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This article proposes a ‘tail-greedy’, bottom-up transform for
one-dimensional data, which results in a nonlinear but condition-
ally orthonormal, multiscale decomposition of the data with respect
to an adaptively chosen Unbalanced Haar wavelet basis. The ‘tail-
greediness’ of the decomposition algorithm, whereby multiple greedy
steps are taken in a single pass through the data, both enables fast
computation and makes the algorithm applicable in the problem of
consistent estimation of the number and locations of multiple change-
points in data. The resulting agglomerative change-point detection
method avoids the disadvantages of the classical divisive binary seg-
mentation, and offers very good practical performance. It is imple-
mented in the R package breakfast, available from CRAN.

1. Introduction. Multiple change-point detection in data observed over
time or on a one-dimensional spatial domain is a problem of fundamental im-
portance in applied statistics and has its uses in, for example, bioinformatics
(recombination detection (Minin et al., 2005), prediction of transmembrane
helix locations (Lio and Vanucci, 2000), segmentation of microarray data
(Erdman and Emerson, 2008), detection of changes in the DNA copy num-
ber (Olshen et al., 2004; Venkatraman and Olshen, 2007)), medicine (esti-
mation of phase transitions in pain symptoms (Desmond et al., 2002)), cli-
mate (analysis of tropical cyclone activity (Chu and Zhao, 2004)), security
applications (monitoring for denial-of-service attacks (Wang, Zhang and Shin,
2004) and other intrusions in computer networks (Tartakovsky et al., 2006)),
linguistics (text segmentation (Choi, 2000)), audio and video processing (au-
dio segmentation (Lu, Zhang and Jiang, 2002), speech segmentation (Shriberga et al.,
2000), temporal video segmentation (Koprinska and Carrato, 2001)), qual-
ity control (calibration for aircraft testing (Mahmoud et al., 2007)), or eco-
nomics and finance (identifying and dating change-points in stock market
volatility (Aggarwal, Inclan and Leal, 1999) and in the evolution of macroe-
conomic variables (Bai and Perron, 2003), adaptive trend estimation in mar-
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kets (Schroeder and Fryzlewicz, 2013)).
The above list of applications spans a range of data structures (time series,

regression models, image-valued signals) and includes problems requiring a
posteriori or online change-point detection. Even if the interest is in online
detection, then a posteriori detection of multiple change-points, sometimes
referred to as segmentation, can often serve as the useful first step in the
exploratory analysis of data, and is also the focus of this work.

In this paper, we work in the canonical change-point sequence model

(1) Xt = ft + εt, t = 1, . . . T,

where ft is a deterministic, one-dimensional, piecewise-constant signal with
change-points whose number N and locations η1, . . . , ηN are unknown. In
this article, we assume that the εt’s are iid N(0, 1); in the supplemental
article Fryzlewicz (2017), we show how to extend our methodology to heavy-
tailed, dependent noise. Our task is to estimate N and η1, . . . , ηN under
certain assumptions on N , the magnitudes of the jumps and the minimum
distance between the change-point locations, which will be specified later.

Most of the literature on a posteriori multiple change-point detection
falls into one of two broad categories. In the first category, change-points
are found by minimising a criterion function comprising a likelihood-type
(or least-squares) term measuring the fit of the estimate to the data and a
penalty term to prevent overfitting. In this category, Yao and Au (1989) con-
sider least-squares estimation of ft for a fixedN and iid noise. Braun, Braun and Mueller
(2000) extend this work to noise for which the variance is a function of the
mean. In the Gaussian case, the Schwarz criterion is used to estimate an
unknown but bounded N in Yao (1988), and a more general criterion but
also linear in the number of change-points appears in Lee (1995). For an
unknown but bounded N , Lavielle and Moulines (2000) consider penalised
least-squares estimation, with a penalty linear in the number of change-
points, for dependent εt’s; see also Lavielle (1999) and Lavielle (2005) for
related work. For a fixed N , Pan and Chen (2006) propose a likelihood crite-
rion with a penalty depending not only on the number, but also on the loca-
tions of change-points, favouring more uniformly-spread estimated change-
points; related ideas appear in Zhang and Siegmund (2007). For an unknown
N , Lebarbier (2005) proposes least-squares estimation with a penalty orig-
inating from the model selection approach of Birge and Massart (2001).
Boysen et al. (2009) use the least-squares criterion with a linear penalty
on the number of change-points. More general forms of Schwarz-like penal-
ties are studied, for example, in Wu (2008), Ciuperca (2011) and Ciuperca
(2014). The SMUCE estimator of Frick, Munk and Sieling (2014) can also be
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TAIL-GREEDY DECOMPOSITIONS AND CHANGE-POINT DETECTION 3

cast in the penalised cost function framework. An empirical Bayes approach
to change-point estimation in a marginal likelihood framework appears in
Du, Kao and Kou (2016).

Until recently, penalised approaches could be criticised for being slow; the
typical computational speed of O(T 2) (see e.g. Auger and Lawrence (1989)
and Jackson et al. (2005)) made them impractical for large datasets. Some
recent efforts made it less of an issue: the PELT algorithm by Killick, Fearnhead and Eckley
(2012) and the pruned dynamic programming by Rigaill (2015) both reduce
the speed to linear in best-case scenarios (while retaining quadratic speed
in worst-case ones), and offer fast implementations. Related ideas appear
also in Maidstone et al. (2017). Our experience is that penalty-based meth-
ods in which the penalty has not been chosen adaptively from the data
can struggle to offer uniformly good performance across a variety of signals
“of all shapes and sizes”; we illustrate this behaviour in Section 4.2. Other
attempts to reduce the computational complexity of the problem include
Davis, Lee and Rodriguez-Yam (2006), who (in a time series setting) use
a genetic algorithm to minimise a Minimum Description Length criterion,
and Harchaoui and Lévy-Leduc (2010) who consider the least-squares cri-
terion with a total variation penalty, which enables them to use the LARS
algorithm of Efron et al. (2004) to compute the solution in O(NT log(T ))
time. However, the total variation penalty is not an optimal one for change-
point detection (in the sense of balancing out type-I and type-II errors,
as described in Brodsky and Darkhovsky (1993) and Cho and Fryzlewicz
(2011)). The total variation penalty is also considered in the context of
peak/trough detection by Davies and Kovac (2001), who propose the ‘taut
string’ approach for fast computation. In the context of multiple change-
point detection, it is considered by Rinaldo (2009) (with a subsequent cor-
rection published on the author’s web page) and Rojas and Wahlberg (2014)
as part of the fused lasso penalty, proposed by Tibshirani et al. (2005) and
equivalent to taut string in model (1). Wang (1995) uses the fast discrete
wavelet transform to detect change-points. Huskova and Slaby (2001) and
Eichinger and Kirch (2018) propose the “moving sum” (MOSUM) tech-
nique, which requires the choice of an extra bandwidth parameter. An early
review of some multiple change-point detection methods appears in Braun and Mueller
(1998). Killick et al. (2012) is a repository of publications and software re-
lated to change-point detection.

Besides penalty-based approaches, the other class of methods widely used
in multiple change-point detection are those based on Binary Segmentation
(BinSeg) and its variants. BinSeg is a generic technique in which, initially,
the entire dataset is searched for one change-point. If a change-point is
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detected, the data are then split into two subsegments, defined by the de-
tected change-point. A similar search is then performed on both subseg-
ments, possibly resulting in further splits. The recursion on a given segment
continues until a certain criterion is satisfied on it. BinSeg is a ‘greedy’
procedure in the sense that it is performed sequentially, with each stage
depending on the previous ones. Each stage involves one-dimensional op-
timisation. Possibly the first work to propose BinSeg in a stochastic pro-
cess setting is Vostrikova (1981), who shows consistency of BinSeg for the
number and locations of change-points for a fixed N . Venkatraman (1992)
offers a proof of the consistency of BinSeg for N and the change-point
locations, even for N increasing with T , albeit with sub-optimal assump-
tions and rates for the locations. In a setting similar to Vostrikova (1981)
(for a fixed N and with εt following a linear process), BinSeg is consid-
ered in Bai (1997). Chen, Cohen and Sackrowitz (2011) provide a proof of
consistency of BinSeg for the number of change-points in the case of fixed
N and iid normal εt. BinSeg is used for univariate time series segmenta-
tion in Fryzlewicz and Subba Rao (2014) and Cho and Fryzlewicz (2012),
and for multivariate, possibly high-dimensional time series segmentation in
Cho and Fryzlewicz (2015). The benefits of BinSeg include low computa-
tional complexity (typically of order O(T log(T ))), conceptual simplicity,
and ease of implementation.

Despite these appealing features, BinSeg can perform poorly in the more
challenging settings, see e.g. Fryzlewicz (2014). This is due to its “top-down”
character, by which we mean that it initially considers the entire dataset,
and then narrows its focus from longer to shorter segments of the data. Each
stage of BinSeg involves search for a single change-point, which means that
if a given segment contains multiple change-points in certain unfavourable
configurations, BinSeg may fail to perform adequately on it, as it attempts
to fit the “wrong” model. Fryzlewicz (2014) shows that relatively restric-
tive theoretical assumptions are needed for BinSeg to offer near-optimal
performance in terms of the accuracy of estimation of the change-point
locations. Circular BinSeg (Olshen et al., 2004; Venkatraman and Olshen,
2007), Wild BinSeg (Fryzlewicz, 2014) and the Narrowest-Over-Threshold
method (Baranowski, Chen and Fryzlewicz, 2016) are designed to improve
the performance of BinSeg, but at the cost of increased computational speed.

