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A Proofs

A.1 Some useful lemmas for Theorems 1-3 of the main article

Lemma 1 Let the distribution of εt in model (1) of the main article be iid standard Gaussian.
Let ψ( j,k) =

∑I( j,k)

i=1 φ
( j,k)
i g( j,k)

i where φ( j,k)
i are constants and g( j,k)

i are vectors of equal length with
ψ( j,k) where I( j,k) ∈ {3, 4}, j = 1, . . . , J, k = 1, . . . ,K( j). If we define the set G = {gl} where
there is a unique correspondence between

{
g( j,k)

i i=1,...,I( j,k), j=1,...,J, k=1,...,K( j)

}
and {gl}, we then have

P(AT ) ≥ 1 −C2T−1 where
AT =

{
max
gl∈G

|g>l ε| ≤ λ
}
, (1)

λ is as in Theorem 1 and C2 is a positive constant.

Proof. We firstly show that for any fixed ( j, k), g( j,k)
i and φ

( j,k)
i satisfy the conditions,(

g( j,k)
i

)>g( j,k)
i = 1,

(
g( j,k)

i
)>g( j,k)

i′ = 0 and
∑

i
(
φ

( j,k)
i

)2
= 1, where ψ( j,k) =

∑I( j,k)

i=1 φ
( j,k)
i g( j,k)

i . Depend-
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ing on the type of merge, ψ( j,k) fall into one of the followings,

Type 1: ψ( j,k)
p,q,r = α1ep + α2ep+1 + α3ep+2, (2)

Type 2: ψ( j,k)
p,q,r = β1ep + β2(0, . . . , 0︸  ︷︷  ︸

p×1

, `>1,p+1,r, 0, . . . , 0︸  ︷︷  ︸
(T−r)×1

) + β3(0, . . . , 0︸  ︷︷  ︸
p×1

, `>2,p+1,r, 0, . . . , 0︸  ︷︷  ︸
(T−r)×1

), (3)

ψ( j,k)
p,q,r = β4(0, . . . , 0︸  ︷︷  ︸

(p−1)×1

, `>1,p,r−1, 0, . . . , 0︸  ︷︷  ︸
(T−r+1)×1

) + β5(0, . . . , 0︸  ︷︷  ︸
(p−1)×1

, `>2,p,r−1, 0, . . . , 0︸  ︷︷  ︸
(T−r+1)×1

) + β6er,

Type 3: ψ( j,k)
p,q,r = γ1(0, . . . , 0︸  ︷︷  ︸

(p−1)×1

, `>1,p,q, 0, . . . , 0︸  ︷︷  ︸
(T−q)×1

) + γ2(0, . . . , 0︸  ︷︷  ︸
(p−1)×1

, `>2,p,q, 0, . . . , 0︸  ︷︷  ︸
(T−q)×1

) (4)

+ γ3(0, . . . , 0︸  ︷︷  ︸
q×1

, `>1,q+1,r, 0, . . . , 0︸  ︷︷  ︸
(T−r)×1

) + γ4(0, . . . , 0︸  ︷︷  ︸
q×1

, `>2,q+1,r, 0, . . . , 0︸  ︷︷  ︸
(T−r)×1

),

where ei is a vector of length T having 1 only at ith element and zero for the others. As
will be shown in Section E, `1,i, j and `2,i, j are an arbitrary orthonormal basis of the subspace
{(x1, x2, . . . , x j−i+1) | x1 − x2 = x2 − x3 = · · · = x j−i − x j−i+1} of R j−i+1.

In any case, we can obtain the representation ψ( j,k) =
∑I( j,k)

i=1 φ
( j,k)
i g( j,k)

i from (2) if the constants
φ

( j,k)
i correspond to {αi}

3
i=1 in Type 1, {βi}

3
i=1 or {βi}

6
i=4 in Type 2 and {γi}

4
i=1 in Type 3 and g( j,k)

i

is the corresponding vector. From the orthonormality of the basis (`1,m,n, `2,m,n) for any (m, n),
we see that the conditions,

