
Regularizing axis-aligned ensembles via
data rotations that favor simpler learners

Rico Blaser Piotr Fryzlewicz

November 10, 2020

Abstract

To overcome the inherent limitations of axis-aligned base
learners in ensemble learning, several methods of rotat-
ing the feature space have been discussed in the literature.
In particular, smoother decision boundaries can often be
obtained from axis-aligned ensembles by rotating the fea-
ture space. In the present paper, we introduce a low-cost
regularization technique that favors rotations which pro-
duce compact base learners. The restated problem adds
a shrinkage term to the loss function that explicitly ac-
counts for the complexity of the base learners. For exam-
ple, for tree-based ensembles, we apply a penalty based
on the median number of nodes and the median depth of
the trees in the forest. Rather than jointly minimizing pre-
diction error and model complexity, which is computa-
tionally infeasible, we first generate a prioritized weight-
ing of the available feature rotations that promotes lower
model complexity and subsequently minimize prediction
errors on each of the selected rotations. We show that the
resulting ensembles tend to be significantly more dense,
faster to evaluate, and competitive at generalizing in out-
of-sample predictions.

Keywords: random rotation, regularization, ensemble
learning, minimal complexity

1 Introduction

Feature rotations are ubiquitous in modern machine learn-
ing algorithms – from structured rotations, such as PCA,
to random rotations and projections. For example, in
computer vision, local image rotations are routinely used
to obtain high-quality rotation-invariant features (e.g.

Takacs et al., 2013). In the context of axis-aligned ensem-
ble learning, rotations – and random projections, which
can be decomposed into a random rotation and an axis-
aligned projection – can make the difference between a
highly successful classifier and an average classifier (e.g.
Durrant and Kaban, 2013).

Rodriguez et al.(2006) introduced rotation forests af-
ter demonstrating that repeated PCA-rotations of random
subsets of the feature space significantly improved classi-
fication performance of random forests (Breiman, 1999)
and other tree ensembles.Blaser and Fryzlewicz(2016)
showed that rotation forests can be outperformed using
unstructured random rotations of the feature space prior
to inducing the base learners. While random rotations are
used with classifiers designed for high-dimensional set-
tings,Cannings and Samworth(2017) presented a random
projection ensemble, in which the high-dimensional fea-
ture space is first projected into a lower-dimensional space
before applying a classifier designed for low-dimensional
settings.

An important insight from the latter two papers is that
the vast majority of rotations are unhelpful in improving
out-of-sample classifier performance. Instead, most of the
benefit of these ensembles is derived from a small num-
ber of rotations that are particularly well-suited for the
specific classification problem.

In the present paper we investigate the efficacy of ro-
tations more closely and attempt to answer the question
of how we can identify or construct rotations that explic-
itly improve classifier performance. We hypothesise that
the most beneficial rotations are those that align signifi-
cant segments of the decision boundary with one of the
axes and thus result in simpler and more compact base
learners: we call itrotation to simplicity. We also believe

1



the converse to be true: those rotations that produce less
complex base learners positively impact ensemble perfor-
mance. Supporting evidence for this assertion is provided
in Section5.

The remainder of the paper is organized as follows: in
Section2, we introduce the basic ensemble notation, as
well as an extended loss function which takes into consid-
eration the complexity of the base learners. This is similar
to loss functions in linear regression that include penalties
on the regression coefficients. In Section3, we introduce a
low-cost regularization technique, which explicitly favors
rotations that are expected to produce simple base learn-
ers. Section4 takes a step back and illustrates why cer-
tain rotations are better than others for axis-aligned learn-
ers and how these rotations differ from analytic methods,
such as PCA. Next, we present performance results on a
sample of well-known UCI data sets in Section5 and con-
clude with our final thoughts.

2 Motivation

A decision tree divides the predictor space into disjoint
regionsGj , where 1≤ j ≤ J, with J denoting the total
number of leaf nodes of the tree. Borrowing the notation
from Hastie et al.(2009), the binary decision tree is rep-
resented as

T(x;Ω) =
J

∑
j=1

cj I(x∈Gj), (1)

whereΩ = {Gj ,cj}J1 are the optimisation- or tuning-para-
meters andI(∙) is an indicator function. Inputsx are
mapped to a constantcj , depending on which regionGj

they are assigned to. A tree ensemble consisting of M
trees can then be written as

EM(x) =
M

∑
m=1

T(x; Ωm). (2)

In this paper, we assume that trees are grown indepen-
dently and that no co-dependence exists between the tun-
ing parameters of different trees. This restriction implic-
itly excludes boosted tree ensembles (Friedman, 2001).
Our goal is then to optimise the tuning parametersΩm for
each tree in such a way as to minimise a given loss func-

tion, L(yi , f (xi)), that is

Ω̂m = argmin
Ωm

N

∑
i=1

L(yi ,T(xi ;Ωm)). (3)

It should be noted that the general tree-induction opti-
mization problem in equation (3) is NP-complete (Hyafil
and Rivest, 1976) even for two-class problems in low
dimensions (Goodrich et al., 1995) and an axis-aligned,
greedy tree induction algorithm such as CART (Breiman
et al., 1984) is typically used to find a reasonable approx-
imation.

