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Abstract
We propose TrendSegment, a methodology for detecting multiple change-points
corresponding to linear trend changes in one dimensional data. A core ingredient
of TrendSegment is a new Tail-Greedy Unbalanced Wavelet transform: a condi-
tionally orthonormal, bottom-up transformation of the data through an adaptively
constructed unbalanced wavelet basis, which results in a sparse representation
of the data. Due to its bottom-up nature, this multiscale decomposition focuses
on local features in its early stages and on global features next which enables
the detection of both long and short linear trend segments at once. To reduce
the computational complexity, the proposed method merges multiple regions in
a single pass over the data. We show the consistency of the estimated number
and locations of change-points. The practicality of our approach is demonstrated
through simulations and two real data examples, involving Iceland tempera-
ture data and sea ice extent of the Arctic and the Antarctic. Our methodology
is implemented in the R package trendsegmentR, available from CRAN.
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1 Introduction

Multiple change-point detection is a problem of importance in many applications;

recent examples include automatic detection of change-points in cloud data to main-

tain the performance and availability of an app or a website (James et al., 2016),

climate change detection in tropical cyclone records (Robbins et al., 2011), detecting

exoplanets from light curve data (Fisch et al., 2018), detecting changes in the DNA

copy number (Olshen et al., 2004; Jeng et al., 2012; Bardwell et al., 2017), estimation

of stationary intervals in potentially cointegrated stock prices (Matteson et al., 2013),

estimation of change-points in multi-subject fMRI data (Robinson et al., 2010) and

detecting changes in vegetation trends (Jamali et al., 2015).

This paper considers the change-point model

Xt = ft + εt, t = 1, . . . ,T, (1)

where ft is a deterministic and piecewise-linear signal containing N change-points,

i.e. time indices at which the slope and/or the intercept in ft undergoes changes. These

changes occur at unknown locations η1, η2, . . . , ηN . In this article, we assume that the

εt’s are iid N(0, σ2) and in the supplementary material, we show how our method can

be extended to dependent and/or non-Gaussian noise such as εt following a stationary

Gaussian AR process or t-distribution. The true change-points {ηi}
N
i=1 are such that,

ft = θ`,1 + θ`,2 t for t ∈ [η`−1 + 1, η`], ` = 1, . . . ,N + 1

where fη` + θ`,2 , fη`+1 for ` = 1, . . . ,N.
(2)

This definition permits both continuous and discontinuous changes in the linear trend.

Our main interest is in the estimation of N and η1, η2, . . . , ηN under some assump-

tions that quantify the difficulty of detecting each ηi; therefore, our aim is to segment

the data into sections of linearity in ft. In detail, a change-point located close to

its neighbouring ones can only be detected when it has a large enough size of lin-

ear trend change, while a change-point capturing a small size of linear trend change
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requires a longer distance from its adjacent change-points to be detected. Detecting

linear trend changes is an important applied problem in a variety of fields, including

climate change, as illustrated in Section 5.

The change-point detection procedure proposed in this paper is referred to as

TrendSegment; it is designed to work well in the presence of either long or short spac-

ings between neighbouring change-points, or a mixture of both. The engine under-

lying TrendSegment is a new Tail-Greedy Unbalanced Wavelet (TGUW) transform:

a conditionally orthonormal, bottom-up transformation for univariate data sequences

through an adaptively constructed unbalanced wavelet basis, which results in a sparse

representation of the data. In this article, we show that TrendSegment offers good

performance in estimating the number and locations of change-points across a wide

range of signals containing constant and/or linear segments. TrendSegment is also

shown to be statistically consistent and computationally efficient.

In earlier related work regarding linear trend changes, Bai and Perron (1998)

consider the estimation of linear models with multiple structural changes by least-

squares and present Wald-type tests for the null hypothesis of no change. Kim et al.

(2009) and Tibshirani et al. (2014) consider ‘trend filtering’ with the L1 penalty

and Fearnhead et al. (2019) detect changes in the slope with an L0 regularisation

via a dynamic programming algorithm. Spiriti et al. (2013) study two algorithms

for optimising the knot locations in least-squares and penalised splines. Baranowski

et al. (2019) propose a multiple change-point detection device termed Narrowest-

Over-Threshold (NOT), which focuses on the narrowest segment among those whose

contrast exceeds a pre-specified threshold. Anastasiou and Fryzlewicz (2022) pro-

pose the Isolate-Detect (ID) approach which continuously searches expanding data

segments for changes. Yu et al. (2022) propose a two-step algorithm for detecting

multiple change-points in piecewise polynomials with general degrees.

Keogh et al. (2004) mention that sliding windows, top-down and bottom-up

approaches are three principal categories which most time series segmentation algo-

rithms can be grouped into. Keogh et al. (2004) apply those three approaches to the

detection of changes in linear trends in 10 different signals and discover that the
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performance of bottom-up methods is better than that of top-down methods and slid-

ing windows, notably when the underlying signal has jumps, sharp cusps or large

fluctuations. Bottom-up procedures have rarely been used in change-point detection.

Matteson and James (2014) use an agglomerative algorithm for hierarchical clus-

tering in the context of change-point analysis. Keogh et al. (2004) merge adjacent

segments of the data according to a criterion involving the minimum residual sum

of squares (RSS) from a linear fit, until the RSS falls under a certain threshold;

but the lack of precise recipes for the choice of this threshold parameter causes the

performance of this method to be somewhat unstable, as we report in Section 4.

As illustrated later in this paper, our TGUW transform, which underlies Trend-

Segment, is designed to work well in detecting frequent change-points or abrupt local

features in which many existing change-point detection methods for the piecewise-

linear model fail. The TGUW transform constructs, in a bottom-up way, an adaptive

wavelet basis by consecutively merging neighbouring segments of the data starting

from the finest level (throughout the paper, we refer to a wavelet basis as adaptive

if it is constructed in a data-driven way). This enables it to identify local features at

an early stage, before it proceeds to focus on more global features corresponding to

longer data segments.

Fryzlewicz (2018) introduces the Tail-Greedy Unbalanced Haar (TGUH) trans-

form, a bottom-up, agglomerative, data-adaptive transformation of univariate

sequences that facilitates change-point detection in the piecewise-constant sequence

model. The current paper extends this idea to adaptive wavelets other than adaptive

Haar, which enables change-point detection in the piecewise-linear model (and, in

principle, to higher-order piecewise polynomials, where the details can be found in

Section G of the supplementary material). We emphasise that this extension from

TGUH to TGUW is both conceptually and technically non-trivial, due to the fact that

it is not a priori clear how to construct a suitable wavelet basis in TGUW for wavelets

other than adaptive Haar; this is due to the non-uniqueness of the local orthonormal

matrix transformation for performing each merge in TGUW, which does not occur

in TGUH. We solve this issue by imposing certain guiding principles in the way the
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merges are performed, which enables detecting not only long trend segments, but also

frequent change-points including abrupt local features. The computational cost of

TGUW is the same as TGUH. Important properties of the TGUW transform include

orthonormality conditional on the merging order, nonlinearity and “tail-greediness”,

and will be investigated in Section 2. The TGUW transform is the first step of the

TrendSegment procedure, which involves four steps.

The remainder of the article is organised as follows. Section 2 gives a full descrip-

tion of the TrendSegment procedure and the relevant theoretical results are presented

in Section 3. The supporting simulation studies are described in Section 4 and our

methodology is illustrated in Section 5 through climate datasets. The proofs of our

main theoretical results are in Appendix A. The supplementary material includes

theoretical results for dependent and/or non-Gaussian noise, extension to piecewise-

quadratic signal, details of robust threshold selection and extra simulation and data

application results. The TrendSegment procedure is implemented in the R package

trendsegmentR, available from CRAN.

2 Methodology

2.1 Summary of TrendSegment

The TrendSegment procedure for estimating the number and the locations of change-

points includes four steps. We give the broad picture first and outline details in later

sections.

1. TGUW transformation. Perform the TGUW transform, a bottom-up unbalanced

adaptive wavelet transformation of the input data X1, . . . , XT , by recursively

applying local conditionally orthonormal transformations. This produces a data-

adaptive multiscale decomposition of the data with T −2 detail-type coefficients

and 2 smooth coefficients. The resulting conditionally orthonormal transform of

the data hopes to encode most of the energy of the signal in only a few detail-

type coefficients arising at coarse levels (see Figure 1 for an example output).

This representation sparsity justifies thresholding in the next step.
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2. Thresholding. Set to zero those detail coefficients whose magnitude is smaller

than a pre-specified threshold as long as all the non-zero detail coefficients are

connected to each other in the tree structure. This step performs “pruning” as a

way of deciding the significance of the sparse representation obtained in step 1.

3. Inverse TGUW transformation. Obtain an initial estimate of ft by carrying out

the inverse TGUW transformation of the thresholded coefficient tree. The result-

ing estimator is discontinuous at the estimated change-points. It can be shown

to be l2-consistent, but not yet consistent for N or η1, . . . , ηN .

4. Post-processing. Post-process the estimate from step 3 by removing some

change-points perceived to be spurious, which enables us to achieve estimation

consistency for N and η1, . . . , ηN .

Figure 2 illustrates the first three steps of the TrendSegment procedure. We devote

the following four sections to describing each step above in order.

2.2 TGUW transformation

2.2.1 Key principles of the TGUW transform

In the initial stage, the data are considered smooth coefficients and the TGUW trans-

form iteratively updates the sequence of smooth coefficients by merging the adjacent

sections of the data which are the most likely to belong to the same segment. The

merging is done by performing an adaptively constructed orthonormal transformation

to the chosen triplet of the smooth coefficients and in doing so, a data-adaptive unbal-

anced wavelet basis is established. The TGUW transform is completed after T − 2

such orthonormal transformations and each merge is performed under the following

principles.

