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1. Extending the scope of TGUH methodology to dependent
non-Gaussian data. The purpose of this section is to construct a TGUH
estimator of change-points η1, . . . , ηN in a setting in which the noise εt is
possibly dependent and/or non-Gaussian (including the case in which its
tails are heavier than those of the Gaussian distribution), in a sense spec-
ified more precisely in the remainder of this section. In order to perform
this extension without increasing the rate of the threshold used in the iid
Gaussian model (that is, O(log1/2(T )), as in Theorems 3.1–3.3 of the main

article), the estimators f̃,
˜̃
f and f̂ need to be altered. The first step is to

transform the initial estimator f̃ into a new initial estimator f̃ r by rear-
ranging the Unbalanced Haar basis on which f̃ is built into a new UH basis
(the “r” in f r stands for “rearranged”). Informally speaking, this is done in
order for us to be able to only rely on the behaviour of those sums

∑t2
i=t1

εi

for which t2 − t1 is “large”, in the analysis of the new estimator f̃ r. This
is of importance as it enables the application of certain strong asymptotic
normality arguments to the terms

∑t2
i=t1

εi, which in turn enables the use of

Gaussian-magnitude thresholds O(log1/2(T )) in the construction of f̃ r and

its derivative estimators
˜̃
f r and f̂ r, the latter two being the rearranged-

basis counterparts of
˜̃
f and f̂, respectively. The ability to use thresholds

of magnitude O(log1/2(T )) even for dependent non-Gaussian data is impor-
tant as this is the lowest permitted threshold rate, and the use of higher-rate
thresholds has a detrimental impact of the covergence rates of the implied
estimators, as well as (frequently) degrading the practical performance of
the method. We start by explaining the mechanism of basis rearrangement
in Section 1.1.

1.1. Basis rearrangement. For the TGUH basis chosen from the data in

the construction of f̃, we separate the coefficients d
(j,k)
p,q,r into “short-winged”
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2 P. FRYZLEWICZ

and “long-winged” ones. Informally, long-winged coefficients will be defined
as those for which both r − q and q − p are large. We will want to re-
arrange the TGUH basis chosen so that any short-winged coefficients appear
only at fine scales. This is because we will be setting them to zero in the
new estimator f̃ r, which will create the least damage to the quality of the
estimator if they appear at fine scales. This will be done in order to enable
us to rely exclusively on those sums

∑t2
i=t1

εi for which t2 − t1 is “large” in
Theorem 1.1 below, which is the analogue of Theorem 3.1 of the main article
for the rearranged-basis estimator f̃ r. This is important as certain strong
asymptotic normality arguments will then apply, and we will be able to use
thresholds of the same magnitude as for iid Gaussian data, which would be
difficult without the basis rearrangement.

We define the sets of location indices for short-winged and long-winged
coefficients (respectively) at each scale j as follows. The parameter a will be
specified later and will be a feature of the estimator f̃ r; we will therefore
sometimes write f̃ r(a) to emphasise the dependence of f̃ r on a.

W0
j (a) = {1 ≤ k ≤ K(j) : d(j,k)p,q,r is such that r − q ≤ a or q − p+ 1 ≤ a},
W1
j (a) = {1, . . . ,K(j)} \W0

j (a).

The first step in the basis re-arrangement, which we will now describe, is to

perform standard hard (unconnected) thresholding of each coefficient d
(j,k)
p,q,r

individually, using threshold λ·. The threshold λ· is to be specified later and

will be such that if d
(j,k)
p,q,r is long-winged (with parameter a to be specified

later) and survives the thresholding, then the interval [p, r] is certain to
contain a change-point, on a set with a large probability.

