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Abstract rakacs ef a) 2Z013. In the context of axis-aligned ensem-
ble learning, rotations — and random projections, which
To overcome the inherent limitations of axis-aligned basen be decomposed into a random rotation and an axis-
learners in ensemble learning, several methods of rotaligned projection — can make the difference between a
ing the feature space have been discussed in the literatbighly successful classifier and an average classifier (e.g.
In particular, smoother decision boundaries can often berranf and KabarP0T3.
obtained from axis-aligned ensembles by rotating the feaRadrigiiez ef al(Z00# introduced rotation forests af-
ture space. In the present paper, we introduce a low-cestdemonstrating that repeated PCA-rotations of random
regularization technique that favors rotations which preubsets of the feature space significantly improved classi-
duce compact base learners. The restated problem &itdgion performance of random fores&réiman 1999
a shrinkage term to the loss function that explicitly a@nd other tree ensembleBlaser and Fryziewic£20716)
counts for the complexity of the base learners. For exaghowed that rotation forests can be outperformed using
ple, for tree-based ensembles, we apply a penalty basadtructured random rotations of the feature space prior
on the median number of nodes and the median deptht®fnducing the base learners. While random rotations are
the trees in the forest. Rather than jointly minimizing pretsed with classifiers designed for high-dimensional set-
diction error and model complexity, which is computaings,Cannings and Samwor(d01]) presented a random
tionally infeasible, we first generate a prioritized weighprojection ensemble, in which the high-dimensional fea-
ing of the available feature rotations that promotes loweire space is first projected into a lower-dimensional space
model complexity and subsequently minimize predictidsefore applying a classifier designed for low-dimensional
errors on each of the selected rotations. We show that #egtings.
resulting ensembles tend to be significantly more denseAn important insight from the latter two papers is that
faster to evaluate, and competitive at generalizing in ottre vast majority of rotations are unhelpful in improving

of-sample predictions. out-of-sample classifier performance. Instead, most of the
Keywords: random rotation, regularization, ensembienefit of these ensembles is derived from a small num-
learning, minimal complexity ber of rotations that are particularly well-suited for the

specific classification problem.
In the present paper we investigate the efficacy of ro-

1 Introduction tations more closely and attempt to answer the question

of how we can identify or construct rotations that explic-
Feature rotations are ubiquitous in modern machine leaitty improve classifier performance. We hypothesise that
ing algorithms — from structured rotations, such as PCthe most beneficial rotations are those that align signifi-
to random rotations and projections. For example, é@ant segments of the decision boundary with one of the
computer vision, local image rotations are routinely usedes and thus result in simpler and more compact base
to obtain high-quality rotation-invariant features (e.dearners: we call itotation to simplicity We also believe



the converse to be true: those rotations that produce léss, L(y;, f (X)), that is

complex base learners positively impact ensemble perfor- N

mance. Supporting evidence for this assertion is provided Qm=arg minZ\ L(Yi, T (%;Qm))- (3)
in SectiorB. Om &

The remainder of the paper is organized as follows: should be noted that the general tree-induction opti-
Sectionl, we introduce the basic ensemble notation, @fization problem in equatiorB) is NP-complete Hyafil
well as an extended loss function which takes into consghd Rivest T976 even for two-class problems in low
eration the complexity of the base learners. This is similgimensions Goodrich_ef al. T99% and an axis-aligned,
to loss functions in linear regression that include penaltigfeedy tree induction algorithm such as CARBr&iman
on the regression coefficients. In Sectime introduce a gt al, 1989 is typically used to find a reasonable approx-
low-cost regularization technique, which explicitly favorgnation.
rotations that are expected to produce simple base learnat this point we depart from the standard tree ensemble
ers. Sectioril takes a step back and illustrates why cegetting in two aspects: (1) we add a penddtio the loss

tain rotations are better than others for axis-aligned leafanction and (2) we add rotatiorR to the input data.
ers and how these rotations differ from analytic methodsence, the loss function gets modified to

such as PCA. Next, we present performance results on a

sample of well-known UCI data sets in Sectfand con- Ly, F06) =V i, F(Ra(X))) +P(Ra(X)),  (4)
clude with our final thoughts. accuracy complexity

where the regularisation terR{(-) penalises rotations that
lead to more complex base learnevgy;, f(x)) is a typ-

ical loss function — such as square-, hinge-, or logistic
loss — which does not take model complexity into account
'fgee e.glames ef 3|20T3. Minimizing this combined