In this work, we take the view that multiple change-point detection is
a natural ‘multiscale’ problem, i.e. one best solved by combining local and
global information from the data in a hierarchical fashion. We propose a new
approach to multiple change-point detection in model (1), although its prin-
ciples extend to more complex settings. Recalling that the root reason for the
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TAIL-GREEDY DECOMPOSITIONS AND CHANGE-POINT DETECTION 5

frequently weak performance of BinSeg is its top-down nature, the method-
ology we propose has a “bottom-up” character, in the sense that its core
mechanism consists of successively merging those neighbouring regions of the
data which are most likely to correspond to locally constant underlying sig-
nal f , rather than successively sub-dividing data most likely to be separated
by change-points, as is done in BinSeg. In other words, our approach leads
to an “agglomerative” algorithm, in contrast to the “divisive” character of
BinSeg. Agglomerative ideas in the context of change-point detection appear
rarely in the literature, possibly because such algorithms tend to be more
difficult to analyse than divisive ones. Matteson and James (2014) present
a heuristic agglomerative algorithm for multiple change-point detection as a
computationally attractive alternative to their divisive one. Solutions to the
fused lasso (Tibshirani et al., 2005) can be found in a bottom-up way. In the
broader context of nonparametric regression, the “lifting one coefficient at
a time” methodology of Jansen, Nason and Silverman (2009) also involves
a bottom-up but linear procedure, unlike the non-linear and data-adaptive
decomposition methodology proposed in this work.

An important attribute of our new bottom-up method is what we term
“tail-greediness”. In the purely greedy approach, in each pass through the
data, we would only be merging one pair of neighbouring regions, the one
that is the most likely to correspond to locally constant f , as was done in
the heuristic procedure outlined in Fryzlewicz (2007). However, this leads
to a slow algorithm (of computational order O(T 2)) and does not guarantee
statistical consistency in change-point detection, or even when the error in
estimating f is measured in the L2 norm. In this work, we instead propose
to merge multiple (we later specify precisely how many) pairs of neighbour-
ing regions in each pass through the data, those corresponding to the most
likely, the second most likely, etc., segment of constancy in f . Since this algo-
rithm considers the entire lower tail of the distribution (of certain localised
measures of variability in Xt), we refer to it as “tail-greedy”. A “tail-greedy”
algorithm is ‘less greedy than a greedy one’. The use of tail-greediness buys
several attractive properties at once: it leads to an algorithm of computa-
tional complexity O(T log2(T )) regardless of the complexity of the signal
or the number of change-points, and it enables statistical consistency of our
procedure both in the L2 sense and (after some post-processing) in detecting
the number and locations of the change-points in f . The key reason for this
is that each element of Xt is processed at most O(log(T )) number of times.
A similar ‘tail-greedy’ device, but not referred to by this name, was used in
Fryzlewicz and Timmermans (2016) in an image analysis context with the
purpose of accelerating computation; however, unlike in the current work,
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no mention was made of the theoretical performance of the resulting estima-
tor or how tail-greediness affected it. As in Fryzlewicz (2007), our algorithm
involves transformation of the data with respect to a particularly selected
Unbalanced Haar basis; but as our basis is constructed via a tail-greedy pro-
cess, it is inherently different, in important ways already described above,
from that in Fryzlewicz (2007). Our proposed transformation will be referred
to as the Tail-Greedy Unbalanced Haar (TGUH) transform of the data.

The TGUH decomposition algorithm naturally generates a multiscale (hi-
erarchical) data-adaptive decomposition of X = (X1, . . . ,XT )

′ into a set of
difference-type coefficients that form an unbalanced unary-binary tree. The
resulting transformation is non-linear, but conditioning on the order in which
region merges are performed, it is a linear and orthonormal transform of X.

A particularly attractive feature of the bottom-up TGUH approach is
that it offers good practical performance (see Section 4.2), is fast and its
speed of execution does not depend on the number of change-points in data.
In particular, it performs well for signals with a large number of change-
points, a setting in which its competitors tend to struggle. Other potentially
attractive aspects of the TGUH methodology are discussed in Section 5. The
TGUH methodology is implemented in the R package breakfast.

The paper is organised as follows. Section 2 outlines the TGUH data de-
composition algorithm and change-point detection methodology, and Section
3 describes its theoretical properties. Section 4 discusses the choice of the
parameters of the procedure, compares its finite-sample performance with
that of the state-of-the-art competitors, and illustrates it on a data exam-
ple. Section 5 offers an additional discussion. Proofs of our main theoretical
results are in Appendix A and in the supplemental article Fryzlewicz (2017).

2. Methodology. Our procedure for estimating the number N and the
locations η1, . . . , ηN of change-points in ft proceeds in four steps, listed below
and described in the following four subsections.

1. Tail-Greedy Unbalanced Haar (TGUH) decomposition of the input
data X = (X1, . . . ,XT )

′. The transformation is multiscale in the sense
that it decomposes X into a set of adaptively constructed detail-type
coefficients, which are arranged into a natural unary-binary tree (i.e.
one in which “parent” nodes have one or two “children”). In this pro-
cess, a particular data-adaptive Unbalanced Haar (UH) basis of RT is
constructed.

2. Thresholding stage, in which the detail coefficients whose magnitude
is less than a user-specified threshold are set to zero, as long as this
does not spoil the connectedness of the tree of non-zero coefficients.
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3. The inverse transform to that in step 1. At this stage, a piecewise-
constant pre-estimator f̃ is produced, which is consistent for f in
the L2 sense, but which possibly contains spurious estimated change-
points.

4. Post-processing stage, in which the spurious estimated change-points
in f̃ are removed with a high probability, leading to the final estimator
f̂ of N and η1, . . . , ηN .

2.1. Tail-Greedy Unbalanced Haar transformation. The main idea of the
standard Binary Segmentation applied in model (1) is to explain as much
variance in the data as possible in a greedy, top-down fashion by iteratively
fitting to X those step functions with one change-point which lead to the
smallest residual sums of squares. In our proposed alternative approach, we
take the opposite view and start by explaining as little variance of the data
as possible at “fine” level of resolution (i.e. initially considering variability
between consecutive pairs of observations, and then progressively moving up
to larger regions). Explaining the least possible variance amounts to itera-
tively merging those local regions of the domain {1, . . . , T} which are the
most likely to lie within segments of constancy of f . Because the transform
we define is conditionally orthonormal, it preserves the sample variance of
the input data X. Therefore, the bulk of the variance of the input data must
be captured in later stages of the transform, which induces a sparse repre-
sentation of X and enables change-point detection. Another key new feature
of our proposed transform is “tail-greediness”, defined and explained below.
We now outline the decomposition algorithm, which will be referred to as
the Tail-Greedy Unbalanced Haar (TGUH) transformation. (Some readers
may find it useful to refer first to the illustrative Example of the TGUH
transform provided later in this section.)

1. Introduce notation and initiate variables.

(a) Assign the initial “smooth” (local rescaled average) coefficients
to be the data: s = (s1,1, s2,2, . . . , sT,T ) := (X1,X2, . . . ,XT ). The
two subscripts in sp,r denote the initial (p) and final (r) index of
the region of the data used to compute sp,r. Initially, each time
point {t}, t = 1, . . . , T , is a separate region; as the algorithm
progresses, we always have sp,r = (r − p+ 1)−1/2

∑r
s=pXs.

(b) Set j := 1; the parameter j describes the “scale” of the transform.
After each pass through the data (described below) the scale j will
increase by 1. At the “finest” scale j = 1, merges will take place
between some neighbouring regions that are all individual time
points {t}, t = 1, . . . , T . At the “coarsest” scale j = J , there will
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be a single merge between regions {1, . . . , q} and {q + 1, . . . , T}
for a certain q ∈ {1, . . . , T − 1}.

(c) Let ρ ∈ (0, 1) be a constant (usually close to zero), used to de-
scribe the number of pairwise region merges to take place at scale
j, as a function of the number of regions remaining after j − 1
scales of the transform. More precisely, let αj,T denote the num-
ber of regions remaining after j − 1 scales of the transform; we
have α1,T = T . At scale j, the algorithm merges (up to) ⌈ραj,T ⌉
pairs of regions.

2. At each scale j, search the vector s for ⌈ραj,T ⌉ “detail” coefficients
(each representing a suitably scaled difference between the mean values
of the data over a pair of neighbouring regions) that are the lowest
in magnitude. To be more precise, proceed as follows: for each pair
of neighbours (sp,q, sq+1,r), construct a “detail” filter (ap,q,−bq+1,r),
where ap,q, bq+1,r > 0, in the following way.

(a) In order for the transform to produce as sparse a representation
of the input data as possible, the transform needs to produce zero
details over regions of constancy of the data. Thus, one require-
ment on (ap,q,−bq+1,r) is that if (Xp, . . . ,Xr) is a constant vector,
the detail coefficient, defined by

(2) dp,q,r := ap,qsp,q − bq+1,rsq+1,r,

should be zero.

(b) To preserve the orthonormality of the transform, another require-
ment on (ap,q,−bq+1,r) is a

2
p,q + b2q+1,r = 1.

The two requirements (a) and (b) above determine that

(3) ap,q =

{

r − q

r − p+ 1

}1/2

, bq+1,r =

{

q − p+ 1

r − p+ 1

}1/2

.

3. Sort the sequence |dp,q,r| in non-decreasing order. No region must be
merged more than once at each scale j; therefore, consider each element
of the sorted sequence |dp,q,r| from the smallest to the largest. If the
current element considered, indexed (p, q, r), is such that any elements
preceding it (i.e., smaller in magnitude), have been constructed as a
function of sp,q or sq+1,r, remove the current element from the sorted
sequence |dp,q,r|, and proceed to consider the next smallest element of
this sequence in a similar way.
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TAIL-GREEDY DECOMPOSITIONS AND CHANGE-POINT DETECTION 9

4. Extract ⌈ραj,T ⌉ detail coefficients dp,q,r corresponding to the ⌈ραj,T ⌉
smallest elements of the thus-processed sorted sequence |dp,q,r|. It may
be the case that after the removal process described in step 3 above,
there will be fewer than ⌈ραj,T ⌉ detail coefficients left, in which case
extract all of them. Denote these (up to) ⌈ραj,T ⌉ extracted detail coef-

ficients dp,q,r by d
(j,k)
p,q,r, where k = 1, . . . ,K(j) indexes them according

to increasing p. Store the detail coefficients d
(j,k)
p,q,r in memory.

