assumption (3.11) becomes unnecessary. Lemma 3.1.1 holds for LSW, processes

in an unchanged form.
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3.3. Kolmogorov’s formula for LSW, processes

On a final note, we come back to the proof of Proposition 3.1.1. In the derivation

of (3.18), is tempting to write

1 — = [Tl 2. 2
> > 5[ e )] d-
j=—am-1 T
1 ~(h 2 R . 2
o | @] YD 5 iw)] de <
o j=—J(T)-1
— 00 o 2 1 p- () 9
esssgp' Z S wj(w)‘ ) by (a)‘ do = (3.34)
j=—J(T)-1
= . 2 _ -
ess sup S (w) bgfl) (bg@) :
Y j=—J(T)-1
in the hope that
o ,
ess sup Z S wj(w)‘ = or(1),
Y= J(T)-1

2
was continuous (by Dini’s

1 (w)

theorem). However, we showed in Section 3.2.1 that this need not be the case.

as certainly would be the case if Z;’ilgj

Indeed, we have

ess sup Z S; ‘%(w) >
Yj=—a(m—1
= 2 —J() 2
essigf Z S %(w)‘ —igf Z S, 0(w)| =
P =1
ess igf Z S |0;(w) 2,
j=——1

and the last quantity can be strictly positive, e.g. for white noise. This shows that

transformation step (3.34) would not be helpful in proving Proposition 3.1.1.

3.3 Kolmogorov’s formula for LSW, processes

In this section, we state and prove Kolmogorov’s formula for the one-step MSPE
in the LSW, framework. The only difference with the LSW setting is that the

sums over j in the finite-sample quantities go from —1 to —oc and not to —J(T').
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Chapter 3. Forecasting LSW processes

We first recall the statement of Kolmogorov’s formula in the classical stationary

setting (Brockwell & Davis (1987), Theorem 5.8.1).

Theorem 3.3.1 Let {X;} be a real-valued zero-mean stationary process with spec-
tral density function f. The one-step MSPE of {X,} is

0% = exp {% / 10g(27rf(w))dw}. (3.35)

An analogous formula was derived by Dahlhaus in the locally stationary model
(Dahlhaus (1996b), Theorem 3.2 (i)). We follow his method of proof here; however,
some important modifications are needed due to the fact that the building blocks
in the LSW model are wavelets and not Fourier exponentials. We first introduce
some essential notation. The observation domain {0,...,7 — 1} is divided into
overlapping blocks I,,, of length N with shift S (assume that both T and N are
multiples of S). At the edges the length of the blocks is reduced, but the shift

kept so that each observation is contained in exactly N/S blocks:
0,...,mS —1] m=1,...,N/S
Im=14 [mS—N,..., mS—1 m=N/S+1,...,T/S (3.36)
mS—-N,...,.T—1 m=T/S+1,...,(T+N)/S —1.
If T is not divisible by S then we “clip” the final blocks in the natural way (note
that in this case we still have each observation contained in exactly N/S blocks).

Let M = (T'+ N)/S — 1 be the total number of blocks and let ¢, be an arbitrary

point € I,,. For each m =1,..., M, we define a T x T matrix

m NN
(D<T ))u = > S (T) U (u— $)Ljusern)s (3.37)
El ]:_1

where the indices u, s go from 0 to T — 1. Define further

S S~y
Dr =+ mzz:l DY (3.38)
and
c*(k) = sup |e(z, k)| (3.39)
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3.3. Kolmogorov’s formula for LSW, processes

Consider the following set of assumptions.

N

S/N

Lol

N?/T

Zc*(k) <

00
k=1

Z £j(0j + L]‘Ej) <

j==1

(3.40)
(3.41)
(3.42)

(3.43)

(3.44)

(3.40) — (3.42) are purely technical assumptions concerning the behaviour of S and

N in relation to 7. Assumption (3.43) is a non-stationary equivalent of the short

memory property. Finally, assumption (3.44) controls the speed of convergence of

the sequences {C;} and {L,} and is similar to (3.10).

We begin with the following lemma.

Lemma 3.3.1 Let x be a row vector of length T. Under assumptions (3.40) —

(3.44), we have

z (X7 — Dr) 2’ = z2'or(1).

Proof. Define

We have

S S~ ) pom
QT(ET—DT)SE’ = SE(NZE%)—D%))SU’

S—1

(3.45)

(3.46)

_ S
+ Z min {k - l\ﬁ, 1} Z kst (57) ks a4 V1543-47)

u,s=0

We will first show that the second term tends to zero. Replace (Xr), , by c((u +
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s)/2T,u — s). The second term is bounded by

T S = u—+s
i d_ 1 u ) ] R S
; mln{ N’ } u;ﬂ T c( 5T U S)l‘ +

(d—1)S<|u—s|<dS

a-1)

T/5-1 IS ds

21 Z min{dﬁ,l} Z c*(k) +R <
-1 k=(d—1)

=(d-1)S+1

200’ \/Nic* + 3 ¢ | +R,

k>VN

and the first term in the above sum is of order za'or(1) by assumptions (3.40),

(3.41) and (3.43). Let us now turn to the remainder R. We have

T-1
u—+s
R < Z Tyls Z <w]2-,k;T - Sj < YA )) 'Q/}g,k 577/}3,16 u

u,5=0 7.k

, (3.48)

and, using exactly the same technique as in Proposition 3.1.1, it can be shown
that R = 22’O(T ') under assumption (3.44).
We now consider the main term in (3.47). Denote by I,, and I,,, respectively,

the initial and final indices in the segment I,,,. We have
S = < (m
x(NEZ%J—DOxH:
2
S (s (% )) (z ——

m=1 jk
g M Im+cj710 L
EEE e (s
m= 7 =1,
S & (Ci+ Li(L; + N)(L; + N
N;;%:HMMJE: S NDEHN)

L2+ N)(E, £ N)

= , (3.49)

]
H\

-1
5)

where the last equality holds because by construction each x, is contained in
exactly N/S segments I,,,. By assumptions (3.44) and (3.42), the above is of order

xza'op(1), which completes the proof. |

To derive Kolmogorov’s formula, we also need another (similar) lemma.
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3.3. Kolmogorov’s formula for LSW, processes

Lemma 3.3.2 Suppose that assumption (3.44) holds and that there exists a t*
such that x, =0 for allu & {t*,... ,t* + L}. Then for each t € {t*,... ,t* + L}

i RS ’ L2
xYpr = ZSj <T> Z <Z xuwj,ku> +22'0 <?> . (3.50)
j k

u=t*

The proof is completely analogous to the part of the proof of Lemma 3.3.1 leading

to the bound for the main term, i.e. formula (3.49).

Before moving on to the statement of Kolmogorov’s formula for LSW, processes,
we present an interesting technique for bounding the spectral norms of ¥ and its
inverse. Suppose that the assumptions of Lemma 3.3.1 hold and that x is a row
vector of length T'. As Y is nonnegative definite, its spectral norm is bounded

from above by

M
S m
sup zXrz’ = sup Ty E D; )x'+oT(1)
m=1

[z]l2=1 llz[]2=1

2
S & tm
= sup = YN0 <?> > (Z qulbj,k—uﬂ{uefm}) + or(1)
llzll2=1 Y 1,21 <0 k u
S KT t 2
a ||:§leli1 2N Z/FZSJ' <T> -

1 (w)

sup zz' + op(1)

IN
@D
o))
»n
o)
=

o]

R

O

&
£

2 523 Izlo=1
R 2
= esssupZSj(z) Yi(w)| +or(1).
29 5c0

In the same way, it can be shown that

i (w) g or(1). (3.51)

inf 272’ > ess infz S;(2)
llll2=1 e

As we can always choose S and N with the properties required in (3.40) — (3.42),
the only restrictive assuptions needed for the above derivation to be valid are (3.43)

and (3.44). With these assumptions, ||X7|| is bounded in 7T if

ess sup Z S;(2)

Z,w

2

hi(w)| < oo, (3.52)
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and |22 is bounded in T if

> 0. (3.53)

ess 1Zn£ Z S;(z) ‘l;] (w) 2

§<0

Two remarks are in order.

1. Observe that the short-memory property (3.43) implies (3.52). Indeed,

Z S;(2)

2

_ Z S;(2) Zk: ;g expliwk) Z Wim exp(—iwn)
= i Sj(2) ; Vi Z Wi per exp(—iwr)

= Zi:exp(—m)z:sj(z)\pj(f)

< > e J

T

i (w)

In the classical stationary setting, the analogous well known fact says that
the absolute summability of the covariance implies the boundedness of the

spectral density from above.

2. Note that we could also bound the norms of ¥ and its inverse using Lemma
3.1.1 and Proposition 3.1.1: first by approximating xX7z’ by zBrz’, and
then using the boundedness of the norms of By and its inverse (in other
words, we could use By instead of D). For the approximation by xBrz’ to

be valid, we would need an LSW; version of assumption (3.10):

Z Cjﬁj < 00 (354)

(recall that (3.11) is not required in the LSW, setting). With assumption
(3.54), ||X7|| is bounded in T if (3.6) holds, and ||$7'|| is bounded in T if
(3.7) holds.

We are now in a position to state and prove Kolmogorov’s formula for LSW,

processes.
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3.3. Kolmogorov’s formula for LSW, processes

Theorem 3.3.2 Let X;r be an LSWy process satisfying assumptions (3.43),
(3.44) and (3.58).  Let Xyr be the best linear predictor of X7 given
X[]’T,... ;Xt—l,T- Then

~ 1 m
E <Xt’T B Xt’T>2 - {% /7r log (; Sj <%>

;z}j(w)f) dw} +or(1).

(3.55)
Proof. Let x be a row vector of length T" such that xg,... ,x;_; are arbitrary,
ry=—1,and x441,... ,27_1 = 0. By Lemma 3.3.1, we have
X2’ = aDra’ + z2'or(1)
S t i
- 5355 (%) T (Satctinn) +asort
m=1 j<0 k U

Let My = {m :t € I,}. For m € M;, we set t,, =t. The above expression is

bounded from below by

Sy Y (%m) T (;W,Mn{ugm}> Fador(l).  (3.56)

meM; j<0 k
Each of the sums over j represents the one-step prediction error for a stationary

time series with spectral density
1 t
10=535 (1)

There are exactly S/N such sums. By classical Kolmogorov’s formula, each of

2

Wi(w) (3.57)

them is bounded from below by

exp{%/ilog (;sj (%) 2) dw}.

h;(w)

Therefore, the lower bound is

s5r7 > exp {% /7; log (2; S <%> ‘%(@2) dw} v arlor(l).  (3.58)

We now turn to the remainder xzz'or(1). We have

<||§||2> <||§||2>’ : <||:f||2> o (W) [=2! | < ISl [z (3:59)
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and thus
zx' < xSpx’ |[|S7| < w2 [|So]] || S5 (3.60)

|IZ7]| is bounded by assumption (3.43) (see (3.52) and Remark 1. above), and

|=7"|| is bounded by assumption (3.53). Therefore, zz' = O(zX72') and, contin-

2
) dw} , (3.61)
N 2
E (Xt,T - Xt,T) = infaYpa’

> exp{%/ilog <ZS]- (%) ;i (w 2) dw} + or(1).

To obtain an upper bound, we set ¢ = min(¢, L) with L?/T — 0. Let yg, ... ,y} |

uing from (3.58),

S’ (1—op(1)) > exp{ 7r/_ log <ZS ( )

which finally yields

(w)

)

be the coefficients for the best linear predictor for a stationary process (¢ obser-

vations) with spectral density (3.57). Set z; =y, ; , for j=t—1¢,...,t—1, and

x; = —1, all the other components of x being zero. By Lemma 3.3.2, we have

~ 2
E (Xt,T - Xt,T) < aSra’

‘ 2
t
Yy, <f> 3 ( 3 w) + arlor(1).
j k u=t—t
Since the sum over j is the one-step prediction error for the stationary process
with spectral density (3.57), we have

, 1 AYTINE
xXrxr’ = exp {ﬁ/ log (Z S; <T> Vi (w
o 3<0

) ) dw} +aror(l).  (3.62)

By identical reasoning as in the derivation of the lower bound, this reduces to

S —exp{ 7r/_ log (ZS ( ) (w) )dw}+OT(1) (3.63)
and
E(Xor- XtT)QSexp{%/ log (ZS (%) \%(w)f) dw}+oT(1),

j<0

(3.64)
which completes the proof. O
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3.4 Estimation of the approximating matrix By

In order to perform forecasting in practice, we need to be able to estimate the
entries of the approximating matrix Br. As was mentioned in Section 2.2.4, Nason
et al. (2000) used the wavelet periodogram, defined in (2.36), to perform inference
on the wavelet spectrum {S;(z)} in the LSW model. We also base our estimators
of Br in the LSW, framework on the wavelet periodogram.

Note that the wavelet periodogram It(]T) is a function of Xyyy p,,..., Xy, If
t < L;—1, then one possibility is to assume periodicity in the data; however, for the
theoretical results of this section to hold, we set It(]% = [g)q,T fort=0,...,L£;-2.
We only compute the periodogram down to scale j = —.J(t). Throughout this
section, we assume that ¢/7 remains constant as T — oc.

As was shown in the final part of Section 3.1, the entries of By tend to the
corresponding local autocovariances at the uniform rate of O(T~"). Therefore,
asymptotically, estimating the entries of By is equivalent to estimating the local
autocovariance structure of the process. In constructing the estimator of ¢(z, 1),

we first consider the case 7 = 0 (local variance). We define our estimator ¢(k/T, 0)

as

k i i
é(f’(’): S 210 for k=0,...,t-1. (3.65)

The extension of (3.65) to 7 # 0 uses the infinite matrix A, defined by (2.34).
The invertibility of A for Haar wavelets was proved in Nason et al. (2000). Even
though numerical results suggest that A is also invertible for other Daubechies’

wavelets, no proof of this conjecture has as yet been established. For 7 # 0, we

define é(k/T, 1) as follows:

c<§7> = i (i(Al)j,lxpl(T)> ). (3.66)
j=—J(t) \l=—cc

Before we analyse some properties of ¢(k/T, T), we quote the following lemma from

Fryzlewicz et al. (2003).
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Lemma 3.4.1 The matriz A defined in (2.34) has the following properties:

§2j14i,j =1 (3.67)
f(A_l)i,j = 2 (3.68)
i\(fl_l)i,j\ = 02", (3.69)

where (3.68) and (3.69) only apply to Haar wavelets.

The proofs of (3.67) and (3.68) rely on the following result, due to S. Van Bellegem
(Fryzlewicz et al. (2003), Lemma B.2):
> 2y(r) =4, (3.70)
J
where d, is the Kronecker delta. The proof of (3.68) is also due to S. Van Bellegem.

The following proposition concerns the asymptotic behaviour of the first two

moments of ¢(k/T,0):
Proposition 3.4.1 If (3.43) holds, then the estimator (3.65) satisfies

]E{é <§ 0) } =c (; 0) + O(T tlog(T)). (3.71)

If, in addition, the increment process {&;,} is Gaussian, then

Var{ <E 0)} _9 Z 9it (Z:c(k/T, T)zn:zpi,mwj,n)2+0(T—l).

1,j=—J(t)
(3.72)
Proof. We will first show
cov (Z Xs,Twi,kfs; ZXS,T%',ks> =
> (k)T 7 Zwm i+ O (27271 (3.73)

We have

cov (Z X mVik—s) ZXS,ij,ks> =
Z (Sl <k> + 0 (Cl + L;Eu — k) )) Z Ui s—ujk—sVlt—uWih—t-

lu
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3.4. Estimation of the approximating matrix Br

Using £; = O(M277) in the first step, and the Cauchy inequality in the second

one, we bound the remainder as follows:

Z 0 (Cl . L;EU - k)> Z Uts—utjh—sVri—uih—t| <

lsu S,t

Ci+ ML (27" + min(277,277))
> - >
{ u
ML (27! +271/29-3/2
Z Cl + l( T+ )(Al,j)l/Q(Al,i)lﬂ —

Z¢z,s—u¢j,k—s¢l,t—u¢i,k—t <

s,t

l

2~/ U\ o (i45)/2 1/2 1/2
T > (Cr+ ML27)2 (Ay) " (Ars) "+
!

+> MLz(Az,»“?(Al,i)l/?} -
l

9 (i+5)/2

{1 +11}.
By formula (3.67),

1<) (Cr+ ML2™)(2A1; + 27A41;) < (Cr+ MLi27H)2) 2'4,, < Dy
! I i
As 3. L;27" < oo, we must have L; < C2so >, L;A;; < C again by (3.67). This

and the Cauchy inequality give

1/2 1/2
I <2M (Z LlAl,i) (Z LlAm) < D,.

The bound for the remainder is therefore O(2~0*+)/2T7=1). For the main term,

straightforward computation gives

Z Si <§> Z Uis—ujk—sVl—uWik—t = Z c(k/T,T) Z Vin—rVjn,
lyu s,t T n

which yields formula (3.73). Using (3.70) and (3.73) with ¢ = j, we obtain

E{é(k/T,0)} = i 2]’{2 (k/T,7)0;(1) +O(2~ J/T)}
)

j=—J(t

= ) c(k/T.7)5, — Z QJZ k)T, 7)0;(T)

T ]—7]

+ O(log(T)/T)

= ¢(k/T,0)+0O <T1 Zc*(T)) + O(log(T)/T),

T

T
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Chapter 3. Forecasting LSW processes

which proves the expectation by (3.43). For the variance, observe that, using

Gaussianity, we have

2
cov (1,2’},1,5{;) - (Z (k/T,7) Zwm s+ O(2 DT ))

— 2<Zc(k/T,T)Z¢i,n_T¢j,n> + 02~ HD2T=1Y3.74)

provided that (3.43) holds. Using (3.74), we finally obtain

Var {é(k/T,0)} = 2 _Z 2 (Z c(k/T, T)Zwi,n—rw]’,n) +0(T7),

ls]:_‘](t)

(3.75)

which completes the proof. 0]
Using Lemma 3.4.1, it is possible to show a similar result for 7 # 0. We show

the derivation for the expectation of ¢(k/T,7) below. Using (3.73), we can write

E{é(k/T,7)} =
> (Z )ia¥i(r ){Z (k/T, n)¥;(n) + O(2 f/T)}

j——J(t) l=—00c n

Z Z DT Zc(k/Ta”)\I’j(m"‘
j=—ocl=—00 n

Z Z 00(r) Y e(k/T,n) +

j=—J(t)—1l=—00 n

-1 -1

+O | T70 Y 27| Y (AT, W(n)| | =
j==J(t) l=—cc

I+1T+111.
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3.4. Estimation of the approximating matrix Br

We first concentrate on the main term.

- 22 (;m

-1 -1

>N 6iSilk/T)

i—=—oc [=—00

i Si(k/T)W;(7

i=—o

c(k/T,T),

Wy ()

as expected. We now focus on the remainders.

i Si(k)T)W;(n

=—00

W;(n)

JJAZ ]) Si(k/T)¥ (1)

Using (3.69) and (3.43),

) > e(k/T,n)

n

—00 -1
=1 > (Z(Al)j,l‘l’Z(T)
j=—J(t)—1 \l=—o0
—00 -1
< Y AT )
j=—J(t)-1l=—00 n
= 0 _Z 27/2
—log(T)
= O(T™'?
Similarly,
-1 -1
1, = o1t Y 27

The above derivation leads to

E{c(k/T,7)}

= ¢(k/T,7) + O(T"

2y for 1 #0. (3.76)

We conclude this section with a remark on the formula for the asymptotic vari-

ance (3.72). To gain some insight into this
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Chapter 3. Forecasting LSW processes

how it simplifies in the case of a Gaussian white noise process X, = 0Z7,;, where
Zy ~ N(0,1) i.i.d. Substituting ¢(k/T,7) = 024, and using Y, Yinthjn = dij, We
obtain
i —1
N i+ (2 2 -1
Var{c (f’())} = 2. Z 2% (6°6;;)" + O(T™")
ZaJ:_J(t)
—1
— 20,4 Z 22i + O(T—l)
i=—J(1)
- 2/30%.

Probably the simplest estimator of the local variance in the LSW model can be

obtained by simply squaring the relevant observation:
(K 2

Note that in the case X;r = 0Z;, we have

Var {@1 (% 0> } = 20" = 3Var {c <§ 0) } . (3.78)

3.5 Prediction based on data
3.5.1 Nuisance parameters

Formula (3.72) shows the inconsistency of ¢é(-,7) for 7 = 0, and a similar result
can be shown for 7 # 0. To obtain consistency, we smooth ¢(-, 7) for each fixed
7 w.r.t. to the first argument. We use standard kernel smoothing with a band-
width parameter g (later we propose a procedure for choosing ¢g). For speed of
computation, we use the same g for all 7. We denote the smoothed version of ¢ by
C.

In practice, the coefficients for the linear predictor are computed by inverting

the system of linear equations (3.22), where the entries of B; 7 have been replaced

by their empirical versions

I .[m+n
(Bt,T>m’n .y (7 m— n> . (3.79)



3.5. Prediction based on data

The vector of the right-hand side coefficients in (3.22), given by

{ i >S5 <§> ¢j,k(t+h1)¢j,k—m} (3.80)

j=—1keZ m=0,1,...,t—1

can be approximated by the vector of corresponding local autocovariances

t+h -1
{c<$,t+h—1—m>} . (3.81)
2T m=0,1,...,t—1
Therefore, we estimate it by
t+h -1
{E<i,t+h—1—m>} , (3.82)
2T m=0,1,...,t—1

where ¢(z,7) for z > (¢t — 1)/T has been extrapolated from the values of
¢(0,7),...,¢((t —1)/T,7) using the same kernel smoothing procedure with band-
width g.

To achieve a greater forecast accuracy in practice, we reduce the dimension of

the system of prediction equations (3.22) by considering a “clipped” predictor

t—1
A h
Xihar= > Wi Xar, (3.83)
s=t—p
where the index p needs to be chosen from the set {1,...,¢}. The matrix of

the resulting system of empirical prediction equations is now of dimension p X p,
instead of (¢t — 1) x (¢ — 1), and its entries are estimated using the procedure
described above. The construction (3.83) is reminiscent of the classical idea of
AR(p) approximation for stationary processes.