1. In each merge, three adjacent smooth coefficients are selected and the orthonor-

mal transformation converts those three values into one detail and two (updated)

smooth coefficients. The size of the detail coefficient gives information about

the strength of the local linearity and the two updated smooth coefficients are
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2
3

4
5

InputInputInputInputInputInputInputInputInput X1 = 1 X2 = 1.5 X3 = 2 X4 = 2.5 X5 = 3 X6 = 3.5 X7 = 4 X8 = 4.5 X9 = 5

OutputOutputOutputOutputOutputOutputOutputOutputOutput s1 = 1.63 s2 = 9.66 d3 = 0 d1 = 0 d6 = 0 d7 = 0 d2 = 0 d4 = 0 d5 = 0

(a) No change-point without noise

1
2

3
4

5

InputInputInputInputInputInputInputInputInput X1 = 1.13 X2 = 1.19 X3 = 2.43 X4 = 3.36 X5 = 3.01 X6 = 3.68 X7 = 3.35 X8 = 4.87 X9 = 5.02

OutputOutputOutputOutputOutputOutputOutputOutputOutput s1 = 1.95 s2 = 9.87 d3 = −0.53 d1 = 0.13 d6 = 0.74 d7 = 0.24 d2 = 0.41 d4 = −0.65 d5 = 0.01

(b) No change-point with noise

1
2

3
4

5

InputInputInputInputInputInputInputInputInput X1 = 1 X2 = 2 X3 = 3 X4 = 4 X5 = 5 X6 = 4 X7 = 3 X8 = 2 X9 = 1

OutputOutputOutputOutputOutputOutputOutputOutputOutput s1 = 4.52 s2 = 7 d4 = 0 d3 = 0 d1 = 0 d6 = 1.49 d7 = 3.65 d5 = 0 d2 = 0

(c) One change-point without noise

1
2

3
4

5
6

InputInputInputInputInputInputInputInputInput X1 = 1.11 X2 = 1.73 X3 = 3.45 X4 = 4.3 X5 = 5.82 X6 = 4.34 X7 = 2.36 X8 = 1.89 X9 = 1.95

OutputOutputOutputOutputOutputOutputOutputOutputOutput s1 = 4.69 s2 = 7.67 d3 = −0.28 d2 = 0.36 d6 = 0.11 d7 = 4.19 d1 = 0.2 d4 = −0.64d5 = −1.13

(d) One change-point with noise

Fig. 1: Multiscale decomposition of the data through the TGUW transform when
the data has no change-points ((a), (b)) or one change-point ((c), (d)). s1 and s2 are
the smooth coefficients obtained through the TGUW transform and dk is the detail
coefficient obtained in the kth merge. When the data has no noise ((a), (c)), dk = 0 for
all k in (a) while two non-zero coefficients d6 and d7 encode the single change in (c).

associated with the estimated parameters (intercept and slope) of the local lin-

ear regression performed on the raw observations corresponding to the initially

chosen three smooth coefficients.

2. “Two together” rule. The two smooth coefficients returned by the orthonormal

transformation are paired in the sense that both contain information about one

local linear regression fit. Thus, we require that any such pair of smooth coeffi-

cients cannot be separated when choosing triplets in any subsequent merges. We

refer to this recipe as the “two together” rule.

3. To decide which triplet of smooth coefficients should be merged next, we compare

the corresponding detail coefficients as their magnitude represents the strength of

the corresponding local linear trend; the smaller the (absolute) size of the detail,
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X1 X2 X3 X4 X5 X6 X7 X8

(a) TGUW transform

X1 X2 X3 X4 X5 X6 X7 X8

(b) Thresholding

X1 X2 X3 X4 X5 X6 X7 X8

(c) Inverse TGUW transform

Fig. 2: Illustration of the first three steps of the TrendSegment procedure with the
observed data Xt (dots), the true signal ft (grey line) and the tree of mergings; (a)
TGUW transform constructs a tree by merging neighbouring segments, (b) In thresh-
olding, surviving coefficients (solid line in the tree) are chosen by a pre-specified
threshold, which decides the location of the estimated change point (red), (c) Inverse
TGUW transform gives the estimated signal (green) based on the estimated change
points obtained in thresholding.

the smaller the local deviation from linearity. Smooth coefficients corresponding

to the smallest detail coefficients have priority in merging.

Table 1: Notation. See Section 2.2.4 for formulae for the terms listed.

Xp pth element of the observation vector X = {X1, X2, . . . , XT }
>.

s0
p,p pth initial smooth coefficient of the vector s0 where X = s0.

dp,q,r detail coefficient obtained from {Xp, . . . , Xr} (merges of Types 1 or 2).
s[1]

p,r , s[2]
p,r smooth coefficients obtained from {Xp, . . . , Xr}, paired under the “two together” rule.

d[1]
p,q,r , d

[2]
p,q,r paired detail coefficients obtained by merging two adjacent subintervals, {Xp, . . . , Xq} and

{Xq+1, . . . , Xr}, where r > q + 2 and q > p + 1 (merge of Type 3).
s data sequence vector containing the (recursively updated) smooth and detail coefficients from

the initial input s0.

As merging continues under the “two together” rule, all mergings can be classified

into one of three forms:

• Type 1: merging three initial smooth coefficients,

• Type 2: merging one initial and a paired smooth coefficient,

• Type 3: merging two sets of (paired) smooth coefficients,



Springer Nature 2021 LATEX template

Linear trend change detection 9

where Type 3 is composed of two merges of triplets and more details are given in

Section 2.2.2.

2.2.2 Example

We now provide a simple example of the TGUW transformation; the accompanying

illustration is in Figure 3. The notation for this example and for the general algorithm

introduced later is in Table 1. This example shows single merges at each pass through

the data when the algorithm runs in a purely greedy way. We will later generalise it

to multiple passes through the data, which will speed up computation (this device is

referred to as “tail-greediness” as the algorithm merges those triplets corresponding

to the lower tail of the distribution of local deviation from linearity in X). We refer

to jth pass through the data as scale j. Assume that we have the initial input s0 =

(X1, X2, . . . , X8), so that the complete TGUW transform consists of 6 merges. We

show 6 example merges one by one under the rules introduced in Section 2.2.1. This

example demonstrates all three possible types of merges.

Scale j = 1. From the initial input s0 = (X1, . . . , X8), we consider 6 triplets

(X1, X2, X3), (X2, X3, X4), (X3, X4, X5), (X4, X5, X6), (X5, X6, X7), (X6, X7, X8) and com-

pute the size of the detail for each triplet, where the formula can be found in

(7). Suppose that (X2, X3, X4) gives the smallest size of detail, |d2,3,4|, then merge

(X2, X3, X4) through the orthogonal transformation formulated in (8) and update

the data sequence into s = (X1, s
[1]
2,4, s

[2]
2,4, d2,3,4, X5, X6, X7, X8). We categorise this

transformation into Type 1 (merging three initial smooth coefficients).

Scale j = 2. From now on, the “two together” rule is applied. Ignoring any

detail coefficients in s, the possible triplets for next merging are (X1, s
[1]
2,4, s

[2]
2,4),

(s[1]
2,4, s

[2]
2,4, X5), (X5, X6, X7), (X6, X7, X8). We note that (s[2]

2,4, X5, X6) cannot be con-

sidered as a candidate for next merging under the “two together” rule as this

triplet contains only one (not both) of the paired smooth coefficients returned by

the previous merging. Assume that (X5, X6, X7) gives the smallest size of detail

coefficient |d5,6,7| among the four candidates, then we merge them through the
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X1 X2 X3 X4 X5 X6 X7 X8

Type 1 merging

Type 2 merging

Type 3 merging

scale j = 1, 2

X1 s2,4

[1]
s2,4

[2] d2,3,4 s5,7

[1]
s5,7

[2] d5,6,7 X8

Type 1 merging

Type 2 merging

Type 3 merging

scale j = 3

s1,4

[1]
s1,4

[2] d1,1,4 d2,3,4 s5,7

[1]
s5,7

[2] d5,6,7 X8

Type 1 merging

Type 2 merging

Type 3 merging

scale j = 4

s1,4

[1]
s1,4

[2] d1,1,4 d2,3,4 s5,8

[1]
s5,8

[2] d5,6,7 d5,7,8

Type 1 merging

Type 2 merging

Type 3 merging

scale j = 5

Fig. 3: Construction of tree for the example in Section 2.2.2; each diagram shows all
merges performed up to the given scale with the data (dot), true signal (grey) and true
change point (red).

orthogonal transformation formulated in (8) and now update the sequence into s =

(X1, s
[1]
2,4, s

[2]
2,4, d2,3,4, s

[1]
5,7, s

[2]
5,7, d5,6,7, X8). This transformation is also Type 1.

Scale j = 3. We now compare four candidates for merging, (X1, s
[1]
2,4, s

[2]
2,4),

(s[1]
2,4, s

[2]
2,4, s

[1]
5,7), (s[2]

2,4, s
[1]
5,7, s

[2]
5,7) and (s[1]

5,7, s
[2]
5,7, X8). The two triplets in middle,

(s[1]
2,4, s

[2]
2,4, s

[1]
5,7) and (s[2]

2,4, s
[1]
5,7, s

[2]
5,7), are paired together as they contain two sets of

paired smooth coefficients, (s[1]
2,4, s

[2]
2,4) and (s[1]

5,7, s
[2]
5,7), and if we were to treat these

two triplets separately, we would be violating the “two together” rule. The summary

detail coefficient for this pair of triplets is obtained as d2,4,7 = max(|d[1]
2,4,7|, |d

[2]
2,4,7|),

which is compared with those of the other triplets. Now suppose that (X1, s
[1]
2,4, s

[2]
2,4)

has the smallest size of detail; we merge this triplet and update the data sequence into

s = (s[1]
1,4, s

[2]
1,4, d1,1,4, d2,3,4, s

[1]
5,7, s

[2]
5,7, d5,6,7, X8). This transformation is of Type 2.

Scale j = 4. We now have two pairs of paired coefficients: (s[1]
1,4, s

[2]
1,4)

and (s[1]
5,7, s

[2]
5,7). Therefore, with the “two together” rule in mind, the only pos-

sible options for merging are: to merge the two pairs into (s[1]
1,4, s

[2]
1,4, s

[1]
5,7, s

[2]
5,7),

or to merge (s[1]
5,7, s

[2]
5,7) with X8. Suppose that the second merging is preferred.
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Then we perform Type 2 merge and update the data sequence into s =

(s[1]
1,4, s

[2]
1,4, d1,1,4, d2,3,4, s

[1]
5,8, s

[2]
5,8, d5,6,7, d5,7,8).