Note: the term “tail-greedy” originates from the fact that we are
simultaneously extracting (up to) ⌈ραj,T ⌉ detail coefficients that are
the smallest in magnitude, and hence target the entire lower tail of
the distribution of their magnitudes. The tail-greediness has important
and far-reaching consequences for the computational complexity and
the theoretical guarantees of the performance of the algorithm, and
we discuss them later.

5. For each d
(j,k)
p,q,r, using the filter (bq+1,r, ap,q), which is orthogonal to

(ap,q,−bq+1,r), produce the corresponding new “smooth” coefficient
sp,r = bq+1,rsp,q + ap,qsq+1,r = sp,r = (r− p+1)−1/2

∑r
s=pXs. Replace

the pair of neighbours (sp,q, sq+1,r) with the new smooth coefficient
sp,r, i.e. “merge” the regions {p, . . . , q} and {q + 1, . . . , r} into the
single region {p, . . . , r}.
Note: The new (detail, smooth) pair (d

(j,k)
p,q,r, sp,r) is the result of a

rotation of the pair (sp,q, sq+1,r). To see this, note that
(4)
(

d
(j,k)
p,q,r

sp,r

)

=

[

ap,q −bq+1,r

bq+1,r ap,q

](

sp,q
sq+1,r

)

=: Λp,q,r

(

sp,q
sq+1,r

)

.

The rotation interpretation comes from the orthonormality of Λp,q,r.
6. Set j := j + 1 and go to 2., unless only one detail coefficient was

extracted in step 4, for which, necessarily, (p, r) = (1, T ). At this point,
the TGUH transform is completed.

Denote by J the largest value of the scale parameter j for which a

merge of regions took place. The vector of detail coefficients d
(j,k)
p,q,r pro-

duced as above, along with the single remaining smooth coefficient s1,T ,
defines the Tail-Greedy Unbalanced Haar (TGUH) transform of the in-

put vector X = (X1, . . . XT )
′: TGUH(X) := (d

(j,k)
p,q,r, j = 1, . . . , J ; k =

1, . . . ,K(j)) ‖ (s1,T ), where the ‖ symbol denotes vector concatenation.

The coefficients d
(j,k)
p,q,r can be viewed as scalar products between X and

a particular basis of Unbalanced Haar (UH) vectors (Fryzlewicz, 2007) cho-
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sen from the data, which is however substantially different from that pro-
posed in the above work, as it has been selected via a tail-greedy algo-

rithm. More formally, let ψ(j,k) be vectors such that d
(j,k)
p,q,r = 〈X,ψ(j,k)〉

and s1,T = 〈X,ψ(0,0)〉, then the set {ψ(j,k)} is an orthonormal Unbalanced

Haar basis for RT . Occasionally, we will write d(j,k) or dp,q,r for d
(j,k)
p,q,r, as

for a particular TGUH transform, there is a unique correspondence be-
tween the values of the triples p, q, r and those of the pairs (j, k). Although
TGUH(X) is a data-adaptive and non-linear transform of X (in the sense
that {ψ(j,k)} is also a function of X, i.e. formally, ψ(j,k) = ψ(j,k)(X)),
it is also linear and orthonormal conditioning on the order in which the
regions have been merged. In particular, with X̄ = T−1

∑T
s=1Xs, this

implies Parseval’s identities
∑T

s=1X
2
s =

∑J
j=1

∑K(j)
k=1 (d

(j,k))2 + s21,T and
1
T

∑T
s=1X

2
s −(X̄)2 = 1

T

∑J
j=1

∑K(j)
k=1 (d

(j,k))2. Since the coefficients d(j,k) aris-
ing at fine scales (i.e. those indexed by small values of j) are small in magni-
tude by construction, the above identities imply that the bulk of the variance
of the input vector Xt is captured by the detail coefficients d(j,k) arising at
coarser scales (i.e. those indexed by larger values of j). This typically im-
plies a certain “sparsity of representation” by which the main features of
the input vector Xt tend to be encoded in only a few, usually coarse-scale,
detail coefficients d(j,k).

Example. We now provide a cartoon example of how the algorithm
may proceed at the first two scales (j = 1, 2). Suppose the input vector
is (X1, . . . ,X9) and ρ is such that the algorithm merges two regions at both
scale j = 1 and scale j = 2.

Scale j = 1. From formula (3), we have that at scale j = 1, the coeffi-
cients (ap,q,−bq+1,r) = (1/

√
2,−1/

√
2), since p = q and r = q + 1, or in

other words, all regions considered contain only individual data points. Sup-
pose the two smallest details in absolute value are, in this order, d3,3,4 =
(X3 − X4)/

√
2 and d4,4,5 = (X4 − X5)/

√
2. As described in Step 3 of the

TGUH algorithm given earlier in this section, no region must be merged
more than once at each scale, and therefore we must remove d4,4,5 from
consideration as X4 is already used in the (smaller) coefficient d3,3,4. Sup-
pose the next smallest detail coefficient is d6,6,7 = (X6 − X7)/

√
2. As per

Step 4 of the algorithm, we record the details d
(1,1)
3,3,4 = (X3 − X4)/

√
2 and

d
(1,2)
6,6,7 = (X6−X7)/

√
2. As described in Step 5, we replace the pairs of neigh-

bours (s3,3, s4,4) = (X3,X4) and (s6,6, s7,7) = (X6,X7) with, respectively,
s3,4 = (X3+X4)/

√
2 and s6,7 = (X6+X7)/

√
2. At the end of the above pass

through the data at scale j = 1, the input vector will therefore be reduced
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TAIL-GREEDY DECOMPOSITIONS AND CHANGE-POINT DETECTION 11

to (s1,1, s2,2, s3,4, s5,5, s6,7, s8,8, s9,9) =
(

X1,X2,
X3+X4√

2
,X5,

X6+X7√
2
,X8,X9

)

.

At scale j = 1, we have merged the pairs of regions ({3}, {4}) and ({6}, {7}).
Scale j = 2. At scale j = 2, not all pairs of coefficients (ap,q,−bq+1,r)
will be equal; as is apparent from formula (3), those used to contrast re-
gions of size 1 with regions of size 2 will be different from those used to
contrast pairs of regions of size 1. More specifically, for example, we will
have (a1,1,−b2,2) = (1/

√
2,−1/

√
2), (a2,2,−b3,4) = (

√
2/

√
3,−1/

√
3) and

(a3,4,−b5,5) = (1/
√
3,−

√
2/

√
3). Suppose the two smallest details in abso-

lute value are d3,4,5 = 1√
3

(

X3+X4√
2

)

−
√
2√
3
X5 and d8,8,9 = X8−X9√

2
. We record

the details d
(2,1)
3,4,5 = d3,4,5, d

(2,2)
8,8,9 = d8,8,9, and replace the pairs of neighbours

(s3,4, s5,5) and (s8,8, s9,9) with, respectively, s3,5 =
√
2√
3

(

X3+X4√
2

)

+ 1√
3
X5 =

X3+X4+X5√
3

and s8,9 =
X8+X9√

2
. Therefore, at the end of the pass through the

data at scale j = 2, the input vector will be reduced to (s1,1, s2,2, s3,5, s6,7, s8,9) =
(

X1,X2,
X3+X4+X5√

3
, X6+X7√

2
, X8+X9√

2

)

.

We do not show subsequent scales j, but the transform continues until
the input vector has been reduced to the single coefficient s1,9 =

1
3

∑9
i=1Xi.

The coefficients d
(1,2)
6,6,7 and d

(2,2)
8,8,9 are both of the form Xi/

√
2−Xi+1/

√
2 (for

i = 6 and i = 8, respectively), even though they “live” on different scales:
j = 1 and j = 2, respectively. In this way, TGUH is different from the
classical (non-adaptive) wavelet transform, where the scale is in one-to-one
correspondence with the form of the filter used at that scale. The coefficients

d(j,k) can be visualised as forming a unary-binary tree: for example, d
(2,1)
3,4,5

can be viewed as a “parent” coefficient of d
(1,1)
3,3,4 because d

(2,1)
3,4,5 is a function of

{X3,X4,X5}, and d(1,1)3,3,4 is a function of {X3,X4}, a subset of {X3,X4,X5}.
In this sense, the coefficient d

(2,1)
3,4,5 has no more “children” at scale j = 1. In

general, a detail coefficient at scale j+1 may have 0, 1 or 2 children at scale
j. This completes the example.

We now comment on the computational complexity of the TGUH trans-
form. The number of regions remaining after j scales is at most (1 − ρ)jT ,
and, solving for the smallest j such that (1−ρ)jT ≤ 1, we have that the trans-
form needs at most a logarithmic number of scales, ⌈log(T )/ log{(1−ρ)−1}⌉,
to terminate by reaching the scale, denoted by J , at which there is only
one region remaining. The costliest step at each scale is the sorting in
Step 3 of the TGUH algorithm, which takes up to O(T log(T )) operations.
Therefore, the computational complexity of the entire TGUH transform is
O(T log2(T )). This is in contrast to the bottom-up transform introduced in
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12 P. FRYZLEWICZ

Fryzlewicz (2007), in which only one region merge takes place at each scale
j, and therefore its computational complexity is O(T 2). It is important to
bear in mind that O(T log2(T )) is an upper bound; Section 4.1 offers numer-
ical evidence that the actual average computation times of the (complete)
TGUH algorithm may be faster.

2.2. Connected thresholding of detail coefficients. As per the discussion
in the preceding section regarding the “sparsity of representation”, the tail-
greediness and the conditional orthonormality of the TGUH transform imply
that the bulk of the variability of the input signal X will be concentrated in
hopefully only a few large, coarse-scale detail coefficients d(j,k), while many
fine-scale coefficients d(j,k) will be small and possibly carry mostly noise.
Therefore, thresholding of the detail coefficients d(j,k) (i.e. setting the small
ones to zero but retaining the large ones) appears to be a sensible strategy for
removing noise from Xt and therefore estimating ft and its change-points.