At this point we depart from the standard tree ensemble
setting in two aspects: (1) we add a penaltyP to the loss
function and (2) we add rotationsRk to the input data.
Hence, the loss function gets modified to

L(yi , f (xi)) = V(yi , f (Rk(xi)))︸ ︷︷ ︸
accuracy

+P(Rk(xi))︸ ︷︷ ︸
complexity

, (4)

where the regularisation termP(∙) penalises rotations that
lead to more complex base learners.V(yi , f (xi)) is a typ-
ical loss function – such as square-, hinge-, or logistic
loss – which does not take model complexity into account
(see e.g.James et al., 2013). Minimizing this combined
loss function resembles constrained regression problems,
such as Ridge- or Lasso-regressions (Tibshirani, 1996),
but instead of constraining coefficients, we actively reg-
ularize the base learners. Lastly, the subscriptk denotes
the specific rotation; we typically grow multiple trees per
rotation, depending on the efficacy of the rotation: this is
described in detail in Section3.

With the addition of the regularisation term, we have
made the problem even more challenging to solve. Since
tree induction was already NP-complete to begin with,
we discuss an algorithm in the following section which
strictly separates the weighting of favorable rotations that
reduce model complexity from the tree induction opti-
mization, which improves accuracy. Using this approach,
we implicitly assume that simpler models do not lead to
lower prediction accuracy, a hypothesis we show to be
empirically valid in Section5.

3 Regularization

In this section, we introduce our proposed algorithm for
generating an ensemble that optimizes the use of available

2



rotations.
Given a set ofR feature rotations, we would like to

build an ensemble consisting ofM base learners. In order
to accomplish this, the algorithm first builds tiny micro-
forests ofU unconstrained trees on each rotation, a low-
cost operation becauseU �M andU < M/R. Based on
the statistical properties of these micro-forests, the full en-
semble is constructed. Here we present the generic algo-
rithm; in Section5 we demonstrate several ways of lever-
aging the available statistics. For tree-based ensembles,
the trees in the micro-forests can frequently be reused for
the full ensemble, further reducing the amortized cost of
building the micro-forests.

Algorithm 1 describes the regularized rotation proce-
dure in detail. The integer inputs denote the desired total
number of treesM in the complete ensemble, the number
of available (or generated) rotationsR, and the number of
treesU created for each micro-forest.

In line 2 of Algorithm 1, the available rotations are
stored in an array namedrotations. It is important to in-
clude the identity rotation here to make sure the procedure
returns high-quality results when the problem is already
optimally rotated to begin with. If too few rotations are
available, the procedure can generate random rotations in
addition to the identity rotation (Anderson et al., 1987).

In lines 4-5, an unconstrained, unpruned micro-forest
consisting ofU trees is grown. The recommended default
value ofU is of the order of 10-20 trees. The purpose
of these trees is merely to obtain a reliable estimate of
the median complexity of a representative tree that will
be grown on the particular rotation, with minimal inter-
ference from outliers.

Our main proposal in this paper is to apply a complexity
measure for base learners and use it to rank the obtained
rotations from the best one which corresponds to the least
complex learners to the worst one that corresponds to the
most complex learners. In the case of tree ensembles, we
suggest a complexity measureC(∙) whereby trees with a
smaller number of nodes (size) are considered less com-
plex and, among trees with the same number of nodes,
more shallow trees (depth) are considered less complex,
that is

C(T(x;Ωm)) = #nodes+depth/N, (5)

where #nodes= 2J− 1 anddepth≤ J for binary deci-
sion trees, both depending onΩm. N is the number of

data points andJ the number of leaf nodes in the tree. It
is clear that 1≥ depth/N and, consequently, thatdepth
merely acts as a tie-breaker for trees of equal size. We
further discuss tree complexity in Section4.1. Up to this
step, only model complexity was used to quantify rota-
tions; this corresponds to the right-most section of for-
mula (4).

The sorting procedure in line 7 of Algorithm1 arranges
the rotations into ascending order of complexityC. At this
point, there are several ways of using this information. In
section3.1 we apply a parametric, non-increasing family
of curves with a tuning parameterh and use the out-of-bag
(OOB) errors of the micro-forests to determine the opti-
mal parameter in a grid search. However, as we will show
in Section5, it is also possible to use the ranking on its
own, without combining it with predictive performance.
The key point here is that whatever procedure we use, it
will determine the number of base learners that need to be
created for each rotation. This is accomplished in line 9
of Algorithm 1.

Should additional trees (beyond theU already available
trees on each rotation) be needed, these are generated and
added to the rotation in line 10. Typically, these need to
be added to the most favorable rotations.

Finally, the equal-weighted ensemble is constructed
from the trees on the different rotations. It is important
to note that while the individual trees are equal-weighted
in the ensemble, more trees are used from favorable rota-
tions and hence the rotations are not equal-weighted. Also
note that∑R

i=1 rotations[i].numtrees= M.

3.1 Weighting of rotations

Given anorderedsequence ofR rotations (r = 1 for the
most favorable rotation andr = R for the least attractive
rotation) and a specified total number of base learnersM
in the ensemble, we need to determine how many base
learners to train on each rotation. This corresponds to line
9 in Algorithm1 above. We now discuss the details of this
procedure.

