
Detecting possibly frequent change-points: Wild
Binary Segmentation 2 and steepest-drop model

selection

Piotr Fryzlewicz

London School of Economics

University of Kent, 5th December 2019

Piotr Fryzlewicz WBS2.SDLL

Example problem 1

Identifying locations of gains or losses of DNA copy number.
Variations are common in cancer and other diseases. Work with
log ratios of test versus reference intensities that look like this:

Position

0 500 1000 1500 2000

-1
.0

-0
.5

0.
0

0.
5

(Source: R package DNAcopy.)

Piotr Fryzlewicz WBS2.SDLL

Example problem 2

Difference in monthly UK House Price Index percentage growth
between outer and prime London boroughs; brown line marks date
of UK EU membership referendum. Possibly frequent
change-points? (Source: UK Land Registry.)

Time

0 50 100 150 200 250

-2
-1

0
1

2

Piotr Fryzlewicz WBS2.SDLL

Basic model: univariate mean-level shifts

Canonical change-point detection problem (mean-level shifts):

Xt = ft + εt ,

where ft , t = 1, . . . ,T , piecewise-constant, unknown number
of change-points at unknown locations,

εt is (approximately) zero-centred noise with variance σ2.

Even when εt i.i.d. Gaussian, problem not yet solved: many
state-of-the-art methods can easily give very different results,
especially if ft is ‘challenging’, e.g. contains very frequent
change-points.

Piotr Fryzlewicz WBS2.SDLL

A ‘good’ change-point detection procedure?

What may we want from a ‘good’ change-point detection
procedure?

Accurately estimates the number and locations of any
change-points present in ft , for both

signals with few/infrequent change-points,
and signals with many/frequent change-points;

is fast to execute and scales well to very long signals;

has an existing software implementation;

transfers to other, more complex stochastic models;

(is easy to explain/implement).

Piotr Fryzlewicz WBS2.SDLL

Some existing procedures (and their non-adaptivity)

Very few (if any!) existing procedures tick all these boxes.

Example: in penalised techniques (which minimise the fit to the
data + penalty to avoid overfitting), it is clear that some
widely-used penalties (e.g. BIC) do not work well for signals with
many/frequent change-points. In other words: the penalty does
not adapt to the data. Some work to overcome this, e.g. slope
heuristics (‘data-driven slope estimation’, ‘dimension jump’).

Alternative broad class of methods: those that estimate one
change-point at a time. Some examples:

Binary Segmentation,

Circular Binary Segmentation,

Wild Binary Segmentation,

. . .

Piotr Fryzlewicz WBS2.SDLL

Binary segmentation

Binary segmentation: a well-known and widely-used procedure for
multiple change-point detection, in which we first search for one,
“most prominent” change-point in the input data.

If one is found, then the sample is split by the estimated
change-point, and the same search procedure is then repeated to
the left and to the right of it.

Pros: fast to compute, conceptually simple, easy to code. Cons:
good theoretical performance requires stronger theoretical
assumptions, convergence rates poor in more challenging settings.

Piotr Fryzlewicz WBS2.SDLL

Improving Binary Segmentation: “Wild” Bin Segmentation

The following example illustrates potential issues with standard
Binary Segmentation. Data Xt in black, global CUSUM in blue,
local CUSUM in red (CUSUM is a least-squares measure of the
quality of the fit of a piecewise-constant function with one jump to
the data):

Time

z

0 50 100 150 200 250 300

0
5

10
15

20
25

30

Piotr Fryzlewicz WBS2.SDLL

Wild Binary Segmentation

Clearly, it would have been preferable to use the maximum of the
red curve as a locator for a change-point candidate. However, it is
obviously not clear a priori what starting point s and end-point e
to choose.

Motivated by this, in our earlier work we proposed the following
Wild Binary Segmentation (WBS) locator statistics

WBS = arg max
s∗,b,e∗

|CUSUMs∗,b,e∗(X)|,

where s∗, e∗ are drawn uniformly over the current data segment
[s, e] a suitable number (M) of times. Checking all s∗, e∗ would
have resulted in cubic computational complexity, which would be
prohibitive – hence the random draws.

The b that achieves the above maximum is taken as a change-point
candidate. The procedure then continues in the usual binary way.

Piotr Fryzlewicz WBS2.SDLL

Wild Binary Segmentation – issue with frequent
change-points

Wild Binary Segmentation is one of the state-of-the-art methods,
provided the change-points are not extremely frequent. However, it
can fail if change-points occur very frequently.