Let f = (f1, . . . , fT )
′ be the true unknown signal in (1) and let µ(j,k) =

〈f, ψ(j,k)〉 be the UH coefficients of f , computed with respect to the basis
{ψ(j,k)} chosen (from the data X) by the TGUH transform. We wish to
estimate f by estimating each µ(j,k) and then inverting the TGUH transform.
For each (j, k), j = 1, . . . , J , k = 1, . . . ,K(j), let Cj,k denote the set of all

those indices (j′, k′), j′ = 1, . . . , j, k′ = 1, . . . ,K(j′) for which d
(j′,k′)
p′,q′,r′ is

a “child” of d
(j,k)
p,q,r, i.e. has been computed using a portion of the data X

that is a subset of that used by d
(j,k)
p,q,r. More formally, Cj,k = {(j′, k′), j′ =

1, . . . , j, k′ = 1, . . . ,K(j′) : d
(j′,k′)
p′,q′,r′ is such that [p′, r′] ⊆ [p, r]}. For (j, k) 6=

(0, 0), we define our estimator µ̂(j,k) of µ(j,k) by

(5) µ̂(j,k) = d(j,k)p,q,r I

{

∃(j′, k′) ∈ Cj,k
∣

∣

∣
d
(j′,k′)
p′,q′,r′

∣

∣

∣
> λ(q′ − p′ + 1, r′ − q′)

}

,

where I{·} is the indicator function and λ(·, ·) is a certain threshold, whose
value will be specified later. In other words, we estimate µ(j,k) by zero if

and only if both d
(j,k)
p,q,r and all its children coefficient fall below their re-

spective thresholds; otherwise, µ(j,k) is estimated by d
(j,k)
p,q,r. In this way, the

unary-binary tree formed by the non-zero estimates µ̂(j,k) is connected. The
process of producing this tree as described in formula (5) can be viewed as
“pruning” those branches of the tree of the detail coefficients d(j,k) whose
all components fall under their respective thresholds. This process promotes
the survival of coarse-scale detail coefficients, and the killing off of fine-scale
ones. We will refer to this procedure as “connected thresholding”.

The main advantage of using connected thresholding is that the number
of estimated change-points in f̃ (the piecewise-constant estimate f produced
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TAIL-GREEDY DECOMPOSITIONS AND CHANGE-POINT DETECTION 13

by the inverse TGUH transformation of µ̂(j,k) described in Section 2.3) is
equal to the number of coefficients d(j,k) that survive the thresholding. In
diagonal thresholding (i.e. thresholding in which decisions as to whether to
keep or kill a detail coefficients are made on the basis of the value of this
coefficient alone), the number of estimated change-points is at least as large
as the number of detail coefficients that survive the thresholding.

2.3. Inverse TGUH transformation. The inverse TGUH transformation,
denoted by TGUH−1, is performed in linear computational time by undo-
ing the rotations specified in formula (4), in reverse order to that in which
they were originally performed. Each rotation, being an orthonormal trans-
form, is undone by using the same filters as those forming the rows of its
corresponding matrix Λp,q,r. The initial estimate f̃ of f is obtained as

(6) f̃ = TGUH−1
{

(µ̂(j,k), j = 1, . . . , J ; k = 1, . . . ,K(j)) ‖ (s1,T )
}

.

We now illustrate the mechanics of the inverse TGUH transformation by
continuing the Example of Section 2.1. One of the steps at scale j = 2 in the
Example was the creation of the coefficient pair (d3,4,5, s3,5) from (s3,4, s5,5).
This happened as the result of the rotation (see formula (4)):

(

d3,4,5
s3,5

)

=

[

1√
3

−
√
2√
3√

2√
3

1√
3

]

(

s3,4
s5,5

)

=: Λ3,4,5

(

s3,4
s5,5

)

.

As Λ3,4,5 is an orthonormal matrix, this operation is easily undone as follows,
to produce the corresponding step of the inverse transform (i.e. to create
(s3,4, s5,5) from (d3,4,5, s3,5)):

(

s3,4
s5,5

)

=

[

1√
3

√
2√
3

−
√
2√
3

1√
3

]

(

d3,4,5
s3,5

)

.

2.4. Post-processing for consistent change-point detection. By Theorem
3.1, the piecewise-constant estimator f̃ contains Ñ ≤ C N log(T ) change-
points with a high probability (where C is a constant), and therefore poten-
tially overestimates the true numberN of change-points. The post-processing
described in this section proceeds in the following two stages.

Stage 1. Transformation of f̃ into an intermediate estimator ˜̃f , which, like
f̃ , is consistent for f in the L2 sense, but also potentially overestimates N .

However, the number ˜̃N of change-points in
˜̃
f is such that ˜̃N ≤ 2(N + 1).

Unlike Ñ , the bound on ˜̃N does not contain the log(T ) term.
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14 P. FRYZLEWICZ

The estimator
˜̃
f is constructed as follows. First, represent the pre-estimate

f̃ as a smooth vector s = (s1,η̃1−1, sη̃1,η̃2−1, . . . , sη̃
Ñ
,T ), where η̃i, i = 1, . . . , Ñ

are the time points, arranged in increasing order, such that f̃η̃i 6= f̃η̃i−1. With
vector s as input, execute the TGUH algorithm as described in Section 2.1,
under the following constraint: at each consecutive scale j, only produce one

coefficient d(j,1), and only if d(j,1) = d
(j,1)
p,q,r ≤ λ(q − p+1, r − q), where λ(·, ·)

is the same as in Section 2.2. If the above inequality is not satisfied, stop
and denoting the transformed smooth vector at that stage of the transform

by s′ = (s1, ˜̃η1−1, s ˜̃η1, ˜̃η2−1, . . . , s ˜̃η ˜̃
N
,T ), construct the intermediate estimator

˜̃
f

as

(7)
˜̃
ft =

1
˜̃ηi − ˜̃ηi−1

˜̃ηi−1
∑

l=˜̃ηi−1

Xl for t ∈ [˜̃ηi−1, ˜̃ηi − 1], i = 1, . . . , ˜̃N,

where ˜̃η0 = 1 and ˜̃η ˜̃N+1
= T + 1. Since Ñ ≤ C N log(T ), the reduction of

the vector s to s′ is particularly fast and takes O(log(T )) operations.

Stage 2. Transformation of ˜̃f into the final estimator f̂ , which estimates the
number N and the locations η1, . . . , ηN of change-points in f consistently
with a high probability.

The estimator f̂ is constructed by pruning the estimated change-points
˜̃ηi as follows. (We use the convention ˜̃η0 = 1 and ˜̃η ˜̃N+1

= T + 1.)

1. For each i = 1, . . . , ˜̃N , use formula (2) to compute the coefficient

dpi,qi,ri where pi =
⌊

˜̃ηi−1+˜̃ηi
2

⌋

, qi = ˜̃ηi − 1 and ri =
⌈

˜̃ηi+1+˜̃ηi
2

⌉

− 1.

2. With i0 = argmini |dpi,qi,ri|, if |dpi0 ,qi0 ,ri0 | < λ(qi0 − pi0 + 1, ri0 − qi0),

then remove ˜̃ηi from the set of estimated change-points, reduce ˜̃N by
1, relabel the remaining change-points (in increasing order) as ˜̃ηi for

i = 0, . . . , ˜̃N + 1, and go to step 1.

3. Otherwise, stop, set N̂ = ˜̃N and relabel the remaining change-points
(in increasing order) as η̂i for i = 0, . . . , N̂ + 1, where η̂0 = 1 and
η̂N̂+1 = T + 1.

The key aspect of Stage 2 of our post-processing procedure is that each co-
efficient dpi,qi,ri is computed in such a way that the left and right ends of
its support, pi and ri respectively, are located mid-way between the current
change-point ˜̃ηi being examined and its left-hand and right-hand neighbours

(respectively). This ensures removal of the spurious change-points in
˜̃
f while

preserving the non-spurious ones, with high probability. The resulting esti-
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TAIL-GREEDY DECOMPOSITIONS AND CHANGE-POINT DETECTION 15

mator f̂ is constructed as

(8) f̂t =
1

η̂i − η̂i−1

η̂i−1
∑

l=η̂i−1

Xl for t ∈ [η̂i−1, η̂i − 1], i = 1, . . . , N̂ .

f̂t is our final estimator of f . We take N̂ to be our estimator of N , the true
number of change-points in f , and η̂i to be our estimators of ηi, the true
locations of change-points in f .

Two other possible refinements to our post-processing methodology are
mentioned in the supplemental article Fryzlewicz (2017), Section 2.

3. Theoretical behaviour. Here and throughout the paper, for any
estimator f̃ of f , we denote its squared empirical L2 risk as ‖f̃ − f‖2T =

T−1
∑T

i=1(f̃i − fi)
2. This is a commonly used error measure whose expecta-

tion was also used as a risk measure e.g. in Donoho and Johnstone (1994).

Whenever we refer to the estimators f̃ or
˜̃
f as “L2-consistent” or “consis-

tent” below, we mean it in the sense that ‖f̃ − f‖2T → 0 or ‖ ˜̃f − f‖2T → 0,
respectively, on a set of probability approaching one with T . We first demon-
strate the L2 behaviour of the initial estimator f̃ .