(
g( j,k)

i
)>g( j,k)

i = 1 and
(
g( j,k)

i
)>g( j,k)

i′ = 0, are satisfied for any (i, i′, j, k)
where i , i′. In addition, as ψ( j,k) keep orthonormality, we can argue that φ( j,k)

i is bounded by the
condition

∑
i
(
φ

( j,k)
i

)2
= 1 for any (i, j, k) which implies

∑3
i=1 α

2
i =

∑3
i=1 β

2
i =

∑6
i=4 β

2
i =

∑4
i=1 γ

2
i = 1

in (2).
If we predefine the pairs (`1,m,n, `2,m,n) for any (m, n) by choosing an orthonormal basis of the

subspace {(x1, x2, . . . , xn−m+1) | x1 − x2 = x2 − x3 = · · · = xn−m − xn−m+1} of Rn−m+1, then there
exist at most T 2 vectors gl in the set G. This is because m and n can be randomly chosen from
{1, 2, . . . ,T } with replacement and if m , n, the two drawn pairs, (m, n) and (n,m), correspond to
the same basis vectors, (`1,m,n, `2,m,n), while (m,m) correspond to one vector em. Now we are in
position to show that P(AT ) ≥ 1 −C2T−1. Using a simple Bonferroni inequality, we have

1 − P(AT ) ≤
∑

G

P(|Z| > λ) ≤ 2T 2φZ(λ)
λ

=
1

C1
√
πTC2

1−2
√

log T
≤

C2

T
(5)

where φZ is the p.d.f. of a standard normal Z. This completes the proof.

Lemma 2 Let S1
j = {1 ≤ k ≤ K( j) : d( j,k) is dp,q,r such that p < ηi +1/2 < r for some i = 1, . . . ,N

}, and S0
j = {1, . . . ,K( j)} \ S1

j . On the set AT in (1) which satisfies P(AT ) → 1 as T → ∞, we
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have
max

j=1,...,J,
k∈S0

j

∣∣∣d( j,k)
∣∣∣ ≤ λ, (6)

where λ is as in Theorem 1.

Proof. On the set AT , the following holds for j = 1, . . . , J, k ∈ S0
j ,

∣∣∣d( j,k)
∣∣∣ =

∣∣∣(ψ( j,k))>ε
∣∣∣

=
∣∣∣∣φ( j,k)

1
(
g( j,k)

1
)>ε + φ

( j,k)
2

(
g( j,k)

2
)>ε + φ

( j,k)
3

(
g( j,k)

3
)>ε + φ

( j,k)
4

(
g( j,k)

4
)>ε∣∣∣∣

≤ max
j, k

(∣∣∣φ( j,k)
1

∣∣∣ +
∣∣∣φ( j,k)

2

∣∣∣ +
∣∣∣φ( j,k)

3

∣∣∣ +
∣∣∣φ( j,k)

4

∣∣∣) · ( max
l: gl∈G

∣∣∣g>l ε∣∣∣),
where ε = (ε1, . . . , εT )> and ψ( j,k)

p,q,r are as in (2). The condition,
∑

i
(
φ

( j,k)
i

)2
= 1 for any fixed ( j, k),

given in the proof of Lemma 1 implies that maxi

∣∣∣φ( j,k)
i

∣∣∣ ≤ 1 for any ( j, k), thus we have (6) when
the constant C1 for λ in (6) is larger than or equal to 4 times C1 used in (1).

B Extension to dependent non-Gaussian noise

In this section, we extend the TGUW methodology to more realistic settings when the noise εt

is possibly dependent and/or non-Gaussian. We borrow the idea proposed in the supplementary
material of Fryzlewicz (2018) in the sense that the extension is performed in a way of altering
the estimators f̃ , ˜̃f and f̂ and keeping the rate of threshold, O((log T )1/2), used in Theorems
1-3 of the main article established under the iid Gaussian noise. However, our technique is
distinguished from Fryzlewicz (2018) in that we put an additional step which ensures that only
the detail coefficients d( j,k)

p,q,r corresponding to a long enough interval [p, r] are survived, while
Fryzlewicz (2018) gives a condition that both the left ([p, q]) and the right ([q + 1, r]) segments
should be long enough. This enables us to use the same size of threshold, O((log T )1/2), used in
the iid Gaussian model without any further procedure such as basis rearrangement proposed in
Fryzlewicz (2018).