2 Motivation

A decision tree divides the predictor space into disjoi

regionsG;, where 1< j < J, with J denoting the total .o ,1ction resembles constrained regression problems,
number of leaf nodes of the tree. Borrowing the notatiQl, - as Ridge- or Lasso-regressiomdghirani T99%)
from Hasfie et al (2009, the binary decision tree is "®Phut instead of constraining coefficie”rrlit’s:Wéﬂécﬁ\}eily,reg—
resented as ularize the base learners. Lastly, the subsdrigenotes
J the specific rotation; we typically grow multiple trees per
T(xQ)= z cjl(xeGj), (1) rotation, depending on the efficacy of the rotation: this is
=1 described in detail in Sectidh
o ) With the addition of the regularisation term, we have
whereQ = {Gj, ¢; }] are the optimisation- or tuning-paramade the problem even more challenging to solve. Since
meters and(-) is an indicator function. Inputs are yee induction was already NP-complete to begin with,
mapped to a constanf, depending on which regioB; e discuss an algorithm in the following section which
they are assigned to. A tree ensemble consisting of d@ictly separates the weighting of favorable rotations that

trees can then be written as reduce model complexity from the tree induction opti-
M mization, which improves accuracy. Using this approach,

Em(X) = Z T(x; Qm). (2) we implicitly assume that simpler models do not lead to
m=1 lower prediction accuracy, a hypothesis we show to be

) : empirically valid in Sectior.
In this paper, we assume that trees are grown indepen-

dently and that no co-dependence exists between the tun-

ing parameters of different trees. This restriction impli3 Regularization

itly excludes boosted tree ensemblesi€dmai 2007).

Our goal is then to optimise the tuning paramef@gsfor In this section, we introduce our proposed algorithm for
each tree in such a way as to minimise a given loss funenerating an ensemble that optimizes the use of available



rotations. data points and the number of leaf nodes in the tree. It
Given a set ofR feature rotations, we would like tois clear that 1> depthyN and, consequently, thatepth
build an ensemble consisting bf base learners. In ordemerely acts as a tie-breaker for trees of equal size. We
to accomplish this, the algorithm first builds tiny microfurther discuss tree complexity in Sectidil. Up to this
forests ofU unconstrained trees on each rotation, a lowtep, only model complexity was used to quantify rota-
cost operation becautk< M andU < M/R. Based on tions; this corresponds to the right-most section of for-
the statistical properties of these micro-forests, the full emula @).
semble is constructed. Here we present the generic algofhe sorting procedure in line 7 of Algorithfirarranges
rithm; in SectiorB we demonstrate several ways of levethe rotations into ascending order of complexityAt this
aging the available statistics. For tree-based ensembjgsint, there are several ways of using this information. In
the trees in the micro-forests can frequently be reused $aiction3-1 we apply a parametric, non-increasing family
the full ensemble, further reducing the amortized cost of curves with a tuning parameteand use the out-of-bag
building the micro-forests. (OOB) errors of the micro-forests to determine the opti-
Algorithm @ describes the regularized rotation procenal parameter in a grid search. However, as we will show
dure in detail. The integer inputs denote the desired toitalSectionB, it is also possible to use the ranking on its
number of treed/ in the complete ensemble, the numbeaswn, without combining it with predictive performance.
of available (or generated) rotatioRsand the number of The key point here is that whatever procedure we use, it
treesU created for each micro-forest. will determine the number of base learners that need to be
In line 2 of Algorithm [, the available rotations arecreated for each rotation. This is accomplished in line 9
stored in an array namedtations It is important to in- of Algorithm .
clude the identity rotation here to make sure the procedureShould additional trees (beyond tealready available
returns high-quality results when the problem is alreathees on each rotation) be needed, these are generated and
optimally rotated to begin with. If too few rotations aredded to the rotation in line 10. Typically, these need to
available, the procedure can generate random rotationpéadded to the most favorable rotations.
addition to the identity rotatiord&nderson et a) T987). Finally, the equal-weighted ensemble is constructed
In lines 4-5, an unconstrained, unpruned micro-foregdm the trees on the different rotations. It is important
consisting ol trees is grown. The recommended defau note that while the individual trees are equal-weighted
value ofU is of the order of 10-20 trees. The purposg the ensemble, more trees are used from favorable rota-
of these trees is merely to obtain a reliable estimate tfigns and hence the rotations are not equal-weighted. Also
the median complexity of a representative tree that wilbte thaty R ; rotations[].numtrees= M.
be grown on the particular rotation, with minimal inter-
ference from outliers. s .
Our main proposal in this paper is to apply a complexi-1  Weighting of rotations

measure for base learners and use it to rank the obtaiped,, anorderedsequence oR rotations ¢ — 1 for the
rotations from the best one which corresponds to the leggle; tayorable rotation and= R for the least attractive
complex leamers to the worst one that corresponds 10 figyion) and a specified total number of base learhers
most complex learners. In the case of tree ensembles,Weho ensemble. we need to determine how many base
suggest a complexity measutg-) whereby trees With @ gamers to train on each rotation. This corresponds to line

smaller number of nodes (size) are considered less Ci; Agorithmi above. We now discuss the details of this
plex and, among trees with the same number of nOdﬁﬁvcedure.

more shallow trees (depth) are considered less complexAny sensible (percentage) weighting scheme will have
that is the following three properties:
C(T (%, Qm)) = #nodest depth/N, (5)
where #hodes= 2J—1 anddepth< J for binary deci-
sion trees, both depending @y,. N is the number of 2. w(r) >w(r+1)