Theorem 3.1. Let Xt follow model (1) and let the errors εt be indepen-
dent and standard normal. Let f̃ be as in formula (6). Fix any δ > 0 and
let the thresholding function λ(·, ·) of formula (5) take one of the two forms:
λ1(u, v) = 2{(1 + δ) log(T )}1/2 or λ2(u, v) = {2(1 + δ) log(T )}1/2(u1/2 +
v1/2)/(u+ v)1/2. On the set Aδ,T , defined by

Aδ,T =

{

∀ 1 ≤ l ≤ m ≤ T (m− l + 1)−1/2

∣

∣

∣

∣

∣

m
∑

i=l

εi

∣

∣

∣

∣

∣

≤ {2(1 + δ) log(T )}1/2
}

,

which satisfies P (Aδ,T ) → 1 as T → ∞ for all δ > 0, we have

‖f̃−f‖2T ≤ 2(1+δ)T−1 log(T )
{

1 + (3 + 2
√
2)N⌈log(T )/ log{(1 − ρ)−1}⌉

}

,

and the piecewise-constant estimator f̃ contains Ñ ≤ C N log(T ) change-
points, where C is a constant.

Therefore, f̃ is L2-consistent ifN log2(T )/T = o(1). The key driver behind
the L2 consistency result of Theorem 3.1 is the property of our tail-greedy
algorithm by which multiple region merges take place at each scale j of the
transform. L2 consistency cannot be guaranteed if only one region merge
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16 P. FRYZLEWICZ

takes place at each scale, as is the case in the bottom-up method introduced
in Fryzlewicz (2007).

In the idealized case in which fi were constant for all i and the analyst
knew this, they would use the sample mean X̄ = T−1

∑T
t=1Xt to estimate

f = fi, leading to ‖X̄ − f‖2T = OP (T
−1). In the setting of Theorem 3.1,

If the number N of change-points did not increase with T , the rate for
‖f̃ − f‖2T , O(N log2(T )/T ), would be within a square-logarithmic factor of

this idealized rate. We now turn to the intermediate estimator
˜̃
f .

Theorem 3.2. Let Xt follow model (1) and let the errors εt be inde-

pendent and standard normal. Let
˜̃
f be as in formula (7). Fix any δ > 0

and let the thresholding function λ(·, ·) be as in Theorem 3.1. On the set
Aδ,T (defined in Theorem 3.1), which satisfies P (Aδ,T ) → 1 as T → ∞ for

all δ > 0, we have ‖ ˜̃f − f‖2T = O(NT−1 log2(T )). Further, using the no-

tation η0 = 1, ηN+1 = T + 1, the piecewise-constant estimator ˜̃f contains
at most two change-points between each pair (ηi, ηi+1) of change-points in

f , for i = 0, . . . , N . Therefore the number ˜̃N of change-points in
˜̃
f satisfies

˜̃N ≤ 2(N + 1).

To conclude, we describe the behaviour of the final estimator f̂ .

Theorem 3.3. Let Xt follow model (1) and let the errors εt be inde-
pendent and standard normal. Let f̂ be as in formula (8). Denote the num-
ber of change-points in f̂ by N̂ and their locations, in increasing order, by
η̂1, . . . , η̂N̂ . Fix any δ > 0 and let the thresholding function λ(·, ·) be as in
Theorems 3.1 and 3.2. Let the number N of change-points in f be finite.
Denoting their locations, in increasing order, by η1, . . . , ηN , assume that
mini=1,...,N |fηi − fηi−1| ≥ f > 0, and mini=1,...,N+1 |ηi − ηi−1| ≥ bT where

bT is such that log2(T ) = o(bT ). Then, on the set Aδ,T (defined in Theorem
3.1), which satisfies P (Aδ,T ) → 1 as T → ∞ for all δ > 0, and for T large

enough, we have N̂ = N and |η̂i−ηi| ≤ C log2(T ) for all i = 1, . . . , N , where
C is a constant.

The error rate for the location estimators η̂i can be improved by applying
the refinement described in item (B) of Section 2 in the supplemental article
Fryzlewicz (2017).

The importance of the iid standard normal assumption on the εt’s in this
section is that it enables the result that P (Aδ,T ) → 1 as T → ∞ for all
δ > 0, thanks to the result of Lemma 1 in Yao (1988). We relax both the
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TAIL-GREEDY DECOMPOSITIONS AND CHANGE-POINT DETECTION 17

Gaussianity and the independence of the εt’s in the supplemental article
Fryzlewicz (2017).

4. Practicalities, numerical study and data analysis.

4.1. Parameter choice and other practicalities. The discussion of Sec-
tions 4.1 and 4.2 applies to εt being iid Gaussian. As is commonly done in
wavelet function estimation in Gaussian noise (either explicitly, or implic-
itly by applying suitably scaled thresholds), we divide all input data to the
TGUH algorithm by the Median Absolute Deviation estimate of Var1/2(εt).

To optimise the finite-sample performance of the TGUH estimator f̂ (and
the implied estimators N̂ and η̂1, . . . , η̂N̂ ), we conducted a large-scale simu-
lation study involving random signals drawn in the same way as in Section
4.1 of Fryzlewicz (2014). Our recommendations for the default parameter
choices for f̂ , described below, are based on the outcome of this study.

Post-processing, Stage 1. We found that Stage 1 of the post-processing
procedure from Section 2.4 rarely made a difference, in the sense that only
in a very small proportion of cases did it lead to the pruning of change-points
in f̃ , if used with the same threshold λ(·, ·) as that used in the construction of
f̃ . When it did result in pruning, this tended to lead to small improvements
in the estimation of N and η1, . . . , ηN . Overall, we do not issue a strong
recommendation as to whether or not Stage 1 should be used, but we disable
it in the remainder of the paper, to minimise computation times.

Post-processing, Stage 2. Stage 2 of the post-processing procedure tended
to over-prune change-points, in the sense that it frequently removed at least

some of those change-points in
˜̃
f which appeared to be the correct and

unique estimates of ηi. This happened when the Stage 2 post-processing
was applied with the same threshold λ(·, ·) as that used in the construction

of f̃ and
˜̃
f . The use of a lower threshold in Stage 2 tended to make the

Stage 2 post-processing less aggressive, but this came at the cost of having

to choose two different thresholds (one in the construction of and f̃ and
˜̃
f ,

and the other in the Stage 2 post-processing), which added an extra layer
of complexity. For this reason, we recommend disabling the Stage 2 post-
processing as a default; this is done in the remainder of the paper.

Threshold λ(·, ·). The results of Theorems 3.1 – 3.3 state consistency when
thresholds λ1(u, v) = 2{(1 + δ) log(T )}1/2 or λ2(u, v) = (u1/2 + v1/2)/(u +
v)1/2{2(1 + δ) log(T )}1/2 are used (observe that λ2 ≤ λ1). In practice, we
found that thresholds even lower than λ2 worked better (Theorems 3.1 – 3.3
do not claim that λ2 is the lowest threshold that guarantees consistency). In
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18 P. FRYZLEWICZ

T 103 104 105 106 107

YT 0.098 0.59 6.12 75.97 1616.93
Table 1

Execution times YT (in seconds) of the TGUH algorithm coded in pure R, executed on a
standard iMac (late 2015) with white noise vectors of length T on input.

the simulation study, we only considered thresholds constant in u, v. With
δ fixed at δ = 0.01, and the parameterisation λ = C{2(1 + δ) log(T )}1/2, we
tested C varying from 0.8 to 1.2. The performance appeared to be the best
for values of C close to 1, and we therefore recommend C = 1 as a suitable
default and use it in the remainder of the paper.

The ρ parameter. ρ is a parameter that describes the upper bound on
the number of region merges that take place at each scale, as a proportion
of the number of distinct regions remaining. Small values of ρ slow down
the procedure; large values decrease its adaptivity: ρ = 1/2 reduces the
TGUH transform to a decomposition similar to the standard non-adaptive
Haar wavelet transform. We did not optimise for ρ but used ρ = 0.01 in the
simulation study. This is also the value used in the remainder of the paper.

The β parameter. The β parameter controls the “balancedness” of the
estimated change-points η̂i and is described in refinement (A) in Section 2
of the supplemental article Fryzlewicz (2017). We tested β = 0 (no control)
and β = 0.05 and found that β = 0.05 led to improvement in the accuracy
of the N̂ estimator. We use β = 0.05 in the remainder and recommend it as
a default value of this parameter. Smaller values of β may be more suitable
for signals in which change-points are expected to occur e.g. very close to
the left or right boundary of the data.

Computation times. With the parameters set as above, we conducted a
simulation study in which we numerically investigated the execution times
of the TGUH algorithm (on a standard iMac) on white noise vectors of sizes
103, 104, . . . , 107. These are listed in Table 1. Denoting the execution times
in seconds by YT , we then fitted the best-fitting curve T loga(T ) by regress-
ing log(YT /T ) linearly on log(log(T )) and estimating a by least squares. The
resulting value of a was 0.45, therefore our belief is that the “average” com-
putation times for the TGUH algorithm may be closer to O(T log1/2(T ))
than to O(T log2(T )), at least for data within this range of sample sizes.

4.2. Comparative simulation study. To test the finite-sample performance
of the TGUH algorithm, we compare it against what we believe is the state of
the art in multiple change-point detection for iid Gaussian noise. We consider
the following competing methods: PELT (R package changepoint version
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TAIL-GREEDY DECOMPOSITIONS AND CHANGE-POINT DETECTION 19

2.2.2 published on 2016-10-04, see Killick, Fearnhead and Eckley (2012)),
Segmentor3IsBack (S3IB; R package Segmentor3IsBack version 2.0 pub-
lished on 2016-06-30, see Rigaill (2015)), SMUCE (R package stepR version
2.0-1 published on 2017-05-19, see Frick, Munk and Sieling (2014)), FDRSeg
(R package FDRSeg version 1.0-1, available from
http://www.stochastik.math.uni-goettingen.de/fdrs, accessed on 2017-
08-24, see Li, Munk and Sieling (2016)), WBS with the sSIC penalty, WBS
with threshold constant C = 1, BinSeg with threshold constant C = 1 (for
all three procedures, see Fryzlewicz (2014) and the R package wbs) and
TGUH. All the procedures are called with their default parameters; the ex-
act calls for PELT, Segmentor3IsBack are as in Fryzlewicz (2014); the calls
for SMUCE and FDRSeg use the stepFit and fdrseg routines, respectively.
In those methods that require it, including TGUH, the standard deviation
σ of the noise εt is estimated via the Mean Absolute Deviation estimator.
PELT and S3IB are algorithms for fast minimisation of penalised minus
log-likelihood criteria, and the SMUCE and FDRSeg estimators can also be
cast in a penalised framework. BinSeg and WBS are multiscale methods.