In order for the forecasting to be successful, the two nuisance parameters g and p
need to be chosen in a data-driven manner. Section 3.5.3 describes a computational

procedure for performing this selection.

3.5.2 Future observations in rescaled time

An important ingredient of the rescaled time concept, introduced in Section 2.2.4,
is that the data come in the form of a triangular array whose rows correspond to

different stochastic processes, only linked through the asymptotic wavelet spectrum
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Chapter 3. Forecasting LSW processes

sampled on a finer and finer grid. This mechanism is inherently different to what we
observe in practice, where, typically, observations arrive one by one and neither the
values of the “old” observations, nor their corresponding second-order structure,
change when a new observation arrives.

One way to reconcile the practical setup with the theory is to assume that for
an observed process Xy, ..., X;_1, there exists a doubly-indexed LSWj process Y
such that X =Y, for k=0,...,t—1. When a new observation X, arrives, the
underlying LSWy process changes, i.e. there exists another LSW, process Z such
that Xy = Zgpyq for k = 0,...,%. An essential point underlying the adaptive
algorithm of the next subsection is that the spectra of Y and Z are close to each
other, due to the above construction and the regularity assumptions imposed by
the definition of an LSW, process (in particular, the Lipschitz continuity of W;(2)).

For clarity of presentation, we assume from now on that h = 1. The objective
of the algorithm is to choose appropriate values of the two nuisance parameters g
and p (see the next subsection) in order to forecast X; from X,... , X; ;. Sup-
pose that these parameters have been selected well, i.e. that the forecasting has
been successful. The closeness of the two spectra implies that we can also ex-
pect to successfully forecast X;;; from Xj,..., X, using the same, or possibly
“neighbouring”, values of the nuisance parameters.

Bearing in mind the above discussion, we introduce the algorithm with a slight
abuse of notation: we drop the second subscript when referring to the observed

time series.

3.5.3 Data-driven choice of parameters

The idea of the procedure is to start with some initial values of p and ¢ and to
gradually update them using a criterion which measures how well the series gets
predicted using a given pair of parameters. This type of approach is in the spirit
of adaptive forecasting (Ledolter (1981)).

Suppose that we observe the series up to X;_; and want to forecast X; using
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3.5. Prediction based on data

an appropriately chosen pair (p, g). The idea of the method is to move backwards
by s observations and choose an initial pair (p(()o),géo)> for predicting X;_; from
the observed series up to X; ;. We compute the forecast of X; ¢ using not only

(p(()o), g80)>, but also the 8 “neighbouring” parameter pairs

0 0 0 0 0 0

for a pre-selected constant 1. As the true value of X, , is known, we are able to
use a preset criterion to compare the 9 prediction results, and we set (pgo), g%o)) to
be the pair that corresponds to the best result. In the next step, we use the pair
(p(lo), g§0)>, as well as its 8 neighbours, to predict X; ;.1 from Xg,..., X; , and
obtain (pg]), g§0)> as the pair which resulted in the best forecast. Continuing in the
same fashion until we reach X;_;, we finally obtain an updated pair (pgo), g§0)>,
which is used to perform the actual prediction of X;.

Several different criteria can be used to compare the quality of the pairs of
parameters at each step. Denote by Xt_i(p, g) the predictor of X;_; computed
using the pair (p, g), and by I,_;(p, g) — the corresponding 95% prediction interval

based on the assumption of Gaussianity:

[tfi(p:g) = |—1.96 a'tfi(pag) + thi(p; 9) , 1.96 a'tfi(p: 9) + thi(pag) ; (3-84)

where 62 ;(p, ) is the estimate of MSPE(X,_;(p, g), X;_;) computed using formula
(3.12) with the remainder neglected. The criterion which we use in the simulations

reported in the next section is to compute

Xt—i - Xt—i(pa g)
length{Z;_:(p, )}

for each of the 9 pairs at each step of the procedure and select the updated pair

as the one which minimises this ratio.
We also need to choose the initial parameters <p80), g80)> and the number s of
data points at the end of the series which are used in the procedure. We suggest

that s should be set to the length of the largest segment at the end of the series
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Chapter 3. Forecasting LSW processes

which does not contain any apparent breakpoints observed after a visual inspection.
If, after a single pass along the segment X;_,,...,X;_;, the forecasts are still
inaccurate, then one or more further passes may be necessary: one possibility is
then to set (pgn), g(()n)> = (pgnfl), g§"71)> and proceed as before.

Note that the procedure is completely on-line: when the observation X; becomes
available, only a single update of the pair <pgo), g§0)> is needed to obtain a “good”
pair of parameters for predicting X, ;.

There are, obviously, many possible variants of the algorithm. Possible modi-
fications include, for example, using a different criterion, restricting the allowed
parameter space for (p,g), penalising certain regions of the parameter space, or
permitting more than one parameter update at each time point.

The following section presents an application of the algorithm to a real data set.

A more theoretical study of this algorithm is left for future work.

3.6 Application of the predictor to real data

In this section, we study the wind speed anomaly index, i.e. its standard-
ised deviation from the mean, in a specific region of the Pacific (12-2N,
160E-70W). Modelling this anomaly helps to understand the El Nino effect
in that region (see Philander (1990) for a detailed overview). The time se-
ries composed of T = 910 monthly observations is available free of charge at
http://tao.atmos.washington.edu/data_sets/egpacmeridwindts. Figure 3.1
shows the plot of the series.

Throughout this section, we use Haar wavelets to estimate the local (co)variance.
Having provisionally made a safe assumption of the possible non-stationarity of
the data, we first attempt to find a suitable pair of parameters (p, g) which will
be used for forecasting the series. By inspecting the acf of the series, and by
trying different values of the bandwidth, we have found that the pair (7, 70) works

well for many segments of the data; indeed, the segment of 100 observations from
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Figure 3.1: The wind anomaly index (in cm/s). The two vertical lines indicate the
segment shown in Figure 3.2.

June 1928 to October 1936 gets predicted very accurately in one-step prediction:
96% of the actual observations are contained in the corresponding 95% prediction
intervals (formula (3.84)).

However, the pair (7,70) does not appear to be uniformly well suited for fore-
casting the whole series. For example, in the segment of 40 observations between
November 1986 and February 1990, only 5% of the observations fall into the cor-
responding one-step prediction intervals computed using the above pair of param-
eters. This provides strong evidence that the series is non-stationary (indeed, if
it was stationary, we could expect to obtain a similar percentage of accurately
predicted values in both segments).

Motivated by the above observation, we now apply the algorithm described in

the previous section to the segment of 40 observations mentioned above, setting the
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50
1

1987 1988 1989 1990

Figure 3.2: Comparison between the one-step prediction in the LSW,; model
(dashed lines) and AR (dotted lines). The middle line is the predicted value, the
top (bottom) line is the upper (lower) end of the corresponding 95% prediction
interval.

initial parameters to (7, 70). After the first pass along the segment, the parameters
drift up to (14, 90), and 85% of the observations fall within the prediction intervals,
which is indeed a dramatic improvement over the 5% obtained without applying
the adaptive algorithm. In the second pass, we set the initial values to (14, 90), and
obtain a 92.5% coverage by the one-step prediction intervals, with the parameters
drifting up to (14, 104). In the last iteration, we finally obtain a 95% coverage, and
the parameters get updated to (14, 114). We now have every reason to believe that
this pair of parameters is well suited for one-step prediction within a short distance
of February 1990. Without performing any further updates, we apply the one-step
forecasting procedure to predict, one by one, the eight observations which follow

February 1990, the prediction parameters being fixed at (14,114). The results
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are plotted in Figure 3.2, which also compares our results to those obtained by
means of AR modelling. At each time point, the order of the AR process is
chosen as the one that minimises the AIC criterion, and then the parameters
are estimated by means of the standard S-Plus routine. We observe that for
both models, all of the true observed values fall within the corresponding one-
step prediction intervals. However, the main gain obtained using our procedure
is that the prediction intervals are on average 17.45% narrower in the case of our
algorithm. This result is not peculiar to AR modelling as this percentage is also
similar in comparison with other stationary models, like ARMA(2,10), believed to
accurately fit the series. A similar phenomenon has also been observed at other

points of the series.

3.7 Conclusion

In this chapter, we have investigated several theoretical and practical aspects of
forecasting Gaussian LSW processes. As the model is Gaussian, we have consid-
ered the linear predictor where the coefficients minimise the Mean Square Pre-
diction Error (MSPE). The exact MSPE, however, involves parameters which are
unidentifiable in the LSW model. Therefore, we have considered the minimisation
of an approzimation to the MSPE which involves the (uniquely defined) wavelet
spectrum. The derivation of our asymptotic results has been possible due to the
rescaled time concept which is one of the ingredients of the LSW framework.

To overcome a theoretical difficulty arising in the approximation, we have intro-
duced a slight modification to the LSW framework and called the new class the
“LSW, model”. All subsequent results have been derived for the new model. In
particular, we have generalised Kolmogorov’s formula for one-step-ahead predic-
tion error.

In practice, the entries of the prediction matrix in the Yule-Walker equations

need to be estimated. We have analysed the behaviour of the first two moments of
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the arising wavelet-based estimators and concluded that the estimators are asymp-
totically unbiased but inconsistent. Thus, the estimators need to be smoothed over
time, and therefore we have to choose the smoothing parameter (e.g. the band-
width of the smoothing kernel). Moreover, we need to reduce the dimension of
the prediction equations to avoid too much inaccuracy of the resulting prediction
coefficients due to estimation errors. We have proposed an automatic computa-
tional procedure for selecting these two parameters. Our algorithm is in the spirit
of adaptive forecasting as it gradually updates the two parameters basing on the
success of prediction.

We have applied our new algorithm to a time series of yearly values of the
wind speed anomaly index in a specific region of the Pacific. Our non-parametric
forecasting algorithm shows interesting advantages over the classical parametric
alternative (AR forecasting). Moreover, we believe that one of the biggest ad-
vantages of our new algorithm is that it can be successfully applied to a variety
of data sets, ranging from financial log-returns (Chapter 4) to series traditionally
modelled as ARMA processes, including in particular data sets which are not, or
do not appear to be, second-order stationary. The S-Plus routines implementing

the algorithm, as well as the data set, are included on the associated CD.
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Chapter 4

Modelling financial log-return
series using wavelets and rescaled
time

In this chapter, we attempt to model financial log-return series as locally stationary
time series in a setup which combines wavelets and the rescaled time concept,
and is closely related to the LSW framework of Nason et al. (2000). The initial

motivation for this research can be summarised as follows:

1. As was mentioned in Section 2.2, stationary linear time series models can-
not capture the “stylised facts” of financial log-return series and to preserve
stationarity, non-linear models, such as (G)ARCH or Stochastic Volatility
have been proposed. However, some authors (see the references in Section
2.2.2) have recently argued that even when non-linear models are used, non-
stationary modelling may still be preferred. This provokes another inter-
esting general question: once we abandon the assumption of stationarity, is
non-linearity still needed to model financial log-returns accurately, or is it

sufficient to stick to linear models?

2. Some authors observe that various economic factors operate at different time
scales, which may translate into a possible “multiscale” mechanism underly-

ing financial log-return series (see for example Calvet & Fisher (2001)). On
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the other hand, wavelets are a commonly used tool in the analysis of mul-
tiscale phenomena, so a wavelet-based approach may prove to be a suitable

modelling technique here.

3. The rescaled time idea, whereby the time-varying (first and) second or-
der quantities of a process are defined on a compact interval, like in non-
parametric regression, enables meaningful asymptotic considerations (see
Section 2.2.4). Therefore the hope is that by modelling financial log-returns
in a rescaled time framework we will be able to keep track of the asymp-
totic behaviour of the statistics of interest (e.g. sample autocorrelations
of the squared returns), which may be helpful in explaining the commonly

observed “stylised facts” of financial time series.

The chapter is organised as follows: in Section 4.1, we motivate our methodology
by arguing that daily returns on the FTSE 100 index can be adequately modelled
as Gaussian time-modulated white noise (TMWN). In Section 4.2, we introduce
the LSW3 model as a modification of the LSW framework of Nason et al. (2000),
and show that Gaussian TMWN is a special case of an LSW3 process. In Section
4.3, we provide theoretical evidence that LSW3 processes can capture most of the
stylised facts of financial time series modelling. In Section 4.4, we introduce a new
(suitable for log-returns) estimation approach for LSWj3 processes, and demon-
strate its superiority to the general method of Nason et al. (2000). In Section 4.5,
we provide an interesting example of exploratory data analysis using the LSWj
model. Finally, in Section 4.6, we apply the adaptive forecasting algorithm of Sec-
tion 4.6 to log-returns, and provide a comparison with forecasts based on GARCH

modelling.

4.1 Motivating example

3

In this section, we motivate our “linear non-stationary” approach by arguing that

returns on the daily closing values of the FTSE 100 index can be adequately
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modelled as Gaussian time modulated white noise (TMWN), i.e. a process of the
form X; = 0,Z;, where o; is a deterministic sequence, and Z;’s are independent
N(0,1). In Section 4.2, we show that Gaussian TMWN is a special case of a
wavelet-based time series model, closely related to the LSW framework recalled in
Section 2.2.4.

For the purpose of this section, let X; denote 2158 consecutive observations of
logged and differenced daily closing values of the FTSE 100 index, from 22/23
October 1992 to 10/11 May 2001. The source of the data here, and throughout
the rest of the chapter, is http://bossa.pl/notowania/daneatech/metastock
(page in Polish).

X, is plotted in the top left subfigure of Figure 4.1. Superimposed on the plot
is an estimate &; of the local standard deviation o; (the estimate was obtained by
smoothing X? using a Gaussian kernel with the bandwidth chosen by trial and
error, and then square-rooting the result; see Section 4.4 for automatic methods of
estimation). Following down the left-hand column, the next plot shows the sample
autocorrelation of X;, and the plot below it — the sample autocorrelation of X7.
The bottom left subfigure shows the Q-Q plot of X; against the normal quantiles.
From those plots, it is evident that X; obeys the well-known “stylised facts”: the
sample autocorrelations of X, are negligible, but the sample autocorrelations of
X? are significant; volatility is clustered; the marginal distribution of X; is heavy-
tailed.

The right-hand column provides evidence that X; can be modelled as Gaussian
TMWN, which is a linear, but non-stationary stochastic process. Indeed, the top
plot shows Z; = X;/6;, and the plots in the 2nd and 3rd rows — the sample acf
of Z; and Z}, respectively. The bottom right subfigure shows the Q-Q plot of Z;
against the normal quantiles. From the inspection of the sample autocorrelation
functions of Z; and Z7, it appears that, as a first approximation, Z; can be modelled
fairly accurately as an i.i.d. sample of N(0,1) variables. This in turn implies

that X; can be modelled as Gaussian TMWN: clearly, there exists a g, such that
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X, = 0y7; with Z; i.i.d. ~ N(0,1).

One of the consequences of the non-stationarity of X; is the fact that the sample
acf is simply not an appropriate tool for computing the acf of X; or X?. We would
submit, and will argue this point later in the chapter, that the “long memory”
effect in squared log-returns on indices is nothing else than a spurious effect of
applying the sample acf to non-stationary data (see Mikosch & Starica (2003) for
similar considerations in the GARCH framework).

Having demonstrated that daily FTSE 100 can be modelled as Gaussian TMWN,
we now proceed to define our wavelet-based model (which is a modification of the
LSW setup) and show that Gaussian TMWN is its special case. In Section 4.5,
we come back to the example of FTSE 100 and model this series in our wavelet
framework. We show that, in this way, more local features of the FTSE 100 data

can be picked up.

4.2 Wavelet-based model

In the rescaled time framework, the TMWN process is defined as

t
Xt,T =0 (f) Zt,Ta (4-1)

fort =0,...., T—1and T = 1,2,..., where 0 € C[0,1] is a “smooth” time-
varying standard deviation function, and Z; r are i.i.d. N(0,1). Motivated by the
discussion above, we wish to embed this process in a larger, “multiscale” stochastic
framework. Clearly, the LSW (or LSW3) model is a good candidate, possessing
all the required characteristics: non-stationarity, linearity, rescaled time and a

multiscale structure. However, we will now show that in the present formulation,

the TMWN is not embedded in either the LSW or the LSW, model:
TMWN € LSWy). (4.2)
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Figure 4.1: Left-hand column, from top to bottom: X; with &; superimposed, acf
of X;, acf of X?, qqnorm plot of X;. Right-hand column, from top to bottom: 7,
acf of Z;, acf of Z2, qqnorm plot of Z;. See Section 4.1 for a discussion.
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Indeed, multiplying both sides of (3.70) by ¢?(z), we obtain that the wavelet
spectrum of a TMWN process (4.1) is

Si(z) = 270%(2), (4.3)

which leads to W;(z) = 29/2¢(z). Assume that o(2) is Lipschitz-continuous with
the Lipschitz constant L. The Lipschitz constants L; for W; are therefore equal to
L; = 27/2L: however, this clearly violates the summability conditions (2.27) and
(3.32).

To remedy this unwelcome situation, we introduce an alternative model which is

a modified version of the LSW and LSW, setups. We call the new class “LSW3”.

Definition 4.2.1 A triangular stochastic array {X; 7}/, for T =1,2,..., is in
the class of LSW3 processes if there exists a mean-square representation

-1 oo
Xyr = Z Z W; k7P k (8) €k (4.4)
j=—x k=—00

where ;1 (t) are nondecimated discrete wavelet vectors, wjy.r are real constants,
and {&; 1}k are zero-mean orthonormal identically distributed random variables.
Also, we assume that for each j < —1, there exists a continuous function W;(z) :
R — R such that S; := I/Vj2 is Lipschitz with constant L; and

o W;(2) =W;(0) for z <0 and W;(z) = W;(1) for z > 1,
o« >l . Si<x,

e the Lipschitz constants L; satisfy
ID< Vj<-1 L;27<D, (4.5)

-1

o there exists a sequence of constants C; satisfying Zj:_oo

for each T,

C; < oo such that,
s w2 — (/)| < /T (4.6)

Three remarks are worth making at this point.
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4.2. Wavelet-based model

1. Nason et al. (2000) control the evolution of the second order structure of
LSW processes by making certain assumptions on the Lipschitz constants
of {W;(2)};, as well as on the distances sup, |w;xr — W;(k/T)| (we adopt
the same convention in the definition of the LSW, process). However what
is really required in the second-order theory is the Lipschitzness of S;(z) =
W;(2)? and bounds on the distances supy, |w? ;.. — S;(k/T)|. Here is how the

latter set of assumptions relates to the former: we have

Wik = Si(k/T)| = |wjpe — Wy (k/T)||wjer — Wi(k/T) + 2W;(k/T)|
< G/T(CG/T +2Wj(2))
< G/T(C/T +2(W;(z) v 1))
< Ci/T(C5/T +2(5;(2) V1))
< C;)T (Cj/T +2 (Sgpzsj(z) Vv 1))
< K,C;T. ]

Also,

1Si((k+1)/T) = 5;(k/T)]| <

Llll/TIW;((k +1)/T) = W;(k/T) + 2W;(k/T)]| <

L;|l|/T (Lj|l/T+ 2 (SupZSj(z) Vv 1)) <

K,L;|1|/T.

Therefore, in deriving rates of convergence in the LSW (LSW3) model, we
can “ignore” the constants K, K, and assume that [w?,.-—S;(k/T)| < C;/T
and |S;((k+1)/T) — S;(k/T)| < L;|l|/T, which is implicitly done both in
Nason et al. (2000) and in Chapter 3. Note that the definition of an LSW3
process contains these two assumptions in an explicit form, but does not
contain the “redundant” assumptions that |w;xr — W;(k/T)| < C;/T or
Wy ((k + 1)/T) = Wy(k/T)| < L;1}/T.
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2. Note that the summability conditions (2.27) and (3.32) are stronger than
(4.5). Indeed, Y7, 277L; < oo implies (but is not equivalent to) 277/L; — 0,

which in turn implies (but is not equivalent to) (4.5).

3. Note that we also define W;(z) and S;(z) beyond the interval [0, 1] (we
assume that W; and S; are continuous everywhere and constant outside

[0,1]). This will be needed later in the proof of Proposition 4.2.1.

It is easy to see that Gaussian TMWN with o Lipschitz satisfies the assumptions
of Definition 4.2.1 with w; .7 = W;(k/T) = o(k/T)27/2.

The definitions of the local (co)variance and other quantities in the LSW3 model
are analogous to those in the LSW framework (see Section 2.2.4). Under the
assumptions of Definition 4.2.1, the evolutionary wavelet spectrum S;(z) and the
local autocovariance ¢(z, 7) remain uniquely defined (the proof of this statement
is identical to Nason et al. (2000), Theorem 1). We are also in a position to prove

the following proposition:

Proposition 4.2.1 Under the assumptions of Definition 4.2.1, |lcr — ¢||r,, =
O(T"og(T)).

Proof. We have

er(l/T,7) = cU/T,7)| =

[
Z <wy2',k;T - S; <f>> Vj k10 k—1—7

g(% + 19 (%) —5; (%) D |V k-1 k-1-64.7)

j!k

IN

Now, observe that on the one hand,

k l Lilk =1 _ L;L
5j<f>—5j<f>‘s e |§ U (4.8)

due to the compact support of ;. However, on the other hand,
k l
5i(7) - (7)
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4.2. Wavelet-based model

using the fact that S; is Lipschitz (with constant L;) and constant outside [0, 1].

Therefore, continuing from (4.7), we have

oF k [
Z <T] + Sj <f> — Sj (f) ) |¢j,k7le,kflfﬂr‘ S

7.k
_ (L
O(T Y + ZLj min <T] 1) , (4.10)
J

by applying the Cauchy inequality for >, |¢; x—1%;k—1—-|. Let us now concentrate
on the sum in (4.10). Recall that £; < M277 for some constant M. We have
L, M2
;Lj min <TJ’ 1) < Z L; min (T’ 1)

J
— logy(T//M)]

:% oL+ Y L

j=—1 j<~logy(T/M)]
M —[logy(T)] ,
< = Z D+D. >
j=-1 §<—logy(T/M)]
M D log,(T
< MPL) o),
which completes the proof. O

Throughout the rest of the chapter, we will work with Definition 4.2.1, rather
than Definition 2.2.1 or 3.2.2.