Any sensible (percentage) weighting scheme will have
the following three properties:

1. w(r)≥ 0,∀ r

2. w(r)≥ w(r +1)

3



Algorithm 1 Regularized Rotation Ensemble (Pseudocode)

1: procedure REG_ROT(M,R,U) . M: ensemble size,R: #rotations,U : trees perμ-forest
2: rotations← obtain_rotations(R)
3: for i← 1 toRdo
4: rotations[i].forest← create_unconstrained_μ-forest(U)
5: rotations[i].complexity← compute_complexity(rotations[i].forest)
6: end for
7: sort(rotations, complexity)
8: for i← 1 toRdo
9: rotations[i].numtrees← compute_numtrees(M, rotations)

10: rotations[i].forest← add_trees(rotations[i].forest, max(rotations[i].numtrees -U,0))
11: end for
12: for i← 1 toRdo
13: for j ← 1 to rotations[i].numtreesdo
14: ensemble.forest← extend_forest(ensemble.forest, rotations[i].forest[j])
15: end for
16: end for
17: return ensemble
18: end procedure

3. ∑R
r=1w(r) = 1

We consider two weighting schemes that meet these cri-
teria:

• Select the firsth rotations from the ordered list and
generate a fraction of exactlyw(r) = 1/h of the re-
quiredM base learners on each of these rotations;

• Use an exponential family of curves with decay pa-
rameterh to determine the percentage of base learn-
ers that should be trained on each rotation.

The first scheme corresponds to selecting theh rotations
that are expected to produce the lowest complexity base
learners and equal-weight the trees on these rotations. The
second scheme includes the possibility of including trees
on more different rotations but at much smaller weights.
In both cases,h acts as a tuning parameter that can be
inferred from the data via a simple grid search, the details
of which will be described at the end of this section.

In the first case, the weighting follows the formula

wcut(R,h; r) = I(r ≤ h)/h, (6)

whereh is an integer tuning parameter in[1,R], represent-
ing a cut-off value andI(∙) is the indicator function. Note

that the sum of the weights is 1, as expected. For the
second case, we use the following family of exponential
curves:

wexp(R,h; r) =
2−r/h(21/h−1)

(1−2−R/h)
, (7)

whereR is the total number of rotations andh is a positive,
real tuning parameter. In both cases,r is the sorted (inte-
ger) rotation number, as described above. In both cases,
small values ofh result in large weights for the top rota-
tions and small (or zero) weights for less favorable rota-
tions. By contrast, largeh eventually lead to the equal-
weighting of rotations.

Figure1 compares the two weighting schemes. A sim-
ple method for obtaining a good tuning parameterh is to
use the OOB error estimates of the micro-forests on each
rotation and compute the sum product of these errors with
and the weight vectors using different values ofh – effec-
tively a grid search. Since the rotations are in complexity-
sorted order and because the weighting schemes are non-
increasing, the resulting weighting will differ significantly
from a weighting based solely on OOB predictive accu-
racy. In Section5 we show that weightings based solely
on OOB predictive accuracy produce base learners that
are more complex on average, without a corresponding

4



Figure 1: Two parametric families of weight functions: top-h (left) and exponential (right).

out-of-sample performance gain. It should also be noted
that in line 9 of Algorithm1, the weights are multiplied
with the ensemble sizeN and need to be rounded to in-
teger values, since we cannot grow partial trees. In this
process, it is possible due to rounding that the sum of the
computed number of trees does not add up toN anymore.
If this is the case, we automatically add any missing trees
to the top rotation or analogously subtract additional trees
starting from the worst rotation.

4 Discussion

The goal of this section is to provide an intuitive under-
standing of which rotations are useful in the context of
axis-aligned learners. The discussion applies to higher-
dimensional problems but is illustrated in two dimensions.

One visual indication betraying axis-aligned learners,
such as decision tree ensembles, is their rugged ("stair-
shaped") decision boundary. When a segment of the true
decision boundary is not axis-aligned, such learners are
forced to approximate the local boundary using a number
of smaller steps. The greatest number of such steps is
required when the true boundary occurs at a 45-degree

angle to one of the axes.

A natural strategy to overcome this predicament is to
rotate the space by 45-degrees, such that the decision
boundary becomes axis-aligned. After the rotation, only
a single hyperplane is necessary to represent the very seg-
ment that required many steps prior to rotation. Unfor-
tunately, while rotating the feature space might improve
classification locally, it may actually have a negative ef-
fect overall, as other segments of the decision boundary
might have been well-aligned with the axes prior to ro-
tation but are now poorly-aligned after rotation. For this
reason, rotations need to be examined globally and jointly.

To better illustrate the argument, we artificially con-
struct the 2-dimensional, two-class classification prob-
lems depicted in Figure2. For simplicity of the argument,
no class overlap is created but the conclusion will be unaf-
fected. The problem on the left-hand side (a) corresponds
to the situation where the decision boundary is at a 45-
degree angle to both axes. For this problem, we expect a
45-degree (or equivalent) rotation to be optimal.

For the middle problem (b), the decision boundary is
flat and axis-aligned but there is a small segment that pro-
trudes at a 45-degree angle to the axes. A zero-degree ro-

5



Figure 2: Three illustrative classification problems with
known decision boundaries: (a)y = x, (b) y =
0.5+max(x−0.75), (c)y= 0.5+max(x−0.5)

tation (or equivalent) seems ideal for the longer segment
but a 45-degree rotation appears preferable for the smaller
segment. Note that since we are running an ensemble of
trees, it would be perfectly acceptable to combine one for-
est trained without rotation with another (perhaps smaller
or down-weighted) forest on the rotated space. The ques-
tion is: which approach produces a better-performing en-
semble?

In the final classification problem on the right-hand
side (c), the portion of the decision boundary at a 45-
degree angle is slightly longer than the axis-aligned sec-
tion. Here, rotation is likely preferred again. But is it
better to rotate by 45-degrees to aid classification near the
longer segment or perhaps just by 20-degrees, in such a
way that the maximum slope of the decision boundary
is reduced at the expense of constructing a problem that
is completely unaligned to any axis? In order to answer
these questions, we need to define a metric to quantify the
value-add provided by a given rotation.