Our test models are as follows (the signals in models (1)–(5b) are defined
in Appendix B of Fryzlewicz (2014) and shown in the supplemental article
Fryzlewicz (2017)): (1) the blocks model (length 2048, 11 change-points),
(2a) the fms model (length 497, 6 change-points), (2b) as in (2a) but with
σ = 0.4, (3) the mix model (length 560, 13 change-points), (4a) the teeth10
model (length 140, 13 change-points), (4b) as in (4a) but with σ = 0.5, (5a)
the stairs10 model (length 150, 14 change-points), (5b) as in (5a) but with
but with σ = 0.4. Models (1), (2a), (3), (4a) and (5a) were used as test beds
in Fryzlewicz (2014). The rationale behind adding models (2b), (4b) and
(5b) is that they contain higher noise levels and are therefore more testing
than (2a), (4a), (5a). We further investigate the following three models:
(6a) the extreme.teeth.5 signal, defined as oscillating between 0 and 1
with change-points every five observations, with σ = 0.2 (length 1000, 199
change-points); (6b) the extreme.teeth.10 signal, defined as oscillating
between 0 and 1 with change-points every ten observations, with σ = 0.35
(length 1000, 99 change-points); (6c) the extreme.teeth.20 signal, defined
as oscillating between 0 and 1 with change-points every twenty observations,
with σ = 0.5 (length 1000, 49 change-points). Models (6a)-(6c) are designed
to test the performance of the competitors for signals with large numbers of
frequently occurring change-points.

We set the random seed to 1 before running 100 simulations for each of
the test signals and each of the competitors. The performance metrics are:
some aspects of the distribution of N̂ −N , and the Mean-Square Error of f̂t
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in estimating ft (for each method, f̂t is constructed as a piecewise-constant
function whose value between each pair of consecutive estimated change-
points is the mean of the data over the interval delimited by this pair of
change-points). Tables 2 and 3 show the results. We now briefly describe the
performance of each method in turn.

PELT appears to systematically underestimate the number of change-points,
which is at least partly due to the default penalty used in version 2.2.2 of
the changepoint package, which is MBIC. (However, in our experience it is
rare for any penalized method to offer good performance for any particular
penalty across a wide range of signals.)

S3IB offers very good or acceptable performance in models (1)–(4b), but
not so in models (5a), (5b), in which it never estimates the right number
of change-points (despite the number of change-points in these models not
exceeding the upper bound considered by S3IB, which is 14). In models
(6a)–(6c), S3IB consistently estimates 0, rather than 14 change-points.

SMUCE appears to systematically underestimate N .

FDRSeg is a very good performer throughout, even though as far as the
estimation of the number of change-points is concerned, it appears to be
significantly behind the best method in many of the models. In models (6a)–
(6c), it is the only method besides TGUH that is able to detect the right
number of change-points in at least some simulations. We also comment on
the execution speed of FDRSeg. When called with its default parameters on
a signal whose length exceeds the length of previously processed signals, the
routine fdrseg runs a Monte Carlo simulation, which appears to be costly.
For example, the first execution of fdrseg on a signal of length 104 took
over 400 seconds on a standard iMac (late 2015). We attempted to input a
signal of length 105 but interrupted the execution after 25 minutes. This has
to be contrasted with the execution times for TGUH reported in Table 1.

WBS sSIC offers excellent performance for models (1)–(5b), which contain
relatively small numbers of change-points with (mostly) large separation
between them. It understandably performs poorly for models (6a)–(6c); this
is due both to the sSIC penalty generally struggling for models with many
change-points and to the default number of random intervals used being
5000, which is insufficient in these models.

WBS with threshold constant C = 1 has the tendency to overestimate the
true number of change-points in most of the models (1)–(5b). However, it
underestimates the true number of change-points in models (6a)–(6c). This
is due to the default number of random intervals drawn (M = 5000) in
the WBS algorithm being insufficient for these change-point-rich signals.
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We also ran the WBS method with threshold constant C = 1 on models
(6a)–(6c) but with the number of intervals increased to M = 200000. This
resulted in the number of change-points being correctly estimated in 17, 44,
50 simulations out of 100, for models (6a), (6b), (6c), respectively; this came
at the cost of increased computation time. However, the increase in M did
not induce good performance in models (1)–(5b).

BinSeg with threshold constant C = 1 performs poorly for many (but not
all) of the models.

TGUH offers excellent performance in all of the models and it is either the
best of not far behind the best performer in each model in terms of the
accurate estimation of N . In particular, in models (6a)–(6c), it is the only
method besides FDRSeg that is able to detect the right number of change-
points in at least some simulations. It is interesting to observe that e.g.
for the blocks model, the MSE of TGUH appears to be closer to BinSeg
than, say, to WBS. This is unsuprising given that TGUH and BinSeg have
similarly low upper bounds on their computational complexities (which are
guaranteed irrespective of the signal), which cannot be said of WBS. How-
ever, we also recall the remark in item (B) of Section 2 of the supplemental
article Fryzlewicz (2017) regarding the possibility of improving (in any mul-
tiple change-point estimation technique including TGUH) the accuracy of
estimates η̂i by iterative re-estimation. Finally, the computational speed of
the TGUH algorithm is independent of the input signal, and in particular of
the number of its change-points. The same cannot be said of e.g. WBS, in
which, as mentioned earlier, more intervals need to be drawn for the method
to perform well on signals with numerous change-points.

To summarise, TGUH emerges as an overall winner, which combines a
high degree of accuracy with low computational complexity independent of
the input signal. Its performance is particularly impressive in signals with
frequent change-points. In Section 3 of the supplemental article Fryzlewicz
(2017), we further investigate the performance of the TGUH method in
estimating the locations ηi of the true change-points in models (1)–(5b).

4.3. Data example. We analyse monthly percentage changes in the UK’s
Land Registry House Price Index (HPI), from January 1995 to December
2015, in three east London boroughs: Hackney, Newham and Tower Hamlets.
The HPI provides an overall measure of completed house sale transactions,
and the methodology used in its computation is available from the Land
Registry website. The data, accessed in February 2016, are available from
http://landregistry.data.gov.uk/app/hpi. Hackney and Tower Ham-
lets are located more centrally than Newham, and both border on the City
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N̂ −N

Method Model < 0 0 > 0 Ê(N̂ −N) V̂ar(N̂ −N) MSE
PELT 88 12 0 -1.37 0.58 3.32
S3IB 52 45 3 -0.57 0.47 2.44
SMUCE 96 4 0 -1.17 0.24 3.15
FDRSeg (1) 37 49 14 -0.18 0.65 2.51
WBS sSIC 56 42 2 -0.56 0.39 2.47
WBS C = 1 30 33 37 0.38 1.89 2.59
BinSeg C = 1 34 45 21 -0.11 0.66 3.14
TGUH 43 44 13 -0.32 0.70 3.21
PELT 29 71 0 -0.61 0.97 646 ×10−5

S3IB 0 86 14 0.19 0.26 414 ×10−5

SMUCE 28 67 5 -0.26 0.36 611 ×10−5

FDRSeg (2a) 3 80 17 0.24 0.53 446 ×10−5

WBS sSIC 3 93 4 0.01 0.13 427 ×10−5

WBS C = 1 0 39 61 1.34 2.63 528 ×10−5

BinSeg C = 1 36 45 19 -0.16 0.62 792 ×10−5

TGUH 2 84 14 0.21 0.47 507 ×10−5

PELT 87 13 0 -2.07 1.03 160 ×10−4

S3IB 26 64 10 -0.35 1.02 93 ×10−4

SMUCE 82 17 1 -1.16 0.62 138 ×10−4

FDRSeg (2b) 40 47 13 -0.44 1.36 114 ×10−4

WBS sSIC 36 63 1 -0.66 1.03 104 ×10−4

WBS C = 1 9 35 56 1.19 3.31 109 ×10−4

BinSeg C = 1 68 24 8 -0.88 0.93 137 ×10−4

TGUH 26 61 13 -0.18 1.3 113 ×10−4

PELT 99 1 0 -3.28 1.11 2.26
S3IB 88 12 0 -2.10 1.46 1.73
SMUCE 93 7 0 -1.54 0.61 1.78
FDRSeg (3) 69 25 6 -1.00 1.41 1.60
WBS sSIC 69 28 3 -1.18 1.38 1.64
WBS C = 1 27 33 40 0.36 1.75 1.70
BinSeg C = 1 72 20 8 -1.12 1.3 2.21
TGUH 57 38 5 -1.01 1.65 1.86
PELT 90 10 0 -8.26 18.9 186 ×10−3

S3IB 52 48 0 -4.10 28.68 114 ×10−3

SMUCE 96 4 0 -5.39 7.09 189 ×10−3

FDRSeg (4a) 42 45 13 -1.56 10.19 87 ×10−3

WBS sSIC 13 73 14 -0.28 3.37 59 ×10−3

WBS C = 1 12 67 21 0.12 0.55 55 ×10−3

BinSeg C = 1 84 9 7 -2.99 7.91 136 ×10−3

TGUH 26 68 6 -0.43 1.54 68 ×10−3

PELT 98 2 0 -10.73 7.98 0.23
S3IB 84 16 0 -8.22 29.14 0.2
SMUCE 100 0 0 -8.19 7.04 0.23
FDRSeg (4b) 80 14 6 -5.25 22.19 0.17
WBS sSIC 67 23 10 -5.56 27.78 0.17
WBS C = 1 47 33 20 -0.80 3.35 0.11
BinSeg C = 1 97 1 2 -6.45 10.25 0.2
TGUH 69 26 5 -2.57 8.07 0.13