We now define the sets of short-segment and long-segment coefficients at each scale j as
follows:

WS
j (a) = {1 ≤ k ≤ K( j) : d( j,k)

p,q,r is such that r − p ≤ a},

WL
j (a) = {1 ≤ k ≤ K( j)} \WS

j (a), (7)

where a will be specified later this section. Those detail coefficients obtained from short segments
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are set to zero in the construction of the new estimators f̃ L, ˜̃f L and f̂ L, where L in f L stands for
“Long-segment”. The initial estimator f̃ L is obtained from the estimator of µ( j,k) for j ≥ 1 by
applying the “connected” rule that is modified from the original one in Section 2.3 of the main
article to satisfy the condition that the minimum segment length is longer than a:

µ̂( j,k) = d( j,k)
p,q,r · I

{
∃( j′, k′) ∈ C j,k

∣∣∣d( j′,k′)
p′,q′,r′

∣∣∣ > λ and k′ ∈ WL
j′(a)

}
, (8)

where I is an indicator function and

C j,k = {( j′, k′), j′ = 1, . . . , j, k′ = 1, . . . ,K( j′) : d( j′,k′)
p′,q′,r′ is such that [p′, r′] ⊆ [p, r]}.

We then apply the “two together” rule to (8) in which both of the paired detail coefficients (formed
by Type 3 mergings) should be survived if at least one is survived as done in thresholding of the
main article. Compared to the estimator µ̂( j,k) obtained under the iid Gaussian setting, the only
added step is setting all short-segment coefficient d( j,k)

p,q,r to zero.

B.1 Preparatory lemmas

Lemma 3 Let the distribution of εt in model (1) of the main article as in Theorem B.1. Then for
a constant C3 > 0 and λ as in Theorem B.1, we have P(AT ) ≥ 1 − C3T−1 for a constant C3 > 0,
where

AL
T =

{
∀1 ≤ t1 ≤ t2 ≤ T, ∀k ∈ {1, 2} s.t. t2 − t1 ≥ C1 log T

∣∣∣∣∣∣ t2∑
t=t1

`tk,t1,t2εt

∣∣∣∣∣∣ ≤ λ
}
, (9)

and `tk,t1,t2 is the t-th element of the vector `k,t1,t2 of length t2 − t1 + 1 and the pairs
(`1,t1,t2 , `2,t1,t2) are predetermined for any (t1, t2) by choosing an orthonormal basis of the subspace
{(x1, x2, . . . , xt2−t1+1) | x1 − x2 = x2 − x3 = · · · = xt2−t1 − xt2−t1+1} of Rt2−t1+1.

Proof. In the following, we consider the single sum
∑a

t=1 wtεt from the interval [1, a] where
wt = `tk,1,a for a fixed k ∈ {1, 2}. The results can in principle be applied to an interval with different
ends given that the length of the interval is at least a. Since εt is m-dependent, we have α(l) = 0
for l > m where α(·) is the α-mixing coefficients of εt.

From Theorem 1.4 in Bosq (1998), if m2
2 < ∞, for each ε > 0 and for a constant c > 0, we

obtain

P
(
√

a

∣∣∣∣∣∣ a∑
t=1

wtεt

∣∣∣∣∣∣ > aε
)
≤ a1 exp

(
−

qε2

25m2
2 + 5cε

)
+ a2(k)α

([
a

q + 1

]) 2k
2k+1

, (10)
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where

a1 = 2
a
q

+ 2
(
1 +

ε2

25m2
2 + 5cε

)
, with m2

2 = max
1≤t≤a

E
[(√

awtεt

)2]
,

a2(k) = 11n
(
1 +

(
5mk

ε

) 2k
2k+1

)
, with mk = max

1≤t≤a

∥∥∥√awtεt

∥∥∥
k
.

The assumption m2
2 < ∞ is reasonably achievable as we can show m2

2 = a maxt(w2
t ) is bounded

by a constant from two conditions given on wt, 1){w1 −w2 = · · · = wa−1 −wa} and 2)
∑a

t=1 w2
t = 1.