1. w(r) >0,vr



Algorithm 1 Regularized Rotation Ensemble (Pseudocode)

1: procedure REG_ROT(M,R,U) > M: ensemble sizeR: #rotationsU: trees pei-forest
rotations— obtain_rotationgg)

3 for i — 1toRdo

4 rotations[].forest« create_unconstrainegd-forestU)

5 rotations[].complexity < compute_complexity(rotationifforest)
6: end for
7

8

9

sort(rotations, complexity)
fori<— 1toRdo
: rotations[].numtrees— compute_numtreel|, rotations)
10: rotations[].forest<— add_trees(rotationg[forest, max(rotations.numtrees U, 0))
11 end for
12: for i — 1toRdo

13: for j — 1 to rotationsi].numtreesdo
14 ensemble.forest- extend_forest(ensemble.forest, rotatiojfgrest[j])
15: end for

16: end for
17: return ensemble
18: end procedure

3. 3R win=1 that the sum of the weights is 1, as expected. For the

. I second case, we use the following family of exponential

We consider two weighting schemes that meet these %rE'rveS' g y P
teria: ' 2-1/h(21/h 1)

(1— 2R/

whereR s the total number of rotations ahds a positive,

real tuning parameter. In both casess the sorted (inte-

¢ Use an exponential family of curves with decay pa@er) rotation number, as described above. In both cases,
rameterh to determine the percentage of base learsmall values oh result in large weights for the top rota-
ers that should be trained on each rotation. tions and small (or zero) weights for less favorable rota-

, , ) tions. By contrast, largé eventually lead to the equal-
The first scheme corresponds to selectingtthetations weighting of rotations.

that are expected to produce the lowest complexity bas?—igureﬂl compares the two weighting schemes. A sim-

learners and equal-weight the trees on these rotations. -Ip-réemethod for obtaining a good tuning parametés to
second scheme includ_es the possibility of including- tre88e the OOB error estimates of the micro-forests on each
on more different rotations bu.t at much smaller We'ghthtation and compute the sum product of these errors with
!n both casesh acts as a tuning parameter that can t%d the weight vectors using different valuesef effec-
mferrgd frqm the datq via a simple grid segrch, the detaﬂ ely a grid search. Since the rotations are in complexity-
of which \.N'” be descrlbed_ at t_he end of this section. - g, ta4 order and because the weighting schemes are non-
In the first case, the weighting follows the formula increasing, the resulting weighting will differ significantly
Wewt(R ;1) = 1(r < h)/h, (6) from a weigh_ting based solely on _OO_B predictive accu-
racy. In SectiorB we show that weightings based solely
whereh is an integer tuning parameter[th R], represent- on OOB predictive accuracy produce base learners that
ing a cut-off value andl(-) is the indicator function. Note are more complex on average, without a corresponding

Wexp(R h;r) = (7)

e Select the firsh rotations from the ordered list and
generate a fraction of exactly(r) = 1/h of the re-
quiredM base learners on each of these rotations;
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Figure 1: Two parametric families of weight functions: top-h (left) and exponential (right).

out-of-sample performance gain. It should also be notedgle to one of the axes.

that in line 9 of Algorithmil, the weights are multiplied A natural strategy to overcome this predicament is to
with the ensemble sizH and need to be rounded 10 iNyoiate the space by 45-degrees, such that the decision
teger values, since we cannot grow partial trees. In th§ndary becomes axis-aligned. After the rotation, only
process, itis possible due to rounding that the sum of thejngle hyperplane is necessary to represent the very seg-
computed number of trees does not add uN BNYMore. nent that required many steps prior to rotation. Unfor-
If this is the case, we automatically add any missing tregately, while rotating the feature space might improve
to thg top rotation or analogpusly subtract additional tregs,ssification locally, it may actually have a negative ef-
starting from the worst rotation. fect overall, as other segments of the decision boundary
might have been well-aligned with the axes prior to ro-
tation but are now poorly-aligned after rotation. For this
reason, rotations need to be examined globally and jointly.

The goal of this section is to provide an intuitive under- 10 better illustrate the argument, we artificially con-
standing of which rotations are useful in the context §ffuct the 2-dimensional, two-class classification prob-
axis-aligned learners. The discussion applies to highms depicted in Figur@. For simplicity of the argument,
dimensional problems but s illustrated in two dimension@0 Class overlap is created but the conclusion will be unaf-
One visual indication betraying axis-aligned learner&ctéd. The problem on the left-hand side (a) corresponds
such as decision tree ensembles, is their rugged (--Sttaqr_the situation where the deC|S|0_n boundary is at a 45-
shaped") decision boundary. When a segment of the tf9"€€ angle to both axes. For this problem, we expect a
decision boundary is not axis-aligned, such learners &rzdegree (or equivalent) rotation to be optimal.
forced to approximate the local boundary using a numberor the middle problem (b), the decision boundary is
of smaller steps. The greatest number of such stepdlas and axis-aligned but there is a small segment that pro-
required when the true boundary occurs at a 45-degtagles at a 45-degree angle to the axes. A zero-degree ro-