Innovations &; ;. Throughout the chapter, we stick to & i.i.d. N(0,1). Gaus-
sian innovations cannot account for skewed “marginal” distributions or ex-
treme events, such as those present in the Nikkei index (left-hand plot in
Figure 4.2) or the Dow Jones Industrial Average (DJIA) index (right-hand
plot in Figure 4.2). We believe that these stylised facts can be captured by
an appropriate choice of the distribution of §;;, e.g. a mixture of normals
would have a better chance of picking up the occasional “spikes” in the se-
ries (see, again, Figure 4.2). Also, a combination of skewed innovations and
“skewed” wavelets (i.e. such that )~ %, # 0) would be able to pick up the

often-observed skewness of the log-return data. However, the emphasis in

95



Chapter 4. Modelling log-returns using wavelets and rescaled time
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Figure 4.2: Left-hand plot: log-returns on daily closing values of Nikkei (5/6 Jan
1970 — 11/14 May 2001). Right-hand plot: log-returns on daily closing values of
the Dow Jones Industrial Average (3/4 Jan 1995 — 10/11 May 2001).

this chapter is on the non-stationarity of the log-return series, and not on
the possible non-Gaussianity of the innovations. Therefore, we restrict our-
selves to Gaussian innovations in the theoretical considerations, leaving an

extension to other distributions as an interesting direction for future study.

Trend. Throughout the chapter, we assume E(X;7) = 0 (as is obvious from Def-
inition 4.2.1). A more thorough study would also incorporate trend p(t/T')
in the model. This trend could then be estimated by wavelet methods, see

e.g. von Sachs & MacGibbon (2000).

4.3 Explanation of the stylised facts

In this section, we demonstrate that Gaussian LSW3 processes can successfully

account for the following stylised facts of financial log-returns:

e heavy tails of the “marginal” distribution,
e negligible sample autocorrelations,

e non-negligible sample autocorrelations of the squares,
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4.3. Explanation of the stylised facts

e clustering of volatility.

4.3.1 Heavy tails of the “marginal” distribution

In this section, we consider the sample second moment and the sample fourth

moment:
1 T-1
mj (X) = T ZXZT
t=0
1 T-1
mi(X) = =) X
t=0

For stationary Gaussian processes, we could expect that mI (X)/(mk(X))? ~ 3.
However, the following demonstrates that this ratio is “spuriously” distorted if the

variance 02(z2) of X;r varies over time.

E(m](X)) = % o <%>+O(log(T)/T)

+

For the purpose of this section, denote the first summand in the above formula by
A% Obviously, A? = 0 for all T if and only if 6%(z) is constant w.r.t. z. Therefore,
for a non-constant ¢?(z) and for large T, we have

ml (X) N A?
(m3(X))2  (m3 (X))

5 +3> 3. (4.11)

The above relationship provides a heuristic explanation of the fact that the
marginal distribution of processes with a non-constant variance appears heavy-
tailed when the sample fourth moment and the sample second moment are (incor-

rectly) applied to them.
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4.3.2 Sample autocorrelations of X, and Xt%T

Like in Mikosch & Starica (2003), we consider the sample autocovariance function

| Tl = 2
(X, h) = ; XirXpenr = <fgxﬂ) , (4.12)
and the sample autocorrelation function
IYT(Xa h)
X,h)= ———. 4.13
pT( ) ’YT(Xa 0) ( )

Also, define the scalogram:

1, [t
—
ST = fZSj <f> (4.14)
t=0
The following proposition provides a representation of the expectation of the sam-

ple autocovariance in terms of the scalogram. The implications of the proposition

are discussed after the proof.

Proposition 4.3.1 Let an LSW3 process X, ¢ satisfy

sgp Z ez, 7)| < oc. (4.15)
We have
E(yr (X, h)) = Z STw;(h) + 0 <%Ogm> : (4.16)

Proof. We have

| Tolh T-1 2
E{ = > XirXinr — ( > Xt’T) —
= t=0

t=0

T—1—h T-1
1 t 1 t , log(T')
t=0 t,t'=0
h

el

T-1 T-1
1 t 1 t ) + log(T)
f C(f,h)—ﬁttg_oc<f,t—t>+o<# .

Let us now consider the second summand.
T—1

1 ¢ ,
ﬁZC(T,t—t>

A
3~
IMg

t,t'=0 t=0 T=—0c
< Lo S e
< TSLle y C Z,T
= O,
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by assumption (4.15). Noting that £ S/ ' c (4, h) = > STW;(h) completes

the proof. O

The representation (4.16) implies that the sample autocorrelations at positive
lags will be negligible provided that Z;’c_l S’jT\IIJ(h) is “close” to C¢y. By formula
(3.70), this is guaranteed by S'JT being “close” to C27, which is indeed often the
case, as the examples provided in Section 4.5 demonstrate. This would explain
the frequently occurring negligible sample autocorrelations of log-returns.

An analogous proposition can be formulated for the sample autocovariance of

X7?p. The following result is true.
Proposition 4.3.2 Let a Gaussian LSW3 process X, satisfy (4.15). We have

oo = 15 (#(5)- 1357 () +3 5 (5

t=0 t=0

L0 <h+log(T)> |

Proof. Denote a(z) = Y _c¢*(z,7). By assumption (4.15), sup, a(z) < oo. Using

Gaussianity, we obtain

1 T—1—h 1 T—1 2
E f XZTXtQJrh,T - (f ZXZT) =
t=0 t=0
+

FE () ) )

w2 [0 6) () o) -
P2 (7)) o)
(5 @) A5 () o ()

+
S

and the proof is completed. O
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For the purpose of this paragraph, denote the first summand of formula (4.17)
by A%, and the second one by B?(h). Two spurious effects can potentially be
observed here. If the variance 0%(z) is non-constant, A% always gives a spurious
positive contribution to the sample autocovariance. Note that A? is independent
of h, which explains the fact that the sample autocovariance of the squares often
decays very slowly (a feature which cannot be picked up by classical GARCH
models, see again Mikosch & Starica (2003)). For extremely large h, the remainder
O(h/T) often makes the positive contribution of A? less pronounced.

The second spurious effect is due to B?(h), which distorts the information about
the local autocovariance by averaging it over time. Things are not rectified in the
case of the sample autocorrelation, either: as an example, consider again TMWN.

For a non-constant o%(z) and h # 0, we have

’)/T(Xz, h) A2 +0 0

pr(X2 h) = v7(X2,0) ~ A2 + B2(0) g B*(0)

while, obviously, we would expect a good estimate to return a value close to zero.

A similar mechanism works in the case of absolute values.

4.3.3 Clustering of volatility

The “clustering of volatility” or, in other words, a “slowly varying local variance” is
indeed one of the features of LSW (LSW,, LSW3) modelling. Occasional “spikes”
in the log-return series, see for example Figure 4.2, are clearly against this principle.
Yet, we believe that this problem can be rectified by resorting to non-Gaussian
innovations &;, e.g. modelled by mixtures of normal variables. As mentioned in
the penultimate paragraph of Section 4.2, a more thorough investigation of this

possibility is left for future study.

4.4 Estimation

To estimate the spectrum, Nason et al. (2000) use the wavelet periodogram Tt(JT)

defined by formula (2.36). In our altered setup of Definition 4.2.1, we will also use
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the statistic defined by (2.36). The following proposition holds.
Proposition 4.4.1 Let X, satisfy Definition 4.2.1. We have

1 ,
| ' 27 log(T
B9 =Y s, <f> A 40 <%> . (4.17)

1=—00

where A is defined by (2.34). In addition, if X, is Gaussian, then

Var (1,59) —2 (Z S, <%> Am) 2 +0 (%) . (4.18)

Proof. In the proof, we use the orthonormality of &;, the fact that £; < M277

and formula (3.67). First note that

sy (Sra) - T a0 () ww
i j ‘

i

We have

— ,
Z Z WiQ,k;T -5 (%)‘ (Z wi,k—twj,p—t> <
i=—1keZ -

2
o L .
35 {lsi(4) - 5(2)|+ £} (S <
i=—1 keZ ;

. M max(27%,27) Ci
Z{Lﬂ’nln( T ,1>+T}Ai,j§

i

M2i J o —[logy (T/M)] o
- SL272 A+ ) L2TA; |+
i=—1 i=j—1
+ Y Li+0Q7T) <

i<—logy(T/M)]
[logy (T'/M)]

M2~ , .
= Y L2740+ 0Q27/T) =
i=—1

5 (2_]- log(T)> |

T
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which proves the expectation. For the variance, first observe that
ORI
= > elzm)¥(r)
< sup Y |e(z,7)]

< oo (4.20)

by assumption (4.15). Using Gaussianity, we have
J) DA
Var(IpT) = 2 ([J))
‘ 2
277 1og(T)
_ 2(_ Zj+o(__7f_)>

oy (_ >2+0<2j1;gm>,

where the last step uses (4.20). This completes the proof. O

The form of the remainder in (4.17) suggests that the estimator is more accu-
rate for finer scales. However, like in Nason et al. (2000) and in Section 3.4, we
normally compute the wavelet periodogram down to scale —J(T'), with .J defined
in Definition 2.2.1.

Formula (4.17) suggests the following method of estimating the spectrum: for

each t =0,...,T — 1, we solve the system of equations

)

19 =3"5,(t/T) Ay, ivj=—1,...,~J(T) (4.21)

to obtain an approximately unbiased estimator S;(¢/T) of the spectrum S;(t/T)
(see Nason et al. (2000) for details of this procedure in the LSW model).
However, formula (4.18) shows that the wavelet periodogram is not a consistent
estimator and needs to be smoothed to obtain consistency. We can either first
solve (4.21), and then smooth S;(t/T), or first smooth It(fr}, and then solve (4.21).

Following Nason et al. (2000), we prefer the latter option, as it is often easier to
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work out the distributional properties of It(JT) than those of S;(t/T), and therefore
it is easier to justify the choice of smoothing parameters for It(JT)

Smoothing the wavelet periodogram is by no means an easy task, due to an
extremely low signal-to-noise ratio (for Gaussian series, neglecting the remainders,
we have E (I%) / {Var (I%) }1/2 ~ 1/4/2), and also to a significant amount of
autocorrelation present in Tt(JT) Nason et al. (2000) propose an adaptive wavelet
denoising method whose performance will be discussed in Section 4.4.4.

In Section 4.4.1, we propose an alternative general methodology for smoothing
the wavelet periodogram. Section 4.4.2 looks at two specific methods of smoothing,

and Section 4.4.3 deals with inverting (4.21) in an approximate manner to ensure

the nonnegativity of the estimated spectrum.

4.4.1 Generic algorithm

The approach which we propose here is based on the following observation. Denote
by {dif}}f;ol the sequence of non-decimated wavelet coefficients of X; 7 at scale j
(so that Tt(JT) = (d%)Q) Often, financial log-returns exhibit little serial correla-
tion (e.g. see the example in Section 4.1), so, by orthogonality of the decimated

wavelets, the sequence

do dyp dip) A
as well as the sequence

dir) dip) dig) o d g

are each sequences of approximately uncorrelated random variables. At scale j,

the same phenomenon is observed for sequences

d(j) d(j) d(j)

- -Jj _
D A =01, 27 — 1

However, even if the original series X, exhibits some form of autocorrelation,

the decimated sequences of wavelet coefficients will often be much less correlated.
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This is the well-known “whitening” property of wavelets, see e.g. Vidakovic (1999),
Section 9.5.3.

If X, 7 is Gaussian, the lack of serial correlation in the decimated sequences also
means lack of dependence, which in turn implies that the corresponding decimated

subsequences of the wavelet periodogram

IO I =012 L (4.22)

are simply sequences of independent (gamma-distributed) random variables.

The above argument can only be made formal if X, r is Gaussian TMWN. This
is obviously a simplifying assumption, as clearly not every log-return sequence
can be adequately modelled as such. However, it turns out that in practice, the
assumption of the lack of dependence in the decimated subsequences of the wavelet
periodogram leads to estimators which perform well numerically (on simulated
data) and are visually appealing (on both simulated and real data). In other words,
the departure from the TMWN setting often turns out not to be significant enough

(4)

to prevent us from treating the decimated subsequences of Itip as independent.

Having made the assumption of independence, we now proceed as follows:

1. Fix j.
2. Fori=0,1,...,277 — 1, pick the decimated sequence
Ii(,JT)’ Ii(i)2—f,T’ T ’Iz’(i)Tﬂ—j,T

and smooth it using a preselected method, with the smoothing parameter(s)
chosen by cross-validation (CV). CV stands a chance of performing well
here, due to the lack of dependence between the variables. For example, the
technique of Ombao et al. (2001b) can be applied, as we are also dealing
with a sample of independent gamma variates, like in periodogram smooth-
ing. In Section 4.4.2, we explore two other methods in which the smoothing

parameter is chosen by CV.
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3. Interpolate the smoothed sequence at all the points 0,1,... ,7—1 (e.g. using

linear interpolation). Denote the interpolated smoothed sequence by
oy T—1
I(lzj) } .
{ AN P

4. Finally, compute the estimate of the wavelet periodogram as the average of

the estimates IN,(’iT’j), fori=0,1,...,277 —1:

2-i—1

B>
1=0

For coarser scales, where it is not possible to smooth the decimated sequences accu-
rately as they are too short, we estimate ff]T) by a constant: IAt(]T) =1/T ZZT;OI IZ(Z;F).

The estimates ft(JT) can now be substituted into the systems of linear equations
I =" 8(t/T) Ay (4.23)

CV for dependent data. CV “as it is” does not perform well when the errors
are dependent and some methods for correcting CV to this setting have
been developed, see for example Altman (1990). However, they all work
for stationary noise and require an estimate of the autocovariance. In our
setting, finding such an estimate implies finding a pre-estimate of the signal
itself. To avoid this nuisance, we prefer to work with independent decimated

subsequences.

4.4.2 Smoothing the decimated periodogram

In step 2. of the algorithm of Section 4.4.1, we apply a smoothing procedure to the
decimated subsequences of the wavelet periodogram. In this section, we consider
the use of two smoothing methods: cubic B-splines (see Hastie & Tibshirani (1990)
for details) and translation-invariant nonlinear wavelet smoothing (see Nason et al.
(2000)).

The benefits of using cubic B-splines are the following.
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e The method performs well (see Section 4.4.4).

e Most statistical packages provide a fast implementation of this method. For
example, we use the S-Plus routine smooth.spline, which automatically

selects the smoothing parameter by cross-validation.

e Numerical examples suggest that the method is fairly robust to the mis-
specification of the local variance of the noise. This feature is particularly
attractive: in our setting, the variance of the noise depends on the signal (see
formulas (4.17) and (4.18)), and, therefore, an accurate estimate of the vari-
ance would require an accurate estimate of the signal. In practice, it seems
sufficient to supply constant variance to smooth.spline, see the results in

Section 4.4.4.

The advantages of using translation-invariant nonlinear wavelet smoothing are

as follows.
e The method performs well (see Section 4.4.4).

e The only smoothing parameter to be chosen is the “primary resolution”,
above which universal thresholding is applied with the threshold (suitable
for chi-squares) as in Nason et al. (2000). For speed of computation, we
do not choose the threshold by cross-validation, even though in theory this
could also be considered. There are only log,(T') primary resolution levels to
choose from, which makes the choice potentially easier than, say, the choice
of bandwidth in kernel smoothing. We perform the selection by “leave-
half-out” cross-validation like in Nason (1996). The accurate choice of the
primary resolution is extremely important in this context, as the numerical

example of Section 4.4.4 powerfully demonstrates.

e Unlike linear methods, this nonlinear technique is capable of detecting abrupt

changes in the wavelet periodogram.
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4.4.3 Estimating the spectrum with guaranteed nonnega-
tivity

The evolutionary wavelet spectrum S;(z) is a nonnegative quantity so it would also

be desirable if S;(k/T) was guaranteed to be nonnegative. This can be achieved, for

example, by replacing the system of equations (4.23) by a Linear Complementarity

Problem (LCP; see e.g. Murty (1988)):

~

AS(k/T) > ILpr
S(k/T) > 0
(AS(k/T) - ik,T) S(k/T) = o.

The above LCP can be solved using e.g. successive over-relaxation.
Let gjLCP(k/T) denote the estimate of S;(k/T) obtained using the LCP formu-
lation, and SNV (k/T) — using the simple inversion of formula (4.23). By (2.33),

we estimate the local variance o(k/T) in each case by

-1

(/T = Y ST (R/T)
j==J(T)
-1

&*(k/T)™NY) = >~ SNV(k/T).
j=—J(T)

In practice, 62(k/T)™V) is often a much more accurate estimator of the local
variance. In order to combine this feature with the guaranteed nonnegativity of
the spectrum, we rescale the LCP-based estimator to yield the final estimators of
S;(k/T) and o*(k/T):

. SFP (k/T)
UQ(k/T)(INV) (32Z/€/T)(LCP)

S;(k/T) (4.24)

64 (k/T) = Z S;(k/T). (4.25)

As explained in Sections 4.4.1 and 4.4.2, S;(k/T) depends on the method used
for smoothing the wavelet periodogram. The next section briefly compares the
performance of the estimators based on cubic B-splines and on nonlinear wavelet

denoising.
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Figure 4.3: Left-hand plot: sample path from Gaussian TMWN model with time-
varying standard deviation superimposed. Right-hand plot: time-varying variance
(solid), its estimate using splines (dot-dashed), its estimate using nonlinear wavelet
thresholding (dotted), and its estimate using nonlinear wavelet thresholding with
default parameters (dashed).

4.4.4 Numerical results

The left-hand plot in Figure 4.3 shows a sample path from the Gaussian TMWN
model with the superimposed contrived time-varying standard deviation. We es-
timate the time-varying local variance (the square of the time-varying standard

deviation) by adding up estimators of the Haar wavelet spectrum over scales (see

formula (4.25)). The right-hand plot shows

e the time-varying variance (solid line);

e an estimate obtained using spline smoothing with the smoothing parameter

chosen by cross-validation (dot-dashed line);

e an estimate obtained using translation-invariant nonlinear wavelet smoothing
with Daubechies’ least asymmetric wavelet with 10 vanishing moments where

the primary resolution was chosen by cross-validation (dotted line);

108



4.4. Estimation

default | splines | wavelets
mean of d,2 1197 189 195
mean of dg 464 243 276

Table 4.1: Values of the criterion functions averaged over 25 simulations. “Default”
is the method of Nason et al. (2000) with default parameters, “splines” is our
method using spline smoothing and “wavelets” is our method using translation-
invariant nonlinear wavelet smoothing.

e an estimate obtained using the same wavelet method (dashed line) but with
default parameters except the smooth.dev parameter in the ewspec routine
(Nason (1998)) was set to var as recommended by G.P. Nason (personal

communication).

While the two estimates with the smoothing parameter chosen by cross-
validation almost coincide with each other and with the true time-varying variance
(except for the spurious spike in the wavelet estimate), the default estimate by Na-
son et al. (2000) oversmooths. This is due to the fact that the primary resolution
(PR) in the latter method is not chosen in a data-driven way but instead a fixed
PR is used.

For the same Gaussian TMWN process, we assessed the performance of the
three methods discussed above basing on 25 simulated sample paths. We used two

criterion functions — one for the Haar spectrum:
) {1011 R S ; 2-‘
ds(S,S) = {T Z (Si (f) — 5 (T)) J ) (4.26)
i=—J(T) t=0

and the other for the variance:

(4.27)

100~ (o (1) (1))
T — T T

The values in Table 4.1 confirm our earlier observation that the two estimators in

which the choice of the smoothing parameter is performed by cross-validation give

very similar results.
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Chapter 4. Modelling log-returns using wavelets and rescaled time

4.5 Exploratory data analysis

In this section, we look at two examples of data analysis using the LSW3 methodol-
ogy (the examples are related to each other). The first one uses the Haar scalogram

(see formula (4.14)), and the other — the full evolutionary Haar wavelet spectrum.

4.5.1 Analysis based on the scalogram

In this subsection, we compute the Haar scalogram for four series:

X, r: the last 1024 observations of the artificial simulated Gaussian TMWN
of Figure 4.3,

F, r: the last 1024 observations of the FTSE 100 series of Figure 4.1,

Nyr: the last 1024 observations of the Nikkei series of Figure 4.2,

D, p: the last 1024 observations of the Dow Jones IA series of Figure 4.2.

Figure 4.4 shows logged scalograms for X;r, Fyr, N, and Dy 7 (solid lines),
plotted against —j = 1,2,...,10. Dotted lines are theoretical log-scalograms of
corresponding time-modulated white noise processes with the same time-varying
variances. As X;r actually is a time-modulated white noise process, and its log-
scalogram is substantially deviated from the corresponding dotted straight line for
scales —6, —7, ..., —10, and slightly deviated for scales —4, —5, we suspect that for
a series of length 1024, the scalogram is a relatively reliable estimator for scales
—1,—2,...,—=5 (hence the vertical line at —j = 5), and a very reliable one for
scales —1, —2, —3 (hence the vertical line at —j = 3).

Looking at the 3 finest scales (—j = 1, 2, 3), it seems that Dow Jones and Nikkei
are reasonably close to TMWN. However, FTSE 100, which was provisionally
modelled as Gaussian TMWN in Section 4.1, shows a substantial deviation from
this setting, especially at scale j = —2, where the mean spectrum is clearly greater

than what it should be if F'TSE 100 were to be close to TMWN. Indeed, to assess
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Figure 4.4: Solid lines: log-scalograms of X, 7 (top left), Fyr (top right), N;r
(bottom left) and D, r (bottom right), plotted against —j. Dotted lines: theoreti-
cal scalograms if the processes were (time-modulated) white noise (not necessarily
Gaussian). Dashed lines: —j = 3,5 (see text for discussion).