We now explain our TGUH basis re-arrangement. Let d
(j,k)
p,q,r be any coef-

ficient such that k ∈ W0
j (a), such that ∃ (j′, k′) ∈ Cj,k satisfying k′ ∈ W1

j′(a)

and |d(j
′,k′)

p′,q′,r′ | > λ·, and such that no parent coefficient of d
(j,k)
p,q,r satisfies these

conditions. If there are no such coefficients d
(j,k)
p,q,r, no basis re-arrangement is

needed. The basis re-arrangement proceeds as follows.

1. Remove d
(j,k)
p,q,r from the set of TGUH coefficients, and replace it with

d
(j,k)
p,q′,r. Because (j′, k′) ∈ Cj,k, we must have q′ − p ≥ q′ − p′ and

r − q′ ≥ r′ − q′, and therefore after the replacement, k ∈ W1
j (a).

2. Remove d
(j′,k′)
p′,q′,r′ from the set of TGUH coefficients, and replace it with

dp,q,q′ if q′ > q, or with dq′,q,r otherwise. Note that the new coefficient

becomes a direct child of d
(j,k)
p,q′,r, hence the scale of the new coefficient

will be j − 1.
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SUPPLEMENT TO “TAIL-GREEDY BOTTOM-UP DATA DECOMPOSITIONS” 3

3. For i = j−1, . . . , j′+1 (if this range is non-empty), take each coefficient

d
(i,ki)
pi,qi,ri that is both a child of the old coefficient d

(j,k)
p,q,r and a parent of

the old coefficient d
(j′,k′)
p′,q′,r′ , and modify pi and/or ri so that both new

coefficients: d
(j,k)
p,q′,r and dp,q,q′ if q′ > q or dq′,q,r otherwise, as well as

any coefficients already modified in the current loop over i, become
its parents. There is a unique way in which this can be done. The
parameter qi should remain unchanged. Note that the scale of each
thus-modified coefficient changes from i to i− 1.

Some comments are in order.

(i) After the procedure described above, the short-winged coefficient d
(j,k)
p,q,r

gets transformed into a long-winged coefficient d
(j,k)
p,q′,r. We then proceed

iteratively: perform standard hard (unconnected) thresholding of each

coefficient d
(j,k)
p,q,r individually, using threshold λ·, and then again steps

(a)–(c) above, until there are no more short-winged coefficients with
threshold-exceeding long-winged children.

(ii) Importantly, basis re-arrangement does not increase the number of co-

efficients d
(j,k)
p,q,r for which [p, r] contains a change-point. To see this, note

that all the coefficients being modified in steps (a)–(c) overlap with

a change-point prior to their modification. This is because |d(j
′,k′)

p′,q′,r′ |
overlaps with a change-point, since |d(j

′,k′)
p′,q′,r′ | > λ·.

(iii) After steps (a)–(c), by construction, the UH vectors corresponding to
the modified coefficients are mutually orthonormal.

(iv) After steps (a)–(c), the partition of the interval [p, r] induced by the
parameters q of the modified coefficients is the same as before steps
(a)–(c), since the set of the parameters q does not change. Therefore,
the UH vectors corresponding to the modified coefficients are orthonor-
mal to those corresponding to all other coefficients that have not been
modified.

(v) As a result of the basis re-arrangement, there are no short-winged
coefficients with threshold-exceeding long-winged children. Therefore,
if a coefficient has a threshold-exceeding long-winged child, it must
itself be long-winged.

1.2. Theoretical behaviour of rearranged-basis estimators. We start by
describing the mean-square behaviour of the rearranged-basis estimator f̃ r.

Theorem 1.1. Let the distribution of εt in model (1) of the main article
be such that

imsart-aos ver. 2014/10/16 file: "fbu4 - supplement".tex date: September 1, 2017



4 P. FRYZLEWICZ

(a) εt satisfies Cramer’s conditions, that is

E|εt|k ≤ ck−2k!E(ε2t ) <∞, t = 1, . . . , T, k = 3, 4, . . . ,

where c is a certain positive constant;
(b) the stationary sequence {εt}t is m-dependent, that is the dependence

between the variables (. . . , εt−1, εt) and (εt+m+1, εt+m+2, . . .) vanishes
for each t.