By setting ε = λ/
√

a, a = C log(T ) and λ = C1 log1/2 T for large enough C > 0 and C1 > 0,
and setting q = [c1a] with a small c1 (which gives

[
a

q+1

]
≥ m + 1), we have that a1 is bounded by

a constant and α([a/(q + 1)]) = 0, thus (10) can be bounded as

P
(∣∣∣∣∣∣ a∑

t=1

wtεt

∣∣∣∣∣∣ > λ
)
≤ exp

(
−

qλ2

a

25m2
2 + 5c λ

√
a

)
≤ exp{−C2 log T } = T−C2 ,

where C2 > 0 is suitably large. Since there exist at most T 2 sub-intervals [t1, t2], applying a
simple Bonferroni inequality, we have

P
(
∀1 ≤ t1 ≤ t2 ≤ T, ∀k ∈ {1, 2} s.t. t2 − t1 ≥ C log T

∣∣∣∣∣∣ t2∑
t=t1

`tk,t1,t2εt

∣∣∣∣∣∣ ≤ λ
)
≥ 1 −

C3

T

as T → ∞ for a large enough C > 0 and a certain constant C3 > 0.

Lemma 4 Let S1
j and S0

j as in Lemma 2. On the set AL
T in (9) that satisfies P(AL

T )→ 1 as T → ∞,
we have

max
j=1,...,J,

k∈S0
j

∣∣∣d( j,k)
∣∣∣ ≤ λ,

where λ is as in Theorem B.1.

Proof. The argument follows the proof of Lemma 2.

B.2 Theoretical results of the length-lowerbounded-basis estimators

We now describe the behaviour of the initial estimator f̃ L that is built from the basis vectors
whose non-zero elements have length larger than a.

Theorem B.1 Let the distribution of εt in model (1) of the main article as follows:
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(a) εt has mean zero and satisfies Cramer’s conditions that

E|εt|
k ≤ ck−2k!E(ε2

t ) < ∞, t = 1, . . . ,T, k = 3, 4, . . . ,

where c > 0.

(b) {εt}t is the stationary sequence and m-dependent i.e. σ(εs, s ≤ t) and σ(εs, s ≥ t + k) are
independent for k > m.

Let f̄ = maxt ft −mint ft be bounded and let the estimator f̃ L is obtained from the estimator µ̂( j,k)

in (8), with a = C log(T ) and the threshold λ = C1 log1/2(T ), for large enough C and C1. Then on
the set AL

T in (9), we have

‖ f̃
L
− f ‖2T ≤ C̃

1
T

N log2(T ) d log(T )/ log(1 − ρ)−1 e,

for a constant C̃ > 0.

Proof. Let S1
j and S0

j as in Lemma 2. From the conditional orthonormality of the unbalanced
wavelet transform, on the set AL

T in (9), we have

‖ f̃
L
− f ‖2T =

1
T

J∑
j=1

K( j)∑
k=1

(
d( j,k) · I

{
∃( j′, k′) ∈ C j,k |d( j′,k′)| > λ and k′ ∈ WL

j′(a)
}
− µ( j,k)

)2

+ T−1(s[1]
1,T − µ

(0,1))2
+ T−1(s[2]

1,T − µ
(0,2))2

≤
1
T

J∑
j=1

( ∑
k∈S0

j

+
∑

k∈S1
j∩W

S
j (a)

+
∑

k∈S1
j∩W

L
j (a)

)
(
d( j,k) · I

{
∃( j′, k′) ∈ C j,k |d( j′,k′)| > λ and k′ ∈ WL

j′(a)
}
− µ( j,k)

)2

+ 4C2
1T−1 log T

=: I + II + III + 4C2
1T−1 log T, (11)

where µ(0,1) = 〈 f , ψ(0,1)〉, µ(0,2) = 〈 f , ψ(0,2)〉 and WS
j′(a) and WL

j′(a) are as in (7). We note that(
s[1]

1,T−µ
(0,1))2

≤ 2C2
1 log T is simply obtained by combining Lemma 4 and the fact that s[1]

1,T−µ
(0,1) =

〈ε, ψ(0,1)〉, which can also be applied to obtain
(
s[2]