111



Chapter 4. Modelling log-returns using wavelets and rescaled time

the validity of this statement, we have simulated 1000 independent sample paths
of the standard white noise, and computed the Haar scalogram for each of them.
In each case, the empirical scalogram for j = —1 was larger than that for j = —2,
unlike the FTSE 100 case. The outcome of this experiment seems to confirm
our initial judgement that the deviation of FTSE 100 from the TMWN setting is
significant.

By formula (4.16), a large scalogram at scale j = —2 implies a significant con-
tribution of the summand S”,¥_,(h) to the sample autocovariance. For Haar
wavelets, W_,(-) is supported on h = —3,... 3, and is plotted in the left plot of
Figure 4.5. It is positive for h = 1 and negative for h = +2, +3. Therefore, if the
contribution of the spectrum at scale j = —2 is significant enough, we can expect
that the sample autocorrelation of F; r will be significant positive for h = 1, and
significant negative for h = 2, 3. The right-hand plot in Figure 4.5 shows that this
is indeed the case. The shape of the acf function of Fjr is very similar to the
structure of W_,.

Figure 4.1 shows that the same pattern is present in the sample autocorrelation
of the whole FTSE 100 series, and not only in F; 7 (= the last 1024 observations of
FTSE 100). However, the pattern is much less visible in the sample autocorrela-
tion of the standardised FTSE 100 (series Z; in Figure 4.1). This may suggest, for
example, that this autocorrelation structure (positive dependence at lag 1, neg-
ative at lags 2 and 3), may be present in a stretch of high volatility, which has
a significant contribution to the sample autocorrelation of FTSE 100 (or, alter-
natively, to the scalogram). In Z;, the “standardised” periods of high volatility
contribute less to the sample autocorrelation than in the original FTSE 100 series,
which would explain why the sample autocorrelation of Z; exhibits a different de-
pendence structure: it only indicates slight positive dependence at lag 1, but no
significant negative dependence at lags 2 or 3.

The above discussion clearly indicates the need for a local analysis of the FTSE

100 data. By looking at the full evolutionary Haar spectrum of F'TSE 100, we are
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4.5. Exploratory data analysis

able to find out where and how the local autocovariance structure changes over

time.

4.5.2 Full evolutionary Haar spectrum analysis

Figure 4.7 shows the estimated evolutionary Haar spectrum of Fy; = the 2048
last observations of the FTSE 100 index (plotted in Figure 4.1), smoothed us-
ing our generic algorithm with spline smoothing. It seems that scale j = —2
dominates from time 2z, ~ 0.6 onwards (this corresponds, roughly, to time
t = 1200,...,2048). In particular, there is a huge bump centred at z; ~ 0.67:
it is clearly the most visible feature in the “spectrum landscape” of FTSE 100.
Judging by the magnitude of the bump, it seems likely that even though scale
j = —2 dominates over part of the time horizon only, “global” tools (such as the
scalogram or the sample autocovariance computed for the whole sample) will also
be affected, which will give the false impression that scale j = —2 dominates all
the way through. Indeed, if we compute the acf of Fy 7, Fy 7, ..., Flggq p, it turns
out that the effect of the sample acf resembling the Haar autocorrelation function
at scale j = —2, is not present now. The acf of the first 1200 observations of Fy
is plotted is the left-hand plot of Figure 4.6. Right-hand plot of Figure 4.6 shows
the acf of the remaining part of F} ., where scale j = —2 seems to dominate. This
is reflected in the shape of the sample acf at lags 1,2, 3.

The LSW model with the Haar basis seems to be ideally suited for modelling
the FTSE 100 series on the interval z € (0.6, 1), as it provides a sparse represen-
tation of the local covariance in that region: most of the “energy” of the series is
concentrated at scales 7 = —1 and —2.

The above demonstrates how important it is to analyse the log-return data
locally, rather that using global tools. There is no economic reason why log-
return series should stay stationary over long periods, and the above wavelet-based

analysis shows that, indeed, they do not.
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Figure 4.5: Left-hand plot: W _5(h) for Haar wavelets for h = 0,1,...,5. Right-

hand plot: autocorrelation function for F; r at lags 0,1,...,5.
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Figure 4.6: Left-hand plot: sample autocorrelation of Fjr, ..., Fiyo7. Right-
hand plot: sample autocorrelation of Fiog; 7, ..., Fogg p-
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Figure 4.7: Estimated evolutionary Haar spectrum of 7" = 2048 last observations
of FTSE 100 of Figure 4.1. Smoothing uses splines. X-axis is the rescaled time
z =1t/T, and Y-axis is negative scale —j = 1,2,...,11.
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4.6 Forecasting

A comparison of forecasting methods for daily Sterling exchange rates is provided
by Brooks (1997), who concludes that forecasts based on GARCH modelling are
the most reliable. Leung et al. (2000) find that probabilistic neural networks
(Wasserman (1993)) outperform other methods when applied to stock index re-
turns. However, the input variables in their model include, apart from the past
data, a variety of other macroeconomic factors. In this section, we only consider
forecasts based on past values of the series, and compare our methodology to fore-
casting based on GARCH modelling (for an overview of the latter methodology,
see e.g. Bera & Higgins (1993)).

The algorithm which we apply here is the adaptive forecasting procedure detailed
in Section 3.5 of this thesis. As the theory underlying the algorithm was developed
for LSW,, and not for LSW3 processes, it would be natural to ask at this point
whether a similar theory can also be developed for the latter model. We anticipate
that it is indeed the case: we conjecture that using exactly the same techniques, it
is possible to obtain results analogous to those of Chapter 3; however, it is likely
that the speed of convergence of the relevant quantities will be different. We leave
this interesting theoretical problem as a possibility for future research.

We demonstrate the usefulness of the wavelet approach by comparing our fore-
casting methodology to forecasting based on AR+GARCH modelling, on a frag-
ment of the Dow Jones IA series (denoted by D;r in Section 4.5 and plotted in
Figure 4.2). However, this brief simulation study does not aim to show that our
approach is superior to AR+GARCH. Instead, we attempt to demonstrate a few
interesting features of LSW3 forecasting.

Suppose that we have already observed 1105 values of the series, and want to
perform one-step prediction of the series along the segment Diigs7, ... , Di2gs,r.
In order to do so, we employ the algorithm of Section 3.5 with Haar wavelets. We

make an initial guess at the values of p and g: we set (p, g) = (1,30). Further, we
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set the criterion function to

di {Xor, -, Xerh0,9) = | Xer — Xk,T(pa 9) (4.28)

and we allow one parameter update at each time point.

Also, we limit the parameter space for p to the set {1,2}, having empirically
found that the forecasting algorithm performs best on the given stretch of the series
when the upper limit for p is set to 2. This roughly corresponds to “switching”
between TMWN and time-varying AR(1) at each time point, depending which
model produces locally more accurate forecasts.

We compare our method to forecasts obtained by modelling D; 1 as

e AR(1) + GARCH(1,1) — since AR(1) roughly corresponds to the upper

limit for p being equal to 2,

e AR(16) + GARCH(1,1) — since the AIC criterion indicates that the order
of Dy along the segment ¢ = 1105, ... ,1204 is equal to 16.

The parameters (1,1) of the GARCH part were selected ad hoc; however, they
have no influence on the point forecasts. The models were fitted using the garch
routine from the S-Plus garch module.

The results of the experiment are presented in Figure 4.8. The top left plot
shows the actual series Dyipg7, ... , Diggsr (dotted line), the corresponding one-
step-ahead forecasts (thick solid line), and 95% prediction intervals (assuming
Gaussianity; dashed lines), for the AR(1) + GARCH(1,1) model. The top right
plot shows the same for the AR(16) + GARCH(1,1) model, and the bottom left
plot — the same for the LSW3 model. The bottom right plot in Figure 4.8 shows
the actual series scaled by the factor of 2000 (dotted line), as well as the corre-
sponding values h of the bandwidth used to forecast the series. The bandwidth was
allowed to change by 4+1 or remain the same. The fact that it increases steadily
beginning from ¢ = 1160 may suggest that the time-varying second order structure

of Dy evolves more slowly in that region.
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Figure 4.8: Top left, top right and bottom left: the actual series (dotted line), one-
step forecasts (solid line) and 95% prediction intervals (dashed lines) for AR(1)
+ GARCH(1,1), AR(16)+GARCH(1,1) and LSW3, respectively. Bottom right:
actual series x2000 and the evolution of the bandwidth g.

118



4.7. Conclusion

AR(1)+GARCH(1,1) | AR(16)+GARCH(1,1) | LSW,
Mean SPE 878 857 | 839
Median SPE 404 375 | 208

Table 4.2: Mean Squared Prediction Error and Median Squared Prediction Error
(><107 and rounded) in forecasting Diigs.1, - .. , Di2os,r one step ahead, for the
three methods tested in Section 4.6.

In the LSW3 forecasting, the stretches where p = 1 wins over p = 2 are indicated
by one-step forecasts equal to zero (like in TMWN forecasting). Non-zero forecasts
indicate that p = 2 is used to perform prediction. The LSW3 model does an
impressive job in picking up the spike at ¢ = 1112, and also at capturing the local
structure around ¢ = 1135. The Mean Squared Prediction Errors and the Median
Squared Prediction Errors for the three methods are given in Table 4.2: the LSW3
method outperforms the other two.

For the LSW3 method, 92% of observations fall within the corresponding one-
step 95% prediction intervals, whereas the analogous ratios for the AR(1) +
GARCH(1,1) and AR(16) + GARCH(1,1) methods are 94% and 93%, respec-
tively. Our slightly worse performance is due to the fact that the d; criterion only
minimises the distance between the predicted value and the actual one, and does
not take into account the prediction intervals. A modification of the comparison
criterion would almost certainly lead to an improvement over the (already good)
ratio of 92%.

However, it must be mentioned that the prediction intervals in the LSW3 model
are narrower than the minimum of those in the AR(1) + GARCH(1,1) model and
those in the AR(16) + GARCH(1,1) model in 71% of the cases.

We leave the important problem of forecasting volatility in our wavelet-based

framework as one of the many possible avenues for future investigation.

4.7 Conclusion

In this chapter, we have provided theoretical and empirical evidence that stock

index returns can be successfully modelled and forecast in a time series model which

119



Chapter 4. Modelling log-returns using wavelets and rescaled time

combines wavelets and the concept of rescaled time. Starting from a motivating
example of the FTSE 100 series being modelled as a Time-Modulated White Noise
(TMWN), we have slightly altered the definition of an LSW process (Nason et al.
(2000)) so that the altered setup, called LSWj3, includes TMWN as a special case.

We have provided theoretical evidence that the (linear and non-stationary)
LSW3 model can capture the most commonly observed stylised facts. In particular,
we have argued that the heavy tails of the marginal distribution, negligible sample
autocorrelations, and non-negligible sample autocorrelations of the squares, are all
effects which can possibly be caused by applying stationary, global tools (such as
the sample autocorrelation) to the analysis of non-stationary data.

Furthermore, we have proposed a new general algorithm for estimating time-
varying second-order quantities in the LSW3 model. We have shown that two
particular implementations of our algorithm, specifically designed for financial log-
returns, outperform the default algorithm proposed by Nason et al. (2000) for
general non-stationary time series.

Also, we have provided two interesting examples of exploratory data analysis
using the LSWj toolbox. By using the (global) scalogram and the (local) evolu-
tionary Haar spectrum, we have found that the daily FTSE 100 index displays
a significant local departure from the TMWN setting. Also, by examining the
Haar spectrum, and the shape of the autocovariance function of FTSE 100 over a
certain region, we have discovered that the Haar wavelet basis is ideally suited for
the sparse modelling of FTSE 100 on that interval. The example has powerfully
demonstrated that the financial log-return data need to analysed using local tools
as all of their second order characteristics, and not only variance, can vary over
time.

Finally, we have provided evidence that financial log-returns can be successfully
forecast in the LSW3 framework using the adaptive forecasting algorithm of Sec-
tion 3.5. We have compared the forecasts obtained by the adaptive algorithm to

those obtained using GARCH modelling. Again, we have found that the adaptive
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method has the potential to accurately forecast some important local features of
non-stationary log-return data. In the example analysed (a fragment of the Dow
Jones TA index), the LSW3-based technique has outperformed two GARCH-based
methods.

The S-Plus routines written for and used in this chapter, the data sets analysed
in it, as well as the contrived standard deviation function of Figure 4.3 are included

on the associated CD.
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Chapter 5

Denoising the wavelet
periodogram using the Haar-Fisz
variance stabilising transform

Our aim in this chapter is twofold. Firstly, we introduce a multiscale variance
stabilising transform for the wavelet periodogram of a Gaussian LSW process. We
call the procedure the “Haar-Fisz” transform, as it consists of three basic steps:
taking the Haar transform of the periodogram sequence, dividing the arising detail
coefficients by the corresponding smooth coefficients (an instance of the so-called
Fisz transform), and finally taking the inverse Haar transform. The resulting
vector is closer to Gaussianity than the result of the classical log transform; also,
its variance is well stabilised. This is confirmed not only by empirical results but
also by theory.

Secondly, we investigate the performance of a denoising method for the wavelet
periodogram which consists in taking the Haar-Fisz transform, denoising the trans-
formed vector using a method suitable for Gaussian noise, and then taking the

inverse Haar-Fisz transform. Simulations demonstrate excellent performance.

5.1 Motivation: the Fisz transform

The initial motivation for this research was the following result proved in the paper

by Fisz (1955) (we stick to the original notation from the paper). Suppose that
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£(A) is a nonnegative random variable from a family of distributions parametrised
by a positive parameter \, and m()\) = E(£())), o%(\) = Var(£()\)). We say that
£(A) is asymptotically normal N(u(X),v(A)) if there exist functions u,v > 0 s.t.

for all z € R,

lim P <M < x) _ B(a). (5.1)

A—00

where ®(z) is the cdf of the standard normal. TLet &()\;), i = 1,2 be two in-
dependent variables and let m; = E(;), 0? = Var(§;). The following theorem
holds.
Theorem 5.1.1 If

e £(N)/m()N) converges in probability to one as A — oo;

e £(N) is asymptotically normal N(m(\),o(X));

o lim(y, )= (00,00) M1 /Mo = 1,

then the variable

§2(A2) — &1(A1)
(La(A2) + & (M)

where p is an arbitrary positive number, is asymptotically normal

N( my—my o+ o3
( :

C()‘la )‘2) =

mo + ml)l” (mg + ml)p

Note the specific form of the ratio in (5.2): it can be viewed as the ratio of a Haar
detail coefficient and the pth power of the corresponding smooth coefficient. We
shall exploit this property later.

As an example, consider £(n) = a(X?+...+X?2), where X; are i.i.d. N(0,1) and
a > 0. We have £(n) ~ ax? = a Gamma(3, 2) and m(n) = an, 0*(n) = 2a*n. The
variable £(n) satisfies the first two assumptions of Theorem 5.1.1 by the Law of

Large Numbers and the Central Limit Theorem, respectively. Assume that &;(n;),

&(ngy) are independent and ny/ny — 1. Then, ((n,ny) is asymptotically normal

N e at? V2 at P .
(n2 + nl)?’ ’ (n2 + nl)l’*l/Q
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Note that setting p = 1 makes the variance of ((n;,ny) independent of a. Indeed,
this variance stabilisation is the key property of the Haar-Fisz transform of Section
5.3. We now formally define the Fisz transform, an essential component of the

Haar-Fisz transform.

Definition 5.1.1 Let X, Y be two nonnegative random variables. The Fisz trans-
form of X and Y with exponent p is defined as

X-Y

G(X,Y) = X1y

(5.3)

with the convention that 0/0 = 0.

5.2 Properties of the wavelet periodogram in the
Gaussian LSW model

As mentioned above, the Fisz transform can be viewed as the division of a Haar
detail coefficient by the pth power of the corresponding smooth coefficient (up to a
multiplicative constant). In actuality, we are interested in applying this operation
to Haar coefficients of wavelet periodogram sequences in the Gaussian LSW model.
Therefore, let us now recall some properties of this statistic.

For Gaussian LSW processes, the wavelet periodogram Tt(JT) at a fixed scale j is

a sequence of scaled x} variables. Also, we know from Section 2.2.4 that It(]% is an

asymptotically unbiased, but inconsistent estimator of 3;(¢/T"), where
-1
Bi(z) =) Si(2)As;. (5.4)
Furthermore, the following proposition shows that the wavelet periodogram at

each scale j is typically a correlated sequence.

Proposition 5.2.1 Let X, be a Gaussian LSW process satisfying S;(z) < D27,
We have

cov (Jt(f}, Ig)S,T) —9 ( i ¢ (%T> U (r + s)) 2 + 07T, (5.5)
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The proof uses exactly the same technique as the proof of (2.38).
Our ultimate objective is to denoise the periodogram sequences at scales j =
—1,...,=J(T), i.e. to provide estimates of the functions 3 1(2),...,B_sm)(2).

Being able to estimate {3;(2)}, is useful in two ways:

1. Estimates of {f3;(z)}; can be used to obtain estimates of {S;(z)}; (by (5.4)

and by the invertibility of A, see Nason et al. (2000) for details);

2. The estimate of S;(z) can in turn be used to obtain an estimate of the local
autocovariance ¢(z, 7) (using the representation (2.32)).

—J(T)
j=—1

In short, estimating {3;(2)} allows us to make inference about the time-
varying second-order structure of X, r.

The top plot in Figure 5.1 shows an example of the wavelet spectrum S;(z)
where only S_;(z) and S_3(2) are non-zero. The middle plot shows a sample path
of length 1024 simulated from it, using Haar wavelets and Gaussian innovations.
The bottom plot shows the Haar periodogram of the simulated series at scale —1.

Denoising the wavelet periodogram is by no means an easy task, due to

e the fact that the variance of the noise depends on the level of the signal (see

formulas (2.37) and (2.38)),

e an extremely low signal-to-noise ratio: again by (2.37) and (2.38) we obtain,

. N\ ) 1/2
neglecting the remainders, IEIt(Z}/ {Var (I%)} =271/2
e the presence of correlation in the noise (see formula (5.5)).

Most existing denoising techniques have been designed to handle stationary Gaus-
sian noise and therefore it would be desirable to be able to transform the wavelet
periodogram into a signal contaminated with such noise before the denoising is
performed. A well-known technique for stabilising the variance of scaled x2 vari-
ables is the log-transform, see e.g. Priestley (1981); however, the resulting variable
is still far from Gaussian if, like here, n = 1. Nason et al. (2000) propose a wavelet-

based technique for denoising the wavelet periodogram without any pre-processing.
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example of a wavelet spectrum where only S ;(z) and

S_3(z) are non-zero. Middle plot: sample path of length 1024 simulated from this
spectrum using Haar wavelets and Gaussian innovations. Bottom plot: the Haar
periodogram of the simulated realisation at scale j = —1.
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In the next section, we introduce the Haar-Fisz transform: a multiscale Gaussian-
ising and variance stabilising transformation for the wavelet periodogram which

turns out to be a viable alternative for the log transform.

5.3 The Haar-Fisz transform

5.3.1 Algorithm for the Haar-Fisz transform

In this section, we provide details of the Haar-Fisz transform, which stabilises the
variance of the wavelet periodogram and brings its distribution closer to normality.
The input to the algorithm is:
e A single row of the wavelet periodogram It(JT) at a fixed scale j: here, we
assume that 7T is an integer power of two. To simplify the notation in this
section, we drop the superscript j and the subscript 7' and consider the

sequence I, 1= It(ip), or, in vector notation, I = (]é]%, ... ,Igﬂl’T)’.

o A fixed integer M € {1,2,... ,log,(T)}; its meaning will become clear later.
The output from the algorithm is:

e The mean of I, denoted by I.

e A vector UM of length 2™,
The vector UM is constructed as follows:

1. Let sM be the vector of local averages of I:

v (nr1)T27M -1

2
32/[:? > L for n=0.1,...2" -1 (5.6)
t=nT2-M
2. Foreach m =M —1,M — 2, ... ,0, recursively form vectors s™ and f™:
m 1 m+1 m+1
Sp = 5(5271 + 52n+1) (57)
sm-l—l - Sm—i—l
fa = %; (5.8)

forn=0,1,...,2™ — 1, with the convention 0/0 = 0.
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3. For each m =0,1,..., M — 1, recursively modify the vectors s™*!:
sptl = My fm (5.9)
Syt = S = s (5.10)

forn=0,1,...,2™ — 1.

4. Set UM =M _T.

We denote FMI := UM. The nonlinear operator FM is called the Haar-Fisz
transform of 1 at the resolution level M.