Further, let f ′ = maxt ft −mint ft be bounded in T . Let the estimator f̃ r(a)
use the UH basis rearranged as described in Section 1.1 with a = C1 log(T )
for a certain large enough constant C1, and let it estimate each µ(j,k) for
j ≥ 1 via

µ̂(j,k) = d(j,k)I{∃ (j′, k′) ∈ Cj,k |d(j
′,k′)| > λ· ∧ k′ ∈ W1

j′(a)}

(that is, using the same connected thresholding as that used by f̃, plus in
addition setting all short-winged coefficients d(j,k) to zero). Let the threshold
λ· satisfy λ· = C log1/2(T ), for a large enough C. On the set ArT , defined by

ArT =

{
∀ 1 ≤ t1 ≤ t2 ≤ T s.t. t2 − t1 ≥ C1 log(T ) (t2 − t1 + 1)−1/2

∣∣∣∣∣
t2∑
t=t1

εt

∣∣∣∣∣ ≤ C log1/2(T )

}
,

which satisfies P (ArT ) ≥ 1− C3/T for a certain constant C3, we have

‖f̃ r − f‖2T ≤ C̃T−1Ndlog(T )/ log{(1− ρ)−1}e log(T ),

for a certain constant C̃.

Proof. We first examine the behaviour of the set ArT . Since εt is m-
dependent, its α-mixing coefficients α(l) must be such that α(l) = 0 for
l > m. We now consider the single sum a−1/2

∑a
t=1 εt. All below applies also

to a sum in which we start or end at indices other than 1 and a, provided
the difference between them is at least a − 1. From Theorem 1.4 in Bosq
(1998), we obtain

P

(∣∣∣∣∣
a∑
t=1

εt

∣∣∣∣∣ > a1/2λ

)
≤ a1 exp

(
−

q λ
2

a

25m2
2 + 5c λ√

a

)
,

where

a1 = 2aq−1 + 2

(
1 +

λ2

a

25m2
2 + 5c λ√

a

)
,

m2
2 = max

1≤t≤a
E(ε2t ),
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SUPPLEMENT TO “TAIL-GREEDY BOTTOM-UP DATA DECOMPOSITIONS” 5

provided that [a/(q + 1)] ≥ m + 1, which is possible to achieve by setting
q = [c1a] with c1 suitably small. With this, setting λ = C log1/2(T ), and
a = C1 log(T ) for certain C, C1, we have that a1 is bounded by a constant
and

exp

(
−

q λ
2

a

25m2
2 + 5c λ√

a

)
≤ exp(−C2 log(T )) = T−C2 ,

where C2 is a positive constant that can be set arbitrarily large. Since the
number of sums of the form

∑t2
t=t1

εt does not exceed T 2, applying the
Bonferroni correction, we have the bound

P

(
∀ 1 ≤ t1 ≤ t2 ≤ T s.t. t2 − t1 ≥ C1 log(T ) (t2 − t1 + 1)−1/2

∣∣∣∣∣
t2∑
t=t1

εt

∣∣∣∣∣ ≤ C log1/2(T )

)

≥ 1− C3

T

as T → ∞ for certain large enough C, C1, and a certain C3. We now turn
to the behaviour of f̃ r. Note that J below may well be different from that
in Theorem 3.1 of the main article, but this will not interfere with our
analysis as the number of coefficients overlapping with change-points has
not increased, as argued in item (ii) of Section 1.1. We have

‖f̃ − f‖2T = T−1
J∑
j=1

K(j)∑
k=1

(d(j,k)I{∃ (j′, k′) ∈ Cj,k |d(j
′,k′)| > λ· ∧ k′ ∈ W1

j′(a)} − µ(j,k))2

+ T−1(s1,T − µ(0,0))2

= T−1
J∑
j=1

∑
k∈S0j

+
∑

k∈S1j∩W0
j (a)

+
∑

k∈S1j∩W1
j (a)


(d(j,k)I{∃ (j′, k′) ∈ Cj,k |d(j

′,k′)| > λ· ∧ k′ ∈ W1
j′(a)} − µ(j,k))2

+ T−1(s1,T − µ(0,0))2 =: I + II + III + IV.