1,T − µ
(0,2))2

≤ 2C2
1 log T . We now examine the

terms I, II and III in (11).
Term I: By Lemma 4, on the set AL

T , I
{
∃( j′, k′) ∈ C j,k |d( j′,k′)| > λ

}
= 0 for k ∈ S0

j if
k′ ∈ WL

j′(a). Also by the fact that µ( j,k) = 0 for j = 1, . . . , J, k ∈ S0
j , we obtain I = 0.
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Term II: As there is no short-segment parent coefficient whose children is from long-segment
due to the principle of bottom-up merging, the indicator function returns zero and the term II is
simplified to 1

T

∑J
j=1

∑
k∈S1

j∩W
S
j (a)

(
µ( j,k)

)2
.

We now examine the bound of individual µ( j,k)
p,q,r. Note that only Type 2 and Type 3 basis

vectors are considered due to the minimum length constraint given on the set AL
T . Borrowing the

generalised form of ψ( j,k)
p,q,r in (2), for Type 3 basis vector, we obtain

µ( j,k)
p,q,r = 〈 f , ψ( j,k)

p,q,r〉 = γ1`
>
1,p,q fp:q + γ2`

>
2,p,q fp:q + γ3`

>
1,q+1,r fq+1:r + γ4`

>
2,q+1,r fq+1:r

≤ γ1‖ fp:q‖ + γ2‖ fp:q‖ + γ3‖ fq+1:r‖ + γ4‖ fq+1:r‖, (12)

where fp:q is the subvector of f containing q − p + 1 elements. The inequality (12) is obtained
from the orthonormality of `1,p,q, `2,p,q, `1,q+1,r, `2,q+1,r and the definition of inner product a · b =

‖a‖ · ‖b‖ · cos(θ), where θ is the angle between a and b. Note that if fp:q does not contain a change
point, the corresponding cos(θ) = 0 as fp:q has a perfect linear trend and in the case when fp:q

includes a change point, the size of angle is bounded as | cos(θ)| ≤ 1. As f̄ = maxt ft −mint ft is
assumed to be bounded and ‖ fp:q‖

2 ≤ C[(q − p + 1)2 + f̄ 2] regardless of whether there exists a
true change point in [p, q], we have

(µ( j,k)
p,q,r)

2 ≤(γ1 + γ2)2 · ‖ fp:q‖
2 + (γ3 + γ4)2 · ‖ fq+1:r‖

2 + 2 · (γ1 + γ2) · (γ3 + γ4) · ‖ fp:q‖ · ‖ fq+1:r‖

≤c1[(q − p + 1)2 + ( fq − fp)2] + c2[(r − q)2 + ( fr − fq+1)2]

+ c3

√
(q − p + 1)2 + ( fq − fp)2 ·

√
(r − q)2 + ( fr − fq+1)2

≤c4(r − p + 1)2 + c5 f̄ 2

≤C(r − q + 1)2

where ci > 0 and C > 0. Without loss of generality, we assume r − q + 1 ≤ a, then using a =

O(log(T )) and applying the same upper bounds, J ≤ dlog(T )/ log((1 − ρ)−1) + log(2)/ log(1 − ρ)e
and |S1

j | ≤ N, used in the proof of Theorem 1 in the main article, we obtain

II ≤
1
T

Ndlog(T )/ log((1 − ρ)−1) + log(2)/ log(1 − ρ)e(log(T ))2

Term III: Denote B =
{
∃( j′, k′) ∈ C j,k |d( j′,k′)| > λ and k′ ∈ WL

j′(a)
}

and on the set AL
T in
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(9) we have

(
d( j,k) · I{B} − µ( j,k))2

=
(
d( j,k) · I{B} − d( j,k) + d( j,k) − µ( j,k))2

≤
(
d( j,k))2I

(∣∣∣d( j′,k′)
∣∣∣ ≤ λ or k′ ∈ WS

j′(a)
)

+
(
d( j,k) − µ( j,k))2

+ 2
∣∣∣d( j,k)

∣∣∣ I(∣∣∣d( j′,k′)
∣∣∣ ≤ λ or k′ ∈ WS

j′(a)
) ∣∣∣d( j,k) − µ( j,k)

∣∣∣
≤ λ2 + 2C2

1 log T + 2λC1{2 log T }1/2. (13)

Following the same argument used in the proof of Theorem 1 in the main article, we have

III ≤
1
T

N log(T )dlog(T )/ log((1 − ρ)−1) + log(2)/ log(1 − ρ)e.