If M =log,(T), then the length of FMI is T and the algorithm is invertible, i.e.
I can be reconstructed from FMI and I by reversing the steps 4.-1. Therefore, the
case M = log,(T) is the one we are the most interested in in practice. However, the
exact asymptotic Gaussianising properties of the Haar-Fisz transform only hold
for M fixed (i.e. independent of T), and this case is investigated theoretically in
Section 5.5.1. Section 5.5.2 provides some heuristics as to the behaviour of FMI
when M = log,(T): we still conclude that the distribution of F°&2(T)T is close to
Gaussian with a constant variance. To simplify notation, we denote F := Flogz(T),

Note that the steps 2.-4. of the algorithm are similar to the forward and inverse
Discrete Haar Transform except the division by s in formula (5.8). Also, observe

that (5.8) can be written as

fir = Gusom, s5ath). (5.11)

That is, f," is the result of the Fisz transform with exponent 1 of two neighbouring

m+1
2n

m+1
and sy, ;.

smooth coefficients s
Finally, note that the Haar-Fisz transform, being a computationally straightfor-

ward modification of the Haar transform, is also of computational order O(T).
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5.3. The Haar-Fisz transform

5.3.2 Examples

As an example, consider T' = 8. For M = 2, we have:

2 Z?:glt—zzz4lt Iy+ 1, — I, — I
UO - 7 + 3
Zi:[] I, Zi:[] I
Zf:[] I; — 2;4 L  ILh+15 -1, — I3

Ul2 - 7 3
Zi:[] I Zz’:O 1
U22 _ _Z?:o [t7_ Z::z; Iy + Iy + 15 7— Is—Ir
Zz’:O Iy Zi:4 Iy
02— _Zi;olt—ztlﬂt_I4+I5—16—I7_

ZLO I 23:4 I,

Similarly, for M = 3, we have:

Z?:olt_zzzzllt+IO+]1_]2_]3 Iy — 1,

Uy = 7 3
>ico It >ico It Io+ 1
Us = Yo [t7_ Sl n Io + [13_ L—-I; Iy—1
>ico i >ico i Io+ 1
Ul = > o [t7_ i T I+ 113_ I, — I n I, — I
dico i >ico It I+ 13
Ul = > [t7_ il Il 113_ LI I,-1Ij
dico i >ico It I+ I3
Ul = _Z?:olt: ZZ:z;It n Iy +[57— Is — I n Iy — I
dizodt Yoica i Iy + I
U53 _ _Z?:olt: Zzz4lt+[4"‘[57—]6—]7_]4—]5
> izo Lt > iz i Lo+ I
U = _Z?:olt: Yk L +I57— Ie—Ir  Io—1Ir
> izo Lt > iz i Is + I
U73 _ _Z?—Olt7_ Z::zllt _ Iy +I57— Is — I . Is — I
> izo Lt > izt Is + I

Figure 5.2 compares the log transform (left plot) and the Haar-Fisz transform
(right plot) of the wavelet periodogram from the bottom plot of Figure 5.1. Here,
T = 1024, and the full transform is performed, i.e. M = 10. The Haar-Fisz-

transformed wavelet periodogram appears to be much closer to normality.
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o o~
o)
' o
N
Ln 1
A
¥
0 200 600 1000 0 200 600 1000

Figure 5.2: The log transform (left plot) and the Haar-Fisz transform with A/ = 10
(right plot) of the wavelet periodogram from the bottom plot of Figure 5.1.

5.4 A Functional CLT for the centred wavelet
periodogram

In this section, we are concerned with a Functional Central Limit Theorem (FCLT)
for the centred wavelet periodogram Zt(]% = It(,j) - IE]t(,j) (see Davidson (1994)
for more on the stochastic limit theory we use here). Our FCLT demonstrates
that the normalised cumulative sum of the centred wavelet periodogram converges
in distribution to a transformed Brownian motion. The theory in this section
enables us to demonstrate the Gaussianising, variance stabilising and decorrelating

properties of the Haar-Fisz transform established in Section 5.5. Before we state

the theorem, we introduce some essential notation.

Definition 5.4.1 (transformed Brownian motion) Let 7 be an increasing
homeomorphism on [0,1] with n(0) = 0 and n(1) = 1. A transformed Brown-
ian motion B, is defined as

where B s the standard Brownian motion.
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5.4. A Functional CLT for the centred wavelet periodogram

Definition 5.4.2 (cross-scale autocorrelation wavelets) Let ¢ be a fized

wavelet system. Vectors W, ;, fori,j € {—1,-2,...}, defined by

Uii(1) = Y Gissrths

§=—00

are called the cross-scale autocorrelation wavelets.

Denote

S; = maxS,(2)

2

0p = max
j:_lz"'s_k

3

A

with the convention 0/0 = 0. Denote further
Al = ) U)W (n+7)

Bl(2) = Zsi(z)A;j

(5.12)

(5.13)

We now state the Functional Central Limit Theorem for the centred wavelet peri-

odogram.

Theorem 5.4.1 Let X, 1 be a Gaussian LSW process, and let Zt(,]% be its centred

wavelet periodogram at scale j. Define

T—1 2
b = E(ZZ}@)
=0
2T) -1 (3
Rr(z) = %ﬂ for 2z €[0,1].

If

1/2
Je >0 (Z > wf,j(z)§i> = O(m™*9),
i<0 I>m+1
(5J(T)/T € o,
sup Y Je(zm)| < oo,
iD S;277 < D Vj,
then Ry 2 B,, where

_ Sy 2 (X Si(U)A;’j)Q du.
Jo 52 (3 Si(w) A7) du

n(2)
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Chapter 5. Denoising the wavelet periodogram using Haar-Fisz

The proof of Theorem 5.4.1 appears later in this section. As is clear from the
proof, the left-hand expression in condition (5.14) is a measure of dependence
in the sequence Zt(]T) at lag m. Condition (5.15) places an additional restriction
on the finite-sample wavelet spectrum {W?,k;T}j,k in relation to the asymptotic
spectrum {S;(z)},. Condition (5.16) is a short-memory assumption for X;r, and
condition (5.17) requires that the wavelet spectrum should decay at a certain speed
as j — —o0.

We now give an example of a periodogram sequence which satisfies the technical
condition (5.14). Let X;7 be a Gaussian LSW process constructed with Haar
wavelets and such that S;(2) = S; = 2°. Asymptotically, X, is a white noise
process (see formula 3.70). Consider the Haar periodogram of X, 1 at scale j = —1.
Using the explicit form of discrete Haar vectors and (5.12), simple algebra yields

Y2 Y W) =0(m™),
<0 1>m41
and (5.14) is satisfied.

In particular, Theorem 5.4.1 implies that E(Rr(2)?) — n(z) as T — oo, and
that the increments of Ry (z) are asymptotically independent. Theorem 5.4.1 is
fundamental for the theoretical results of the next section.

To be able to prove Theorem 5.4.1, we first need to recall the definition of

Ly-Near Epoch Dependence (L,-NED), and then prove two technical lemmas.

Definition 5.4.3 For a stochastic array {{Vir}°_ . }3_,, possibly vector-valued,
on a probability space (2,G, P), let gffﬂ’T = o(Viemr, - Viemr). If an inte-
grable array {{ X, r}°_}7, satisfies

1 Xer = E(Xir |G )2 < hegtim,

where vy, — 0, and {hyr} is an array of positive constants, it is said to be Lo-
NED on {V,r} with constants {h;r}. Further, if 3¢ > 0 s.t. v, = O(m*~¢), then
H{Xer 2o }72, is said to be Ly-NED of size X on {Vir}.

Lemma 5.4.1 Define §t’T =&y Egma) If

1/2
e >0 <Z Z \I/i](l)sz) = O(m*1/275),

i<0 [>m+1
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5.4. A Functional CLT for the centred wavelet periodogram

then Zt(’jT)/bT is Lo-NED of size =1/2 on {§, .}. If in addition d;1)/T € loo, then
the NED constants can be set to 1/br.

Proof. It suffices to examine the Lo-Near Epoch Dependence for Zt(]T) Define

t4m
tmr =0, o S

We have

Z9 ~E(ZZ\GEm ) = 19— EIDIGHT )
—J(T)

= Z szkT‘I’zg k)fz’,k
k

i=—1

—J(T)
— Z Z wi,k;T‘I’i,j(t - k)fi,k

i=—1 k>t—m

—J(T)
- Z Z wzk;T\Il?,j(t_k)

i=—1 k<t—m

= ¥/ - - Ki = (V1 - V3) (V1 +V3) - K7,

where Y2 are random and K is deterministic. Note that ¥; — Y3 and Y} + Y5 are
Gaussian and that E(Y; — Y3)? = E((Y; — Y3)(Y; + Y3)) = K?. Simple algebra

yields

E((Y: — Vo) (Vi +Y2) — K3)” = 2K7E(Y}? + Y3) < AKTEY;2.

Noting that

5 - _
K2 < <1+ "ﬁ’) SN w8,

i=—11>m+1
0
o < (150 3 S
i=—1
and recalling that 6J(T)/T € I, the assertion of the Lemma follows. O
Lemma 5.4.2 If
sup Z| c(z,7)] < o0 (5.18)
2€[0,1]
EiD S;2” I < D Vj, (5.19)
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then

as T — oco.

Proof. Using Gaussianity, we have

where

Restr

2

—J(T)
D D Wl Vit = B) Wit + 7~ k)

_JZ(T)Z{& <%> +O<Ci+L}(t—k)>}

i=—1 k

2
X ‘I’i’j(t — k)\I/i,j(t +7— k))

t=0 17=—1

2
t
ZSZ <T> AZ—’]> + RestT,

[

T-1T-1-t [—J(T)
Ci+ Li(t—k
Y (X To (A v - nwe - b
t=0 7=-—1 i=—1 k

—0o0

2

t

s

, <T
i=—J(T)-1

_f) Z {251-

i=—1 k

U, i(t —

YU, j(t+7—k)+

> Al

(7)o (557))

(5.20)

Let us first show two simple auxiliary results.
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5.4. A Functional CLT for the centred wavelet periodogram

1. Summoability of constants C; and L;. We use the properties of A from Lemma

3.4.1.

S+ L2 427 Ay = Y (Ci+ L2227 Ay
+ ZLiQ’jQiQ’iAi,j

< ZC+L2 Z2Alk
+ QJZLQ ZQA,”

= 02" J). (5.21)

2. Summability of covariance of wavelet coefficients.

2

= Z;S Z\If U, (n+r7)

T

= Z Zc(z,n)\llj(n—i-T)
< D lezm) Y 1i(n+ 1)l
< K27 le(z,n)

= 0(27), (5.22)

by assumption (5.18).

By formula (5.21) and assumption (5.19), we have

— 00

max ZO<C+L k)>q;i,j(t—k)\1fi,j(t+7—k)— 3 Si<%>Azj§

i=—J(T)—1

O(T™ 1) rrg’zixz Ci+MLi(27 +279) Zk: W5t = k)W ;(t+ 7 — k)| +

—l—rr}axz Z Si;(k) <

k i=—J(T

o> (Ci+ MLi(2‘ +27)) A +0Q27T™) =027 T™"). (5.23)

[
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Using first (5.23), and then (5.22) and (5.21), we bound (5.20) as follows

Resty < O(2 gTZt Z{ <;>+0<0i+Lji§t—k)>}

VAN
S
N
ﬂ“
Mﬂ
HM_\

which yields the result. 0]

Proof of Theorem 5.4.1. We apply Theorem 29.14 from Davidson (1994),

with
Ur = Z2/br (5.24)
ar = 1/br (5.25)
Kr(z) = [T}, (5.26)

where the LHS’s of (5.24) — (5.26) use the notation from Davidson (1994), and
the RHS’s of these formulas use the notation from this chapter. We now check

conditions (a) — (f) from Davidson (1994).

(a) Clearly, EZt(JT) = 0.

(b) For Gaussian LSW processes, we have sup, || Z T|| < oo for r > 2.
(c) Satisfied by Lemma 5.4.1 as {ét’T} independent.

(d) Satisfied by Lemma 5.4.2 as

z+u) 1
I Zt ‘_2 1
im sup = limsup — 72
T—o0 w T—oo Op

(e) We clearly have 1/bp = O(T"/?=") = O(T~'/?).
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5.5. Properties of the Haar-Fisz transform

(f) Again by Lemma 5.4.2, we have

ER2(z) = -4 — p(z).

This completes the proof. 0]

5.5 Properties of the Haar-Fisz transform
5.5.1 Properties of the Haar-Fisz transform for M fixed

In this section, we quantify the Gaussianising, variance stabilising and decorre-
lating properties of the Haar-Fisz transform for M fixed. The following theorem

holds:

Theorem 5.5.1 Let X, r satisfy the assumptions of Theorem 5.4.1, and let It(f%
be the wavelet periodogram of Xy at scale j. Let the corresponding functions
Bi(2) and Y~ (87 (2))* (see formulas (5.4) and (5.13)) be continuous with bounded
one-sided derivatives. Further, let 3;(z) be bounded away from zero. For M fized,

UM = fM]f’]% admits the following decomposition:
UM =vM 4 yM
where
1. VM has an almost-sure deterministic limit as T — 0o;

2. VTYM 5 N(0,%) as T — oo, with

M+1 in >, ( T(w))? B
(2 2) wemf” € (w))2 O(M) < S,
< (2M*1 - 2) sup w +O(M) (5.27)

and

Ynime = O(M) for mny # no. (5.28)

Property 2. above is called the Gaussianisation property of the Haar-Fisz trans-
form. Formulas (5.27) and (5.28) define, respectively, the variance stabilisation

and the decorrelation properties of the Haar-Fisz transform. Note the different
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Chapter 5. Denoising the wavelet periodogram using Haar-Fisz

asymptotic regimes for VM and YM: the multiplication of Y™ by /T is needed
because Var(YM) = O(2M/T); remember that M is fixed. However, for the in-
vertible case (see the discussion in Section 5.3), we require M = log,(T). Even
though this case is extremely challenging to investigate theoretically, we cast some
light on the behaviour of F'°&(T) in Section 5.5.2. We now prove Theorem 5.5.1.

Proof. Denote Z; = I; — EI; and recall that 57(z) = >, Si(2)A],. Note that
B9(z) = B;(2). Consider a single Haar-Fisz summand f;", form € {0,1,... , M -1}
and n € {0,1,...,2™ — 1}. In what follows, v, are appropriate integers and

Qmn € {0,1}. We have

Z(’ym nA1)T2-(m+1) Ly Z(qm,n+2)T2—(m+1)—1]

fm = (_1)am,n t=ym T2~ (m+D L t=(ym,n+1)T2~ (m+D !
no (m41) _
Z('Ym,n-l—Q)TQ 1 I
t=Ym,n T2~ (m+1) t
(ymn+1)T2-(MFD 1 7 _ Z(vm,n+2)T2*<m+1J_1 7
= (_1)o‘m,n t=Ym,n T2~ (m+1) t (Ym,n+1)T72 (m+1)

(Ym,n+2)T2- (m+1) — (Ym,n+2)T2- (1) —1
Zt Yrm,n T2~ (MA+1) Z +Zt Ym,n T2~ (m+1) EI;

(Ymn+1)T2-(m+1) 1  (ymn+2)T27 (MmN
tZ’Ym,nTQ_(m'H) ]Elt Zt (Ym,n+1)T2~ (m+1) 107

(Ym,n+2)T2—(m+1) Ymon+2)T2—(m+1)
Zt Ym,n T2~ (M+1) Z +Zt Ym,n T2~ (M+1) El

+ (=)

=y, +u,.

By Theorem 5.4.1 and Cramér’s theorem (Davidson (1994), Theorem 22.14), we

have

(Ym,n+1)T2~(m+1) — (Ym,n+2)T2~(m+1) 1
VTy™ = Zt Y T2~ (m+D Zt Zt:(vm,nJrl)T?*(m“) Z
yn -

br
b/ T

(Ymyn+2)T27(mF1) — (Ym,n+2)T2~(m+1) —1
thvm,nT2 (m+1) Z +Zt Ym,n T2~ (m+1)

X (=1)%mn

El,

1o

(B (Y +2)2741) = 2B, (£ 1)2™1) + By (2 1))
(_1)am,n21/2 (Z?—ozfoo fol (ﬂ;(z))de) 1/2

2)2—m+1 I
JOmat 2 Bi2)de

X
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as T — oo. Denote the distributional limit by ™. Set YV = Z% Olyn nd

n

YM =SV gm. Denote further cay = 212 (Zi’;_oc fol(ﬁf(z))%lz) . We have

\/TYM B) Y/M = C() (—1)am’” X

sy
3
>
3
S
_l’_
>
~
3
+

— 2B ((’Ym,n + 1)2—m+1) + Bn(’Ym,nQ_m—l_l)

2)2-m+l1 ’
fézfzsme B;(2)dz

as T — oo. It is immediate that EY,” = 0. We now look at the variance-covariance

matrix of YM. We have

Var(Y, M) =
“ —(m —(m M-1 M-1
2 n((vmn+2)2 741)) — (Y207 +D) .
v 423, > (Dan
vm nt2)2-(m+1) ’
m=0 'Ym p 2 (m+1) ﬁg(Z)dZ) m=0 m'=m+1

—20(Prmn A Vs 2~ ‘m'“)) +40(pmn A (e +1)27HD)

'Ym n+2)2 (m+1) ’le +2 —(m'+1)
fym n2—(m+1) d f (m! +1) ﬁj (Z)dZ

~20(Pn A (Yo +2)27 +1>) +77(7 a2 i +1>) 20)((Yonr o + 1)27 (1)
m / (m'+1)
JOmax 2t B (2)d f%“ s Bz

7m,n2_(m+1) 2 (m!+1)

77((%1' "+ 2)2*(m’+1))

— (m!+1)
f(fym,;j-(izil)(m-#—l) d f ’yml n+2 /BJ (z)dz

m,n (m!+1)

where p, ,, = ('}/m,n + 1)2—(m+1)_

Diagonal contribution. Let us first consider the diagonal contribution to

Var(Y'M). We have

oo (Ym,n+2)2~ (m+1) ,
C%l) 77((7m,n + 2)27(m+1)) — 77(’7m,n27(m+1)) Zr:—oo %Z o—(m+1) (5 (2 ))2dz

7 mym+2)27 (m+1) 2 - mm+2)2- (M+1)
(fv(l,ﬂ—(”z“) @-(z)dz) (ﬁy(l,ng—(nzm @-(z)dz)

(5.29)
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By Cauchy inequality and the extended mean-value theorem, we have

(7m,n+2)2_(m+1) 2 (7m,n+2)2_(m+1)
/ s:) <o [ (5 (2) = =
7m,n27(m+1) 7m,n27(m+1)

—(m mon+2)27 <m+ )
o [ S [oms o ) s
i V4 z m.n+2)2— (m+1) =
7m,n2_(m+1) T f,fl,néj(rrz+l) ZT (ﬁ;(Z))QdZ

L [OmnA (Bi(w))?
2 /ym,nQ_(m'H) 2(6] (Z)) dZZT(ﬂJT(w))Q’

where w € [Ymn2 ™ (Y + 2)27(m D], This, combined with (5.29), gives

2m+1 inf w < 2 n((,)/m,n + 2)27(m+1)) B 77(7m,n27(m+1)) (5 30)
st (B2 W P ——" — 6
<f7m1n2—(m+1) B (= dZ)
(

To obtain the upper bound, note that 3w, ws € [y 2~ ™+,

such that

Yrmon+2)27 (m+1)

3 / (87(2))dz <

T=—00 m,n2” (m+1)

(Ym,n+2)27 M+ 2o~ mf (ym., "J“(?nil)(erl)(ﬁj(z))?dz
2m / B;(z)dz X
v

—(m+1) (7m,n+2)2 (m+1) 2
(f'ym,nQ—(m'i'l) @-(z)dz)

m,n2

X sup 2, (8] (W) _
welo]  (Bi(w))?

) i) | EB @)
m (2\d J\*1 T\7j
’ (/() Bifz) ) B by BE

(ym,n+2)27 (Mm+1) 2 27 sup 18 (w))
2m (2)dz 1+ - welo1] 17 ) X
(/ym,nQ—(m+1) ﬁj( ) ) < lnfwe[o,l} ﬂj(w)
< up S )’
weiog)  (Bj(w))?

where 3} is the one-sided derivative of 3;. The above, combined with (5.29), yields
2y, MOman 2)2_(’"_“)) — n(vm,nZ‘Q(’"“))
(SO 2" (2002
it gy B | 250ep B 3 (B (w))?
we,]  (Bj(w))? infueo B5(w)  wep)  (Bj(w))?
o S B(0)

sup

wel0,1] (Bj(w))?

+0(1). (5.31)
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Off-diagonal contribution. Two cases are possible: either p,, , > (7m/’n—|—2)2_(m'+1)

or P < ym/,nQ*(m’“). In either of the two cases, we have

‘_2” (pm’" 4 Vm’,n2_(ml+1)) +dn (pm,n A (Y n + 1)2—<m’+1>> +

m +1 )
21 ((vmf,n +1)2-m'+D ) n ( Vot + 2)270 “)) ‘ < g72m' -l 81[1p} 0" (w)],
wel0,1

where the last inequality follows by the mean-value theorem and n” denotes the
one-sided derivative of n'. Using the above, and, again, the mean-value theorem,

we bound the off-diagonal contribution by

M-—1 M1 o
26?1) Z 1 Z o= (m'+1) 2-m SUDy¢(0,1] " (w)] <
m,n+2 2—(m+1) m! n 2 2_(ml+1) -

m=0 ,;71177(27(ﬂ3+1) 6]' (Z)dz m/=m+1 f(’y nt?) ﬁj (Z)dZ

Vot 27 (7D

20%1) SUP,eqo,1) 1" (W)] g

-1

1
. 2 m+1
lnfwe[o,l} ﬂj(w) Z_ f(7m,n+2)2*(m+l) ﬂ( )dz mém“ S

m=0 Yrm,n 2~ (m+1)
20%1) SUPyefo,1] 7" (w)] &= 9—(m+1) <
infwe[o,l} ﬂj (w) — f’y('ym,;j_(iziz)(mﬂ) ﬂj (z)dz <
fy SPwero (1" @) O(M) (5.32)

infuep,1)(8(w))?