4 Discussion



putational burden of actually generating and running the
full forest. In addition, once we apply Metri8) to all
generated rotations, we are in a position to obtain a rank-
: : ; ing of the relative usefulness of each rotation.
o woe o In order to compute a reliable and consistent (across
rotations) estimate of the proposed metric, we generate
Figure 2: Three illustrative classification problems with micro-forest for each rotation. It is necessary to cre-
known decision boundaries: (g)=x, (b)y= ate multiple trees to counteract the randomness that is in-
0.5+max(x—0.75), (c)y=0.5+max(x—0.5) jected inthe tree-induction process. For each micro-forest
we then compute the median number of nodes used. We
use the median in order to actively ignore trees that are
tation (or equivalent) seems ideal for the longer segmetificially inflated by poor (random) variable selections.
but a 45-degree rotation appears preferable for the smaitese operations are computationally efficient when com-
segment. Note that since we are running an ensemblgyafed to generating a full-blown tree ensemble for each
trees, it would be perfectly acceptable to combine one festation and can generate a stable estimate of the true me-
est trained without rotation with another (perhaps smallgian. Based on our experiments, the complexity rankings
or down-weighted) forest on the rotated space. The quesmputed on the basis a 10-20-tree forest is very similar
tion is: which approach produces a better-performing e-the complexity ranking computed on the basis of a full
semble? forest. Hence, the metric is highly predictive and useful.

In the final classification problem on the right-hand
side (c), the portion of the decision boundary at a 49;2
degree angle is slightly longer than the axis-aligned sec-
tion. Here, rotation is likely preferred again. But is iTo demonstrate the usefulness of the proposed metric,
better to rotate by 45-degrees to aid classification near e have generated 100 random rotations for each of the
longer segment or perhaps just by 20-degrees, in suctive dimensional classification problems listed in Figure
way that the maximum slope of the decision bounda®yabove. Figure§, B andB illustrate cases (a), (b) and
is reduced at the expense of constructing a problem t(@); respectively, ranked by tree complexity. Note that
is completely unaligned to any axis? In order to answetfe sorting is entirely based on the tree complexity and,
these questions, we need to define a metric to quantify theportantly, does not make use of the predictive perfor-

x2

lllustration

value-add provided by a given rotation. mance of these trees. Despite this, it is interesting to see
that the sort reflects our intuition: in Figur@and @,
4.1 Tree Complexity those rotations for which one of the feature boundaries is

aligned with one of the axis achieve the best scores, while

The number of steps required — and hence the averdiggonal boundaries achieve the worst scores. This al-
number of nodes required to form a decision tree — genkws us to find useful rotations without resorting to struc-
ally increases as the boundary becomes less aligned witlied rotations (such as PCA) commonly used in other
the axis. This is because the tree construction is doneapproaches.
cursively and a new level of the tree is built whenever the However, if all of the top rotations were chosen solely
local granularity of the tree is insufficient to fully captur@n the basis of the largest segment of the decision bound-
the details of the local decision boundary. ary that is axis-aligned, important secondary segments

For this reason, we propose to use the expected medigight get neglected, ultimately leading to a worse overall
size of a decision tree as our metric of utility for a giveprediction. Figur&d demonstrates that this is not the case.
rotation. Rotations that result in smaller, shallower tre&sthis case, the best five rotations again aligned the longer
on average are considered better rotations. Not only desegment to one of the axis, as expected. However, the 6th
the metric in FormulaK) assist in creating streamlinedotation aligned the shorter segment to the y-axis. This
trees with fewer spurious splits, it also reduces the coitiustrates the point that it may be useful to include multi-
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Figure 3: Rotations of classification problem (a) in Figlreorted by expected tree height, as described in the text.
Top left is the best rotation, bottom right represents the worst rotation. The small number on the top right of
each image is the unique rotation number.



ple rotations in an ensemble, since different rotations calignment of the decision boundary with one of the axes
specialize on specific sub-features or decision bound@gtill very consistent for the best rotation.
segments. These results are intuitive and demonstrate th@ contrast, Figuré shows that the worst ranked ro-
usefulness of the tree-based ranking. What is also strik@agions are not aligned with any axis, regardless of the
is that the best rotations do not at all resemble a PCA dimensionality of the problem and that there is a consid-
tation. This is because the rotation is optimized for aligerable overlap in the two classes at the decision bound-
ment of the decision boundary with the tree rather than fary, making it extremely difficult to produce a successful
the variance of the covariates. This is what sets randefassifier. These examples very clearly show the value of
rotations apart from rotation forests. finding high-quality rotations.