To complete the proof, considering all terms in (11), we finally obtain

‖ f̃
L
− f ‖2T ≤ C̃ T−1 N (log(T ))2 d(log(T )/ log((1 − ρ)−1) + log(2)/ log(1 − ρ)e, (14)

where C̃ > 0. Comparing it with Theorem 1 of the main article that is presented under the iid
Gaussian noise assumption, the `2 rate in (14) is different by only a logarithmic factor.

Theorem B.2 Xt follows model (1) with σ = 1. Let the distribution of εt and the threshold λ be
as in Theorem B.1. Further, let f̄ = maxt ft − min ft be bounded. Then we have

∥∥∥ ˜̃f L − f
∥∥∥2

T
=

O
(
NT−1 log3(T )

)
with probability approaching 1 as T → ∞, where ˜̃f L is the estimator constructed

from f̃
L through Stage 1 of the post-processing described in Section 2.5 of the main article. And

there exist at most two estimated change-points between each pair of true change-points (ηi, ηi+1)
for i = 0, . . . ,N, where η0 = 0 and ηN+1 = T . Therefore ˜̃N ≤ 2(N + 1), where ˜̃N is the number of
estimated change points in ˜̃f L.

Proof. The proof proceeds the same as the proof of Theorem 2 of the main article.

Theorem B.3 Xt follows model (1) with σ = 1. Let the distribution of εt and the threshold
λ be as in Theorem B.1. Further, let the number of true change-points, N, have the order of
logT and let f̄ = maxt ft − min ft be bounded. Let the estimators f̂ L, N̂ and (η̂1, . . . , η̂N̂) are
constructed through Stage 2 of the post-processing described in Section 2.5 of the main article.
Let ∆T = mini=1,...,N

{(
¯
f i
T

)2/3
· δi

T

}
where

¯
f i
T = min

(
| fηi+1 − 2 fηi + fηi−1 |, | fηi+2 − 2 fηi+1 + fηi |

)
and

δi
T = min

(
|ηi − ηi−1|, |ηi+1 − ηi|

)
. Assume that T 1/3R1/3

T = o
(
∆T

)
where

∥∥∥ ˜̃f L − f
∥∥∥2

T
= Op(RT ) is as

in Theorem B.2. Then we have

P
(
N̂ = N, max

i=1,...,N

{
|η̂i − ηi| ·

(
¯
f i
T

)2/3
}
≤ CT 1/3R1/3

T

)
→ 1, (15)

8



as T → ∞ where C is a constant.

Proof. The proof proceeds the same as the proof of Theorem 3 of the main article.

C Threshold selection and additional simulation results

C.1 Simulation results for non-Gaussian and/or dependent noise

In addition to the simulations in Section 4 of the main article, here we present the results for the
cases when εt is possibly dependent and/or non-Gaussian. Including the standard Gaussian noise,
we consider the following six scenarios for εt:

(i) standard Gaussian,

(ii) iid t5 distribution with unit-variance,

(iii) a stationary Gaussian AR(1) process of φ = 0.3, with zero-mean and unit-variance,

(iv) the same setting as in (iii) except φ = 0.6,

(v) a stationary AR(1) process of φ = 0.3 with the noise term following t5,

(vi) the same setting as in (v) except φ = 0.6.

In summary, (ii) is iid but heavy-tailed, (iii) and (iv) are Gaussian AR(1) error with relatively mild
and strong dependence, respectively, and (v) and (vi) are both heavy-tailed but different strength
of dependence, where the summary of the simulation results can be found in Tables C.1-C.10.

Following the theoretical results presented in Sections B.1-B.2, we need to set the minimum
segment length to be an order of log(T ). As already used in the main paper, we set b0.9 log(T )c
as a default minimum segment length. We follow the Algorithm 1 introduced in the main paper
and use λRobust as a default threshold, as it is designed to work well in all circumstances.