4.1 Tree Complexity

The number of steps required – and hence the average
number of nodes required to form a decision tree – gener-
ally increases as the boundary becomes less aligned with
the axis. This is because the tree construction is done re-
cursively and a new level of the tree is built whenever the
local granularity of the tree is insufficient to fully capture
the details of the local decision boundary.

For this reason, we propose to use the expected median
size of a decision tree as our metric of utility for a given
rotation. Rotations that result in smaller, shallower trees
on average are considered better rotations. Not only does
the metric in Formula (5) assist in creating streamlined
trees with fewer spurious splits, it also reduces the com-

putational burden of actually generating and running the
full forest. In addition, once we apply Metric (5) to all
generated rotations, we are in a position to obtain a rank-
ing of the relative usefulness of each rotation.

In order to compute a reliable and consistent (across
rotations) estimate of the proposed metric, we generate
a micro-forest for each rotation. It is necessary to cre-
ate multiple trees to counteract the randomness that is in-
jected in the tree-induction process. For each micro-forest
we then compute the median number of nodes used. We
use the median in order to actively ignore trees that are
artificially inflated by poor (random) variable selections.
These operations are computationally efficient when com-
pared to generating a full-blown tree ensemble for each
rotation and can generate a stable estimate of the true me-
dian. Based on our experiments, the complexity rankings
computed on the basis a 10-20-tree forest is very similar
to the complexity ranking computed on the basis of a full
forest. Hence, the metric is highly predictive and useful.

4.2 Illustration

To demonstrate the usefulness of the proposed metric,
we have generated 100 random rotations for each of the
two dimensional classification problems listed in Figure
2 above. Figures3, 4 and5 illustrate cases (a), (b) and
(c), respectively, ranked by tree complexity. Note that
the sorting is entirely based on the tree complexity and,
importantly, does not make use of the predictive perfor-
mance of these trees. Despite this, it is interesting to see
that the sort reflects our intuition: in Figures3 and 4,
those rotations for which one of the feature boundaries is
aligned with one of the axis achieve the best scores, while
diagonal boundaries achieve the worst scores. This al-
lows us to find useful rotations without resorting to struc-
tured rotations (such as PCA) commonly used in other
approaches.

However, if all of the top rotations were chosen solely
on the basis of the largest segment of the decision bound-
ary that is axis-aligned, important secondary segments
might get neglected, ultimately leading to a worse overall
prediction. Figure5 demonstrates that this is not the case.
In this case, the best five rotations again aligned the longer
segment to one of the axis, as expected. However, the 6th
rotation aligned the shorter segment to the y-axis. This
illustrates the point that it may be useful to include multi-

6



Figure 3: Rotations of classification problem (a) in Figure2, sorted by expected tree height, as described in the text.
Top left is the best rotation, bottom right represents the worst rotation. The small number on the top right of
each image is the unique rotation number.

7



ple rotations in an ensemble, since different rotations can
specialize on specific sub-features or decision boundary
segments. These results are intuitive and demonstrate the
usefulness of the tree-based ranking. What is also striking
is that the best rotations do not at all resemble a PCA ro-
tation. This is because the rotation is optimized for align-
ment of the decision boundary with the tree rather than for
the variance of the covariates. This is what sets random
rotations apart from rotation forests.

Up to this point, we examined some very simple two-
dimensional toy problems with high signal-to-noise ra-
tios (SNRs). In each case, both dimensions were highly
informative and contained minimal noise. This setup is
ideal for illustrating the method but is not representative
of most real-world challenges. Therefore, an important
question is how the method performs when we increase
the dimensionality or decrease the SNR. To answer this
question, we start again with the triangular base shape
(a) but incrementally add uniform noise dimensions to the
problem before applying the proposed method. In this set-
ting, it is more difficult to visualize the results but we can
still demonstrate alignment of the decision boundary with
one of the axes by projecting the rotated problem onto the
two-dimensional planes formed by the axes – the coordi-
nate surfaces – before plotting. It is important to note that
these aredifferent projections of the same rotation,rather
than different rotations.

Figure 6 demonstrates that the proposed approach is
still successful in higher dimensions and with lower
signal-to-noise ratios. In these figures, each row repre-
sents an exhaustive list of projections onto the coordi-
nate surfaces for a single rotation inp dimensions. The
first two dimensions are always the signal dimensions,
while the remainingp− 2 dimensions are random noise
dimensions. For example, in the second row of Figure6
we started with the two original signal dimensions plus
one random noise dimension (p = 3). We then gener-
ated 100 rotations and selected the one rotation that was
ranked best according to the metric described in Section
3. The row shows the three two-dimensional projections
of this best ranked rotation onto the (x,y), (x,z) and (z,y)
planes, respectively. It is very apparent that the best rota-
tion aligns the decision boundary with the third axis (the
z-coordinate) in this case.

Even when the number of noise dimensions exceeds the
number of signal dimensions, as is the case forp = 5, the

alignment of the decision boundary with one of the axes
is still very consistent for the best rotation.

In contrast, Figure7 shows that the worst ranked ro-
tations are not aligned with any axis, regardless of the
dimensionality of the problem and that there is a consid-
erable overlap in the two classes at the decision bound-
ary, making it extremely difficult to produce a successful
classifier. These examples very clearly show the value of
finding high-quality rotations.