Putting together (5.30), (5.31) and (5.32), we finally arrive at

(2 2)%[0{?1] (ﬂj(w))Q

< (2M-|—1 _ 2) Zr(ﬂ;(wz)Q +O(M). (5.33)

Let us now consider Cov(Y,™, ;M) for ny # ny. Let M' = #{m : ™ = j™}. Let

ni’

us look at the case M’ > 0 (the case M' = 0 is straightforward). It is easy to show
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that
cov(Ynﬂf , Yn]‘f ) =
M'—1 M—1 M'—1 M-1
(zymws{ S o S 3 g:zz)=
m=M'+1 m=0 m=M'+1

M'—1 M'—1 M—1
ar (Z g;ﬁ) — Var (gﬁ{') +E ( Z Un: ( Z Uy + Z ynz)
= m=0 m=M'+1 m=M'+1
/ M-1
iy ( TS y’"))

m=M'+1 m=M'+1
The expectation can be shown to be O(M) using the same methodology as
for bounding the off-diagonal component of Var(Y,”). We will now show that
Var(zg:ol gm) — Var(gM') = O(M). We first quote two simple facts: let g
be a continuous function with a bounded one-sided derivative over [0, 1] and let

[e,d] C [a,b] C [0,1]. We have

< (b—a)’ sup 19'(2)| (5.34)

2

< (d=c)’(b—a) sup |(g°(203'85)

([ o) = (=) ([ )

For simplicity, denote n = n;. Using again the same method as for bounding the

off-diagonal component of the variance, we obtain

M'—1 M1 g (Ym.n+2)2 (m+1) (87(2))2d
T=—00 Jym 52 (m+1)
Var <Z yn) Var(§M') = O(M) + 2 Z - 7+2)2 — ——
mmo (O @(z)dz)

v

Yozt F2)2 AL HD

areny  (B7(2))%dz M1

M)+2)

25 [
(Yagt p+2)2- (M'+1) 2
f'rM/ L2 (M'+1) Bj(z)dz
—(M'+1)

o m,n (m 60 ( ’,n+2)2 T
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5.5. Properties of the Haar-Fisz transform

Consider a single component of the sum over m: it is a difference of two ratios
which we denote here by I — I to shorten the notation. We have |I — ]| <
I —III|+ |IIT —II|, where

N (,y n+2)2,(M’+1)
D D R COIRE

11 = — :
m,n+2)27 ("
(ﬁ,;nz—(mm /Bj(Z)dZ)

Using (5.34), we get
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On the other hand, using (5.35) we have
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which is bounded by (5.33). This proves the assertion that Var(ZM’_lgjm) —

m=0 ni

Var(§M') = O(M). Setting VM = SV~ "™ completes the proof of the theorem.
U

5.5.2 Properties of the Haar-Fisz transform for M = logy(T)

In the asymptotic framework set out in Section 5.5.1, we assume that M is fixed,
and therefore the length of the Haar-Fisz-transformed vector FMI is always con-
stant and equal to 2V, even though T — co. This ensures the asymptotic Gaus-

sianity of FMI, in the sense specified by Theorem 5.5.1. However, to obtain an
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Figure 5.3: Left plot: the q-q plot of 2 arising from the Haar periodogram of a

pure white noise process at scale j = —1 (against the normal quantiles). Right

plot: solid line — the variance of ﬁl{)g?(T)_1 against the correlation of the Gaussian

variables involved; dotted line — variance = 0.4 (see text for further description).

invertible operator, we need to set M = log,(T). Simulations suggest that the
asymptotic distribution of F'°82(T) is not exactly Gaussian, which is not surprising

given the fact that the distribution of

70 0)

flogs(T)—1 2(75T _ ?¢)+1,T
Isz,T + ]231+1,T

(see the second example in Section 5.3.2) is far from Gaussian. To illustrate this
statement, let us consider the Haar periodogram sequence ],5(5012)4 of a pure white
noise process. The left plot in Figure 5.3 shows the g-q plot of the corresponding
sequence f° against the normal quantiles: its distribution is strongly deviated
from Gaussian in the tails. Other extensive simulations have shown that, for a
wide range of processes, the distribution of f* gets closer to Gaussianity as M
decreases (as expected, see proof of Theorem 5.5.1).

However, even though taking M = log,(T') (instead of keeping it fixed) spoils
the asymptotic Gaussianity of FV1, it does not seem to upset the other important

property of FMI: the variance stabilisation. To illustrate this point, we consider
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5.5. Properties of the Haar-Fisz transform

the variance of the summand fog2 =1 Note that flog2 s always of the
form fB2M = (€2 — (2)/(¢2 + (2), where ({1, (2) is bivariate normal with mean
(0,0). For simplicity, we assume that Var((;) = Var(¢y), which is not a restrictive
assumption: due to the local stationarity property, the two variances tend to the
same limit as T — oo. Let p = corr((y,(2). By straightforward computation, it

can be shown that

du.

Var (f;07) ‘l/oo <(1_UQ)2_ <(1‘“2)p+2um>2>2
— (1 4+ u?) <(1 —u?) + <(1 _“2)P+2uﬂ>2>2

The right plot in Figure 5.3 shows the graph of Var ( tog>(T)~ 1) against p. It can
be seen that Var (flOgZ( )= 1) is “stable” for a wide range of correlation values:
indeed, the variance is between 0.4 and 0.5 for |p| < 0.74. This implies that

! spoils the asymptotic Gaussianity property of the

while incorporating fl82(7)-
Haar-Fisz transform, it helps achieve its variance stabilisation property.

A similar variance stabilisation phenomenon occurs for f¥ for M < log,(T) — 1.

5.5.3 Simulation

As an illustration of the Gaussianisation and the variance stabilisation properties
of the Haar-Fisz transform, consider the process X;r = o(t/T)Y,r, where Y, 7 =
p(t/T)Yi—1.1r + e with |p(z)| < 1 and &, ~ N(0,1) i.i.d. It can easily be shown

that the local autocovariance function for X, has the form

_ 2 p(z)
c(z,7) =0 (2)1_7[)(2)2
and, for (;(z) arising from the Haar periodogram, we have
1 — p(2)? 4+ 2743p(2)2 7+ — 627p(z) — 2 p(z)* !
5 .

(1= p(2)*)(1 = p(2))

Bi(2) = 0*(2)
We consider the following two cases:

TVAR. ¢%(2) = 1 and p(z) = 1.82 — 0.9, so that X, is a time-varying AR(1)

process;
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Chapter 5. Denoising the wavelet periodogram using Haar-Fisz

TMWN. 0?(2) is a scaled Donoho & Johnstone (1995) bumps function with (min,
max) values of (1/8, 8), and p(z) = 0, so that X, 7 is a time-modulated white

noise process.

In both of these models, we simulate 100 sample paths for both T" = 256 and
T = 1024. For each of the simulated sample paths, we compute the wavelet
periodogram at scales j = —1,...,—1log,(T). For each of the periodogram se-
quences It(]% obtained in this way, we compute the residuals fMlgf% — FMB,(t/T)
for M = log,(T') — 2,10g,(T) — 1,10g,(T). We assess the Gaussianity of each se-
quence of residuals by looking at the p-value of the Kolmogorov-Smirnov statistic,
returned by the S-Plus function ks.gof. For comparison, we also consider the
residuals from the log transform: log(It(’jT) — log(B;(t/T)).

The results of the experiment are shown in Figure 5.4. We observe that for
M = logy(T) — 2, the proportion of p-values exceeding 5% is close to 95% for
j = —1,...,=5, so that residual sequences at these scales can be regarded as
approximately Gaussian. However, even for M = log,(T') the proportion of p-
values exceeding 5% is incomparably larger than the same proportion computed
for the log transform. Indeed, for 7' = 1024, no p-value exceeded the 5% threshold
for the log transform.

The above experiment demonstrates that even for M = log,(T) (the invertible
case), the Haar-Fisz transform is a far better Gaussianiser than the log transform.

In practice, we often observe a degree of correlation in FMIU), particularly at

coarser scales, i.e. for large negative j. This has to be taken into account when

denoising Haar-Fisz transformed sequences.

5.6 Denoising the wavelet periodogram

In this section, we first outline our general methodology for denoising the wavelet
periodogram of a Gaussian LSW process X, r, basing on a single stretch of obser-

vations. Then, we provide simulation results which demonstrate the effectiveness
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Figure 5.4: Proportion of p-values exceeding or equal to 5% (x-axis shows negative
scale —j). Left column: results for TVAR, right column: results for TMWN.
Top row: T = 256, Bottom row: T = 1024. Solid line: M = log,(T), dotted
line: M = log,(T) — 1, dashed line: M = log,(T) — 2, long-dashed line: the log
transform. Horizontal solid line: 0.95.
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Chapter 5. Denoising the wavelet periodogram using Haar-Fisz

of our technique.

The generic algorithm consists of the following steps.

1. Foreach j = —1,...,—J(T), compute the raw wavelet periodogram Tt(JT) In

practice, this is done by taking the non-decimated wavelet transform of X,
down to the level —J(T), and then squaring the result. For computational
convenience, we use periodic boundary treatment; another option would be

to use e.g. symmetric boundary treatment.

2. For each j = —1,...,—J(T), take the Haar-Fisz transform of It(]% at a fixed

resolution level M < log,(T).

3. For each j, denoise the Haar-Fisz transformed periodogram sequence using
any wavelet denoising technique suitable for correlated Gaussian noise with
constant variance. The wavelet denoising procedure employed at this stage
may be of a translation-invariant (TI) type: we refer to TI-denoising at this

stage as “internal” cycle-spinning (CS).
4. For each 7, take the inverse Haar-Fisz transform of the denoised data.

5. If M < logy(T), then for each j interpolate the estimates obtained in this
way to the grid {t/T}/ ' (so that they are of length T and not 2¥ < T). In
our empirical investigation, we used simple linear interpolation. For each j,

take the result to be an estimate of 3;(z).

6. For a fixed integer S, let s =1,...,5 — 1. For each j, shift It(JT) cyclically by
s, denoise the shifted version using steps 2. — 5. of this algorithm, and shift
back by s to obtain an estimate of (;(z). The CS at this stage is referred to

as “external” cycle-spinning.

7. For each j, the final estimate of (3;(z) is obtained by averaging over the

estimates obtained through the S shifts.

A few remarks are in order.
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5.6. Denoising the wavelet periodogram

Computational complexity. Steps 1. — 5. of the algorithm are each of compu-
tational order O(T'J(T')), provided that the wavelet denoising method used
in step 3. has complexity O(T'). Therefore, the whole algorithm 1. — 7. is of

computational order O(ST.J(T)). In practice, the software is fast.

Use of wavelets. It is worth recalling here that, effectively, we use wavelets at

four different stages of the denoising procedure:

1. First of all, a non-decimated wavelet system 1) is used in the construc-
tion of the LSW process X 7.
2. The same system @ is used to compute the wavelet periodogram It(]% in

step 1. of the denoising algorithm.

3. The (inverse) Haar-Fisz transform in step 2. (4.) relies on the Haar

transform: thus, wavelets are used for the third time.

4. Finally, we use wavelets (possibly a different family, say ) to denoise

the Haar-Fisz transformed periodogram in step 3.

Cycle-spinning. Let S be the shift-by-one-operator from Nason & Silverman
(1995). The Haar-Fisz transform is not translation-equivariant since SFY
FMS. Therefore, it is potentially beneficial to apply the external CS of step

6. even if step 3. uses internal CS.

We now move on to describe our particular simulation setup.

5.6.1 Simulation

In this section, we describe the details of our simulation study which compares the
performance of our Haar-Fisz denoising algorithm with the original technique of
Nason et al. (2000).

The “test processes” used in this section are the same as those in Section 5.5.3:
TVAR and TMWN. We consider the Haar periodogram of TVAR and TMWN,

for sample paths of length 256 and 1024. In step 3. of the Haar-Fisz denoising
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Chapter 5. Denoising the wavelet periodogram using Haar-Fisz

algorithm, we use non-TT level-dependent universal hard thresholding, appropriate
for correlated Gaussian data as described in Johnstone & Silverman (1997). At this
stage, we use Daubechies’ Least Asymmetric wavelets with 4 vanishing moments,
in both our algorithm and that of Nason et al. (2000).

Computational experiments suggest that for correlated noise, the choice of pri-
mary resolution (PR) is of utmost importance. We do not choose the PR automat-
ically (actually, we are unaware of any existing technique for performing automatic
PR selection when the noise is correlated), but instead, we subjectively choose the
PR for which the method of Nason et al. (2000) gives the most visually appealing
results for the wavelet periodogram at the finest scale, i.e. 7 = —1. We also use

the same PR in our algorithm. The particular values of the PR are:

7 for TMWN 1024;

6 for TMWN 256;

4 for TVAR 1024;

3 for TVAR 256.

We use S = 10 external cycle-shifts. Using more shifts is likely to be beneficial
in terms of MISE but is also more burdensome computationally. We only report
results for M = log,(T) (i.e. for the full invertible Haar-Fisz transform).

Figure 5.5 shows estimates of the local variance constructed from the estimates
of the periodogram (formula (3.65)) obtained using the two methods described
above, for particular sample paths of TMWN 1024 and TVAR 1024. For both
sample paths, our method achieves lower ISE.

Figure 5.6 shows, for each j, the differences between the logarithm of the ISE
in estimating (;(z) for the method of Nason et al. (2000), and for our Haar-
Fisz algorithm. The results are averaged over 100 simulated sample paths. Our

algorithm is superior in most of the cases, except for the 4 finest scales in TVAR
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Figure 5.5: Solid lines: estimates of the local variances for 7" = 1024 in the TMWN
model (top row), and the TVAR model (bottom row), using the method of Nason
et al. (2000) (left column) and the Haar-Fisz algorithm (right column) as described
in the text. Dotted lines: true local variances.
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Figure 5.6: Solid line: difference between logged MISE for Nason et al. (2000)
and for our Haar-Fisz algorithm (x-axis shows negative scale —j). Positive value

means our algorithm does better. Left column: results for TVAR, right column:
results for TMWN. Top row: T = 256, bottom row: T = 1024. Dotted line: zero.
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256, and the 3 coarsest scales in TMWN 1024. A similar pattern has been obtained
for other values of the PR.

We have also performed additional simulations for M = log,(T) — 1 and M =
log,(T) — 2. It turned out that as long as the PR remained fixed, the choice of M
had very little influence upon the estimates.

On a final note, it must be mentioned that other denoising methods can also be
used in step 3., and our algorithm can only benefit from this flexibility. Some of
the techniques for correlated data are reviewed in Opsomer et al. (2001). We have
also experimented with the eBayes method of Johnstone & Silverman (2003) and

obtained encouraging results.

5.7 Real data example: the Dow Jones index

In this section, we perform a local variance analysis of the DJIA se-
ries Dyr of Section 4.5 (T = 1024). The source of the data is
http://bossa.pl/notowania/daneatech/metastock (page in Polish). We used

the following four methods to compute the local variance of D 7:

1. Our Haar-Fisz method of Section 5.6, based on the Haar periodogram, with
the following parameters: M = 10, S = 10, step 3. applied non-TI level-
dependent hard universal thresholding using Daubechies’ Least Asymmetric

wavelet with 4 vanishing moments. PR = 7.

2. Our Haar-Fisz method of Section 5.6, based on the Haar periodogram, with
the following parameters: M = 10, S = 10, step 3. used the S-Plus spline

smoothing routine smooth.spline with default parameters.

3. A modification of our Haar-Fisz method: instead of the sequences of the
wavelet periodogram of D, r, the input to the Haar-Fisz algorithm was DZT.
We took the smoothed version of DtQ,T to be the estimate of the local variance.

The parameters of the Haar-Fisz algorithm were: M = 10, S = 10, step
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3. used the S-Plus spline smoothing routine smooth.spline with default

parameters.

4. The method of Nason et al. (2000) with the following parameters: TI level-
dependent universal hard thresholding using Daubechies’ Least Asymmetric
wavelet with 4 vanishing moments, PR = 7. The smooth.dev parameter in

the ewspec routine (Nason (1998)) was set to var.

The results for PR # 7 were less convincing. Figure 5.7 shows all four estimates
plotted on a log scale. The two estimates based on spline smoothing show the least
variability, the estimate 4. is the most variable, and the estimate 1. — the second
most variable. Moreover, 1. estimates the variance at a slightly higher level than
the other three methods.

One interesting question which can be asked is whether or not D, v can be mod-
elled as Gaussian. This can be examined, for example, by dividing D, by the
square root of the estimates of the local variance, and looking at the distribution
of the residuals. Figure 5.8 shows the ggnorm plot of the empirical quantiles of
the residuals against the quantiles of the standard normal, for the four methods
described above. The surprising observation is that all four plots consistently
indicate that the upper tail is slightly platykurtic. However, there is no consis-
tency in the assessment of the behaviour of the lower tail: here, 3 plots indicate
platykurtosis, but the result of method 3. suggests slight leptokurtosis.

However, the p-values of the Kolmogorov-Smirnov test (returned by the S-Plus
routine ks.gof) are large for each of the 4 sequences of residuals. In this sense, it
can be concluded that the departure of D, r from Gaussianity is insignificant.

This is in stark contrast to stationary nonlinear modelling (e.g. (G)ARCH or
Stochastic Volatility), where, typically, the marginal distribution of financial log-

returns is modelled as heavily leptokurtic.

154



5.8. Conclusion
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Figure 5.7: Four estimates of the local variance of D, on a log scale. Solid line:
method 1. Dashed line: method 2. Long-dashed line: method 3. Dotted line:
method 4. See text for further description.

5.8 Conclusion

In this chapter, we have introduced a Haar-Fisz variance-stabilising transform for
the wavelet periodogram (WP) of a Gaussian LSW process. The transform, per-
formed in the wavelet domain by dividing the Haar detail coefficients of the WP
by the corresponding smooth coefficients (an instance of the so-called Fisz trans-
form), brings the distribution of the WP closer to normality, as well as stabilising
its variance. This makes the WP more amenable to standard denoising techniques
which require stationary Gaussian noise. The computational complexity of the

Haar-Fisz transform is linear in the number of data points, which is required to
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Figure 5.8: Empirical quantiles of the residuals of D, r against the quantiles of the
standard normal. Top left: method 1. Top right: method 2. Bottom left: method
3. Bottom right: method 4. See text for further description.
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be a power of two.

In order to analyse theoretical properties of the Haar-Fisz transform in a certain
asymptotic setting, we have formulated and proved a functional central limit theo-
rem (FCLT) for the centred WP. Next, we have applied our FCLT to demonstrate
the Gaussianising, variance-stabilising and decorrelating properties of the Haar-
Fisz transform in the case where the length of the output vector remains constant
as the length of the input vector goes to infinity.

Exact asymptotic Gaussianity does not hold if the length of the output vector
of the Haar-Fisz transform matches the length of the input vector (which is the
more interesting case in practice). However, we have provided some numerical
evidence that the limiting distribution is still not far from Gaussian, and that its
variance is well stabilised. Extensive simulations have shown that even in this
case, the Haar-Fisz transform is a far more effective Gaussianiser than the usual
log transform.

Next, we considered a denoising algorithm for the WP, based on the Haar-Fisz
transform. Theory has shown that the new algorithm is computationally fast,
and simulation — that its MISE performance is better than that of the existing
competitor.

Finally, several variants of the algorithm have been used to compute the local
variance of the time series of daily log returns on the Dow Jones index. All of
them consistently demonstrated that the series can be modelled as Gaussian.

The S-Plus routines implementing the algorithm, as well as the data set, are

included on the associated CD.
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Chapter 6

A Haar-Fisz algorithm for
Poisson intensity estimation

In this chapter, we propose a Haar-Fisz-type algorithm for estimating the discre-
tised intensity function of an inhomogeneous one-dimensional Poisson process, in
the regression setting specified in Section 2.3.3. The Haar-Fisz principle was al-
ready introduced in Chapter 5: take the Haar transform of the data, divide the
arising detail coefficients by the corresponding smooth coefficients raised to an
appropriate power, and then take the inverse Haar transform. In this chapter, we
apply this algorithm to sequences of Poisson counts, with the aim of stabilising
their variance and bringing their distribution close to Gaussianity. This then en-
ables us to apply known denoising techniques suitable for i.i.d. Gaussian noise
to estimate the underlying Poisson intensity. Simulations demonstrate that our
denoising method usually significantly outperforms the existing state-of-the-art
techniques.

Some results of this chapter were used, in a modified form, in the article by P.
Fryzlewicz and G. P. Nason (2003) “A Haar-Fisz algorithm for Poisson intensity
estimation”, to appear in the Journal of Computational and Graphical Statistics.

Throughout the thesis, this article will be referred to as Fryzlewicz & Nason (2004).
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6.1 The Fisz transform for Poisson variables

In this section, we come back to the theorem by Fisz quoted in Section 5.1 as
Theorem 5.1.1, and attempt to apply it to independent Poisson variables. Let
£(A) be a Poisson variable with mean A. It is shown in the original paper by
Fisz (1955) that £(\) satisfies the first two assumptions of Theorem 5.1.1. Using
the original notation from Fisz (1955), assume that & (A1), &(Ae) are independent
and A/As — 1 as (A, A2) — (00,00). Then, ((A;, A2) (see formula (5.2)) is

asymptotically normal

N( Ao — A\ \/)\2+)\1>
Ao+ X)P (Mg + )P )

Note that setting p = 1/2 makes the variance of (A1, A2) independent of A. There-
fore, to achieve the variance stabilisation property of the Haar-Fisz transform for
Poisson data, we shall need to divide the Haar detail coefficients by the square
root of the corresponding smooth coefficients. This is in contrast to the wavelet
periodogram case where power p = 1 had to be used.

Recall from Section 5.1 the definition of (i/2 (the Fisz transform with exponent

1/2):
Cya( X1, Xy) = (X1 — Xo) /(X1 + Xp)'2, (6.1)

with the convention 0/0 = 0. Let X; ~ Pois();) for i = 1,2 and X, X,
independent. Theorem 5.1.1 only determines the behaviour of (o(X;, Xs) if
(A1, A2) = (00, 00) and A /Ay — 1. In practice, it would be useful to inves-
tigate the behaviour of (;/2(X;, X3) if the means of X;, X, are not necessarily

“large” or “close”. More specifically, we are interested in
e how well the Fisz transform can Gaussianise and stabilise variance,

e how well we can determine the mean, i.e. how close E{Cl/Q(Xl,Xg)} is to

Cl/Q()\l, A2),
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Chapter 6. A Haar-Fisz algorithm for Poisson intensity estimation

for a whole range of );. These issues would be challenging to investigate the-
oretically. However, to cast some light we performed the following simulation
experiment. We chose values of )\; to range from 1 to 40 in steps of 1. For each
pair (A1, A2) we drew 10° values of (j2(X1, X») as defined by (6.1) and denoted
the sample by z(A{, Ay). For a comparison of Gaussianisation we also computed
Anscombe’s transform, as mentioned in Section 2.3.3, to the X; which arose from
the larger \; (this comparison was charitable to Anscombe: either X; or X, could
be used but Anscombe works better for larger intensities).