Term I. Since k ∈ S0j , then on set ArT , ∀ (j′, k′) ∈ Cj,k if k′ ∈ W1
j′(a), then

|d(j′,k′)| ≤ λ·. Also, µ(j,k) = 0 since k ∈ S0j . Therefore I = 0.

Term II. If it were true that ∃ (j′, k′) ∈ Cj,k |d(j
′,k′)| > λ· ∧ k′ ∈ W1

j′(a),

then by item (v) of Section 1.1, we would have to have k ∈ W1
j (a), which

contradicted the k ∈ W0
j (a) in the definition of term II. Therefore, term II
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simplifies to

T−1
J∑
j=1

∑
k∈S1j∩W0

j (a)

(µ(j,k))2.

We now bound the individual term (µ(j,k))2. From formula (3) in Fryzlewicz
(2014), we have

(1) (µ(j,k))2 ≤ (q − p+ 1)(r − q)
r − p+ 1

(f ′)2.

W.l.o.g., let us assume that q−p+ 1 ≤ a. Denote ω1 = q−p+ 1, ω2 = r− q.
Noting that ω1ω2/(ω1 + ω2) is an increasing function of ω1, the right-hand
side of (1) is futher bounded from above by

aω2

a+ ω2
(f ′)2 ≤ a(f ′)2.

How many such terms (µ(j,k))2 are included in term II? No more than the
overall number of coefficients overlapping with change-points, which has not
increased compared to the setting of Theorem 3.1, by remark (ii) of Section
1.1. From the proof of Theorem 3.1, this number is bounded from above by
Ndlog(T )/ log{(1− ρ)−1}e. Therefore, we obtain

II ≤ T−1Ndlog(T )/ log{(1− ρ)−1}ea(f ′)2.

Recalling that (f ′)2 = const and a = O(log(T )), we have

II ≤ CT−1Ndlog(T )/ log{(1− ρ)−1}e log(T ).

Term III. Denote B = {∃ (j′, k′) ∈ Cj,k |d(j
′,k′)| > λ· ∧ k′ ∈ W1

j′(a)} and
compute

(d(j,k)I{B} − µ(j,k))2 = (d(j,k)I{B} − d(j,k) + d(j,k) − µ(j,k))2

≤ 2(d(j,k))2I(|d(j,k)| ≤ λ· ∨ k ∈ W0
j (a)) + 2(d(j,k) − µ(j,k))2

= 2(d(j,k))2I(|d(j,k)| ≤ λ·) + 2(d(j,k) − µ(j,k))2

≤ 2λ2· + C̄ log(T ),

where the C̄ log(T ) bound comes from the definition of ArT . Recalling that
λ2· = O(log(T )), we have

III ≤ CT−1Ndlog(T )/ log{(1− ρ)−1}e log(T ).
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SUPPLEMENT TO “TAIL-GREEDY BOTTOM-UP DATA DECOMPOSITIONS” 7

Finally, noting that IV = o(II, III), we obtain

‖f̃ − f‖2T ≤ C̃T−1Ndlog(T )/ log{(1− ρ)−1}e log(T ),

which completes the proof.

We now construct the intermediate estimator
˜̃
f r from f̃ r in the same way

as the estimator
˜̃
f was constructed from f̃. To be more precise, we follow

the process described in Stage 1 of the post-processing of Section 2.4 of the
main article with f̃ r on input and with threshold λ· of Theorem 1.1. The

properties of the intermediate estimator
˜̃
f r are described in the following

theorem.