Table 2

Aspects of the distribution of N̂ −N for the various methods and models, over 100
simulations. Also the average Mean-Square Error of the resulting estimate of ft.
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N̂ −N

Method Model < 0 0 > 0 Ê(N̂ −N) V̂ar(N̂ −N) MSE
PELT 12 87 1 -0.13 0.17 25 ×10−3

S3IB 100 0 0 -5.72 1.64 210 ×10−3

SMUCE 75 25 0 -1.90 1.99 98 ×10−3

FDRSeg (5a) 0 79 21 0.30 0.49 22 ×10−3

WBS sSIC 0 57 43 0.59 0.67 25 ×10−3

WBS C = 1 0 62 38 0.52 0.64 26 ×10−3

BinSeg C = 1 1 73 26 0.28 0.28 27 ×10−3

TGUH 0 92 8 0.10 0.15 23 ×10−3

PELT 92 7 1 -2.61 2.26 124 ×10−3

S3IB 100 0 0 -4.45 2.25 184 ×10−3

SMUCE 100 0 0 -4.71 1.66 204 ×10−3

FDRSeg (5b) 47 38 15 -0.55 1.3 74 ×10−3

WBS sSIC 14 56 30 0.25 0.82 60 ×10−3

WBS C = 1 21 49 30 0.16 1.02 63 ×10−3

BinSeg C = 1 33 56 11 -0.29 0.71 66 ×10−3

TGUH 38 53 9 -0.42 1.15 70 ×10−3

PELT 100 0 0 -178.46 712.65 228 ×10−3

S3IB 100 0 0 -199.00 0 250 ×10−3

SMUCE 100 0 0 -117.48 188.39 230 ×10−3

FDRSeg (6a) 3 42 55 0.95 1.42 11 ×10−3

WBS sSIC 100 0 0 -198.00 0 250 ×10−3

WBS C = 1 100 0 0 -114.47 40.64 208 ×10−3

BinSeg C = 1 100 0 0 -52.86 231.33 124 ×10−3

TGUH 31 68 1 -0.72 1.58 13 ×10−3

PELT 100 0 0 -90.77 120.74 236 ×10−3

S3IB 100 0 0 -99.00 0 250 ×10−3

SMUCE 100 0 0 -54.10 50.01 225 ×10−3

FDRSeg (6b) 34 33 33 -0.12 2.01 38 ×10−3

WBS sSIC 100 0 0 -97.88 0.1 250 ×10−3

WBS C = 1 100 0 0 -34.06 18.84 164 ×10−3

BinSeg C = 1 100 0 0 -33.71 72.37 162 ×10−3

TGUH 68 31 1 -2.28 6.36 46 ×10−3

PELT 100 0 0 -37.53 89.65 209 ×10−3

S3IB 100 0 0 -49.00 0 250 ×10−3

SMUCE 100 0 0 -17.24 13.76 195 ×10−3

FDRSeg (6c) 20 47 33 0.10 1.65 51 ×10−3

WBS sSIC 100 0 0 -46.96 5.25 247 ×10−3

WBS C = 1 96 3 1 -3.55 4.09 77 ×10−3

BinSeg C = 1 100 0 0 -10.64 17.32 137 ×10−3

TGUH 28 64 8 -0.59 2.18 58 ×10−3

Table 3

Aspects of the distribution of N̂ −N for the various methods and models, over 100
simulations. Also the average Mean-Square Error of the resulting estimate of ft.
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of London, a major business and financial centre. In addition, the second ma-
jor financial centre, Canary Wharf, is located within the borough of Tower
Hamlets. Newham is located to the east of Hackney and Tower Hamlets,
and was the main host borough of the London 2012 Olympic Games. Our
analysis comes in two parts.

Part I. In Part I, we treat the data as coming from a “piecewise constant
mean + iid Gaussian noise” model and apply our TGUH method with de-
fault parameters to the raw data. Figure 1 shows the three estimates (from
January 2008 to December 2015) superimposed.

It is interesting to observe that for extended periods of time, the HPI in-
creases in the borough of Newham appeared to trail those in the other two
boroughs, despite the large-scale investment in the borough of Newham re-
lated to the London 2012 Olympic Games. In particular, this is clearly seen
in Figure 1 for the time period between June 2011 and August 2013, in which
(except the strong positive spike in August 2012), the average HPI increase
in Newham is negative. One commentary in the Guardian, a national news-
paper, attributes this to what it sees as an over-supply of new properties in
the borough (https://www.theguardian.com/money/2012/mar/13/olympics-
house-prices-boom-fails).

Curiously, the situation is reversed in the more recent time period Novem-
ber 2014 to December 2015, in which Newham shows the strongest increases
in the HPI among the three boroughs. Interestingly, some newspapers and
online news sources speculate that this may have been due not only to the
regeneration taking place in the borough of Newham, but also to some buy-
ers having been priced out of the more central (and expensive) boroughs
of Hackney and Tower Hamlets, as suggested e.g. in The Wharf, a Ca-
nary Wharf newspaper (http://www.wharf.co.uk/news/property/newham-
shows-steepest-house-price-9160342) and in The Guardian
(https://www.theguardian.com/money/2015/dec/28/newham-east-london-sees-
uks-biggest-house-price-rise).

Part II. In Part II, we first “prewhiten” the data by fitting univariate
time series models to each time series separately, and then apply the TGUH
method with default parameters to the residual sequences from these fits. To
be more precise, we obtain these residuals as follows: we first fit univariate
AR models to the data with the AR coefficients estimated using Yule-Walker
and the orders chosen via the AIC, up to the maximum order of 12; we then
fit GARCH(1,1) models via Gaussian MLE to the residuals from the AR
fits, and obtain residuals from the combined AR+GARCH fits.

The results are shown in Figure 2. The TGUH fit to the AR+GARCH
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residuals reveals a completely different picture to the fit from Part I. In Fig-
ure 2, the period from the end of the financial crisis onwards (i.e., roughly
speaking, to the right of the green line), is uneventful for the three esti-
mates, with the exception of the possibly spurious feature towards the end
of the data for the TGUH estimate for the borough of Newham. However,
an interesting comparison of the three estimates can be made to the left
of the green line (i.e. during the financial crisis). Once the time series ef-
fect has been removed, the TGUH estimator indicates that the residuals for
Tower Hamlets and Hackney were strongly negative in the mean for much of
this period, which can be interpreted as house prices in these two boroughs
being judged to have dropped significantly during the financial crisis, and
that this drop was not merely due to a “random” fluctuation of a station-
ary AR+GARCH process. By contrast, no such dip was observed for the
borough of Newham. Figure 6 in the supplemental article Fryzlewicz (2017)
shows how this conclusion may also be supported by the raw data; for ex-
ample, the time series for Newham exbitis far more zero-crossings than the
other two series in the period January 2008 – December 2009, and therefore
it is more difficult to classify it as “firmly in the negative territory, followed
by firmly in the positive territory” than the other two series.

It is, of course, difficult to make recommendations as to which of the two
analyses, that in Part I or that in Part II, should be preferred, without a
specific objective function in mind. We refer the reader to Robbins et al.
(2011) for an interesting review of typical issues faced by the change-point
analyst in a time series versus iid noise setting.

5. Discussion. The TGUH approach only fundamentally relies on each
merged region having a neighbour, so it can easily be generalised, at least al-
gorithmically, to other, more complex data structures that include the notion
of a local neighbourhood. Examples include graphs and networks, images,
videos, nonlinear manifolds in R

k and even unstructured data, provided that
a neighbourhood structure can be constructed on them, via e.g. Minimum
Spanning Trees. This makes TGUH potentially applicable to other “change-
point-like” problems such as e.g. community detection in networks or image
segmentation. A version of the TGUH method for images was proposed,
without the associated theory, in Fryzlewicz and Timmermans (2016). This
is in contrast to top-down change-point detection methods, which are typi-
cally hard or impossible to generalise to more complex data structures.

An exciting aspect of TGUH is that its extensions can be built that con-
sider not pairs of neighbours to merge at each stage, but triplets or, more
generally, k-tuples. Just as the TGUH algorithm presented in this paper can
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Fig 1. TGUH estimates for Newham (solid), Hackney (dashed) and Tower Hamlets (dot-
ted), from January 2008 to December 2015. Green line: December 2009; blue lines: June
2011 and August 2013; red line: November 2014.

be used in detecting change-points in the constant mean (=polynomial of
degree 0), our expectation is that a more general TGUH algorithm involving
k-tuples could possibly be used in detecting change-points in a piecewise-
polynomial model of degree ≤ k − 2. Fryzlewicz (2007) presents a heuristic
algorithm akin to the Unbalanced Haar transform but involving triplets of
neighbours – however, it comes without the tail-greedy feature and is slow.

APPENDIX A: PROOFS OF MAIN THEORETICAL RESULTS

Lemma A.1. Let S1
j = {1 ≤ k ≤ K(j) : d

(j,k)
p,q,r is such that p < ηi −

1
2 < r for some i = 1, . . . , N}, and S0

j = {1, . . . ,K(j)} \ S1
j . On Aδ,T , for

j = 1, . . . , J , k ∈ S0
j , we have |d(j,k)| ≤ λ2, and hence also |d(j,k)| ≤ λ1,

where λ1, λ2 are as in the statement of Theorem 3.1.

Proof. On Aδ,T , for j = 1, . . . , J , k ∈ S0
j , we have

|d(j,k)p,q,r| =

∣

∣

∣

∣

∣

{

r − q

r − p+ 1

}1/2
∑q

t=p εt

(q − p+ 1)1/2
−
{

q − p+ 1

r − p+ 1

}1/2
∑r

t=q+1 εt

(r − q)1/2

∣

∣

∣

∣

∣

≤ {2(1 + δ) log(T )}1/2 (r − q)1/2 + (q − p+ 1)1/2

(r − p+ 1)1/2
,

which completes the proof.
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Fig 2. TGUH estimates for Newham (solid), Hackney (dashed) and Tower Hamlets (dot-
ted), with time series residuals as input, from January 2008 to December 2015. Green line:
December 2009; blue lines: June 2011 and August 2013; red line: November 2014.