Figure 6.1 gives some idea of how well the Fisz transform Gaussianises, stabilises
variance and how close z(A1, A2) is to (1/2(A1, A2). The top left figure shows that
Fisz is always “more Gaussian” than Anscombe. The top right figure merely shows
that Z(\y, Ay) is very close to (i/2(A1, A2). The bottom row of Figure 6.1 shows
that the variance of z(A;, A9) is stable and close to one for a wide range of (A, A\y).
To summarise, the above experiment shows that (;/o(X;, X), the Fisz transform
of Xy and X, with exponent 1/2, can be thought of as an approximately Gaussian
variable with mean (;/2(A1, A2) and variance bounded above by (and close to) one.

The above discussion concentrates on the properties of individual Fisz-
transformed Poisson variables. However, as we observed earlier, the Fisz transform
with exponent 1/2 can be viewed as the division of a Haar detail coefficient by
the square root of the corresponding smooth coefficient. Motivated by this ob-
servation, we now introduce a full Haar-Fisz transform, where we perform this

operation on all Haar detail coefficients of a given vector of Poisson counts.

6.2 The Haar-Fisz transform for Poisson counts

In this section, we provide details of the Haar-Fisz transform, which stabilises
the variance of sequences of Poisson counts and brings their distribution closer
to normality. The input to the algorithm is a vector v = (vg,v1,... ,vy_1) for

N =27, where v; > 0 for all . Typically, v will be a vector of Poisson counts. The
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Figure 6.1: Top left: Difference between Kolmogorov-Smirnov test statistics com-
puted on Anscombe-transformed Poisson variables with intensity max(A;, Ay), and
z(A1, A2). Positive difference means that Haar-Fisz is closer to Gaussian. Top

right: |Z(A1, XA2) — Ci/2(A1, A2)|. Bottom left (and right): perspective (and contour)
plot of Var(z(A1, \2)).
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output of the Haar-Fisz transform is a vector u = (ug, u,... ,un_1), constructed
as follows:
1. Let
st =, (6.2)
2. Foreach j =.J —1,J—2,...,0, recursively form vectors s’ and f7:
j Lo | gn
Sp T 5( 2n + 82n+1) (63)
. Gl i
i = Ton ol (6.4)
2V 51

forn=20,1,...,27 — 1 (with the convention 0/0 = 0).

3. For each j =0,1,...,J — 1, recursively modify the vectors s/*':
S = sht+ [l (6.5)
s%:}rl = sl — fI, (6.6)

forn=0,1,...,2/ — 1.
4. Set u:=s".

For the purpose of this chapter, denote Fv := u. The nonlinear operator F is

called the Haar-Fisz transform of v. A few important remarks are in order.

e The algorithm is invertible, i.e. v can be reconstructed from Fv by reversing

the steps 4.-1.

e The steps 2.-4. of the algorithm are similar to the forward and inverse

Discrete Haar Transform except the division by (s7)'/? in formula (6.4).
e Formula (6.4) can be written as
fi =272 a(sh shy). (6.7)

In other words, f7 is the (scaled) result of the Fisz transform with exponent

1/2 of two neighbouring smooth coefficients s5."' and syt .
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6.2. The Haar-Fisz transform for Poisson counts

e Like the Haar DWT and the Haar-Fisz transform for the wavelet peri-

odogram, the Haar-Fisz transform for Poisson counts is of computational

order O(N).

6.2.1

Example

As an example, we demonstrate the Haar-Fisz transform applied to the input

vector v of length 8 now with all positive entries. The Haar-Fisz transform u = Fv

is given by

Uy =

Uy =

Uo =

usz =

Uy =

Uy =

Ug —

Uy =

Formulas

section.

7
> im0 Vi

Z?:o Vi —

D i il e (v2 + v3) L
VNS SN DO
Zz:o Yi Z?ZO Vi — 21'7:4 Ui n vo + v1 — (V2 + v3) _ w-u
Y NS ST IO e e
ZZ:O Yi Zfzo Vi — 2524 Vi Vo U — (v2 + v3) Uy — U3
S S o fSn VAVETE
YioVi | DoV gl ot v~ (atvy) vy — g
VNS SN N
Yiov _ DoV~ Dig Vi L Vatvs — (ve + v7) L
VNS NS SN N
ZZ:O Vi Z?:o (i 2524 v; n vy + vs — (ve + v7)  w— s
S oS fSLe VAT
ZZZO S Z?ZO Yi 2:24 Vi V4t Us — (ve + v7) Vg — U7
VNS RPN SN
T — S ioVi = doia Vi va+ 05— (vg+ v7) Vg — U7

8

(6.8) are a special case of the

2v2,/ 31 v

2\/ Zi?:4 Ui

- (6.8
\/5\/?)6 + U7\ )

general formula for F given in the next

6.2.2 A general formula for the Haar-Fisz transform

We will now introduce an explicit general formula for the operator F which is

used in the proofs later in this chapter. Let v = (vg, vy, ...
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of Poisson counts, and let u = (ug, us, ... ,ux_1) be the Haar-Fisz transform of
v: u = Fv. Bearing in mind that N is an integer power of two, we denote
J = log,(N). We introduce the family of Haar wavelet vectors {1)*}, where j =
0,1,...,J—1is the scale parameter, and k = [2777,1 =0,1,... , 4, is the location
parameter. The components of 1//* will be denoted by ¢J*, forn =0,1,... , N—1.

We define

0 for n<k

ik 1 for E<n<k+2/77-1 (6.9)
" 1 for k4270 <p < k427

\ 0 for k+2/77 <n.

Similarly, we introduce the family of Haar scaling vectors {#7*}, whose components

will be denoted by ¢/** (the range of j, k, and n remains unchanged). We define

0 for n<k
oF =31 for k<n<k+2/ (6.10)

0 for k+2777 <n.

Our definition of discrete Haar wavelets is similar to that of Nason et al. (2000),
Section 2. The difference is that we “pad” the wavelet vectors with zeros on both
sides so that they all have length N, and we do not normalise them.

Further, let (-,-) denote the inner product of two vectors, and let b’(n) =
(b3 (n),b{(n),..., b7 ,(n)) be the binary representation of the integer n, where
n < 27.

The formula for the nth element of u = Fv is

00 J—1
¢ + ; Cg,Jn( ) (611)

:0

Up =

.

where

(pirln/27 7712770

Lot (@27 Gy s 0

Cj,J,n — <¢J‘x[n/2J*jJ2J*j’v> (612)

0 otherwise.
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6.3. Properties of the Haar-Fisz transform for constant intensities

6.3 Properties of the Haar-Fisz transform for
constant intensities

In this section, we state and prove two propositions concerning the asymptotic
behaviour of Fv, where v is a Poisson vector of constant intensity. The case of
non-constant intensities will be considered in Section 6.4. Proposition 6.3.1 says
that the coefficients of Fv are asymptotically uncorrelated, and Proposition 6.3.2

says that they are also asymptotically normal with variance one.

Proposition 6.3.1 Let v = (v, v1,...,vn_1) be a vector of i.i.d. Poisson vari-
ables with mean X\, and let N be an integer power of two. Let u = Fv. For m # n,
we have

cor(Um,up) =0 as AN — o0 and A/N — 0. (6.13)

Proof. We will first calculate the correlation between the modified detail coef-
ficients at two different scales. The detail coefficient at any given scale has the

form
Dy = (Xo— X1)f(Xo+ Xy)

where Xy and X, are some independent, identically distributed Poisson variables,
and f(x) = 272 with f(0) = 0. The detail coefficient at any coarser scale depends

on Xy, Xi through their sum only, i.e. we have
D, = g(XO + Xl):

where ¢ also depends on some other Poisson variables X;, ¢ # 0,1. Since Xj, X;

are identically distributed, we obviously have
E(Dy) =0 and E(D;D,) =0, (6.14)

and so cov(Dy, D.) = 0. We can show in a similar way that the smooth coefficient
(¢%9 v) /N is uncorrelated with any of the detail coefficients.
We are now in a position to calculate cov(um,,u,). From formula (6.11) it is

clear that the variables will share the “smooth” term (¢%° v)/N, which we will
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denote by p to simplify the notation. Since the integer |n/2777|2777 (see formula
(6.11)) depends only on the first j bits in the binary expansion of n, the variables

Uy, and u, will also share the term

J*—1
X = 0 (-1 ™25 ey (v), (6.15)
j=0

where J* = min{j : b](n) # b/(m)}. Using the definition in formula (6.12), it can
be proved that

J*—J

2 C]*’J’n(V). (616)

Ea Crgm(v) = —(=1)"7 (2

(_1)b§*(m)2

The term on the LHS of equation (6.16) will be denoted by Y. We also denote
1

],

Zi = Y (=125 ()
j=J*+1
J-1 L

7y = (=) ™25 ¢; 1 (v).
j=J%+1

11) to see that Z; and Z, are independent (they

=

It takes a closer look at formula (
are functions of different components of v). Using the formulas in (6.14), we now

write
cov(Upm,tun) = covip+X =Y +Z,u+X+Y + 7))
= Var(u) + Var(X) — Var(Y).

For A large enough, as X and Y become approximately normal (see Fisz (1955)),

we have
J =1
Var(X) < (1+e2 7 =142 —27)
j=0
Var(Y) > (1—¢)27 77

Moreover, we have Var(y) = A/N — 0 by assumption. Since N = 27 — oo, we

have
COV(um’ un) < )\/N + (1 + 6)(2‘]*_‘] — 2_‘]) — (1 — 5)2‘]*_‘] -0

as € — 0 (note that 27" =7 is constant), which completes the proof. O
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Proposition 6.3.2 Let v = (v, v1,... ,vn_1) be a vector of i.i.d. Poisson vari-
ables with mean X\, and let N be an integer power of two. Let u = Fv. For all

n=20,1,... ,N — 1, we have

Up — A=V +Y,, (6.17)
where
D
v = 0 as AN—=0
Y, & N(0,1) as (A\N)—= (c0,00). (6.18)

Proof. Without loss of generality, let us concentrate on ug. Let J = log,(NN), and

let us denote
DY

21, . j
2i=o Ui jEi:y v if E :?:;1_1 v; >0
VI (6.19)

W;(A) =

otherwise

to emphasise the dependence of W; on A. The following equality holds (see the

example in Section 6.2.1, and formulas (6.11) and (6.12))

N-—1 J—1
w= N3 w4 327 W), (6.20)
i=0 =0

Set

N1 J-1
v=N13wi—dand Vo= 277 W;(N).
i=0 =0
We will first show that Y, 3 N(0,1) as (A, J) — (oc,00). Let us fix ¢ > 0. By
Theorem 5.1.1, if A or j are large enough, then we have

Var(W;(\) = (1+€) <1+¢, (6.21)

where [€}] < €. Also, for all ), the variables 1¥;()) are uncorrelated (see the proof

of Proposition 6.3.1).
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Using the symmetry of W;(A), the Chebyshev inequality, the orthogonality of
W;()), and formula (6.21), for large A, J, and M > J we have

P (A§2Jéle(}\) < —e) = P (Mz_:lz@le(A) > e>

j=J
M-1
= ¢? 27" War (W;(N))
j=J
< ) 27 War (W;())
j=J
< e(1+6)27
Clearly, we have that
Ve 3y VI>J e (1+6)277 <e (6.22)
Observe now that
S
VoY TR W) B N(0.1-277) as Ao (6.23)
=0

Here we have a finite linear combination of orthogonal variables, each of which
converges in distribution to N(0,1) by Theorem 5.1.1. The finite linear combi-
nation will therefore converge to the finite linear combination of orthogonal (=
independent) normal variables, whose variances sum up to 1 — 2/, Denote by
S,2(t) the survival function of a normal variable with mean zero and variance
o?. Note two properties of the family {S;_5-s(£)}5: ||Si_2-7(:) = Si(")|lec —
0 as J — oo; {S1_o-7(t)}52, is uniformly Lipschitz continuous with Lipschitz
constant L = 1//7.

Now fix € > 0 and choose the corresponding .J; in (6.22). For an arbitrary fixed

t, examine the difference

D, = . (6.24)
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We have

2

———

N——
(VAN

s,
—
g

N

%

\/

~

-
H/—’

o <~
M &M

P Jozlz‘é‘le(A)>t—e> (

6) <
(Sico-sn(t—€)+€) +€< Sy (t) + /\/_+26§

Si(t) + e+ (/v +2) e < Si(t) + 4e. (6.25)

On the other hand, we have

~
l\) —
=
R
V
~
+
™
N~
+
~
N
D
NG}
|
wfy
=
R
V
|
@)
~_—
|

P {J0_12€1Wj(A) > t+e} v {J_ 275 Wi(\) > —e}) >
(Sig-n(t+e)—e)+(1-€e)—12>
Si(t) —e— <% + 2> € > Si(t) — 4de. (6.26)

Inequalities (6.25) and (6.26) together prove that the difference D; of formula
(6.24) is arbitrarily small for A and .J large enough, which proves the convergence.
We will now show that v = 0 as AN — 0. We denote by S°(¢) the survival

function of the constant variable 0. Consider the difference

N—-1
— P(N_lzvi—)\>t) — S°(t)].
i=0

(6.27)
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For t > 0, we have

D, = P (N—l Z_l(vi —A) > t) < N°E (Ni(vi - )\))

i=0 1=0
N-1
= N7”t77) Var(y) =N"'t7°A =0 as A/N —0. (6.28)
i=0

For t < 0, we have

N-—1
P (NIZvi —A> —|t) -1

1=0

DQZ

N-1
=P (Nl d vi-a< —t|>

1=0

N-1
- P (—N‘l > v+ A> t|> <N 2N50 as AN —=0. (6.29)

i=0
Inequalities (6.28) and (6.29) show that v 20 as A/N — 0. The proof of Propo-

sition 6.3.2 is completed. O

6.4 Properties of the Haar-Fisz transform for
non-constant intensities

In this section, we assess the degree of Gaussianisation and variance stabilisation
provided by the Haar-Fisz transform for non-constant Poisson intensities. Also, we

examine the amount of correlation between the Haar-Fisz transformed variables.

6.4.1 Decorrelation and Gaussianisation

We begin by empirically investigating the degree of correlation between the Haar-
Fisz transformed variables, as well as their proximity to normality. The details of
the computational experiment are as follows: we selected 4 “templates” (vectors
of length 128), and shifted each of them by 1/10, 1, 2, 3, and 4 to create 4 x 5 = 20
test intensity vectors. The templates are plotted in Figure 6.2.

The template vO is used to create constant intensities of 1/10, 1, 2, 3, and
4. Each of the templates v25, v50 and v75, after shifting upwards by ¢ (where
c € {1/10,1,2,3,4}), becomes a non-constant intensity vector in the shape of a

symmetric rectangular hat whose middle part is elevated to the level of 8 + ¢ (so
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vO v25

- - H
o o

0 40 80 120 0 40 80 120

4
4

v50 V75

3 0 I s

0 40 80 120 0 40 80 120

4

Figure 6.2: Templates used in the experiment of Sections 6.4.1 and 6.4.2.

that it corresponds to a “high” intensity), with the outer parts remaining at the
minimum level of ¢ (so that they correspond to a “low” intensity). In the template
vn, the elevated middle part stretches over n% of the length of the template.

Results for the templates v0, v25, v560 and v75 are plotted in Figures 6.3, 6.4,
6.5 and 6.6, respectively. In each of the figures, the consecutive rows correspond
to shifts of the corresponding template by 1/10, 1, 2, 3 and 4, respectively.

The left subfigure in each row shows the quantiles of the distribution of Fx— FA
against the standard normal, where ) is the respective intensity vector and x is
a sample path simulated from it. The quantiles have been averaged over 100
simulated sample paths, rather than basing the result on only one simulation.

The right subfigure in each row shows the autocorrelation function of Fx — FA for

171



Chapter 6. A Haar-Fisz algorithm for Poisson intensity estimation

lags 1 to 21, again averaged over 100 simulated sample paths. The corresponding
95% confidence bands have been adjusted to take into account the averaging.

Decorrelation. The decorrelation appears to work fine except for the most non-
Gaussian setups: v0+1/10, v254+1/10 and v50+1/10. Also, a tendency can be
observed for the sample autocorrelation to be negative rather than positive, even
if it is non-significant.

Gaussianisation. Let A denote the minimum of the given intensity vector. The
experiment demonstrates that while for constant intensities, the degree of Gaus-
sianisation is only satisfactory from about A = 4 upwards, the “acceptable” level
of )\ falls as low as 2 or even less in the case of v75. This is so because the stretch
of high intensity “makes up” for the failure of the asymptotic mechanism for the
period of low intensity.

The following example compares the Gaussianisation property of the Haar-Fisz
transform, F, Anscombe’s transform, A, and the identity transform. Let us con-
sider the intensity as in the top plot of Figure 6.7 (a rescaled and shifted version
of the Donoho & Johnstone (1994) bumps function). This intensity vector will be
denoted by A, and v will denote a sample path generated from it.

Figure 6.7 compares the Q-Q plots of v—\, Av— A\ and Fv —F\ averaged over
100 samples of v. Clearly, the Q-Q plot shows that the Haar-Fisz transformation
does a better job in Gaussianisation. In particular, the Haar-Fisz transformed
data is less “stepped” and looks more like variates from a continuous distribution
than a discrete one. The Anscombe-transformed data appears more “stepped” for
lower quantiles than for higher ones. Further, the tails for Haar-Fisz are more

normal than for Anscombe which in turn is more normal than the raw count data.

6.4.2 Variance stabilisation

In this section, we use the templates v0, v25, v50 and v75 to investigate the
variance-stabilising properties of the Haar-Fisz transform and the Anscombe trans-

form.
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Figure 6.3: Q-Q and acf plots for v0; see Section 6.4.1 for detailed description.
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Figure 6.5: Q-Q and acf plots for v50; see Section 6.4.1 for detailed description.
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Figure 6.6: Q-Q and acf plots for v75; see Section 6.4.1 for detailed description.
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Figure 6.7: From top to bottom: intensity vector A of Donoho & Johnstone (1994)
bumps function (solid; shifted and scaled so that the minimum intensity is 3 and
the maximum is 18) and one sample path v (dotted); Q-Q plots of vectors v — A,
Av — A\, and Fv — F X averaged over 100 v samples.
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Results for the templates v0, v25, v50 and v75 are plotted in Figures 6.8, 6.9,
6.10 and 6.11, respectively. Like in the previous section, the consecutive rows in
each of the figures correspond to shifts of the corresponding template by 1/10, 1,
2, 3 and 4, respectively.

The left subfigure in each row shows the squared residuals (A\ — Ax)?, where
A is the respective intensity vector and x is a sample path simulated from it. The
results have been averaged over 1000 simulated sample paths to give an idea of
the variance of the Anscombe-transformed vector for each intensity function. The
right subfigure shows the analogous quantity for the Haar-Fisz operator F.

The simulation shows that in most cases, Haar-Fisz provides a better variance
stabilisation than Anscombe, i.e. the squared residuals are closer to one. For the
Haar-Fisz transform, the degree of variance stabilisation seems to be satisfactory
from A = 1 onwards, while for the Anscombe transform — only from about A = 2.
Moreover, for the Haar-Fisz transform, the level of the squared residuals almost
exactly reflects the shape of the underlying intensity function (a phenomenon which

is natural for the Anscombe transform, but not necessarily expected of Haar-Fisz).

6.4.3 Summary of conclusions

An analogous simulation study with the four templates was also carried out for
N = 1024. Let “D-G-S” denote the decorrelation, Gaussianisation and variance
stabilisation properties of the Haar-Fisz transform. The main conclusions from

the two experiments can be summarised as follows.

1. The degree of D-G-S was strikingly similar for sample sizes of N = 128 and
N = 1024: we suspect that the degree of D-G-S is not strongly dependent

on N. We consider NV = 128 to be a short vector in this situation.

2. The greater the minimum of the intensity vector, A, the higher the degree
of D-G-S. For constant intensities D-G-S is extremely effective from about

A =4.

178



6.4. Properties of the Haar-Fisz transform for non-constant intensities

o o
- -
© ©
=) o
o~ o~
° A A AN A A SN A A ANAN SN AN e ©
0 20 40 60 80 100 120 0 20 40 60 80 100 120

07 08 09 10

07 08 09 10

0 20 40 60 80 100 120 0 20 40 60 80 100 120

il iy

1.00
1.00

0.90
0.90

MW\/WU’\/WWWMM Y M’\PWJ\A WW UV\W\ |
WV‘WW\/WWM W R T

Figure 6.8: Averaged squared residuals for v0; see Section 6.4.2 for detailed de-
scription.
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Figure 6.9: Averaged squared residuals for v25; see Section 6.4.2 for detailed
description.
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Figure 6.10: Averaged squared residuals for v50; see Section 6.4.2 for detailed
description.
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Figure 6.11: Averaged squared residuals for v75; see Section 6.4.2 for detailed
description.
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3. For non-constant intensities, the degree of D-G-S depends not only on A :=
min A but also on the length of the stretch where the intensity is equal, or
close, to A. The shorter the stretch, the lower the “acceptable” value of A
for which D-G-S is still very effective. For example, if the intensity is at its
constant minimum, 2, for 25% of the time and the remaining intensity is

constant at 10, then the D-G-S is extremely effective.

4. The Haar-Fisz transform is usually a much better Gaussianiser and variance-

stabiliser than the Anscombe transform, especially for lower intensities.

6.5 Poisson intensity estimation

Motivated by the excellent Gaussianisation, variance stabilisation and decorrela-
tion properties of the Haar-Fisz transform demonstrated in the previous sections,
we propose the following core algorithm for estimating the (possibly non-constant)

intensity A of a Poisson process:

[A1] Given the vector v of Poisson observations, preprocess it using the Haar-Fisz

transformation to obtain Fv.

[A2] Denoise Fv using any suitable ordinary wavelet denoising technique, ap-
propriate for Gaussian noise (i.e. DWT — thresholding — inverse DWT).
Denote the smoothed version of Fv by F\. We can optionally exploit the

fact that the asymptotic variance of the noise is equal to one.