Theorem 1.2. Let the distribution of εt in model (1) of the main article
be as in Theorem 1.1. Further, let f ′ = maxt ft −mint ft be bounded in T .

Let the estimator
˜̃
f r be constructed from f̃ r of Theorem 1.1 via Stage 1

of the post-processing of Section 2.4 of the main article, with threshold λ·
of Theorem 1.1. On the set ArT (defined in Theorem 1.1), which satisfies
P (ArT ) ≥ 1− C3/T for a certain constant C3, we have

‖ ˜̃
f r − f‖2T = O(NT−1 log2(T )).

Further, with the convention η0 = 1, ηN+1 = T + 1, the piecewise-constant

estimator
˜̃
f r contains at most two change-points between each pair (ηi, ηi+1)

of change-points in f , for i = 0, . . . , N . Therefore the number ˜̃N of change-

points in
˜̃
f r satisfies ˜̃N ≤ 2(N + 1).

Proof. The only difference in comparison to the proof of Theorem 3.2 of
the main article is that we can no longer claim that the coefficients inherited
from B̃ (in the notation of the proof of Theorem 3.2 of the main article) live
on no more than J scales. However, as argued in the proof of Theorem 1.1,
any increases to the original number of scales do not increase the number
of coefficients that overlap with change-points. Therefore, the mean-square
bounds from Theorem 1.1 still apply and therefore we still have

‖ ˜̃
f − f‖2T = O(NT−1 log2(T )).

The rest of the proof proceeds exactly the same as the proof of Theorem 3.2
of the main article. This completes the proof.
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We now construct our final estimator f̂ r from
˜̃
f r in the same way as

the estimator f̂ was constructed from
˜̃
f. To be more precise, we follow the

process described in Stage 2 of the post-processing of Section 2.4 of the

main article with
˜̃
f r on input and with threshold λ· of Theorem 1.1. The

properties of the final estimator f̂ r are described in the following theorem.

Theorem 1.3. Let the distribution of εt in model (1) of the main article
be as in Theorem 1.1. Further, let f ′ = maxt ft−mint ft be bounded in T . Let

the estimator f̂ r be constructed from
˜̃
f r of Theorem 1.2 via Stage 2 of the

post-processing of Section 2.4 of the main article, with threshold λ· of Theo-
rem 1.1. Denote the number of change-points in f̂ by N̂ and their locations,
in increasing order, by η̂1, . . . , η̂N̂ . Let the number N of change-points in f
be finite. Denoting their locations, in increasing order, by η1, . . . , ηN , assume
that mini=1,...,N |fηi−fηi−1| ≥ f > 0, and mini=1,...,N+1 |ηi−ηi−1| ≥ bT where

bT is such that log2(T ) = o(bT ). Then, on the set ArT (defined in Theorem
1.1), which satisfies P (ArT ) ≥ 1 − C3/T for a certain constant C3, and for
T large enough, we have

N̂ = N,

|η̂i − ηi| ≤ C̃ log2(T ) for all i = 1, . . . , N,

where C̃ is a constant.

Proof. The proof of Theorem 1.3 proceeds in exactly the same way as
that of Theorem 3.3 of the main article.

We end this section with two further remarks.

1. In the case of εt being a stationary Gaussian process with absolutely
summable autocovariance, it is possible to prove analogues of Theo-
rems 3.1–3.3 of the main article for estimators without the basis re-
arrangement, involving thresholds of the same order O(log1/2(T )) as
in the iid Gaussian case, but with different constants. We omit the
details.

2. In the case of εt satisfying Cramer’s conditions with geometric α-
mixing, Theorem 1.4 of Bosq (1998) stipulates that thresholds of a
higher order of magnitude than O(log1/2(T )) would have to be used,
which would impact consistency rates in (the equivalents of) Theorems
1.1 – 1.3. We do not investigate this case in the current work.
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SUPPLEMENT TO “TAIL-GREEDY BOTTOM-UP DATA DECOMPOSITIONS” 9

2. Refinements to post-processing. In this section, we mention two
other possible refinements to the post-processing methodology described in
Section 2.4 of the main article.