Scale j = 5. The only remaining step is merging (s[1]
1,4, s

[2]
1,4) and (s[1]

5,8, s
[2]
5,8)

into (s[1]
1,4, s

[2]
1,4, s

[1]
5,8, s

[2]
5,8). This transformation is Type 3 and performed in two

stages as follows. In the first stage, we merge (s[1]
1,4, s

[2]
1,4, s

[1]
5,8) and then update the

sequence temporarily as s = (s[1′]
1,8 , s

[2′]
1,8 , d1,1,4, d2,3,4, d

[1]
1,4,8, s

[2]
5,8, d5,6,7, d5,7,8). In the

second stage, we merge (s[1′]
1,8 , s

[2′]
1,8 , s

[2]
5,8), which gives the updated sequence s =

(s[1]
1,8, s

[2]
1,8, d1,1,4, d2,3,4, d

[1]
1,4,8, d

[2]
1,4,8, d5,6,7, d5,7,8). The transformation is now completed

with the updated data sequence which contains T − 2 = 6 detail and 2 smooth

coefficients.

2.2.3 Some important features of TGUW transformation

Before formulating the TGUW transformation in generality, we describe how it

achieves sparse representation of the data. Sometimes, we will be referring to a detail

coefficient d·p,q,r as d( j,k)
p,q,r or d( j,k), where j = 1, . . . , J is the scale of the transform (i.e.

the consecutive pass through the data) at which d·p,q,r was computed, k = 1, . . . ,K( j)

is the location index of d·p,q,r within all scale j coefficients, and d·p,q,r is d[1]
p,q,r or d[2]

p,q,r

or dp,q,r, depending on the type of merge.

The TGUW transform eventually converts the input data sequence X of length T

into the sequence containing 2 smooth and T − 2 detail coefficients through T − 2

orthonormal transforms as follows,



s[1]
1,T

s[2]
1,Td( j,k)

j=1,...,J,k=1,...,K( j)




=



ψ(0,1)

ψ(0,2)ψ( j,k)
j=1,...,J,k=1,...,K( j)






X1

X2
...

XT

 = ΨT×T


X1

X2
...

XT

 , (3)

where Ψ is a data-adaptively chosen orthonormal unbalanced wavelet basis for RT .

The detail coefficients d( j,k) can be regarded as scalar products between X and a

particular unbalanced wavelet basis ψ( j,k), where the formal representation is given
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as {d( j,k) = 〈X, ψ( j,k)〉, j=1,...,J,k=1, ...,K( j) } for detail coefficients and s[1]
1,T = 〈X, ψ(0,1)〉,

s[2]
1,T = 〈X, ψ(0,2)〉 for the two smooth coefficients.

The TGUW transform is nonlinear, but it is also conditionally linear and orthonor-

mal given the order in which the merges are performed. The orthonormality of the

unbalanced wavelet basis, {ψ( j,k)}, implies Parseval’s identity:

T∑
t=1

X2
t =

J∑
j=1

K( j)∑
k=1

(d( j,k))2 + (s[1]
1,T )2 + (s[2]

1,T )2. (4)

Furthermore, the filters (ψ(0,1), ψ(0,2)) corresponding to the two smooth coefficients

s[1]
1,T and s[2]

1,T form an orthonormal basis of the subspace {(x1, x2, . . . , xT ) | x1 − x2 =

x2 − x3 = · · · = xT−1 − xT } of RT ; see Section E of the supplementary materials for

further details. This implies

T∑
t=1

X2
t − (s[1]

1,T )2 − (s[2]
1,T )2 =

T∑
t=1

(Xt − X̂t)2 (5)

where X̂ = s[1]
1,Tψ

(0,1) + s[2]
1,Tψ

(0,2) is the best linear regression fit to X achieved by

minimising the sum of squared errors. This, combined with the Parseval’s identity

above, implies
T∑

t=1

(Xt − X̂t)2 =

J∑
j=1

K( j)∑
k=1

(d( j,k))2. (6)

By construction, the detail coefficients |d( j,k)| obtained in the initial stages of the

TGUW transform tend to be small in magnitude. Then the Parseval’s identity in

(4) implies that a large portion of
∑T

t=1(Xt − X̂t)2 is explained by only a few large

|d( j,k)|’s arising in the later stages of the transform; in this sense, the TGUW transform

provides sparsity of signal representation.

2.2.4 TGUW transformation: general algorithm

In this section, we formulate in generality the TGUW transformation illustrated

in Section 2.2.2 by showing how an adaptive orthonormal unbalanced wavelet

basis, Ψ in (3), is constructed. One of the important principles is “tail-greediness”
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(Fryzlewicz, 2018) which enables us to reduce the computational complexity by per-

forming multiple merges over non-overlapping regions in a single pass over the data.

More specifically, it allows us to perform up to max{2, dρα je} merges at each scale j,

where α j is the number of smooth coefficients in the data sequence s and ρ ∈ (0, 1)

(the lower bound of 2 is essential to permit a Type 3 transformation, which consists

of two merges).

We now describe the TGUW algorithm.

1. At each scale j, find the set of triplets that are candidates for merging under the

“two together” rule and compute the corresponding detail coefficients. Regardless

of the type of merge, a detail coefficient d·p,q,r is, in general, obtained as

d·p,q,r = as1
p:r + bs2

p:r + cs3
p:r, (7)

where p ≤ q < r, sk
p:r is the kth smooth coefficient of the subvector sp:r with

a length of r − p + 1 and the constants a, b, c are the elements of the detail fil-

ter h = (a, b, c)>. We note that (a, b, c) also depends on (p, q, r), but this is not

reflected in the notation, for simplicity. The detail filter is a weight vector used

in computing the weighted sum of a triplet of smooth coefficients which should

satisfy the condition that the detail coefficient is zero if and only if the corre-

sponding raw observations over the merged regions have a perfect linear trend.

If (Xp, . . . , Xr) are the raw observations associated with the triplet of the smooth

coefficients (s1
p:r, s2

p:r, s3
p:r) under consideration, then the detail filter h is obtained

in such a way as to produce zero detail coefficient only when (Xp, . . . , Xr) has a

perfect linear trend, as the detail coefficient itself represents the extent of non-

linearity in the corresponding region of data. This implies that the smaller the size

of the detail coefficient, the closer the alignment of the corresponding data section

with linearity.

2. Summarise all d·p,q,r constructed in step 1 to a (equal length or shorter) sequence

of dp,q,r by finding a summary detail coefficient dp,q,r = max(|d[1]
p,q,r |, |d

[2]
p,q,r |) for

any pair of detail coefficients constructed by Type 3 merges.
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3. Sort the size of the summarised detail coefficients |dp,q,r | obtained in step 2 in

non-decreasing order.

4. Extract the (non-summarised) detail coefficient(s) |d·p,q,r | corresponding to the

smallest (summarised) detail coefficient |dp,q,r | e.g. both |d[1]
p,q,r | and |d[2]

p,q,r | should

be extracted only if dp,q,r = max(|d[1]
p,q,r |, |d

[2]
p,q,r |). Repeat the extraction until

max{2, dρα je} (or all possible, whichever is the smaller number) detail coefficients

have been obtained, as long as the region of the data corresponding to each detail

coefficient extracted does not overlap with the regions corresponding to the detail

coefficients already drawn.

5. For each |d·p,q,r | extracted in step 4, merge the corresponding smooth coefficients

by updating the corresponding triplet in s through the orthonormal transform as

follows,


s[1]

p,r

s[2]
p,r

d·p,q,r

 =


`>1

`>2

h>



s1

p:r

s2
p:r

s3
p:r

 = Λ


s1

p:r

s2
p:r

s3
p:r

 . (8)

The key step is finding the 3 × 3 orthonormal matrix, Λ, which is composed of

one detail and two low-pass filter vectors in its rows. Firstly the detail filter h>

is determined to satisfy the condition mentioned in step 1, and then the two low-

pass filters (`>1 , `
>
2 ) are obtained by satisfying the orthonormality of Λ. There is

no uniqueness in the choice of (`>1 , `
>
2 ), but this has no effect on the transfor-

mation itself. The details of this mechanism can be found in Section E of the

supplementary materials.

6. Go to step 1 and repeat at new scale j = j + 1 as long as we have at least three

smooth coefficients in the updated data sequence s.

More specifically, when Type 1 merge is performed in step 1 (i.e. sp:r in (7)

consists of three initial smoothing coefficients, which implies r = p + 2), the corre-

sponding detail filter h is obtained as a unit normal vector to the plane {(x, y, z)|x−2y+

z = 0}, thus the detail coefficient d presents the projection of three initial smoothing

coefficients to the unit normal vector. In the same manner, due to the orthonormality
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of Λ in (8), the two low-pass filters (`>1 , `
>
2 ) form an arbitrary orthonormal basis of

the plane {(x, y, z)|x − 2y + z = 0}. In practice, the detail filter h in Step 1 is obtained

by updating so-called weight vectors of constancy and linearity in which the initial

inputs have a form of (1, 1, . . . , 1)> and (1, 2, . . . ,T )>, respectively. The details can

be found in Section F of the supplementary materials.

We now comment briefly on the computational complexity of the TGUW trans-

form. Assume that α j smooth coefficients are available in the data sequence s at scale

j and we allow the algorithm to merge up to
⌈
ρα j

⌉
many triplets (unless their corre-

sponding data regions overlap) where ρ ∈ (0, 1) is a constant. This gives us at most

(1 − ρ) jT smooth coefficients remaining in s after j scales. Solving for (1 − ρ) jT ≤ 2

gives the largest number of scales J as
⌈
log(T )/ log

(
(1−ρ)−1)+ log(2)/ log(1−ρ)

⌉
, at

which point the TGUW transform terminates with two smooth coefficients remain-

ing. Considering that the most expensive step at each scale is sorting which takes

O(T log(T )) operations, the computational complexity of the TGUW transformation

is O(T log2(T )).