Up to this point, we examined some very simple two-
dimensional toy problems with high signal-to-noise ra-
tios (SNRs). In each case, both dimensions were higlly Performance
informative and contained minimal noise. This setup is

ideal for illustrating the method but is not representatiyg order to test our hypothesis that it is possible to rotate to
of most real-world challenges. Therefore, an 'mportaﬁhplicity without a corresponding performance penalty,

question is how the method performs when we increagg implemented the following weighting schemes:
the dimensionality or decrease the SNR. To answer this

guestion, we start again with the triangular base sha&g)
(a) but incrementally add uniform noise dimensions to th
problem before applying the proposed method. In this set-
ting, it is more difficult to visualize the results but we Canp) CUT: Same number of trees on the topstations in
still demonstrate alignment of the decision boundary with * o ms of complexity If is chosen using grid search
one of the axes by projecting the rotated problem onto the 5, ooB performance per secti&l).
two-dimensional planes formed by the axes — the coordi-

nate surfaces — before plotting. Itis important to note thak) Exp: Exponential weighting with half-lifa in terms
these aralifferent projections of the same rotatiaather of complexity f1is chosen using grid search on OOB
than different rotations. performance per sectidl).

Figure B demonstrates that the proposed approach is
still successful in hlgher dimensions and with |OWEI(d) BST: All N trees on the lowest Comp|exity (best) ro-
signal-to-noise ratios. In these figures, each row repre- tation (equivalent to CUT with = 1.
sents an exhaustive list of projections onto the coordi-
nate surfaces for a single rotation ndimensions. The (e) NEW: Same number of trees on all rotations that are
first two dimensions are always the signal dimensions, ranked higher than or equal to the identity rotation.
while the remainingp — 2 dimensions are random noise
dimensions. For example, in the second row of Fidiire (f) LIN: linearly decreasing number of treek:on low-
we started with the two original signal dimensions plus  est complexity rotatiork— 1 on second lowest, ...1
one random noise dimensiop & 3). We then gener- on highest complexity.
ated 100 rotations and selected the one rotation that was
ranked best according to the metric described in Sectigg) OOB: linearly decreasing number of tre&sn low-
B. The row shows the three two-dimensional projections est OOB error rotatiork — 1 on second lowest, ...1
of this best ranked rotation onto the (x,y), (x,z) and (z,y) on highest OOB error.
planes, respectively. It is very apparent that the best rota-
tion aligns the decision boundary with the third axis (théh) JNT: linearly decreasing number of tre&son low-

RRE: Random rotation ensemble, same number of
trees on each rotatiod /R.

z-coordinate) in this case. est joint ranking of complexity and OOB error, ...1
Even when the number of noise dimensions exceeds the on highest joint ranking rotation: rank(rank(OOB er-
number of signal dimensions, as is the casefer5, the ror) + rank(complexity)).



Top-20 Rotations

Figure 4: Rotations of classification problem (b) in Figldresorted by expected tree height, as described in the text.
The top panel shows the twenty best ranked rotations from top left to bottom right, the bottom panel repre-
sents the twenty worst ranked rotations from bottom right to top left. The small number on the top right of
each image is the unique rotation number.

Top-20 Rotations
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Figure 5: Rotations of classification problem (c) in Figirsorted by expected tree height, as described in the text. the
top panel shows the twenty best ranked rotations from top left to bottom right, the bottom panel represents
the worst ranked rotations from bottom right to top left. The small number on the top right of each image is
the unique rotation number.
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Figure 6:

Projections of BEST rotation onto 2-dimensional coordinate surfaces
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Alignment of the decision boundary of thestranked rotation irp dimensions with each axis. mdimen-

sions, there are exactly(p— 1)/2 coordinate surfaces, meaning two-dimensional planes formed hy the
coordinate axes. In this figure, each row depicts the projections of the best rotapiciniensions onto all
available coordinate surfaces. The numbers on the top right of each sub-figure indicate the two axes used to
form the specific coordinate surface. fpe 2, the signal-to-noise ratio (SNR) is high because only the two
signal dimensions were used. For- 2 a total ofp— 2 noise dimensions were added, decreasing the SNR
accordingly. Highlighted projections indicate strong alignment with one of the axes.
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p=2

p=5

Figure 7:

Projections of WORST rotation onto 2-dimensional coordinate surfaces
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Alignment of the decision boundary of therst ranked rotation inp dimensions with each axis. Ip
dimensions, there are exactyp — 1)/2 coordinate surfaces, meaning two-dimensional planes formed by
the p coordinate axes. In this figure, each row depicts the projections of the worst rotapatirmensions

onto all available coordinate surfaces. The numbers on the top right of each sub-figure indicate the two axes
used to form the specific coordinate surface. per 2, the signal-to-noise ratio (SNR) is high because only

the two signal dimensions were used. fpor 2 a total ofp— 2 noise dimensions were added, decreasing

the SNR accordingly. No alignment is apparent with any of the axes for the worst ranked rotation.
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For comparison, we also tested a standard Linear Discrim- Table 1: Description of UCI Datasets
inante Analysis (LDA), as well as three non-linear classi-

fiers: a simple K-Nearest Neighbor classifier (KNN-5), a UCIName Dim(p) RowgN)

Support Vector Machine (SVM), and a Gaussian Process

classifier (GPR). We have applied the competing meth- E(R:’(E)ﬁST 15? 3?3?69
ods (GPs and SVMs) in a black-box manner with default GLASS 10 214
parameters available from publicly available software im- IONO 34 351
plementations. Hence, their performance is not indica- RIS 4 150
tive of the performance that would be achieved if these LIVER 7 345
methods were applied knowledgeably, with state-of-the- WINE 13 178
art model parameter tuning and consistency checks of the WAVE 21 5000

model’s assumptions.