(A) By Theorem 3.3 of the main article, in the notation of that theorem,
we must have

1− c bT
T
≥ η̂i+1 − η̂i
η̂i − η̂i−1

≥ c bT
T

for all i and a certain constant c. Therefore, it may be beneficial for the
practical performance of the final estimator to remove, via an iterative
procedure analogous to those described in Stages 1 and 2 of Section
2.4 of the main article, any estimated change-points η̂i for which

η̂i+1 − η̂i
η̂i+1 − η̂i−1

< β or
η̂i+1 − η̂i
η̂i+1 − η̂i−1

> 1− β

where β ∈ (0, 1/2) is a small user-specified constant. If β ≤ c bT
T , this

pruning will not affect the theoretical consistency result from Theorem
3.3 of the main article.

(B) As with any change-point estimator which is consistent for the number
and location of change-points, the accuracy of the estimated change-
point locations in f̂ can be further improved by employing the location
re-estimation procedure described in the final paragraph of Section 3.1
in Fryzlewicz (2014).

3. Accuracy of TGUH in estimating change-point locations. To
further investigate the performance of the TGUH method in estimating the
locations ηi of the true change-points in the signals tested, we plot in Fig-
ures 1 – 5 those estimates for which N̂ = N , for models (1), (2a), (3), (4a),
(5a) from Section 4.2 of the main article. In an ideal estimation procedure,
the locations of change-points in the estimates should align exactly with
the change-points in the true signal. The result for blocks (model (1)) ap-
pears satisfactory, except a small number of estimates which contain spurious
spikes. The relatively low rate of correct estimation of N for this signal (for
all methods) comes from the difficulty, at this signal-to-noise ratio, of cor-
rectly estimating the first feature after t = 1500; Figure 1 shows that given
that this feature has been picked up, the locations ηi are in a large part es-
timated correctly. The fms signal (model (2a)) is relatively straightforward
to estimate. The mix signal (model (3)) is possibly the most challenging one
to estimate among models (1), (2a), (3), (4a), (5a), and the number of spu-
rious spikes in Figure 3 reflects this, although given the degree of difficulty,
we are pleased with the result for TGUH. The result for teeth10 (model
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10 P. FRYZLEWICZ

(4a)) is satisfactory, and stairs10 (model (5a)) is a relatively easy signal
to estimate.

0 500 1000 1500 2000

−
1

0
0

1
0

2
0

3
0

Fig 1. Black: ensemble of those TGUH estimates of the blocks function (model (1)) from
the simulation study described in Section 4.2 of the main article for which N̂ = N . Red:
the true blocks function.

4. Additional figure for the analysis of Section 4.3 of the main
article. This is provided in Figure 6.
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Fig 2. Black: ensemble of those TGUH estimates of the fms function (model (2a)) from
the simulation study described in Section 4.2 of the main article for which N̂ = N . Red:
the true fms function.
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Fig 3. Black: ensemble of those TGUH estimates of the mix function (model (3)) from the
simulation study described in Section 4.2 of the main article for which N̂ = N . Red: the
true mix function.
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Fig 4. Black: ensemble of those TGUH estimates of the teeth10 function (model (4a))
from the simulation study described in Section 4.2 of the main article for which N̂ = N .
Red: the true teeth10 function.
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Fig 5. Black: ensemble of those TGUH estimates of the stairs10 function (model (5a))
from the simulation study described in Section 4.2 of the main article for which N̂ = N .
Red: the true stairs10 function.
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Time
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Fig 6. The HPI increases in the boroughs of Newham (solid), Hackney (dashed) and Tower
Hamlets (dotted), from January 2008 to December 2010. Brown line: zero.
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