2.3 Thresholding

Because at each stage, the TGUW transform constructs the smallest possible detail

coefficients, but it is at the same time orthonormal and so preserves the l2 energy of

the input data, the variability (= deviation from linearity) of the signal tends to be

mainly encoded in only a few detail coefficients computed at the later stages of the

transform. The resulting sparsity of representation of the input data in the domain

of TGUW coefficients justifies thresholding as a way of deciding the significance of

each detail coefficient (which measures the local deviation from linearity).

We propose to threshold the TGUW detail coefficients under two important rules,

which should simultaneously be satisfied; we refer to these as the “connected” rule

and the “two together” rule. The “two together” rule in thresholding is similar to the

one in the TGUW transformation except it targets pairs of detail rather than smooth

coefficients, and only applies to pairs of detail coefficients arising from Type 3

merges. Figure 4b shows one such pair in the example of Section 2.2.2, (d[1]
1,4,8, d

[2]
1,4,8),
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s1,8
[1]

s1,8
[2] d1,1,4 d2,3,4 d1,4,8

[1]
d1,4,8

[2] d5,6,7 d5,7,8 s1,8
[1]

s1,8
[2] d1,1,4 d2,3,4 d1,4,8

[1]
d1,4,8

[2] d5,6,7 d5,7,8

survived

thresholded

(a) survived detail coefficients before and after applying the “connected” rule

s1,8
[1]

s1,8
[2] d1,1,4 d2,3,4 d1,4,8

[1]
d1,4,8

[2] d5,6,7 d5,7,8 s1,8
[1]

s1,8
[2] d1,1,4 d2,3,4 d1,4,8

[1]
d1,4,8

[2] d5,6,7 d5,7,8

survived

thresholded

(b) survived detail coefficients before and after applying the “two together” rule

Fig. 4: The tree of mergings in the example of Section 2.2.2. Left-hand trees show the
examples of tree obtained from initial hard thresholding, the right-hand trees come
from processing the respective left-hand ones by applying (a) the “connected” rule
and (b) the “two together” rule, respectively, described in Section 2.3. The circled
detail coefficients are the surviving ones.

and the “two together” rule means that both such detail coefficients should be kept if

at least one survives the initial thresholding. This is a natural requirement as a pair of

Type 3 detail coefficients effectively corresponds to a single merge of two adjacent

regions.

The “connected” rule which prunes the branches of the TGUW detail coefficients

if and only if the detail coefficient itself and all of its children coefficients fall below

a certain threshold in absolute value. This is illustrated in Figure 4a along with the

example of Section 2.2.2; if both d2,3,4 and (d[1]
1,4,8, d

[2]
1,4,8) were to survive the initial

thresholding, the “connected” rule would mean we also had to keep d1,1,4, which is

the child of (d[1]
1,4,8, d

[2]
1,4,8) and the parent of d2,3,4 in the TGUW coefficient tree.

Through the thresholding, we wish to estimate the underlying signal f in (1) by

estimating µ( j,k) = 〈 f , ψ( j,k)〉 where ψ( j,k) is an orthonormal unbalanced wavelet basis
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constructed in the TGUW transform from the data. Throughout the entire threshold-

ing procedure, the “connected” and “two together” rules are applied in this order.

We firstly threshold and apply the “connected” rule, which gives us µ̂( j,k)
0 , the initial

estimator of µ( j,k), as

µ̂
( j,k)
0 = d( j,k)

p,q,r · I
{
∃( j′, k′) ∈ C j,k

∣∣∣d( j′,k′)
p′,q′,r′

∣∣∣ > λ }
, (9)

where I is an indicator function and

C j,k = {( j′, k′), j′ = 1, . . . , j, k′ = 1, . . . ,K( j′) : d( j′,k′)
p′,q′,r′ is such that [p′, r′] ⊆ [p, r]}.

(10)

Now the “two together” rule is applied to the initial estimators µ̂( j,k)
0 to obtain the

final estimators µ̂( j,k). We firstly note that two detail coefficients, d( j,k)
p,q,r and d( j′,k+1)

p′,q′,r′

are called “paired” when they are formed by Type 3 mergings and when ( j, p, q, r) =

( j′, p′, q′, r′). The “two together” rule is formulated as below,

µ̂( j,k) =


µ̂

( j,k)
0 , if d( j,k)

p,q,r is not paired,

µ̂
( j,k)
0 , if d( j,k)

p,q,r is paired with d( j,k′)
p,q,r and both µ̂( j,k)

0 and µ̂( j,k′)
0 are zero or nonzero,

d( j,k), if d( j,k)
p,q,r is paired with d( j,k′)

p,q,r and µ̂( j,k′)
0 , 0 and µ̂( j,k)

0 = 0. (11)

It is important to note that the application of the two rules ensures that f̃ is a

piecewise-linear function composed of best linear fits (in the least-squares sense) for

each interval of linearity. As an aside, we note that the number of survived detail

coefficients does not necessarily equal the number of change-points in f̃ as a pair of

detail coefficients arising from a Type 3 merge are associated with a single change-

point.

2.4 Inverse TGUW transformation

The estimator f̃ of the true signal f in (1) is obtained by inverting (= transposing)

the orthonormal transformations in (8) in reverse order to that in which they were

originally performed. This inverse TGUW transformation is referred to as TGUW−1,
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and thus

f̃ = TGUW−1{ µ̂( j,k), j = 1, . . . , J, k = 1, . . . ,K( j) ‖ s[1]
1,T , s

[2]
1,T

}
, (12)

where ‖ denotes vector concatenation.

2.5 Post processing for consistency of change-point detection

As will be formalised in Theorem 1 of Section 3, the piecewise-linear estimator f̃

in (12) possibly overestimates the number of change-points. To remove the spuri-

ous estimated change-points and to achieve the consistency of the number and the

locations of the estimated change-points, we adopt the post-processing framework

of Fryzlewicz (2018). Lin et al. (2017) show that we can usually post-process l2-

consistent estimators in this way as a fast enough l2 error rate implies that each true

change-point has an estimator nearby. The post-processing methodology includes

two stages, i) execution of three steps, TGUW transform, thresholding and inverse

TGUW transform, again to the estimator f̃ in (12) and ii) examination of regions

containing only one estimated change-point to check for its significance.

Stage 1.

We transform the estimated function f̃ in (12) with change-points (η̃1, η̃2, . . . , η̃Ñ)

into a new estimator ˜̃f with corresponding change-points ( ˜̃η1, ˜̃η2, . . . , ˜̃η ˜̃N). Using f̃ in

(12) as an input data sequence s, we perform the TGUW transform as presented in

Section 2.2.4, but in a greedy rather than tail-greedy way such that only one detail

coefficient d( j,1) is produced at each scale j, and thus K( j) = 1 for all j. We repeat

to produce detail coefficients until the first detail coefficient such that |d( j,1)| > λ is

obtained where λ is the parameter used in the thresholding procedure described in

Section 2.3. Once the condition, |d( j,1)| > λ, is satisfied, we stop merging, relabel the

surviving change-points as ( ˜̃η1, ˜̃η2, . . . , ˜̃η ˜̃N) and construct the new estimator ˜̃f as

˜̃ft = θ̂i,1 + θ̂i,2 t for t ∈
[ ˜̃ηi−1 + 1, ˜̃ηi

]
, i = 1, . . . , ˜̃N, (13)
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where ˜̃η0 = 0, ˜̃η ˜̃N+1 = T and (θ̂i,1, θ̂i,2) are the OLS intercept and slope coefficients,

respectively, for the corresponding pairs {(t, Xt), t ∈
[ ˜̃ηi−1 + 1, ˜̃ηi

]
}. The exception is

when the region under consideration only contains a single data point Xt0 , in which

case fitting a linear regression is impossible. We then set ˜̃ft0 = Xt0 .

Stage 2.

From the estimator ˜̃ft in Stage 1, we obtain the final estimator f̂ by pruning the

change-points ( ˜̃η1, ˜̃η2, . . . , ˜̃η ˜̃N) in ˜̃ft. For each i = 1, . . . , ˜̃N, compute the corresponding

detail coefficient dpi,qi,ri as described in (7), where pi =
⌊ ˜̃ηi−1+ ˜̃ηi

2

⌋
+ 1, qi = ˜̃ηi and

ri =
⌈ ˜̃ηi+ ˜̃ηi+1

2

⌉
. Now prune by finding the minimiser i0 = arg mini |dpi,qi,ri | and removing

˜̃ηi0 and setting ˜̃N := ˜̃N − 1 if |dpi0 ,qi0 ,ri0
| ≤ λ where λ is same as in Section 2.3. Then

relabel the change-points with the subscripts i = 1, . . . , ˜̃N under the convention ˜̃η0 =

0, ˜̃η ˜̃N+1 = T . Repeat the pruning while we can find i0 which satisfies the condition∣∣∣dpi0 ,qi0 ,ri0

∣∣∣ < λ. Otherwise, stop, denote by N̂ the number of detected change-points

and by η̂i – the change-points in increasing order for i = 0, . . . , N̂+1 where η̂0 = 0 and

η̂N̂+1 = T . The estimated function f̂ is obtained by simple linear regression for each

region determined by the final change-points η̂1, . . . , η̂N̂ as in (13), with the exception

for the case of single data point as described in Stage 1 above.

Through these two stages of post processing, the estimation of the number and

the locations of change-points become consistent, and further details can be found in

Section 3.

3 Theoretical results

We study the l2 consistency of f̃ and ˜̃f , and the change-point detection consistency

of f̂ , where the estimators are defined in Section 2. The l2 risk of an estimator f̃ is

defined as
∥∥∥ f̃ − f

∥∥∥2
T = T−1 ∑T

i=1( f̃i − fi)2, where f is the underlying signal as in (1).