5 Performance

In order to test our hypothesis that it is possible to rotate to
simplicity without a corresponding performance penalty,
we implemented the following weighting schemes:

(a) RRE: Random rotation ensemble, same number of
trees on each rotation:M/R.

(b) CUT: Same number of trees on the top-h rotations in
terms of complexity (h is chosen using grid search
on OOB performance per section3.1).

(c) EXP: Exponential weighting with half-lifeh in terms
of complexity (h is chosen using grid search on OOB
performance per section3.1).

(d) BST: All N trees on the lowest complexity (best) ro-
tation (equivalent to CUT withh = 1.

(e) NEW: Same number of trees on all rotations that are
ranked higher than or equal to the identity rotation.

(f) LIN: linearly decreasing number of trees:k on low-
est complexity rotation,k−1 on second lowest, . . . 1
on highest complexity.

(g) OOB: linearly decreasing number of trees:k on low-
est OOB error rotation,k−1 on second lowest, . . . 1
on highest OOB error.

(h) JNT: linearly decreasing number of trees:k on low-
est joint ranking of complexity and OOB error, . . . 1
on highest joint ranking rotation: rank(rank(OOB er-
ror) + rank(complexity)).

8



Figure 4: Rotations of classification problem (b) in Figure2, sorted by expected tree height, as described in the text.
The top panel shows the twenty best ranked rotations from top left to bottom right, the bottom panel repre-
sents the twenty worst ranked rotations from bottom right to top left. The small number on the top right of
each image is the unique rotation number.

Figure 5: Rotations of classification problem (c) in Figure2, sorted by expected tree height, as described in the text. the
top panel shows the twenty best ranked rotations from top left to bottom right, the bottom panel represents
the worst ranked rotations from bottom right to top left. The small number on the top right of each image is
the unique rotation number.

9



Figure 6: Alignment of the decision boundary of thebestranked rotation inp dimensions with each axis. Inp dimen-
sions, there are exactlyp(p−1)/2 coordinate surfaces, meaning two-dimensional planes formed by thep
coordinate axes. In this figure, each row depicts the projections of the best rotation inp dimensions onto all
available coordinate surfaces. The numbers on the top right of each sub-figure indicate the two axes used to
form the specific coordinate surface. Forp= 2, the signal-to-noise ratio (SNR) is high because only the two
signal dimensions were used. Forp > 2 a total ofp−2 noise dimensions were added, decreasing the SNR
accordingly. Highlighted projections indicate strong alignment with one of the axes.

10



Figure 7: Alignment of the decision boundary of theworst ranked rotation inp dimensions with each axis. Inp
dimensions, there are exactlyp(p−1)/2 coordinate surfaces, meaning two-dimensional planes formed by
the p coordinate axes. In this figure, each row depicts the projections of the worst rotation inp dimensions
onto all available coordinate surfaces. The numbers on the top right of each sub-figure indicate the two axes
used to form the specific coordinate surface. Forp = 2, the signal-to-noise ratio (SNR) is high because only
the two signal dimensions were used. Forp > 2 a total ofp−2 noise dimensions were added, decreasing
the SNR accordingly. No alignment is apparent with any of the axes for the worst ranked rotation.

11



For comparison, we also tested a standard Linear Discrim-
inante Analysis (LDA), as well as three non-linear classi-
fiers: a simple K-Nearest Neighbor classifier (KNN-5), a
Support Vector Machine (SVM), and a Gaussian Process
classifier (GPR). We have applied the competing meth-
ods (GPs and SVMs) in a black-box manner with default
parameters available from publicly available software im-
plementations. Hence, their performance is not indica-
tive of the performance that would be achieved if these
methods were applied knowledgeably, with state-of-the-
art model parameter tuning and consistency checks of the
model’s assumptions.

For KNN, we used the R implementation in theclass
package with k=5 and for LDA the implementation in
MASS. For the SVM, we used the R implementation in the
e1071package with default parameters, that is we used
type C-classification with a radial basis function (RBF)
kernel and a default gamma of 1/N, which was adjusted
to reflect the number of data dimensions and added noise
dimensions, where applicable. The cost parameter (or
C-parameter in SVM parlance) was set to 1.0. For the
GPR, we used the R implementation gausspr in thekern-
lab package. Here we too used the problem type classi-
fication with a RBF kernel (rbfdot) and took advantage
of the built-in automatic sigma estimation (sigest). We
did not attempt to manually- or otherwise tune the meta-
parameters of these methods, unless a built-in auto-tuning
feature was available, just like we did not tune any param-
eters in the proposed tree-based methods with the excep-
tion of the rotation selection that is the subject of this pa-
per. The overarching goal was to compare methods with
sensible default parameters across a number of problem
sets in order to determine how to best make use of rota-
tions with axis-parallel learners.

The test procedure generated a random subset of 70%
of the data for training purposes and all classifiers were
tested on the remaining 30% of the data. This process
was repeated 100 times and averages are reported.