Proof of Theorem 3.1. The fact that P (Aδ,T ) → 1 for all δ > 0 is the
statement of Lemma 1 in Yao (1988). Let λ· denote either of λ1 and λ2.

Let S1
j = {1 ≤ k ≤ K(j) : d

(j,k)
p,q,r is such that p < ηi − 1

2 < r for some i =

1, . . . , N}, and S0
j = {1, . . . ,K(j)} \ S1

j . Due to the conditional orthonor-
mality of the Unbalanced Haar transform, on set Aδ,T , we have

‖f̃ − f‖2T = T−1
J
∑

j=1

K(j)
∑

k=1

(d(j,k) I{∃(j′, k′) ∈ Cj,k |d(j′,k′)| > λ·} − µ(j,k))2

+ T−1(s1,T − µ(0,0))2

≤ T−1
J
∑

j=1







∑

k∈S0
j

+
∑

k∈S1
j






(d(j,k) I{∃(j′, k′) ∈ Cj,k |d(j′,k′)| > λ·} − µ(j,k))2

+ 2(1 + δ)T−1 log(T ) =: I + II + 2(1 + δ)T−1 log(T ).

Turning first to I, recall that µ(j,k) = 0 for k ∈ S0
j and, by Lemma A.1,

I{∃(j′, k′) ∈ Cj,k |d(j′,k′)| > λ·} = 0 for k ∈ S0
j ; therefore I = 0. In consider-
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ing II, we denote B = {∃(j′, k′) ∈ Cj,k |d(j′,k′)| > λ·} and first compute

(d(j,k) I{B} − µ(j,k))2 = (d(j,k) I{B} − d(j,k) + d(j,k) − µ(j,k))2

≤ (d(j,k))2I(|d(j,k)| ≤ λ·) + 2|d(j,k)|I(|d(j,k)| ≤ λ·)|d(j,k) − µ(j,k)|
+ {d(j,k) − µ(j,k)}2

≤ λ2· + 2λ·{2(1 + δ) log(T )}1/2 + 2(1 + δ) log(T )

≤ (6 + 4
√
2)(1 + δ) log(T ).(9)

Combining this with the fact that J ≤ ⌈log(T )/ log{(1−ρ)−1}⌉, |S1
j | ≤ N , we

obtain II ≤ (6+4
√
2)(1+δ)N T−1⌈log(T )/ log{(1−ρ)−1}⌉ log(T ), and hence

‖f̃ − f‖2T ≤ 2(1 + δ)T−1 log(T )
{

1 + (3 + 2
√
2)N⌈log(T )/ log{(1− ρ)−1}⌉

}

.

Also, estimated change-points are produced in f̃ only by those coefficients
d(j,k) that are computed over those portions of the data that contain true
change-points in f . Therefore, at each scale, we add up to N estimated
change-points to f̃ . With the number J of scales bounded by C log(T ), we
obtain that f̃ contains Ñ ≤ C N log(T ) estimated change-points, which
completes the proof of the theorem.

Proof of Theorem 3.2. We first establish that
˜̃
f can be interpreted as

the result of (a) decomposing the data X with respect to a particular UH
basis (possibly different from that used in f̃ but sharing some of its basis
vectors), (b) connected thresholding of this decomposition with threshold
λ(·, ·), and (c) inverse UH transformation.

Let B̃ and ˜̃B (the latter to be constructed) denote the UH bases corre-

sponding to f̃ and ˜̃f , respectively. As the set of change-points in ˜̃f is a subset

of that in f̃ , we first include in ˜̃B all those vectors ψ(j,k) ∈ B̃ for which the

coefficients d
(j,k)
p,q,r = 〈X,ψ(j,k)〉 are such that |d(j,k)p,q,r| < λ(q − p + 1, r − q), as

these basis vectors ψ(j,k) are not going to introduce any change-points in ˜̃f .

We then include in ˜̃B those basis functions ψ(j,1) for which d
(j,1)
p,q,r =

〈X,ψ(j,1)〉 are the detail coefficients produced in Stage 1 of the post-processing

algorithm of Section 2.4; we include all those for which |d(j,1)p,q,r| < λ(q − p +

1, r− q) as well as the first one for which |d(j,1)p,q,r| ≥ λ(q−p+1, r− q). Denote
the scale j for this latter coefficient by J0. Suppose the computation of the
detail coefficients d(j,1) continues beyond scale J0 according to the recipe
outlined in Stage 1 of the post-processing algorithm of Section 2.4.

By its construction, ˜̃f =
∑

j≥J0
d(j,1)ψ(j,1) + s1,Tψ

(0,0). We now demon-

strate that the coefficients {d(j,1)}j>J0 must be retained by the connected
thresholding. This will certainly happen, since only one detail coefficient is
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produced at each scale j. Therefore, the detail coefficients d(j,1) for j > J0
either (a) are parent coefficients of d(J0,1) or (b) satisfy |d(j,1)| > |d(J0,1)|,
and hence will be retained by the connected thresholding in either case.

We now evaluate the total number of scales needed to carry out this
particular UH transform to completion. The basis vectors ψ(j,k) added to
˜̃B at the beginning are inherited from B̃ and therefore the corresponding
coefficients d(j,k) live on no more than J scales. Since Ñ ≤ CN log(T ), and
the remaining coefficients d(j,1) each correspond to a different change-point
in f̃ , there are at most Ñ coefficients d(j,1) (and hence at most Ñ additional
scales). Since J = O(log(T )) and Ñ = O(log(T )), the total number of scales
J1 required by the complete transform is J1 = O(log(T )).

We are now in a position to show the L2 result, which is obtained in anal-

ogy to that in Theorem 3.1 since both f̃ and
˜̃
f are estimators involving UH

transforms with logarithmic number of scales and connected thresholding,
which is all that is needed for L2 consistency with the rate as in Theorem
3.1. Re-examining the proof of Theorem 3.1, the equivalent of quantity II

in that proof for
˜̃
f is bounded by II ≤ (6 + 4

√
2)(1 + δ)N T−1J1 log(T ),

which implies ‖ ˜̃f − f‖2T = O(NT−1 log2(T )).

Finally, we show that there are at most two change-points in ˜̃f between
each pair of true change-points (ηi, ηi+1) for i = 0, . . . , N (we use the conven-
tion η0 = 1, ηN+1 = T +1). Indeed, the post-processing algorithm described

in Stage 1 of Section 2.4 would not be able to terminate with
˜̃
f contain-

ing three change-points, say ˜̃ηl, ˜̃ηl+1, ˜̃ηl+2, between ηi, ηi+1, as the next d
(j,1)

coefficient to be computed would be either d
(j,1)
˜̃ηl, ˜̃ηl+1−1, ˜̃ηl+2−1

, or a coefficient

smaller than |d(j,1)˜̃ηl, ˜̃ηl+1−1, ˜̃ηl+2−1
| in absolute value, which by Lemma A.1 would

not exceed λ(˜̃ηl+1 − ˜̃ηl, ˜̃ηl+2 − ˜̃ηl+1) and therefore the algorithm would con-
tinue. This completes the proof.

Proof of Theorem 3.3. From Theorem 3.2, there must exist a constant
C such that for T large enough, there must be at least one estimated change-
point ˜̃ηl within the distance of C log2(T ) from each true change-point ηi,
i = 1, . . . , N . Indeed, if it were not true, it would not be possible to achieve

the rate for ‖ ˜̃f − f‖2T specified in Theorem 3.2. For each i0 from Stage 2 of
our post-processing algorithm of Section 2.4, either of two cases are possible:

1. ˜̃ηi0 is not the closest estimated change-point to either the nearest true
change-point on its left-hand side, or the nearest true change-point on
its right-hand side. Then, by the construction of dpi,qi,ri , Lemma A.1
guarantees that |dpi0 ,qi0 ,ri0 | < λ(qi0 − pi0 + 1, ri0 − qi0) and ˜̃ηi0 gets
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removed.
2. ˜̃ηi0 is the closest estimated change-point to a true change-point ηi, and

is therefore within the distance of C log2(T ) from ηi. If it so happens
that |dpi0 ,qi0 ,ri0 | < λ(qi0 − pi0 + 1, ri0 − qi0) and therefore ˜̃ηi0 gets

removed, it must be true that there is another ˜̃ηj within the distance
of Ci0 log

2(T ) from ˜̃ηi0 (and therefore also from ηi), where Ci0 is a
constant. Indeed, if there were no such ˜̃ηj on either side of ˜̃ηi0 , then
by the construction of dpi,qi,ri (formula (2)), the order of magnitude
of dpi0 ,qi0 ,ri0 would be such that |dpi0 ,qi0 ,ri0 | > λ(qi0 − pi0 +1, ri0 − qi0)

and ˜̃ηi0 would not get removed.

Since there are at most ˜̃N removals with ˜̃N being a finite number by Theorem
3.2, the constants Ci must be bounded from above by constant C ′. Therefore,
by case 2 above, after the algorithm has terminated, each true change-point
ηi must have an associated estimated change-point η̂i within the distance of
C ′ log2(T ). It must also have only one such change-point as if it had two,
the more remote of them would not be the closest estimated change-point
to any true change-point, and case 1 would apply. This completes the proof.

SUPPLEMENTARY MATERIAL

Supplement A: Supplement to “Tail-greedy bottom-up data de-

compositions and fast multiple change-point detection”

(doi: COMPLETED BY THE TYPESETTER; .pdf). Extension of the TGUH
methodology to dependent non-Gaussian data; refinements to post-processing;
study of the accuracy of TGUH in estimating change-point locations; addi-
tional figure for the analysis of Section 4.3.
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