We firstly investigate the l2 behaviour of f̃ . The proofs of Theorems 1-3 can be found

in Appendix A.
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Theorem 1 Xt follows model (1) with σ = 1 and f̃ is the estimator in (12). If the threshold

λ = C1{2 log(T )}1/2 with a constant C1 ≥
√

3, then we have

P
(
‖ f̃ − f ‖2T ≤ C2

1
1
T

log(T )
{
4 + 8N d log(T )/ log(1 − ρ)−1 e

} )
→ 1, (14)

as T → ∞ and the piecewise-linear estimator f̃ contains Ñ ≤ CN log(T ) change-points where

C is a constant.

Thus, f̃ is l2 consistent under the strong sparsity assumption (i.e. if N is finite) or

even under the relaxed condition that N has the order of log T . The crucial mecha-

nism of l2 consistency is the “tail-greediness” which allows up to K( j) ≥ 1 smooth

coefficients to be removed at each scale j. In other words, consistency is generally

unachievable if we proceed in a greedy (as opposed to tail-greedy) way, i.e. if we

only merge one triplet at each scale of the TGUW transformation.

We now move onto the estimator ˜̃f obtained in the first stage of post-processing.

Theorem 2 Xt follows model (1) with σ = 1 and ˜̃f is the estimator in (13). Let the threshold λ

be as in Theorem 1. Then we have
∥∥∥ ˜̃f − f

∥∥∥2
T = O

(
NT−1 log2(T )

)
with probability approaching

1 as T → ∞ and there exist at most two estimated change-points between each pair of true

change-points (ηi, ηi+1) for i = 0, . . . ,N, where η0 = 0 and ηN+1 = T. Therefore ˜̃N ≤ 2(N + 1).

We see that ˜̃f is l2 consistent, but inconsistent for the number of change-points.

Now we investigate the final estimators, f̂ and N̂.

Theorem 3 Xt follows model (1) with σ = 1 and ( f̂ , N̂) are the estimators obtained in Section

2.5. Let the threshold λ be as in Theorem 1 and suppose that the number of true change-points,

N, has the order of log T. Let ∆T = mini=1,...,N
{(

¯
f i
T

)2/3
· δi

T

}
where

¯
f i
T = min

(
| fηi+1 − 2 fηi +

fηi−1 |, | fηi+2 − 2 fηi+1 + fηi |
)

and δi
T = min

(
|ηi − ηi−1|, |ηi+1 − ηi|

)
. Assume that T 1/3R1/3

T = o
(
∆T

)
where

∥∥∥ ˜̃f − f
∥∥∥2

T = Op(RT ) is as in Theorem 2. Then we have

P
(
N̂ = N, max

i=1,...,N

{
|η̂i − ηi| ·

(
¯
f i
T

)2/3}
≤ CT 1/3R1/3

T

)
→ 1, (15)

as T → ∞ where C is a constant.
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Our theory indicates that when mini
¯
f i
T ∼ T−1, the change-point detection rate of

the TrendSegment procedure is Op(T 2/3 log T ). If the number of true change-points,

N, is finite, then the detection accuracy becomes Op(T 2/3(log T )2/3). Comparing it

with the rate of Op(T 2/3(log T )1/3) derived by Baranowski et al. (2019) and Anasta-

siou and Fryzlewicz (2022) and also with the rate of Op(T 2/3) derived by Raimondo

(1998), our detection accuracy is different by only a logarithmic factor. In the case

in which mini
¯
f i
T is bounded away from zero, the consistent estimation of the num-

ber and locations of change-point is achieved by assuming T 1/3R1/3
T = o(δT ) where

δT = mini=1,...,N+1 |ηi − ηi−1| and RT = NT−1 log2(T ). In addition, when there exists

a separate data segment containing only one data point, then the two consecutive

change-points, ηk−1 and ηk, linked via ηk−1 = ηk − 1 under the definition of a change-

point in (2) can be detected exactly at their true locations only if the corresponding

¯
f i
T s satisfy the condition min

(
¯
f k
T , ¯

f k−1
T

)
& log(T ).

In the supplementary material, the assumptions of the Gaussianity and the inde-

pendence on εt are relaxed and the corresponding Theorems B.1-B.3 are presented in

a setting in which the noise is dependent and/or non-Gaussian.

4 Simulation study

4.1 Parameter choice and setting

4.1.1 Post-processing

In what follows, we disable Stages 1 and 2 of post-processing by default: our empir-

ical experience is that Stage 1 rarely makes a difference in practice but comes with

an additional computational cost, and Stage 2 occasionally over-prunes change-point

estimates.

4.1.2 Choice of the “tail-greediness” parameter

ρ ∈ (0, 1) is a constant which controls the greediness level of the TGUW transforma-

tion in the sense that it decides how many merges are performed in a single pass over

the data. A large ρ can reduce the computational cost but it makes the procedure less
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adaptive, whereas a small ρ gives the opposite effect. Based on our empirical expe-

rience, the best performance is stably achieved in the range ρ ∈ (0, 0.05] and we use

ρ = 0.04 as a default in the simulation study and data analyses.

4.1.3 Choice of the minimum segment length

We can give a condition on the minimum segment length of the estimated signal

returned by the TrendSegment algorithm. If it is set to 1, two consecutive data-points

can be detected as change-points. As theoretically shown in the supplementary mate-

rial, the minimum length of the estimated segment should have an order of log(T ) to

achieve estimation consistency in the case of dependent and/or non-Gaussian errors.

To avoid too short segments, and to cover non iid Gaussian noise, we set the min-

imum segment length to C log(T ) and use the default C = 0.9 in the remainder of

the paper, otherwise we are not able to detect those short segments in (M6). This

constraint can be adjusted by users in the R package trendsegmentR.

4.1.4 Continuity at change-points

As described in Section 2, the TrendSegment algorithm works by detecting

change-points first (in thresholding) and then estimating the best linear fit (in the

least-squares sense) for each segment (in the inverse TGUW transform). These

procedures normally ensure discontinuity at change-points, however our R pack-

age trendsegmentR has an option for ensuring continuous change-points by

approximating f using the linear spline fit with knots at detected change-points.

4.1.5 Choice of threshold λ

Motivated by Theorem 1, we consider the simplest naı̈ve threshold of the form

λNaı̈ve = Cσ
√

2 log T , (16)

where σ can be estimated in different ways depending on the type of noise. Under

iid Gaussian noise, we can estimate σ using the Median Absolute Deviation (MAD)

estimator (Hampel, 1974) defined as σ̂ = Median(|X1−2X2 +X3|, . . . , |XT−2−2XT−1 +
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XT |)/(Φ−1(3/4)
√

6) where Φ−1 is the quantile function of the Gaussian distribu-

tion. We found that under iid Gaussian noise C = 1.3 empirically leads to the best

performance over a sequence of C, where the details and the relevant results for non-

Gaussian and/or dependent errors can be found in Section C of the supplementary

material. For completeness, we now present an algorithm for a threshold that works

well in all circumstances. When the noise is not generated from iid Gaussian, it is

reasonable to assume that the threshold is affected by the serial dependence structure

and/or the extent of heavy-tailedness of noise, which motivates us to use threshold of

the form:

λRobust = CIg(K)
√

2 log T , (17)

where I is the long-run standard deviation, K is kurtosis and g is a function. To

estimate the unknown parameters in (17), we follow Algorithm 1.

Algorithm 1 Robust threshold selection
INPUT: X, λNaı̈ve, C, ηmax

1. Pre-estimate the fit, f̂t, via the TrendSegment algorithm with ηmax, where ηmax

is a pre-specified maximum number of estimated change-points.

2. Compute the empirical residuals, ε̂t, from the pre-fit obtained in 1.

3. From ε̂t, compute the sample kurtosis (K̂) and the long-run standard deviation

estimator (Î) based on AR(1) model. See comments underneath the algorithm

for details of this step.

4. Plug in Î and K̂ into the threshold formula in (17) with a pre-specified C.

5. To estimate the function g, find a non-parametric regression fit with X = K̂

and Y = λNaı̈ve

CÎ
√

2 log T
, where λNaı̈ve is chosen as the best performing threshold by

repeating the simulations with a range of threshold constant C over different

types of noise.

6. Obtain the threshold in (17) based on the set of estimators, (Î, K̂ , ĝ).

OUTPUT: The robust threshold λRobust.

We now describe the details of each step in Algorithm 1.
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Pre-estimated fit in Step 1.

In (17), the heavy-tailedness and dependent structure of the noise are captured by K

and I, respectively. In practice, estimating I andK is challenging as the observation

includes change-points in its underlying signal. One of the most straightforward way

is pre-estimating the fit f̂t via TrendSegment algorithm with a parameter ηmax, the

maximum number estimated change-points. As long as ηmax is not too large, some

extent of overestimation would be acceptable, and we use ηmax = d0.15T e as a default

in practice, as it empirically led to the best performance and the simulation results do

not vary by much over the range ηmax ∈ [d0.1T e, d0.2T e]. The pre-fitting gives us the

estimated noise ε̂t = Xt − f̂t, from which we can estimate both I and K .

Pre-specified constant C in Step 4.

We set C = 1.3 as it empirically led to the best performance for iid Gaussian noise

with the naive approach in (16). Thus we hope to have both Î and ĝ(K̂) close to

1 under iid Gaussian noise, but larger than 1 when the noise has serial dependence

and/or heavy-tailedness.

I and K in Step 4.

I and K capture dependency and heavy-tailedness of noise, respectively. First,

kurtosis is estimated from the estimated noise as follows:

K̂ =

∑T
t=1(ε̂t − ¯̂ε)4

T ŝ4
ε̂

, (18)

where ¯̂ε and ŝε̂ are sample mean and sample standard deviation of ε̂, respectively.

For estimating I, we consider the case when Gaussian noise has dependent structure.

Then the dependencies increase the marginal variance of CUSUM statistic and one

way of solving this issue is inflating the threshold by the following factor

I =
√

(1 + φ)/(1 − φ), (19)
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where φ is the true parameter of a AR(1) process (Fearnhead and Fryzlewicz, 2022).

We can estimate φ by fitting AR(1) model to the estimated noise ε̂t = Xt − f̂t, and this

gives us the estimated long-run standard deviation Î. Although in theory the infla-

tion factor in (19) is valid only for Gaussian noise, we use the estimator of (19) as

an estimated long-run standard deviation even when the noise has both serial depen-

dence and heavy-tailedness, hoping that the heavy-tailedness is captured reasonably

well by K .