For KNN, we used the R implementation in thiass
package with k=5 and for LDA the implementation in
MASS For the SVM, we used the R implementation in th€rm in terms of predictive accuracy but with high com-
el071package with default parameters, that is we usBtexity ensembles. We would also expect BST to pro-
type C-classification with a radial basis function (RBFJuce the lowest complexity ensemble but at the cost of
kernel and a default gamma of 1/N, which was adjustédver predictive performance. In terms of methodology,
to reflect the number of data dimensions and added nog first generated 100 random rotations, including one
dimensionS' where app|icab|e_ The cost parameter mntlty rotation. These same rotations were then used
C-parameter in SVM parlance) was set to 1.0. For th¥ all weighting schemes before the entire process was
GPR, we used the R implementation gausspr irkdre- repeated. In each case, we generated an ensemble with
lab package_ Here we too used the prob|em type C|a5<§(actlyM = 5000 trees in total. The dimensionality and
fication with a RBF kernel (rbfdot) and took advantagaumber of data points for each data set is listed in table
of the built-in automatic sigma estimation (sigest). W& The lowest-dimensional problem with 4 predictors is
did not attempt to manually- or otherwise tune the metdIS and the highest-dimensional problem with 34 pre-
parameters of these methods, unless a built-in auto-tunfigfors is IONO. For space reasons, we refer the reader to
feature was available, just like we did not tune any parafdheeriiand Taniskido(POT]) for a detailed description
eters in the proposed tree-based methods with the exc@pghe UCI data sets we used for testing. Before running
tion of the rotation selection that is the subject of this p#2€e classification algorithms, we scaled all numeric pre-
per. The overarching goal was to compare methods wéti§tors to[0, 1.
sensible default parameters across a number of probleriiablel shows the names of the data sets, together with
sets in order to determine how to best make use of rothe classification error resulting from applying the differ-
tions with axis-parallel learners. ent weighting schemes to the rotations. Interestingly, al-

The test procedure generated a random subset of 7@8tithm OOB did not perform quite as well as we had
of the data for training purposes and all classifiers wesaticipated. For three of the data sets, the scheme per-
tested on the remaining 30% of the data. This procdesmed more than one cross-sectional standard deviation
was repeated 100 times and averages are reported. above (worse than) the minimum error. In fact, this ap-

With the exception of the identity rotation, all rotationpears to be a common pattern among these methods, ex-
were generated uniformly at random from the Haar disept for CUT and EXP described in SectiBdl, which
tribution. As our base case RRE, we implemented a raare competitive on most of these data sets. One inter-
dom rotation ensemble, which does not differentiate besting exception was the IRIS data set, for which LDA
tween rotations. The only other weighting scheme thatitperformed all variants of the rotation-based ensembles
does not consider tree complexity at all is OOB, whicind indeed all non-linear classifiers. This is an example
only takes advantage of OOB errors across the differa@ftwhere the proposed method does not work as well as
rotations. Our expectation would be for OOB to outpeexpected.
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Table 2: Classification error on test data (lower is better). Each rotation weighting method RRE, CUT, EXP, BST,
NEW, LIN, OOB, JNT, as described in the text, was applied to the data sets listed under UCI Name.
Strikethrough represents a performance number that was more than one cross-sectional standard deviations
above (worse than) the minimum.

UCIName LDA SVM GPR KNN-5 RRE CuT EXP BST NEW LIN OOB JNT

BREAST  0:0472 00386 00407 00410 0.0347 0.0348 0.0349 0.0354 0.0348 0.0349 0.0345 0.0347
ECOLI 0.1209 0.1265 0643065 ©O4365 0.1217 0.1233 0.1251 03445 063448 0.1208 0.1212 0.1207

GLASS 03805 03157 03213 03587 063001 0.2729 0.2400 0.2395 0.23780-2947 02994 03001
IONO 04381 0.0609 04317 64587 0.0514 0.0535 0.0544 0.0704 0.0706 0.0519 0.0510 0.0512
IRIS 0.0240 00407 00502 00416 00467 00451 00453 0:0456 00460 00467 0:0462 00464
LIVER 03318 0.3064 0.3162 03981 0.3116 0.3050 0.3135 0.3191 0.3089 0.3097 0.3079 0.3099
WAVE 0.1423 0.1383 0.1320 63815 0.1352 0.1380 0.1422 0.1435 0.1432 0.1352 0.1350 0.1351
WINE 0.0161 0.0206 0.0180 00433 060250 0.0176 0.0165 0.0172 0.0150 0.02220-6224 00232

In TableB we can confirm that BST really does properform ordinary random forests. This is because such a
duce the most compact ensembles. However, unfortetup renders most rotations unhelpful. By overweight-
nately performance suffers accordingly. A good comprig the most successful rotations, as we propose in this
mise is EXP, which shows significant reductions in conpaper, this effect is somewhat mitigated but not entirely
plexity without suffering from performance problems. eliminated.