With the exception of the identity rotation, all rotations
were generated uniformly at random from the Haar dis-
tribution. As our base case RRE, we implemented a ran-
dom rotation ensemble, which does not differentiate be-
tween rotations. The only other weighting scheme that
does not consider tree complexity at all is OOB, which
only takes advantage of OOB errors across the different
rotations. Our expectation would be for OOB to outper-

Table 1: Description of UCI Datasets

UCI Name Dim (p) Rows(N)

BREAST 10 699
ECOLI 8 336
GLASS 10 214
IONO 34 351
IRIS 4 150
LIVER 7 345
WINE 13 178
WAVE 21 5000

form in terms of predictive accuracy but with high com-
plexity ensembles. We would also expect BST to pro-
duce the lowest complexity ensemble but at the cost of
lower predictive performance. In terms of methodology,
we first generated 100 random rotations, including one
identity rotation. These same rotations were then used
by all weighting schemes before the entire process was
repeated. In each case, we generated an ensemble with
exactlyM = 5000 trees in total. The dimensionality and
number of data points for each data set is listed in table
1. The lowest-dimensional problem with 4 predictors is
IRIS and the highest-dimensional problem with 34 pre-
dictors is IONO. For space reasons, we refer the reader to
Dheeru and Taniskidou(2017) for a detailed description
of the UCI data sets we used for testing. Before running
the classification algorithms, we scaled all numeric pre-
dictors to[0,1].

Table2 shows the names of the data sets, together with
the classification error resulting from applying the differ-
ent weighting schemes to the rotations. Interestingly, al-
gorithm OOB did not perform quite as well as we had
anticipated. For three of the data sets, the scheme per-
formed more than one cross-sectional standard deviation
above (worse than) the minimum error. In fact, this ap-
pears to be a common pattern among these methods, ex-
cept for CUT and EXP described in Section3.1, which
are competitive on most of these data sets. One inter-
esting exception was the IRIS data set, for which LDA
outperformed all variants of the rotation-based ensembles
and indeed all non-linear classifiers. This is an example
of where the proposed method does not work as well as
expected.

12



Table 2: Classification error on test data (lower is better). Each rotation weighting method RRE, CUT, EXP, BST,
NEW, LIN, OOB, JNT, as described in the text, was applied to the data sets listed under UCI Name.
Strikethrough represents a performance number that was more than one cross-sectional standard deviations
above (worse than) the minimum.

UCI Name LDA SVM GPR KNN-5 RRE CUT EXP BST NEW LIN OOB JNT

BREAST 0.0472 0.0386 0.0407 0.0410 0.0347 0.0348 0.0349 0.0354 0.0348 0.0349 0.0345 0.0347
ECOLI 0.1209 0.1265 0.1305 0.1365 0.1217 0.1233 0.1251 0.1445 0.1448 0.1208 0.1212 0.1207
GLASS 0.3805 0.3157 0.3213 0.3587 0.3001 0.2729 0.2400 0.2395 0.2378 0.2977 0.2994 0.3001
IONO 0.1381 0.0609 0.1317 0.1587 0.0514 0.0535 0.0544 0.0704 0.0706 0.0519 0.0510 0.0512
IRIS 0.0240 0.0407 0.0502 0.0416 0.0467 0.0451 0.0453 0.0456 0.0460 0.0467 0.0462 0.0464
LIVER 0.3318 0.3064 0.3162 0.3981 0.3116 0.3050 0.3135 0.3191 0.3089 0.3097 0.3079 0.3099
WAVE 0.1423 0.1383 0.1320 0.1815 0.1352 0.1380 0.1422 0.1435 0.1432 0.1352 0.1350 0.1351
WINE 0.0161 0.0206 0.0180 0.0433 0.0250 0.0176 0.0165 0.0172 0.0150 0.02220.0224 0.0232

In Table3 we can confirm that BST really does pro-
duce the most compact ensembles. However, unfortu-
nately performance suffers accordingly. A good compro-
mise is EXP, which shows significant reductions in com-
plexity without suffering from performance problems.

For the IRIS data set, EXP resulted in an ensemble
that outperformed RRE despite a 24.4% decrease in com-
plexity. Similarly, a 17.5% decrease in complexity was
achieved in the GLASS data set. The smallest improve-
ment of merely 2.5% decrease in complexity occured on
the IONO data set, for which RRE actually outperformed
EXP, although not in a statistically significant manner.

Tables4 and5 show the performance of a set of base-
line classifiers (SVM, GPR, KNN-5) and the various ro-
tation variants after adding noise dimensions to the data
sets IRIS and IONO. It is evident that the performance of
the rotation-based classifiers deteriorates relative to other
classifiers as the signal-to-noise ratio decreases. This is a
known limitation of the method, further described in the
following chapter. At the same time, it can be observed
that LDA performance is very problem dependent, while
KNN and SVM classifiers actually became more compet-
itive in a relative sense with decreasing SNR.

6 Limitations

It was empirically demonstrated inTomita et al.(2017)
that in situations where the signal is contained in a sub-
space that is small relative to the dimensionality of the
feature space, random rotation ensembles tend to under-

perform ordinary random forests. This is because such a
setup renders most rotations unhelpful. By overweight-
ing the most successful rotations, as we propose in this
paper, this effect is somewhat mitigated but not entirely
eliminated.

Even in the illustrations in Figure6 it is clear that
the quality of the most successful rotations decreases
marginally as the number of noise dimensions is in-
creased. The alignment with the axes are not perfect and
the noise around the decision boundaries increases visi-
bly. Nonetheless, the rotated features lead to better (axis-
aligned) classifiers than the those trained on the unrotated
space.

The underlying issue is that rotations in the direction of
uninformative noise dimensions do not improve predic-
tions and when the number of noise dimensions is large
relative to the signal dimensions, the likelihood of rotat-
ing in uninformative directions increases. Note that the
same is not necessarily true when the SNR is decreased
without increasing the dimensionality of the problem. In
this case, random rotations and the ideas in this paperdo
not underperform ordinary random forests in our experi-
ence.