Kurtosis function g in Step 5.

We fit a non-parametric regression as described in step 5 of Algorithm 1 over different

models and noise scenarios. We found that g(K̂) has no particular functional form in

K̂ , and is scattered between 0.9 and 1.6 over all noise scenarios and all simulations

models considered in the paper. Therefore, the resulting non-parametric fit ĝ(K̂) also

has a flat shape over a range of K̂ , and we use this in finding the robust threshold

in practice. This is due to the condition on the minimum segment length described

earlier which helps the method to be robust to spikes.

The detailed procedure of estimating g is presented in Section C.2 of the sup-

plementary material. Also, the simulation results using Algorithm 1 for dependent

and/or heavy-tailed noise can be found in Tables C.1 - C.10 in Section C.1 of the

supplementary material. The proposed robust threshold selection algorithm can also

be applied to iid Gaussian noise without any knowledge on type of noise and the

corresponding simulation results are given in Section 4.3.

We consider iid Gaussian noise and simulate data from model (1) using 8 signals,

(M1) wave1, (M2) wave2, (M3) mix1, (M4) mix2, (M5) mix3, (M6) lin.sgmts, (M7)

teeth and (M8) lin, shown in Figure 5. (M1) is continuous at change-points, while

(M2) has discontinuities. (M3) contains both constant and linear segments and is

continuous at change-points, whereas (M4) is of the similar type but has a mix of con-

tinuous and discontinuous change-points. (M5) has three particularly short segments

containing 12, 9 and 6 data points, respectively and (M6) has isolated spike-type

short segments containing 6 data points each. (M7) is piecewise-constant, and (M8)

is a linear signal without change-points. The signals and R code for all simulations
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can be downloaded from our GitHub repository (Maeng and Fryzlewicz, 2021) and

the simulation results under dependent or heavy-tailed errors can be found in Section

C of the supplementary materials.

0 50 100 150 200 250

−
4

−
2

0
2

4

(a) (M1) wave1

0 200 400 600 800 1000 1200

−
4

−
2

0
2

4

(b) (M2) wave2

0 500 1000 1500 2000

−
4

−
2

0
2

4

(c) (M3) mix1

0 100 200 300 400 500

−
6

−
2

0
2

4
6

(d) (M4) mix2

0 500 1000 1500 2000

−
5

0
5

(e) (M5) mix3

0 500 1000 1500 2000

−
4

−
2

0
2

4
6

(f) (M6) lin.sgmts

0 200 400 600 800

−
4

−
2

0
2

(g) (M7) teeth

0 500 1000 1500

−
2

0
2

4

(h) (M8) lin

Fig. 5: Examples of data with its underlying signal studied in Section 4. (a)-(h) data
series Xt (light grey) and true signal ft (black).

4.2 Competing methods and estimators

We perform the TrendSegment procedure based on the parameter choice in Section

4.1 and compare the performance with that of the following competitors: Narrowest-

Over-Threshold detection (NOT, Baranowski et al. (2019)) implemented in the R

package not from CRAN, Isolate-Detect (ID, Anastasiou and Fryzlewicz (2022))
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available in the R package IDetect, trend filtering (TF, Kim et al. (2009)) avail-

able from https://github.com/glmgen/genlasso, Continuous-piecewise-linear Pruned

Optimal Partitioning (CPOP, Fearnhead et al. (2019)) available from https://www.

maths.lancs.ac.uk/∼fearnhea/Publications.html and a bottom-up algorithm based on

the residual sum of squares (RSS) from a linear fit (BUP, Keogh et al. (2004)). The

TrendSegment methodology is implemented in the R package trendsegmentR.

As BUP requires a pre-specified number of change-points (or a well-chosen

stopping criterion which can vary depending on the data), we include it in the sim-

ulation study (with the stopping criterion optimised for the best performance using

the knowledge of the truth) but not in data applications. We do not include the meth-

ods of Spiriti et al. (2013) and Bai and Perron (2003) implemented in the R packages

freeknotsplines and strucchange as we have found them to be particularly

slow. For instance, the minimum segment size in strucchange can be adjusted to

be small as long as it is greater than or equal to 3 for detecting linear trend changes.

This is suitable for detecting very short segments (e.g in (M6) lin.sgmts), however

this setting is accompanied by extremely heavy computation: with this minimum seg-

ment size in place, a single signal simulated from (M6) took us over three hours to

process on a standard PC.

Out of the competing methods tested, ID, TF and CPOP return continuous

change-points, while the estimated signals of Trendsegment and BUP is in principle

discontinuous at change-points. For NOT, we use the contrast function for not nec-

essarily continuous piecewise-linear signals. Regarding the tuning parameters for the

competing methods, we follow the recommendation of each respective paper or the

corresponding R package.

4.3 Results

The summary of the results for all models and methods can be found in Tables 2

and 3. We run 100 simulations and as a measure of accuracy of estimators, we use

Monte-Carlo estimates of the Mean Squared Error of the estimated signal defined as

MSE=E{(1/T )
∑T

t=1( ft − f̂t)2}. The empirical distribution of N̂ − N is also reported

https://github.com/glmgen/genlasso
https://www.maths.lancs.ac.uk/~fearnhea/Publications.html
https://www.maths.lancs.ac.uk/~fearnhea/Publications.html
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where N̂ is the estimated number of change-points and N is the true one. In addition

to this, for comparing the accuracy of the locations of the estimated change-points η̂i,

we show estimates of the scaled Hausdorff distance given by

dH =
1
T
Emax

{
max

i
min

j

∣∣∣ηi − η̂ j

∣∣∣, max
j

min
i

∣∣∣η̂ j − ηi

∣∣∣} (20)

where i = 0, . . . ,N + 1 and j = 0, . . . , N̂ + 1 with the convention η0 = η̂0 = 0, ηN+1 =

η̂N+1 = T and η̂ and η denote estimated and true locations of the change-points.

The smaller the Hausdorff distance, the better the estimation of the change-point

locations. For each method, the average computation time in seconds is shown.

We first emphasise that the results with both the naı̈ve and the robust thresholds

(λNaı̈ve in (16) and λRobust in (17)) are reported for TrendSegment, and the perfor-

mances are nearly the same except (M7). For simplicity, we call both methods as

TrendSegment in the remainder of this section.

The results for (M1) and (M2) are similar. TrendSegment shows comparable

performance to NOT, ID and CPOP in terms of the estimation of the number of

change-points while it is less attractive in terms of the estimated locations of change-

points. TF tends to overestimate the number of change-points throughout all models.

When the signal is a mix of constant and linear trends as in (M3) and (M4), Trend-

Segment, NOT and ID still perform well in terms of the estimation of the number

of change-points. CPOP tends to overestimate in (M4) when there exists discontinu-

ity at change-points, however it shows the best performs in terms of localisation (i.e.

the smallest mean of Hausdorff distance) as it tends to estimate more than one (and

somewhat frequent) change-points at discontinuous change-points. As TrendSegment

and NOT deal with the piecewise-linear signals that is not necessarily continuous at

change-points, they performs better than others in (M2) and (M4).

We see that TrendSegment has a particular advantage over the other methods

especially in (M5) and (M6), when frequent change-points composed of the iso-

lated spike-type short segments of length 6 exist. This is due to the bottom-up nature

of TrendSegment which focuses on local features in the early stage of merges and
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Table 2: Distribution of N̂−N for models (M1)-(M4) and all methods listed in Section
4.1 and 4.2 over 100 simulation runs. Also the average MSE (Mean Squared Error)
of the estimated signal f̂t defined in Section 4.3, the average Hausdorff distance dH

given by (20) and the average computational time in seconds using an Intel Core i5
2.9 GHz CPU with 8 GB of RAM, all over 100 simulations. Bold: methods within
10% of the highest empirical frequency of N̂ − N = 0 or within 10% of the lowest
empirical average dH(×102). Note that TrendSegment is shortened to TS.

N̂ − N

Model Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M1)

TS(λNaı̈ve) 0 0 2 98 0 0 0 0.23 2.96 0.22
TS(λRobust) 0 0 2 97 1 0 0 0.23 2.97 0.09

NOT 0 0 0 98 2 0 0 0.19 2.28 0.22
ID 0 0 0 97 3 0 0 0.14 1.52 0.02
TF 0 0 0 0 0 0 100 0.11 4.50 3.18

CPOP 0 0 0 97 2 1 0 0.09 1.09 0.05
BUP 100 0 0 0 0 0 0 2.65 10.75 0.35

(M2)

TS(λNaı̈ve) 0 0 2 98 0 0 0 0.11 1.90 0.50
TS(λRobust) 0 0 4 96 0 0 0 0.11 1.91 0.24

NOT 0 0 2 98 0 0 0 0.09 1.56 0.35
ID 0 0 0 94 6 0 0 0.09 1.44 0.23
TF 0 0 0 0 0 0 100 0.06 2.31 31.34

CPOP 0 0 0 93 7 0 0 0.06 1.15 2.09
BUP 100 0 0 0 0 0 0 0.75 4.69 2.21

(M3)

TS(λNaı̈ve) 0 0 0 99 1 0 0 0.03 3.33 0.61
TS(λRobust) 0 0 0 100 0 0 0 0.03 3.33 0.29

NOT 0 0 0 100 0 0 0 0.02 2.70 0.33
ID 0 0 0 100 0 0 0 0.02 1.86 0.02
TF 0 0 0 0 0 0 100 0.01 5.41 28.89

CPOP 0 0 0 100 0 0 0 0.01 1.02 17.38
BUP 0 0 0 2 22 48 28 0.03 5.46 2.20

(M4)

TS(λNaı̈ve) 0 0 0 100 0 0 0 0.09 3.24 0.31
TS(λRobust) 0 0 0 100 0 0 0 0.09 3.24 0.09

NOT 0 0 0 99 1 0 0 0.08 2.71 0.23
ID 0 0 0 97 3 0 0 0.07 2.04 0.02
TF 0 0 0 0 0 0 100 0.05 5.47 8.50

CPOP 0 0 0 97 3 0 0 0.04 1.83 0.39
BUP 7 64 27 2 0 0 0 0.52 10.66 0.56

enables TrendSegment to detect those short segments. TrendSegment shows its rel-

ative robustness in estimating the number and the location of change-points while

NOT, ID and CPOP significantly underperform.