For the IRIS data set, EXP resulted in an ensembleEven in the illustrations in Figur® it is clear that

that_outpe.rfo.rmed RRE despnea24.4_% decreasc_a N Cofk quality of the most successful rotations decreases
plexity. Similarly, a 17.5% decrease in complexity W"’W]arginally as the number of noise dimensions is in-

ach|ev?d n thle ZGIE:;\SdS data se.t. The Simgllest 'mprg\/@réased. The alignment with the axes are not perfect and
mher:'é)?\l (r)n Sre ye. f° eﬁrer?sReRIE compIT:xny OCC;”E noise around the decision boundaries increases visi-
the ata set, for whic actually outperform y. Nonetheless, the rotated features lead to better (axis-

EXP, although notin a statistically significant manner. ;o4 classifiers than the those trained on the unrotated
Tablesd andB show the performance of a set of bas‘“s‘pace.

line classifiers (SVM, GPR, KNN-5) and the various ro-

tation variants after adding noise dimensions to the datal he underlying issue is that rotations in the direction of
sets IRIS and IONO. It is evident that the performance Bpinformative noise dimensions do not improve predic-
the rotation-based classifiers deteriorates relative to otHeps and when the number of noise dimensions is large
classifiers as the signal-to-noise ratio decreases. This [glative to the signal dimensions, the likelihood of rotat-
known limitation of the method, further described in thi&d in uninformative directions increases. Note that the
following chapter. At the same time, it can be observé&@me is not necessarily true when the SNR is decreased
that LDA performance is very problem dependent, whilithout increasing the dimensionality of the problem. In

KNN and SVM classifiers actually became more compéhis case, random rotations and the ideas in this pdper
itive in a relative sense with decreasing SNR. not underperform ordinary random forests in our experi-

ence.

L One important consideration when introducing rota-
6 Limitations tions into a classifier is that features need to be of com-
parable scale. We do not explicitly mention this in this
It was empirically demonstrated [homifa_ef al.(?017 paper but a section on recommended scaling mechanisms
that in situations where the signal is contained in a sutan be found ilBlaserand Fryzlewicg2016. We do not
space that is small relative to the dimensionality of thecommend using any rotation-based ensembles without
feature space, random rotation ensembles tend to ungeior scaling or ranking for practical problems.
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Table 3: Tree complexity on test data (lower is better, only relevant for tree-based classifiers). Each rotation weighting
method RRE, CUT, EXP, BST, NEW, LIN, OOB, JNT, as described in the text, was applied to the data sets

listed under UCI Name. Strikethrough represents a complexity number that was more than one cross-sectional
standard deviations above (worse than) the minimum.

UCI Name RRE CuT EXP BST NEW LIN ooB INT
BREAST 54-69 52.08 51.68 51.11 52.94 53.66 5442 54-63
ECOLI 76:82 67 69.08 4452 4456 7523 76-68 +6-59
GLASS 8168 73.69 67.42 66.93 66.95 80:84 8114 8139
IONO 6158 60.24 60.02 57.58 58.20 6116 6351 6160
IRIS 2098 16.52 15.86 15.36 18.67 19.44 2030 20:98
LIVER 11548 112.14 111.18 110.84 114.06 13464 11494 11551
WAVE 136876 133253 1310.13 1303.26 1303.29 135999 136558 136830
WINE 3621 32.52 31.02 30.88 31.21 3542 3542 36-15

Table 4: Classification error on test data (lower is better). Each rotation weighting method and control classifier was
applied to the UCI data set IRIS. The first (NOISE) column indicates the number of noise dimensions added
to the original data set, from which an upper bound to the signal-to-noise ratio can be estimated as SNR (dB)

< 10 x log(4/NOISE) by assuming that the original data set is noise free. In the table, SNR represents this
upper bound.

NOISE SNR LDA SVM GPR KNN-5 RRE CuT EXP BST NEW LIN OOB JNT

1 6.02 0.0258 0.0578 0.0658 0.0507 0.0516 0.0489 0.0516 0.0560 0.0524 0.0507 0.0524 0.0516
2 3.01 0.0258 0.0533 0.0898 0.0480 0.0569 0.0551 0.0551 0.0587 0.0613 0.0569 0.0604 0.0578
4 0.00 0.0240 0.0827 0.1164 0.0871 0.0853 0.0693 0.0631 0.0640 0.0640 0.0853 0.0889 0.0853
8 -3.01 0.0267 0.1591 0.1680 0.1467 0.1316 0.1093 0.0960 0.0996 0.1013 0.1333 0.1289 0.1289
16 -6.02 0.0533 0.1591 0.1822 0.1200 0.1458 0.1396 0.1511 0.1671 0.1440 0.1440 0.1449 0.1422
32 -9.03 0.0569 0.1618 0.1724 0.1458 0.1591 0.1636 0.1733 0.1724 0.1618 0.1609 0.1644 0.1671
64 -12.04 0.1280 0.2222 0.2516 0.2249 0.2124 0.2116 0.2204 0.2364 0.2151 0.2151 0.2116 0.2133
128 -15.05 0.1618 0.2951 0.3484 0.2596 0.2640 0.2676 0.2684 0.2898 0.2729 0.2658 0.22%I6