Consider this “extreme.teeth” example.

Time

ex
tr

em
e.

te
et

h

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

no
is

y
ex

tr
em

e.
te

et
h

0 200 400 600 800 1000

−
0.

5
0.

0
0.

5
1.

0
1.

5

Piotr Fryzlewicz WBS2.SDLL

Wild Binary Segmentation and frequent change-points

The reconstruction below shows the result of the standard Wild
Binary Segmentation applied to the data from the previous slide.

Time

0 200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Piotr Fryzlewicz WBS2.SDLL

Frequent change-points: performance of the state of the
art

WBS is not the only technique struggling in frequent change-point
settings. Below are boxplots showing how far off the best methods
are in estimating the number of change-points in the above signal.

pelt.mbic pelt.bic mosum.lop id fdrs S3IB smuce cumS

-2
00

-1
50

-1
00

-5
0

0

Piotr Fryzlewicz WBS2.SDLL

Frequent change-points: performance of the state of the
art (contd)

More methods are shown in the boxplots below. The final two
boxplots correspond to WBS2.SDLL, the new technique described
in this talk.

fp js.se js.dj tg wt10 wt13 wb wbs2.90 wbs2.95

-2
00

-1
50

-1
00

-5
0

0

Piotr Fryzlewicz WBS2.SDLL

Wild Binary Segmentation and frequent change-points

Why does WBS misperform in frequent change-point settings?

There are, essentially, two fundamental reasons:

Reason 1.

At each binary stage, WBS only uses the M intervals [s∗, e∗]
pre-drawn at the start of the procedure. It does not draw new
intervals at each binary stage. As a result, far fewer than M of the
original intervals “survive” the binary progression (a point best
illustrated on the board) and are therefore able to indicate
potential change-point locations. As a result, WBS typically does
not compute the entire solution path (i.e. a sequence of estimates
of ft containing 0, 1, . . . ,T − 1 estimated change-points). We refer
to this feature (of any change-point detection procedure) as its
incompleteness.

Piotr Fryzlewicz WBS2.SDLL

Wild Binary Segmentation and frequent change-points

Reason 2.

In frequent change-point scenarios, it is unclear what model
selection criterion works best:

In thresholding (i.e. the CUSUMs obtained are tested against
a threshold), it is essential to have a good estimate of σ2.
This can be difficult to obtain in frequent change-point
scenarios, in which the traditional robust MAD and IQR
estimators do not work well.

Popular penalties, BIC and mBIC do not work well for
frequent change-points, and adaptive penalties can be slow to
compute and also not very reliable.

Piotr Fryzlewicz WBS2.SDLL

Our proposal: WBS2.SDLL

To remedy these two issues (incompleteness and lack of good
model selection), we propose WBS2.SDLL, a procedure with the
following defining characteristics:

It is complete and it uses recursion to draw intervals
adaptively where it needs them, rather than pre-drawing them
at the start of the procedure. This allows this solution path
algorithm, termed WBS2, to be much faster than a complete
or even near-complete version of WBS.

It uses a new model selection criterion, which we call
“Steepest-Drop to Low Levels”. It does not use penalties, and
relies to a lesser extent on the accurate estimation of
Var1/2(εt) than does classical thresholding.

Piotr Fryzlewicz WBS2.SDLL

WBS2: adaptive, recursive interval draws

We now describe the main mechanism by which WBS2 draws
intervals:

1 Draw a small number of intervals (say M = 100, to fix ideas)
and take the argmax of the absolute CUSUMs over these
intervals as the first change-point candidate. This is in the
hope of detecting one of the change-points present in the
data, rather than all of them, as in the classical WBS.

2 Recursively perform the same operation (i.e. again draw M
intervals) to the left and to the right of this change-point
candidate.

3 On a current domain, only do not draw further intervals if its
length = 1 (for suitably short domains, draw min(all possible,
M) intervals).

Piotr Fryzlewicz WBS2.SDLL

WBS2: adaptive, recursive interval draws – contd

WBS2 is by definition a complete procedure: every time point
appears in the solution path as a change-point candidate.

Speed savings with respect to WBS come from the fact that we do
not “wastefully” draw intervals only to remove them later at the
hierarchical cleaning stage, because WBS2 has no need for such a
stage.

WBS draws intervals always in the same way, regardless of input
data. WBS2 is adaptive in the way it draws its intervals.

By sorting the change-point candidates according to the
magnitudes of (absolute) CUSUMs, from the largest to the
smallest, we obtain an entire solution path, i.e. a sequence of
estimates with 0, 1, . . . ,T − 1 estimated change-points.