For the estimation of the piecewise-constant signal (M7), no methods show good

performances and NOT, ID and TrendSegment tend to underestimate the number

of change-points while CPOP and TF overestimate. In the case of the no-change-

point signal (M8), all methods estimate well except TF and BUP. In summary,

TrendSegment is never among the worst methods, is almost always among the best
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Table 3: Distribution of N̂−N for models (M5)-(M8) and all methods listed in Section
4.1 and 4.2 over 100 simulation runs. Also the average MSE (Mean Squared Error)
of the estimated signal f̂t defined in Section 4.3, the average Hausdorff distance dH

given by (20) and the average computational time in seconds using an Intel Core i5
2.9 GHz CPU with 8 GB of RAM, all over 100 simulations. Bold: methods within
10% of the highest empirical frequency of N̂ − N = 0 or within 10% of the lowest
empirical average dH(×102). Note that TrendSegment is shortened to TS.

N̂ − N

Model Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M5)

TS(λNaı̈ve) 0 0 0 90 10 0 0 0.03 1.40 1.30
TS(λRobust) 0 0 0 89 11 0 0 0.03 1.41 0.32

NOT 0 12 9 75 3 0 1 0.05 0.73 0.25
ID 0 0 0 1 5 25 69 0.29 8.09 0.03
TF 0 0 0 0 0 0 100 0.14 6.15 28.53

CPOP 0 0 0 8 27 31 34 0.03 1.42 3.50
BUP 0 0 0 41 44 13 2 0.10 4.72 2.25

(M6)

TS(λNaı̈ve) 0 0 0 99 1 0 0 0.01 0.05 0.90
TS(λRobust) 0 3 1 96 0 0 0 0.02 0.64 0.34

NOT 2 13 37 45 2 1 0 0.07 1.74 0.25
ID 0 0 0 0 0 1 99 0.07 0.17 0.04
TF 0 0 0 0 0 0 100 0.13 9.87 30.72

CPOP 0 0 0 21 28 40 11 0.03 0.22 3.02
BUP 0 0 0 0 0 0 100 0.12 9.29 2.70

(M7)

TS(λNaı̈ve) 0 5 21 40 28 6 0 0.10 7.02 0.31
TS(λRobust) 1 10 38 31 16 4 0 0.13 8.64 0.13

NOT 1 1 8 56 31 3 0 0.06 2.62 0.25
ID 3 0 16 14 26 13 28 0.32 10.87 0.12
TF 0 0 0 0 0 0 100 0.10 6.11 23.19

CPOP 0 0 1 1 3 17 78 0.05 3.37 1.19
BUP 70 25 5 0 0 0 0 0.28 11.89 1.58

(M8)

TS(λNaı̈ve) 0 0 0 100 0 0 0 0.00 0.00 0.43
TS(λRobust) 0 0 0 100 0 0 0 0.00 0.00 0.19

NOT 0 0 0 100 0 0 0 0.00 0.00 0.17
ID 0 0 0 100 0 0 0 0.00 0.00 0.59
TF 0 0 0 78 5 2 15 0.00 9.08 35.79

CPOP 0 0 0 100 0 0 0 0.00 0.00 12.96
BUP 0 0 0 0 0 0 100 0.01 46.34 2.63

ones, and is particularly attractive for signals containing frequent change-points with

short segments. With respect to computation time, NOT and ID are very fast in all

cases, TrendSegment is slower than these two but is faster than TF, CPOP and BUP,

especially when the length of the time series is larger than 2000.
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5 Data applications

5.1 Average January temperatures in Iceland

We analyse a land temperature dataset available from https://www.kaggle.com/

berkeleyearth/climate-change-earth-surface-temperature-data, consisting of average

temperatures in January recorded in Reykjavik recorded from 1763 to 2013. Figure

6 shows the data; the point corresponding to 1918 appears to be an anomalous point.

This is sometimes called point anomaly which can be viewed as a separate data seg-

ment containing only one datapoint. Regarding the 1918 observation, Moore and

Babij (2017) report that “[t]he winter of 1917/1918 is referred to as the Great Frost

Winter in Iceland. It was the coldest winter in the region during the twentieth cen-

tury. It was remarkable for the presence of sea ice in Reykjavik Harbour as well as

for the unusually large number of polar bear sightings in northern Iceland.”

Out of the competing methods tested, ID, TF and CPOP are in principle able to

classify two consecutive time point as change-points, and therefore they are able to

detect separate data segments containing only one data point each. NOT and BUP

are not designed to detect two consecutive time point as change-points as their mini-

mum distance between two consecutive change-points is restricted to be at least two.

In the TrendSegment algorithm, the minimum segment length can flexibly set by

the users as described in Section 4. Figures 6a and 6b show that the change-point

estimators depend on the type of threshold we use (λNaı̈ve or λRobust) and also vary

over conditions on the minimum segment length. Regardless of the minimum seg-

ment length, the robust threshold selection tends to detect more change-points than

the naı̈ve threshold. When the minimum segment length is set to 1, with both naı̈ve

and robust thresholds, TrendSegment commonly identifies change-points in 1917 and

1918, where the temperature in 1918 is fitted as a single point. As shown in Figure

6d, out of the competing methods, only CPOP detects the temperature in 1918 as an

anomalous point. Figures 6b, 6c and 6d show that TrendSegment with λRobust, NOT

and CPOP detect the change of slope in 1974, ID returns an increasing function with

no change-points and TF reports 6 points with the most recent one in 1981, but none

https://www.kaggle.com/berkeleyearth/climate-change-earth-surface-temperature-data
https://www.kaggle.com/berkeleyearth/climate-change-earth-surface-temperature-data
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Fig. 6: Change-point analysis for January average temperature in Reykjavik from
1763 to 2013 in Section 5.1. The data series (grey dots) and estimated signal with
change-points returned by (a) TrendSegment using λNaı̈ve in (16) with minimum seg-
ment length equals to 1 (black solid) and equals to b0.9 log(T )c (red dashed), (b)
TrendSegment using λRobust in (17) with minimum segment length equals to 1 (black
solid) and equals to b0.9 log(T )c (red dashed), (c) NOT and ID, (d) TF and CPOP.

of them detect the point in 1918 as a separate data segment. When setting the mini-

mum segment length equals to the default (b0.9 log(T )c) in TrendSegment with λNaı̈ve

in Figure 6a, it returns no change-points as ID does. This example illustrates the flex-

ibility of the TrendSegment as it detects not only change-points in linear trend but it

can identify a separate data segment at the same time, which the competing methods

do not achieve.

5.2 Monthly average sea ice extent of Arctic and Antarctic

We analyse the average sea ice extent of the Arctic and the Antarctic available from

https://nsidc.org to estimate the change-points in its trend. As mentioned in Ser-

reze and Meier (2018), sea ice extent is the most common measure for assessing

the feature of high-latitude oceans and it is defined as the area covered with an

https://nsidc.org


Springer Nature 2021 LATEX template

Linear trend change detection 33

ice concentration of at least 15%. Here we use the average ice extent in February

and September as it is known that the Arctic has the maximum ice extent typically

in February while the minimum occurs in September and the Antarctic does the

opposite.

Serreze and Meier (2018) indicate that the clear decreasing trend of sea ice extent

of the Arctic in September is one of the most important indicator of climate change.

In contrast to the Arctic, the sea ice extent of the Antarctic has been known to be

stable in the sense that it shows a weak increasing trend in the decades preceding 2016

(Comiso et al., 2017; Serreze and Meier, 2018). However, Rintoul et al. (2018) warn

of a possible collapse of the past stability by citing a significant decline of the sea

ice extent in 2016. We now use the most up-to-date records (to 2020) and re-examine

the concerns expressed in Rintoul et al. (2018) with the help of our change-point

detection methodology.
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Fig. 7: The TrendSegment estimate of piecewise-linear trend for the monthly average
sea ice extent from 1979 to 2020 in Section 5.2. (a) the data series (grey dots); the
TrendSegment estimate using λNaı̈ve in (16) (solid black) and TrendSegment estimate
using λRobust (red dashed) for average sea ice extent of the Arctic in February, (b)
Antarctic in February, (c) Arctic in September, (d) Antarctic in September.
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In this example, the condition on the minimum segment length does not affect the

change-point estimation results, thus Figure 7 shows the results obtained from the

default minimum segment length. Also, as shown in Figure 7, TrendSegment estimate

with λRobust identifies no change-point over all four datasets, thus we focus on giving

interpretations for the TrendSegment estimate with λNaı̈ve in the following.

Figures 7a and 7c show the well-known decreasing trend of the average sea ice

extent in the Arctic both in its winter (February) and summer (September). In Figure

7a, the TrendSegment estimate identifies change-points in 2005 and detects a sudden

drop during 2003-2005. One change-point in 2007 is identified in Figure 7c, which

differentiates the decreasing speed of winter ice extent in the Arctic before and after

2007. As observed in the above-mentioned literature, the sea ice extent of the Antarc-

tic shows a modest increasing trend up until recently (Figures 7b and 7d); however,

TrendSegment procedure estimates change-point in 2016 and detects a sudden drop

during 2015-2017 for the Antarctic summer (February) and similarly detects two sud-

den drops by the estimated change-points in 2001 and 2015 for the Antarctic winter

(September), which is in line with the message of Rintoul et al. (2018). The results of

other competing methods can be found in Section D.1 of the supplementary materials.