One important consideration when introducing rota-
tions into a classifier is that features need to be of com-
parable scale. We do not explicitly mention this in this
paper but a section on recommended scaling mechanisms
can be found inBlaser and Fryzlewicz(2016). We do not
recommend using any rotation-based ensembles without
prior scaling or ranking for practical problems.

13



Table 3: Tree complexity on test data (lower is better, only relevant for tree-based classifiers). Each rotation weighting
method RRE, CUT, EXP, BST, NEW, LIN, OOB, JNT, as described in the text, was applied to the data sets
listed under UCI Name. Strikethrough represents a complexity number that was more than one cross-sectional
standard deviations above (worse than) the minimum.

UCI Name RRE CUT EXP BST NEW LIN OOB JNT

BREAST 54.69 52.08 51.68 51.11 52.94 53.66 54.42 54.63
ECOLI 76.82 71.67 69.08 44.52 44.56 75.23 76.68 76.59
GLASS 81.68 73.69 67.42 66.93 66.95 80.84 81.14 81.39
IONO 61.58 60.24 60.02 57.58 58.20 61.16 61.51 61.60
IRIS 20.98 16.52 15.86 15.36 18.67 19.44 20.30 20.98
LIVER 115.48 112.14 111.18 110.84 114.06 114.64 114.94 115.51
WAVE 1368.76 1332.53 1310.13 1303.26 1303.29 1359.99 1365.58 1368.30
WINE 36.21 32.52 31.02 30.88 31.21 35.42 35.42 36.15

Table 4: Classification error on test data (lower is better). Each rotation weighting method and control classifier was
applied to the UCI data set IRIS. The first (NOISE) column indicates the number of noise dimensions added
to the original data set, from which an upper bound to the signal-to-noise ratio can be estimated as SNR (dB)
≤ 10 x log(4/NOISE) by assuming that the original data set is noise free. In the table, SNR represents this
upper bound.

NOISE SNR LDA SVM GPR KNN-5 RRE CUT EXP BST NEW LIN OOB JNT

1 6.02 0.0258 0.0578 0.0658 0.0507 0.0516 0.0489 0.0516 0.0560 0.0524 0.0507 0.0524 0.0516
2 3.01 0.0258 0.0533 0.0898 0.0480 0.0569 0.0551 0.0551 0.0587 0.0613 0.0569 0.0604 0.0578
4 0.00 0.0240 0.0827 0.1164 0.0871 0.0853 0.0693 0.0631 0.0640 0.0640 0.0853 0.0889 0.0853
8 -3.01 0.0267 0.1591 0.1680 0.1467 0.1316 0.1093 0.0960 0.0996 0.1013 0.1333 0.1289 0.1289

16 -6.02 0.0533 0.1591 0.1822 0.1200 0.1458 0.1396 0.1511 0.1671 0.1440 0.1440 0.1449 0.1422
32 -9.03 0.0569 0.1618 0.1724 0.1458 0.1591 0.1636 0.1733 0.1724 0.1618 0.1609 0.1644 0.1671
64 -12.04 0.1280 0.2222 0.2516 0.2249 0.2124 0.2116 0.2204 0.2364 0.2151 0.2151 0.2116 0.2133

128 -15.05 0.1618 0.2951 0.3484 0.2596 0.2640 0.2676 0.2684 0.2898 0.2729 0.2658 0.27910.2676

7 Computational Considerations

When compared to random rotation ensembles, there is
an additional computational cost for regularizing the en-
semble. Given the desired total number of treesM, the
algorithm requires the generation of micro-forests of size
U for each of theR rotations. These micro-forests are es-
sential for estimating the relative efficacy of each rotation.
However, depending on the weighting scheme employed,
only a subset of the rotations is actually included in the
final model.

More specifically, in the initial step,U ×R trees are
constructed. However, if the weighting scheme only in-
volves the topr rotations, then(R− r)×U trees subse-
quently get discarded. This, in turn, implies thatM− r×
U additional trees need to be induced within ther selected

rotations to end up withM trees in total within the se-
lected rotations. Expressed as a percentage, we know that
(R− r)×U/(M− r×U +R×U) percent of the initially
constructed trees get subsequently discarded, resulting in
computational overhead when compared to random rota-
tion ensembles, where all trees are used.

In order to obtain a bound on this expression, note that
R×U <= M. This is because it is not practical to gener-
ate more trees in the micro-forests than are needed in total.
Hence, in the worst case(R− r)/(2R− r) percent of the
initially constructed trees get subsequently discarded, a
quantity that is smaller than 1/2 becauser is in [1,R] and
R is in [1,M]. This expression is maximized when only the
best rotation is selected(r = 1) and minimized when all
rotations are selected(r = R). Therefore, in terms of com-
putational overhead, the worst case is that nearly twice as

14



Table 5: Classification error on test data (lower is better). Each rotation weighting method and control classifier was
applied to the UCI data set IONO. The first (NOISE) column indicates the number of noise dimensions added
to the original data set, from which an upper bound to the signal-to-noise ratio can be estimated as SNR (dB)
≤ 10 x log(34/NOISE) by assuming that the original data set is noise free. In the table, SNR represents this
upper bound.