Piotr Fryzlewicz WBS2.SDLL

Steepest-Drop model selection along the solution path

We use an example to motivate and explain our new Steepest
Drop to Low Levels model selection for WBS2.

0 200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

2.
0

Absolute CUSUMs of the noisy extreme.teeth signal, produced
by WBS2, in decreasing order.

Piotr Fryzlewicz WBS2.SDLL

Motivation behind the SDLL model selection

In theory, the CUSUMs that correspond to change-points are of a
larger order (O(

√
T)) than those that correspond to no

change-points / only noise (O(
√

log T)).

0 100 200 300 400

0.
00

0.
05

0.
10

0.
15

The same sequence but now logged and differenced.

Piotr Fryzlewicz WBS2.SDLL

Motivation behind the SDLL model selection

The spike at 199 coincides with the number of change-points in
the signal and in theory its magnitude →∞ with T , whereas the
magnitudes of all others are bounded.

But choosing the location of the largest spike as the model
dimension would not work as that would lead to the model with no
change-points.

To guard against this, we choose the largest spike such that the
CUSUMs “after” the spike fall below a certain threshold; hence the
name “Steepest Drop to Low Levels”.

Our experience suggests that this threshold does not need to be
chosen very well, and even a rough choice leads to good model
selection. We tune the threshold so that WBS2.SDLL estimates no
change-points for constant signals with 90% or 95% probability.

Piotr Fryzlewicz WBS2.SDLL

Theory for WBS2.SDLL

Theorem. Let f have a finite number N of change-points spaced
by intervals of length O(T). On a set of probability tending to 1
with T , we have N̂ = N and the estimated change-point are
near-optimally close to the true ones.

Piotr Fryzlewicz WBS2.SDLL

Example 2 – even more frequent change-points

The first 100 observations of a signal (length 700) with even more
frequent change-points than before (every 3 and 4 obs), but less
noise.

0 20 40 60 80 100

0.
0

0.
5

1.
0

1.
5

Piotr Fryzlewicz WBS2.SDLL

Example 2 – even more frequent change-points – contd

Boxplots of how the different competitors are doing.

pelt.mbic pelt.bic mosum.lop id fdrs S3IB smuce cumS

-2
00

-1
50

-1
00

-5
0

0

Piotr Fryzlewicz WBS2.SDLL

Example 2 – even more frequent change-points – contd

Boxplots of how the different competitors are doing.

fp js.se js.dj tg wt10 wt13 wb wbs2.90 wbs2.95

-2
00

-1
50

-1
00

-5
0

0

Piotr Fryzlewicz WBS2.SDLL

Example 3 – infrequent change-points

Example from Frick, Munk and Sieling (2014):

0 100 200 300 400 500

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

Piotr Fryzlewicz WBS2.SDLL

Example 3 – infrequent change-points – contd

Barplots of how many (out of 100) estimators have the correct
number of estimated change-points.

pelt.mbic pelt.bic mosum.lop id fdrs S3IB smuce cumS

0
20

40
60

80

Piotr Fryzlewicz WBS2.SDLL

Example 3 – infrequent change-points – contd

Barplots of how many (out of 100) estimators have the correct
number of estimated change-points.

fp js.se js.dj tg wt10 wt13 wb wbs2.90 wbs2.95

0
20

40
60

80

Piotr Fryzlewicz WBS2.SDLL

Example: London house prices

UK House Price Index (http://landregistry.data.gov.uk) for
London. Blue: prime London; red: outer London; monthly change
Feb 1995 – September 2018. Change-point analysis (with
WBS2.SDLL) reveals that prices appear to have evolved very
differently in the two groups since the Brexit referendum.

Time (months)

0 50 100 150 200 250

-3
-2

-1
0

1
2

3

Time (months)

260 265 270 275 280 285

-1
.0

-0
.5

0.
0

0.
5

1.
0

Piotr Fryzlewicz WBS2.SDLL

References

Detecting possibly frequent change-points: Wild Binary
Segmentation 2 and steepest-drop model selection. P.
Fryzlewicz (2019). In submission.

Wild Binary Segmentation for multiple change-point
detection. P. Fryzlewicz (2014). Annals of Statistics, 42,
2243-2281.

R package (on CRAN): breakfast.

(Note: the breakfast package is currently being expanded and
upgraded and it is probably best to wait for the next version.)

Piotr Fryzlewicz WBS2.SDLL