6 Extension to non-Gaussian and/or dependent noise

Our TrendSegment algorithm can be extended to more realistic settings e.g. when

the noise εt is possibly dependent and/or non-Gaussian. The extension is performed

by slightly altering the estimators f̃ , ˜̃f and f̂ and keeping the rate of threshold the

same as the one used in Theorems 1-3 (i.e. λ = O((log T )1/2)) that is established

under the iid Gaussian noise. We add an additional step to ensure that only the detail

coefficients d( j,k)
p,q,r corresponding to a long enough interval [p, r] survive, as this step

enables us to apply strong asymptotic normality of
∑r

t=p εt. Under dependent or non-

Gaussian noise, Theorems 1-3 presented in Section 3 still hold with a larger rate that

is different by only a logarithmic factor, where the corresponding theories and proofs

can be found in Section B of the supplementary material.
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In Algorithm 1 in Section 4.1.5, we propose a robust way of threshold selection

that works well in all circumstances including iid Gaussian noise. To demonstrate the

robustness of our threshold selection in case the noise has serial dependence and/or

heavy-tailedness, additional simulations are performed for five distributions of the

noise; (a) εt ∼ i.i.d. scaled t5 distribution with unit-variance, (b) εt follows a station-

ary AR(1) process with φ = 0.3 and Gaussian innovation, (c) the same setting with

(b) but with φ = 0.6, (d) εt follows a stationary AR(1) process with φ = 0.3 and t5

innovation and (e) the same setting with (d) but with φ = 0.6, where the results are

summarised in Tables C.1-C.10 in Section C.1 of the supplementary material. Lastly,

in Section D.2 of the supplementary material, we demonstrate that our TrendSeg-

ment algorithm shows a good performance on London air quality data that possibly

has some non-negligible autocorrelation.

Appendix A Technical proofs

The proof of Theorems 1-3 are given below and Lemmas 1 and 2 can be found in

Section A of the supplementary materials.

Proof of Theorem 1 Let S1
j and S0

j as in Lemma 2. From the conditional orthonormality of the
unbalanced wavelet transform, on the set AT defined in Lemma 1, we have

‖ f̃ − f ‖2T =
1
T

J∑
j=1

K( j)∑
k=1

(
d( j,k) · I

{
∃( j′, k′) ∈ C j,k |d( j′ ,k′ ) | > λ

}
− µ( j,k)

)2
+ T−1(s[1]

1,T − µ
(0,1))2 + T−1(s[2]

1,T − µ
(0,2))2

≤
1
T

J∑
j=1

( ∑
k∈S0

j

+
∑
k∈S1

j

)(
d( j,k) · I

{
∃( j′, k′) ∈ C j,k |d( j′ ,k′ ) | > λ

}
− µ( j,k)

)2
+ 4C2

1T−1 log T

=: I + II + 4C2
1T−1 log T, (A1)

where µ(0,1) = 〈 f , ψ(0,1)〉 and µ(0,2) = 〈 f , ψ(0,2)〉. We note that
(
s[1]

1,T − µ
(0,1))2

≤ 2C2
1 log T

is simply obtained by combining Lemma 2 and the fact that s[1]
1,T − µ(0,1) = 〈ε, ψ(0,1)〉,

which can also be applied to obtain
(
s[2]

1,T − µ
(0,2))2

≤ 2C2
1 log T . By Lemma 2, I

{
∃( j′, k′) ∈

C j,k |d( j′,k′)| > λ
}

= 0 for k ∈ S0
j and also by the fact that µ( j,k) = 0 for j = 1, . . . , J, k ∈ S0

j ,

we have I = 0. For II, we denote B =
{
∃( j′, k′) ∈ C j,k |d( j′,k′)| > λ

}
and have

(
d( j,k) · I

{
B
}
− µ( j,k))2

=
(
d( j,k) · I

{
B
}
− d( j,k) + d( j,k) − µ( j,k))2 (A2)

≤
(
d( j,k))2I

(
|d( j′ ,k′ ) | ≤ λ

)
+ 2|d( j,k) | I

(
|d( j′ ,k′) | ≤ λ

)
|d( j,k) − µ( j,k) | +

(
d( j,k) − µ( j,k))2

≤ λ2 + 2λC1{2 log T }1/2 + 2C2
1 log T.
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Combining with the upper bound of J, dlog(T )/ log((1−ρ)−1)+ log(2)/ log(1−ρ)e, and the fact

that |S1
j | ≤ N, we have II ≤ 8C2

1NT−1dlog(T )/ log((1 − ρ)−1) + log(2)/ log(1 − ρ)e log T , and

therefore ‖ f̃ − f ‖2T ≤ C2
1 T−1 log(T )

{
4+8N dlog(T )/ log((1−ρ)−1)+ log(2)/ log(1−ρ)e

}
. As

the estimated change-points are obtained through those detail coefficients, thus at each scale,

up to N estimated change-points are added. Combining it with the largest scale J whose order

is log T , the number of change-points in f̃ returned from the inverse TGUW transformation is

up to CN log T where C is a constant. �

Proof of Theorem 2 Let B̃ and ˜̃B the unbalanced wavelet basis corresponding to f̃ and ˜̃f ,

respectively. As the change-points in ˜̃f are a subset of those in f̃ , establishing ˜̃f can be con-

sidered as applying the TGUW transform again to f̃ which is just a repetition of procedure

done in estimating f̃ in the greediest way. Thus ˜̃B is classified into two categories, 1) all

basis vectors ψ( j,k) ∈ B̃ such that ψ( j,k) is not associated with the change-points in f̃ and

|〈X, ψ( j,k)〉| = |d( j,k)| < λ and 2) all vectors ψ( j,1) produced in Stage 1 of post-processing.

We now investigate how many scales are used for this particular transform. First, the

detail coefficients d( j,k) corresponding to the basis vectors ψ( j,k) ∈ B̃ live on no more than

J = O(log T ) scales and we have |S1
j | ≤ N by the argument used in the proof of Theorem 1.

In addition, the vectors ψ( j,1) in the second category correspond to different change-points in f̃

and there exist at most Ñ = O(N log T ) change-points in f̃ which we examine one at once (i.e.

|S1
j | ≤ 1), thus at most Ñ scales are required for d( j,1). Combining the results of two categories,

the equivalent of quantity II in the proof of Theorem 1 for ˜̃f is bounded by II ≤ C3NT−1 log2 T

and this completes the proof of the l2 result,
∥∥∥ ˜̃f − f

∥∥∥2
T = O

(
NT−1 log2(T )

)
where C3 is a

positive constant large enough.

Finally, we show that there exist at most two change-points in ˜̃f between true change-

points (η`, η`+1) for ` = 0, . . . ,N where η0 = 0 and ηN+1 = T . Consider the case where three

change-point for instance ( ˜̃ηl, ˜̃ηl+1, ˜̃ηl+2) lie between a pair of true change-point, (η`, η`+1). In

this case, by Lemma 2, the maximum magnitude of two detail coefficients computed from the

adjacent intervals, [ ˜̃ηl+1, ˜̃ηl+1] and [ ˜̃ηl+1+1, ˜̃ηl+2], is less than λ and ˜̃ηl+1 would be get removed

from the set of estimated change-points. This satisfies ˜̃N ≤ 2(N + 1).

�

Proof of Theorem 3 From the assumptions of Theorem 3, the followings hold.
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• Given any ε > 0 and C > 0, for some T1 and all T > T1, it holds that

P
(∥∥∥ ˜̃f − f

∥∥∥2
T > C3

4 RT
)
≤ ε where ˜̃f is the estimated signal specified in Theorem 2.

• For some T2, and all T > T2, it holds that C1/3T 1/3R1/3
T (

¯
f `T )−2/3 < δ`T for all ` =

1, . . . ,N.

Following the argument used in the proof of Theorem 19 in Lin et al. (2016), we take T ≥ T ∗

where T ∗ = max{T1,T2} and let r`,T = bC1/3T 1/3R1/3
T (

¯
f `T )−2/3c for ` = 1, . . . ,N. Suppose

that there exist at least one η` whose closest estimated change-point is not within the distance

of r`,T . Then there are no estimated change-points in ˜̃f within r`,T of η` which means that ˜̃f j

displays a linear trend over the entire segment j ∈ {η` − r`,T , . . . , η` + r`,T }. Hence

1
T

η`+r`,T∑
j=η`−r`,T

( ˜̃f j − f j
)2
≥

13r3
`,T

24T
(
¯
f `T

)2 >
C3

4
RT . (A3)

The first inequality holds by Lemma 20 of Lin et al. (2016), and the second one holds by the

definition of r`,T . Assuming that at least one η` does not have an estimated change-point within

the distance of r`,T implies that the estimation error exceeds C3

4 RT which is a contradiction as

it is an event that we know occurs with probability at most ε. Therefore, there must exist at

least one estimated change-point within the distance of r`,T from each true change point η`.

Throughout Stage 2 of post-processing, ˜̃η`0 is either the closest estimated change-point of

any η` or not. If ˜̃η`0 is not the closest estimated change-point to the nearest true change-point on

either its left or its right, by the construction of detail coefficients in Stage 2 of post-processing,

Lemma 2 guarantees that the corresponding detail coefficient has the magnitude less than λ

and ˜̃η`0 gets removed. Suppose ˜̃η`0 is the closest estimated change-point of a true change-

point η` and it is within the distance of CT 1/3R1/3
T

(
¯
f `T

)−2/3 from η`. If the corresponding detail

coefficient has the magnitude less than λ and ˜̃η`0 is removed, there must exist another ˜̃η` within

the distance of CT 1/3R1/3
T

(
¯
f `T

)−2/3 from η`. If there are no such ˜̃η`, then by the construction of

the detail coefficient, the order of magnitude of
∣∣∣dp`0 ,q`0 ,r`0

∣∣∣ would be such that
∣∣∣dp`0 ,q`0 ,r`0

∣∣∣ > λ
thus ˜̃η`0 would not get removed. Therefore, after Stage 2 of post-processing is finished, each

true change-point η` has its unique estimator within the distance of CT 1/3R1/3
T

(
¯
f `T

)−2/3. �

Supplementary information. This article has accompanying supplementary file

named “Detecting linear trend changes in data sequences” (.pdf file)

R-package for TrendSegment. R package trendsegmentR available from

CRAN. The package contains code to perform the TrendSegment method described

in the article.
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