[A3] Perform the inverse Haar-Fisz transform to obtain .7-"*1(.7/-"\)\) and take it to

be the estimate of the intensity.

The following sections discuss several aspects of the above algorithm and compare

its performance to a range of existing methods on a variety of test intensitites.
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6.5.1 Methods for Poisson intensity estimation

Existing methods. As mentioned in Section 2.3.3, the Bayesian methods for Poisson
intensity estimation due to Kolaczyk (1999a) and Timmermann & Nowak (1997,
1999) are currently state-of-the-art; see Besbeas et al. (2004). Our simulation
study compared our technique with these Bayesian methods, as well as with the
computationally intensive [;-penalised likelihood technique of Sardy et al. (2004)
and with a choice of methods based on the Anscombe transformation. To compare
our technique with Kolaczyk (1999a) we used Eric Kolaczyk’s BMSMShrink MAT-
LAB software. As we did not have access to Timmermann and Nowak’s software
we exactly reproduced the simulation setup as in Timmermann & Nowak (1999)
and compared our results to their Tables I and II. (Incidentally, the methods in Ko-
laczyk (1999a) and Timmermann & Nowak (1999) are very similar: the underlying
Bayesian model is exactly the same, although the hyperparameter estimation is
slightly different (Kolaczyk (2001), personal communication).)

Our method. The following describes the common features for our Poisson in-

tensity estimation.

1. All our techniques always involve the Haar-Fisz transform, [A1], of the data,

and the inverse Haar-Fisz transform, [A3].

2. In step [A2] of our algorithm the wavelet denoising technique may be of a
translation invariant (TI) transform type; see Coifman & Donoho (1995).

We refer to TI-denoising at this stage as “internal” cycle spinning (CS).

3. In step [A2] we could use any one of a number of wavelet families (e.g. mul-
tiwavelet, see Downie & Silverman (1998), complex-valued, see Lina (1997)
etc.) for the denoising. In our simulations below we use Haar wavelets and

Daubechies least-asymmetric wavelets of order 10; see Daubechies (1992).

4. Let S be the shift-by-one operator from Nason & Silverman (1995). The

Haar-Fisz transform is not translation-equivariant since 7S # SF. This
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6.5. Poisson intensity estimation

non-commutativity implies that it is beneficial to apply CS to the whole
algorithm [A1]-[A3] even if [A2] uses a TT technique. We call this “external”
CS.

Due to the particular type of nonlinearity of the Haar-Fisz transform there is
no fast O(N log N) algorithm for the external CS. Therefore, we implement
external CS by actually shifting the data before [A1], shifting back the esti-
mate after [A3], and averaging over the estimates obtained through several

different shifts.

For a data set of length N there are N possible shifts. However, through
empirical investigation detailed in Section 6.5.3, we have found that 50 shifts
are enough for data of length < 1024. We postulate that using more shifts

for longer data sets is likely to be beneficial.

Note that there is no point in doing external CS with the Anscombe transforma-
tion, A, provided one has carried out internal CS, since Anscombe’s transformation
commutes with the shift operator: AS = SA.

The following list labels and describes the wavelet denoising methods that we
choose to use in [A2]. In each case F < denotes the use of the Haar-Fisz transform

and its inverse.

F > U: Universal hard thresholding from Donoho & Johnstone (1994) as imple-
mented in WaveThresh (Nason (1998)) with default parameters (e.g. uses

MAD variance estimation on all coefficients). 50 external cycle shifts.

F > CV: Cross-validation method from Nason (1996) as implemented in
WaveThresh using default parameters but hard thresholding. 50 external

cycle shifts.

FraBT: A variant of the greedy tree algorithm from Baraniuk (1999). 50 external

cycle shifts.
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Hybrids. We also looked at the performance of certain hybrid methods. These
estimate the intensity by averaging the results of two of the above Haar-
Fisz methods. Our main hybrid, H:CV+BT, combines F<xCV and F <
BT. Note that hybrids can be easily formulated due to the large number of

methods available for denoising Gaussian contaminated signals.

During our investigations we made use of several other denoisers including the
eBayes procedure as described by Johnstone & Silverman (2003); universal hard

threshold with internal cycle spinning; and hybrids of these with Fr<xCV.

6.5.2 Simulation results for various test functions

The simulation setup in the first part of this section is the same as that described
in Timmermann & Nowak (1999), who obtain two sets of intensity functions of
length N = 1024 from the test functions from Donoho & Johnstone (1994). Each
set is obtained by shifting and scaling to achieve (min,max) intensities of (1/8,8)
and (1/128,128). The true intensity functions for the (1/8,8) case are shown as
dashed lines in Figure 6.12.

The results for our methods are based on 100 independent simulations. The

following list labels and provides details of other competing methods.

e BAY — Bayesian method developed in Timmermann & Nowak (1999), re-

sults quoted from the article, 25 independent simulations;

e BM — Bayesian BMSMShrink method developed in Kolaczyk (1999a), 100

independent simulations;

e Ly P — li-penalised likelihood method from Sardy et al. (2004), results
quoted from the article (after appropriate rescaling), 25 independent simu-

lations. The authors only provide results for blocks and bumps;

e AU — method constructed in exactly the same way as the corresponding

method F < U except the (inverse) Anscombe transform was used instead of
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Table 6.1: Normalised MISE values (x10000) for various existing techniques and
our Fr<xU and H:CV+BT methods using Haar wavelets and Daubechies’ least
asymmetric wavelets with 10 vanishing moments (LA10), on the test functions
with peak intensities 8 and 128. The best results are indicated by a box.

Peak intensity = 8

LP| AxU F<U H:CV+BT

Intensity || BAY | BM | Haar | Haar | LA10 | Haar | LA10 Haar
Doppler || 154 | 146 [ 2181 121 201 [99] 159
Blocks 178 |[129]| 287 | 217| 338| 191| 302 135

HeaviSine | 52| 46 | 98] 63| 68| [40] 64
Bumps | 1475 | 1871 | 1557 | 3121 | 1579 | 2826 |[1268 2266

Peak intensity = 128

Doppler 26 | 20 |28 | [12]| 29| [12] 23
Blocks 27 8| 27 8| 38 8 37

HeaviSine * 9 9 9
Bumps 143 | 174 |[122]| 191 | 133| 185 | 133 163

the (inverse) Haar-Fisz transform. 100 independent simulations.

The results reported in Table 6.1 are the MISE normalised by the squared [,
norm of the true intensity vector, multiplied by 10000 and then rounded for clarity
of presentation (this is exactly the same performance measure as in Timmermann
& Nowak (1999) which is useful for comparability).

The results show that our F < U method with the LA10 wavelet outperforms
the existing state-of-the-art methods especially for the lower intensity, except for
the blocks function (as well as bumps for the higher intensity where our technique
is outperformed by L; P by about 8%). The main reason why the performance
of our method on blocks is less impressive is that a smooth wavelet is used in
the Gaussian denoising step [A2]. As expected, the performance of F<xU with
the Haar wavelet is much better in this context, but still not as good as that
of BMSMShrink, which is the best competitor for blocks. However, the hybrid
method H:CV+BT with the Haar wavelet achieves performance comparable to

BMSMShrink. We should emphasise here that our F >xU method is far simpler to
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Figure 6.12: Selected estimates for the Donoho and Johnstone intensity functions
(dashed, described in text). Each estimate gives an idea of “average” performance
in that in each case its MISE is the closest to the median MISE obtained over 50
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6.5. Poisson intensity estimation

implement than the current state-of-the-art techniques.

In Figure 6.12 the small spike in the heavisine function is not picked up well at
intensity 8 but is almost always clearly estimated at intensity 128 (not shown).
However, it should be said that the spike is almost completely obscured by noise
in all realisations at intensity 8 so it would be extremely difficult for any method
to detect it. We are impressed with the quality of the estimates using the new
Haar-Fisz method, particularly with bumps and doppler. Also, the reconstruction
of blocks, using the hybrid method H:CV+4BT, is very accurate. Overall, it must
be remembered that the reconstructions are usually going to be less impressive than
the classical wavelet shrinkage problem where the test functions are contaminated
with Gaussian noise with variance one.

To further investigate the performance of the methods on piecewise constant
intensities we performed the following simulation study where the true intensity
was the clipped blocks function of length N = 1024 shown on the left hand side of
Figure 6.13. The clipped blocks intensity was obtained from the blocks function by
setting all negative values to zero, scaling it so that the maximum intensity is 15.6
and then adding 3. We also examined the same intensity but scaled by factors of
1/6,1/3 and 10/3. These scalings gave us a range of low and high intensity settings
with large spreads of low intensity. The minimum and maximum intensities were,
for each of these scalings: 3-18.6, 0.5-3.1, 1.0-6.2 and 10-62.

The simulation results reported in Table 6.2 are the MISE per bin: that is
we computed the sum of the squared errors between our estimate and the true
intensity, then divided by the number of bins (1024) and then took the mean over
all 100 simulations.

Table 6.2 shows that at low to medium intensities BMSMShrink and H:CV+BT
are competitive but at the higher 10/3 intensity our hybrid is about 10% better.
The right hand figure in Figure 6.13 shows a particular sample reconstruction using

the hybrid method H:CV+4+BT.
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Figure 6.13: Left: Scaled and shifted blocks function, and its clipped version:
clipped blocks. Right: The true intensity function (with scaling 1, dashed) and an
estimate computed using our algorithm using hybrid method H:CV+BT whose
MISE was closest to the median MISE obtained over 50 sample paths.

Table 6.2: MISE per bin (x100 and rounded) for clipped block intensity estima-
tion using BMSMShrink and H:CV+4+BT as denoted in the text for a variety of
intensity scalings.

Scaling
Method | 1/6 1/3 1 10/3
BMSMShrink 9 20 61 191
H:CV+BT 9 20 61 171
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6.5. Poisson intensity estimation

6.5.3 Performance of Haar-Fisz methods as a function of
the number of cycle shifts

In this section, we attempt to justify our choice of 50 external cycle shifts as the
default number of CS recommended when estimating intensities of length < 1024
(see Section 6.5.1). For the purpose of our simulation study, we selected the

following intensities out of those considered in Section 6.5.2:
1. clipped blocks 1 — clipped blocks with scaling 1;
2. blocks 128 — blocks with maximum intensity 128;
3. bumps 128 — bumps with maximum intensity §;
4. doppler 8 — doppler with maximum intensity 8;
5. heavisine 128 — heavisine with maximum intensity 128.

For each intensity, we examined the MISE depending on the number of cycle shifts
(0-50), averaged over 10 simulated sample paths. This was done for both “short”
(length 128), and “long” (length 1024) intensity vectors. Clipped blocks 1 and
blocks 128 were estimated using F < CV and F < BT (components of the hybrid
H:CV+BT) with Haar wavelets, whereas bumps 8, doppler 8 and heavisine 128
were estimated using F > U with DaubLeAsymm10 wavelets.

Successive rows in Figure 6.14 are results for clipped blocks 1 with F<xCV,
clipped blocks 1 with F < BT, blocks 128 with F<xCV and blocks 128 with F
BT. The left-hand column shows results for length 128, and the right-hand column
— for length 1024.

Successive rows in Figure 6.15 show results for bumps 8, doppler 8 and heavisine
128. The meaning of columns is as above.

From the plots, it is evident that the MISE always stabilises after a small number
of cycle-shifts. For clipped blocks 1, blocks 128 and bumps 8, the MISE stabilises

after approximately 5 and 10 cycle-shifts (for short and long signals, respectively).
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For doppler 8 and heavisine 128, the respective numbers of cycle-shifts are approx-
imately 15 and 40.

Motivated by the above observation, we set the default value of the number
of cycle-shifts to 50, bearing in mind that this number may need to be slightly

increased in the case of extremely long (> 2048) signals.

6.6 Application to earthquake data

In this section, we analyse Northern Californian earthquake data, available
from http://quake.geo.berkeley.edu. We analyse the time series Ny, k =
1,...,1024, where Nj is the number of earthquakes of magnitude 3.0 or more
which occurred in the kth week, the last week under consideration being 29 Novem-
ber — 5 December 2000. The time series, imported into S-Plus, is plotted in Figure
6.16.

Our aim is to extract the intensity which underlies the realisation of this process.
For the purposes of this example we shall use the BMSMShrink methodology of
Kolaczyk (1999a) and our hybrid H:CV+BT method with Haar wavelets. The
rationale for using H:CV+BT is that:

e it appears that the true earthquake intensity is highly non-regular and
H:CV+BT with Haar wavelets worked the best on the blocks and clipped

blocks simulation examples from Section 6.5.2;

e the earthquake data exhibits medium to high intensities and H:CV+BT

was better than the other hybrids that we tried in this situation.

Figures 6.17 shows the intensity estimates obtained using BMSMShrink and
H:CV+BT plotted on a log scale. (Due to the large peak at 274 weeks the
original scale of 0-250 is not suitable for analysing the subtle differences between
the estimates.) Visually the estimates are very similar however the H:CV+BT

estimate is a little less variable. Although with this real data there is clearly
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Figure 6.14: MISE against the number of shifts for clipped blocks 1 (top two rows)
and blocks 128 (bottom two rows). See Section 6.5.3 for detailed description.
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Figure 6.15: MISE against the number of shifts for bumps 8, doppler 8 and heav-
isine 128. See Section 6.5.3 for detailed description.
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Figure 6.16: The number of earthquakes of magnitude > 3.0 which occurred in
Northern California in 1024 consecutive weeks, the last week being 29 Nov — 5 Dec
2000.

no right or wrong answer it is reassuring that they do give such similar visual re-
sults even though BMSMShrink and H:CV+BT are based on completely different

philosophies.

6.7 Conclusion

In this chapter, we have described a new wavelet-based technique for bringing vec-
tors of Poisson counts to normality with variance one. The technique, named the
Haar-Fisz transformation, was applied to estimating the intensity of an inhomo-
geneous Poisson process, yielding a method whose performance was nearly always
better than that of the current state-of-the-art.

For Poisson intensity estimation our methodology requires two components. The
first, the Haar-Fisz transform, is very simple and easy to code. The second com-
ponent can be any suitable Gaussian denoising procedure: we have used and com-

pared a variety of wavelet methods ranging from the fast universal thresholding to
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Figure 6.17: Intensity estimates for earthquake data for weeks 201 to 400. Dotted
line is BMSMShrink estimate and solid is H:CV+BT estimate.

more complicated techniques such as cross-validation, “Baraniuk trees” and em-
pirical Bayes. Since any Gaussian denoiser can be used, the Haar-Fisz algorithm
can only improve as the field develops.

If computational speed is not an issue, and little is known about the smoothness
of the true intensity, we recommend that several denoisers be used and a hybrid
averaging all of their results, with optional full cycle-spinning, be considered. How-
ever, if speed is important then there is an issue over which one denoiser should
be chosen: not all denoisers are appropriate for all types of intensity as our earlier
simulations confirmed. Our recommendation is that if one suspects the intensity is
piecewise constant then one should use Haar wavelets and a hybrid method such as
H:CV+4BT; otherwise, we strongly recommend the use of F<xU with a smooth
wavelet.

We believe that one of the reasons why the performance of the Haar-Fisz al-
gorithm is so good is due to the non-commutativity of the Haar-Fisz and shift
operators, which enables meaningful cycle spinning. Also, the Fisz transform it-
self is a more effective normaliser than Anscombe.

The S-Plus routines implementing the algorithm, as well as the data set, are

included on the associated CD.
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Chapter 7

Conclusions and future directions

In this thesis, we have considered some wavelet-based and wavelet-related ap-
proaches to selected problems arising in two important branches of statistics: time
series analysis and Poisson regression. In this chapter, we briefly summarise the
main contributions made in Chapters 3 — 6 and then move on to discuss possible
directions for future research.

In Chapter 3, we considered several theoretical and computational aspects of
forecasting Gaussian Locally Stationary Wavelet (LSW) processes by means of the
linear predictor. As direct MSPE minimisation would have required knowledge of
unidentifiable parameters, we proposed to compute the prediction coefficients by
approximate MSPE minimisation. We identified conditions under which the ap-
proximation was valid but found that one of the them was overly restrictive. We
circumvented that theoretical difficulty by introducing a slight modification to the
definition of an LSW process (the new class was labelled “LSW,"). The minimi-
sation of the MSPE led to the generalisation of the Yule-Walker equations: the
stability of the system was analysed. We also found that “sparse” LSWjy processes
were ill conditioned for forecasting. To conclude the theoretical part of the work,
we derived a generalisation of Kolmogorov’s formula for one-step MSPE in the
LSW, framework. In practice, the entries of the prediction matrix have to be esti-
mated, and we studied the behaviour of the first two moments of our (multiscale)

estimators. We then proposed a complete forecasting algorithm where the choice
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of the arising nuisance parameters was performed by adaptive forecasting. The al-
gorithm was successfully applied to the forecasting of a meteorological time series.
Our work in Chapter 3 provided an answer to the interesting question of whether
and how wavelets could be useful in forecasting non-stationary time series.

In the less technical Chapter 4, we attempted to model financial log-returns in
the Gaussian LSW framework. We first extended the LSW model to include the
time-modulated white noise (TMWN) as a special case (we labelled the new class
“LSW3”). Then, we used theory to show that the LSW3 model was able to pick up
the most commonly observed stylised facts of financial time series. We proposed
a generic automatic algorithm for estimating the time-varying wavelet spectrum
of log-returns with guaranteed nonnegativity, and used simulation to demonstrate
the excellent performance of its two particular implementations. An exploratory
data analysis of the FTSE 100 series showed that its second order structure was
changing over time, and that Haar wavelets were ideally suited for the modelling
of that series. Finally, we showed by simulation that financial log-returns could be
successfully forecast in the LSW3 model.

In Chapter 5, we proposed a fast multiscale method, called the Haar-Fisz trans-
form, for stabilising the variance of the wavelet periodogram (WP) in the Gaussian
LSW model and bringing its distribution closer to normality. To be able to analyse
the Haar-Fisz transform from a theoretical point of view, we stated and proved a
Functional Central Limit Theorem (FCLT) for the WP. We then formulated and
proved the Gaussianising, variance stabilising and decorrelating properties of the
transform in a certain asymptotic regime. We showed by simulation that the Haar-
Fisz transform is a far better Gaussianiser than the classical variance stabilising
log transform. We then proposed a denoising method for the WP, which consisted
of three basic steps: take the Haar-Fisz transform, denoise the transformed WP
using a method suitable for signals contaminated with stationary Gaussian noise,

and then take the inverse Haar-Fisz transform. We assessed the performance of
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the method using simulation and showed that it outperformed an existing com-
petitor in most of the cases. We concluded the chapter by using the Haar-Fisz
methodology to perform a local variance analysis of the Dow Jones index: the
analysis showed that the series could be modelled as Gaussian.

In Chapter 6, we introduced a Haar-Fisz transform for sequences of Poisson
counts, again with the aim of stabilising their variance as well as bringing their
distribution close to Gaussianity. We proved that if the underlying Poisson in-
tensity was constant, then the Haar-Fisz transformed vector was asymptotically
normal with variance one, and its elements were uncorrelated. We used simula-
tion to show that the Gaussianising, variance stabilising and decorrelating prop-
erties of the Haar-Fisz transform also held for time-varying intensities. Also, we
demonstrated that the Haar-Fisz transform was a more effective Gaussianiser and
variance stabiliser than the usual Anscombe square-root transform. Then, we pro-
posed a method for estimating Poisson intensities, based on the Haar-Fisz trans-
form. Our technique outperformed state-of-the-art competitors in most of the
cases; occasionally, its performance was slightly inferior but comparable. We ap-
plied our estimation technique to the well-known Northern California earthquake
data: visually, our method gave similar results to the current state of the art.

We conclude this thesis by considering a few possible avenues for further re-
search. The adaptive forecasting algorithm of Section 3.5 merits further investi-
gation: in particular, it would be interesting to examine the dependence of the
nuisance parameters on their initial values, to further robustify the algorithm, and
to investigate its theoretical properties (e.g. its asymptotic behaviour as T — 00).

Also, we suspect that by using the MSPE criterion in Chapter 3, we do not
fully exploit the potential of the LSW model in forecasting non-stationary time
series. Indeed, observe that the prediction matrix in Section 3.1 is similar to the
variance-covariance matrix of the process, which means that the wavelet spectrum
(the main quantity of interest in LSW modelling) is only used indirectly there,

through the local autocovariance. There arises a question of whether a tractable
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(multiscale) prediction criterion can be formulated which would make more direct
use of the wavelet spectrum.

As was shown in Section 3.2, sparse LSW processes are “ill conditioned” for
forecasting. It would be interesting to investigate whether a multiscale time series
model could be formulated whereby processes which are represented sparsely were,
in an appropriate sense, “good” for forecasting. As for financial time series mod-
elling (Chapter 4), the problem of volatility forecasting in the LSW model could
make an interesting research project, as could the issue of using “skewed” wavelets
and/or non-Gaussian innovations.

Furthermore, it remains to be investigated whether and how the Haar-Fisz trans-
form for the wavelet periodogram (a) can be extended to processes with a discon-
tinuous spectral structure; (b) can be used for testing for time series stationarity.
Also, it would be desirable to theoretically quantify the variance stabilising prop-
erty of the Haar-Fisz transform for M = log,(T') (see Section 5.5.2).

The problem of the choice of the primary resolution when the noise is correlated
is still an open question, badly neglected in the wavelet literature. Indeed, we are
unaware of any automatic method for performing this selection. It would clearly
make an exciting and potentially very rewarding research project.

Also, it would be of interest to establish a theoretical proof of the Gaussianising,
variance stabilising and decorrelating properties of the Haar-Fisz transform for
non-stationary Poisson signals. Finally, an exciting possibility for future research
would be to investigate how the Haar-Fisz transform can be used for Gaussianising
other distributions, not only x? or Poisson. Recall that in the x? case, we use the
Fisz transform with exponent 1, and in the Poisson case — with exponent 1/2. In
the case of other distributions, we could attempt to estimate the suitable exponent,

or indeed a suitable function of the Haar smooth coefficient, from the data.
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