7 Computational Considerations rotations to end up wittM trees in total within the se-
lected rotations. Expressed as a percentage, we know that
When compared to random rotation ensembles, therdRs=1) xU/(M —rxU +RxU) percent of the initially
an additional computational cost for regularizing the efOnstructed trees get subsequently discarded, resulting in
semble. Given the desired total number of tréesthe COMputational overhead when compared to random rota-
algorithm requires the generation of micro-forests of sif#@n ensembles, where all trees are used.
U for each of theR rotations. These micro-forests are €s- | order to obtain a bound on this expression, note that
sential for estimating the relative efficacy of each rotatiop. |y <= M. This is because it is not practical to gener-

However, depending on the weighting scheme employgge more trees in the micro-forests than are needed in total.
only a subset of the rotations is actually included in thgence, in the worst cag®—r)/(2R—r) percent of the
final model. initially constructed trees get subsequently discarded, a
More specifically, in the initial step) x R trees are quantity that is smaller than/2 because is in [1,R] and

constructed. However, if the weighting scheme only ifRis in [1,M]. This expression is maximized when only the
volves the topr rotations, thenfR—r) x U trees subse- best rotation is selected = 1) and minimized when all
quently get discarded. This, in turn, implies tivdt-r x rotations are selectdd = R). Therefore, in terms of com-

U additional trees need to be induced within theelected putational overhead, the worst case is that nearly twice as
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Table 5: Classification error on test data (lower is better). Each rotation weighting method and control classifier was

applied to the UCI data set IONO. The first (NOISE) column indicates the number of noise dimensions added
to the original data set, from which an upper bound to the signal-to-noise ratio can be estimated as SNR (dB)
< 10 x log(34/NOISE) by assuming that the original data set is noise free. In the table, SNR represents this
upper bound.

NOISE SNR LDA SVM GPR KNN-5 RRE CuT EXP BST NEW LIN OOB JNT
1 1531 0.1479 0.0675 0.1423 0.1725 0.0600 0.0604 0.0600 0.0721 0.0706 0.0596 0.0592 0.0592
2 1230 0.1234 0.0551 0.1294 0.1509 0.0521 0.0558 0.0589 0.0702 0.0691 0.0528 0.0521 0.0517
4 9.29 0.1577 0.0725 0.1464 0.1675 0.0675 0.0683 0.0702 0.0868 0.00875 0.0679 0.0698 0.0683
8 6.28 0.1506 0.0668 0.1408 0.1706 0.0668 0.0660 0.0717 0.0808 0.0815 0.0664 0.0668 0.0679
16 3.27 0.1438 0.0634 0.1362 0.1672 0.0657 0.0615 0.0747 0.0789 0.0785 0.0649 0.0664 0.0642
32 0.26 0.1642 0.0792 0.1638 0.1864 0.0864 0.0808 0.0879 0.0906 0.0838 0.0860 0.0857 0.0842
64 -275 0.1951 0.1155 0.2257 0.1898 0.1521 0.1408 0.1385 0.1423 0.1442 0.1525 0.1498 0.1528
128 -5.76 0.2921 0.1479 0.2687 0.2083  0.2230 0.2242 0.2200 0.2208 0.2211 0.2238  0.028%2

many trees need to be constructed when the ensembi8 is Software
regularized than for standard random rotation ensembles.
In practice, this bound is unrealistically high and th&he authors have released an open source R package by

magnitude of the overhead can be influenced by seldf¢ name ofandom.rotation The package contains a ref-
0. €rence implementation of random rotations, including the

ing sensible parameters. For example, udihg- 5000, S S : I
- _ e _ ' weighting- and regularisation methods described in this
R =50 andU = 10 and utilizing the tor = 10 rota aper. The package can be downloaded from GitHub

tions, we achieve a computational overhead of merglyy,,  registration. The easiest way to accomplish this
(50— 10) x 10/(5000— 10x 10+ 50 x 10) = 2/27, or g directly within an R command-line shell:
less than 7.41%. In addition, it should be noted that this

overhead gets partially offset by the fact that oRlyota- library("devtools")
tions need to be generated with our method instead ofinstall_github("randomrotation/random.rotation")
for random rotation ensembles. In the current example,
that number is 50 instead of 5000.

Besides these rather modest effects, the computational

complexny of our method is equivalent to that of rand_o_%e would like to thank the anonymous reviewers for their
rotation ensembles, regardless of the number of tra|n|Hg|pfu| comments and constructive feedback

samples or data dimensions.
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