NOISE SNR LDA SVM GPR KNN-5 RRE CUT EXP BST NEW LIN OOB JNT

1 15.31 0.1479 0.0675 0.1423 0.1725 0.0600 0.0604 0.0600 0.0721 0.0706 0.0596 0.0592 0.0592
2 12.30 0.1234 0.0551 0.1294 0.1509 0.0521 0.0558 0.0589 0.0702 0.0691 0.0528 0.0521 0.0517
4 9.29 0.1577 0.0725 0.1464 0.1675 0.0675 0.0683 0.0702 0.0868 0.00875 0.0679 0.0698 0.0683
8 6.28 0.1506 0.0668 0.1408 0.1706 0.0668 0.0660 0.0717 0.0808 0.0815 0.0664 0.0668 0.0679

16 3.27 0.1438 0.0634 0.1362 0.1672 0.0657 0.0615 0.0747 0.0789 0.0785 0.0649 0.0664 0.0642
32 0.26 0.1642 0.0792 0.1638 0.1864 0.0864 0.0808 0.0879 0.0906 0.0838 0.0860 0.0857 0.0842
64 -2.75 0.1951 0.1155 0.2257 0.1898 0.1521 0.1408 0.1385 0.1423 0.1442 0.1525 0.1498 0.1528

128 -5.76 0.2921 0.1479 0.2687 0.2083 0.2230 0.2242 0.2200 0.2208 0.2211 0.2238 0.22450.2242

many trees need to be constructed when the ensemble is
regularized than for standard random rotation ensembles.

In practice, this bound is unrealistically high and the
magnitude of the overhead can be influenced by select-
ing sensible parameters. For example, usingM = 5000,
R = 50 andU = 10 and utilizing the topr = 10 rota-
tions, we achieve a computational overhead of merely
(50− 10)× 10/(5000− 10× 10+ 50× 10) = 2/27, or
less than 7.41%. In addition, it should be noted that this
overhead gets partially offset by the fact that onlyR rota-
tions need to be generated with our method instead ofM
for random rotation ensembles. In the current example,
that number is 50 instead of 5000.

Besides these rather modest effects, the computational
complexity of our method is equivalent to that of random
rotation ensembles, regardless of the number of training
samples or data dimensions.

8 Software

The authors have released an open source R package by
the name ofrandom.rotation. The package contains a ref-
erence implementation of random rotations, including the
weighting- and regularisation methods described in this
paper. The package can be downloaded from GitHub
without registration. The easiest way to accomplish this
is directly within an R command-line shell:

library("devtools")
install_github("randomrotation/random.rotation")

9 Acknowledgements

We would like to thank the anonymous reviewers for their
helpful comments and constructive feedback.

15



References

Theodore Anderson, Ingram Olkin, and Les Underhill.
Generation of random orthogonal matrices.SIAM Jour-
nal on Scientific and Statistical Computing, 8:625–629,
1987.

Rico Blaser and Piotr Fryzlewicz. Random rotation en-
sembles.Journal of Machine Learning Research, 17:
1–26, 2016.

Leo Breiman. Random forests random features.Techni-
cal report, 1999.

Leo Breiman, Jerome Friedman, Charles Stone, and
Richard Olshen. Classification and regression trees.
Wadsworth, Belmont, CA, 1984.

Timothy Cannings and Richard Samworth. Random-
projection ensemble classification.Journal of the Royal
Statistical Society: Series B, 79:1–38, 2017.

Dua Dheeru and Efi Karra Taniskidou. UCI machine
learning repository, 2017. URLhttp://archive.
ics.uci.edu/ml.

Robert Durrant and Ata Kaban. Random projections
as regularizers: learning a linear discriminant ensem-
ble from fewer observations than dimensions.JMLR:
Workshop and Conference Proceedings, 29:17–32,
2013.

Jerome Friedman. Greedy function approximation: a gra-
dient boosting machine.The Annals of Statistics, 5:
1189–1232, 2001.

Michael Goodrich, Vincent Mirelli, Mark Orletsky, and
Jeffery Salowe. Decision tree construction in fixed di-
mensions: being global is hard but local greed is good.
Technical Report TR95-1, 1995.

Trevor Hastie, Jerome Friedman, and Robert Tibshirani.
The elements of statistical learning: data mining, in-
ference, and prediction. Springer, New York, 2009.

Laurent Hyafil and Ronald Rivest. Constructing optimal
binary decision trees is np-complete.Information Pro-
cessing Letters, 5:15–17, 1976.

Gareth James, Daniela Witten, and Trevor Hastie.An in-
troduction to statistical learning. Springer, New York,
2013.

Juan Rodriguez, Ludmila Kuncheva, and Carlos Alonso.
Rotation forest: a new classifier ensemble method.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 28:1619–1630, 2006.

Gabriel Takacs, Vijay Chandrasekhar, and Sam Tsai. Fast
computation of rotation-invariant image features by ap-
proximate radial gradient transform.IEEE Transac-
tions on Image Processing, 22:2970–2982, 2013.

Robert Tibshirani. Regression shrinkage and selection via
the lasso.Journal of the Royal Statistical Society: Se-
ries B, 58:267–88, 1996.

Tyler Tomita, Mauro Maggioni, and Joshua Vogelstein.
Roflmao: Robust oblique forests with linear matrix op-
erations.Proceedings of the 2017 SIAM International
Conference on Data Mining, 1:498–506, 2017.

16

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	Introduction
	Motivation
	Regularization
	Weighting of rotations

	Discussion
	Tree Complexity 
	Illustration

	Performance
	Limitations
	Computational Considerations
	Software
	Acknowledgements