The simulation results under this robust threshold selection are presented in Tables C.1-C.10
and TrendSegment generally outperforms over all scenarios of noise and over almost all simula-
tion models considered in this paper. Among other competitors, only ID provides the option for
heavy-tailed noise in their R package IDetect and other methods are set to their default settings.
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Table C.1: Distribution of N̂ − N for models (M1)-(M4) and all methods with the noise term
εt

iid
∼ t5 over 100 simulation runs. Also the average MSE (Mean Squared Error) of the estimated

signal f̂t, the average Hausdorff distance dH and the average computational time in seconds using
an Intel Core i5 2.9 GHz CPU with 8 GB of RAM, all over 100 simulations. Bold: methods
within 10% of the highest empirical frequency of N̂−N = 0 or within 10% of the lowest empirical
average dH(×102). Note that TrendSegment is shortened to TS.

N̂ − N
Model Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M1)

TS 0 0 1 88 9 2 0 0.24 3.10 0.09
NOT 0 0 0 92 6 2 0 0.20 2.51 0.22

ID 0 0 0 91 9 0 0 0.14 1.69 0.01
TF 0 0 0 0 0 0 100 0.10 4.40 3.22

CPOP 0 0 0 78 12 9 1 0.13 1.44 0.04
BUP 100 0 0 0 0 0 0 2.63 10.61 0.35

(M2)

TS 0 0 4 83 9 2 2 0.13 2.05 0.24
NOT 0 0 3 85 11 0 1 0.098 1.69 0.29

ID 0 0 0 77 21 2 0 0.102 1.36 0.38
TF 0 0 0 0 0 0 100 0.067 2.29 31.41

CPOP 0 0 0 14 23 25 38 0.119 1.54 1.66
BUP 100 0 0 0 0 0 0 0.752 4.69 2.18

(M3)

TS 0 0 8 81 8 2 1 0.04 4.43 0.29
NOT 0 0 1 97 2 0 0 0.021 2.71 0.31

ID 0 0 0 85 10 2 3 0.023 2.40 0.03
TF 0 0 0 0 0 0 100 0.010 5.20 28.83

CPOP 0 0 0 32 25 24 19 0.039 2.51 13.06
BUP 0 0 0 2 26 46 26 0.032 5.39 2.18

(M4)

TS 0 0 0 91 7 0 2 0.11 3.39 0.09
NOT 0 0 0 98 2 0 0 0.08 2.57 0.24

ID 0 0 0 87 12 1 0 0.08 2.21 0.01
TF 0 0 0 0 0 0 100 0.05 5.54 8.73

CPOP 0 0 0 62 22 8 8 0.08 2.24 0.38
BUP 2 73 24 1 0 0 0 0.52 10.80 0.57
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Table C.2: Distribution of N̂ − N for models (M5)-(M8) and all methods with the noise term
εt

iid
∼ t5 over 100 simulation runs. Also the average MSE (Mean Squared Error) of the estimated

signal f̂t, the average Hausdorff distance dH and the average computational time in seconds using
an Intel Core i5 2.9 GHz CPU with 8 GB of RAM, all over 100 simulations. Bold: methods
within 10% of the highest empirical frequency of N̂−N = 0 or within 10% of the lowest empirical
average dH(×102). Note that TrendSegment is shortened to TS.

N̂ − N
Model Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M5)

TS 0 0 2 75 18 4 1 0.04 2.17 0.31
NOT 0 11 10 63 10 3 3 0.049 1.29 0.25

ID 0 0 0 0 0 7 93 0.332 9.58 0.03
TF 0 0 0 0 0 0 100 0.145 6.14 28.33

CPOP 0 0 0 4 6 20 70 0.064 2.61 3.07
BUP 0 0 0 32 44 20 4 0.097 4.62 2.22

(M6)

TS 0 4 1 88 3 1 3 0.02 1.23 0.35
NOT 6 10 26 44 6 2 6 0.071 3.53 0.24

ID 0 3 0 0 19 0 78 0.129 4.73 0.03
TF 0 0 0 0 0 0 100 0.136 9.88 30.26

CPOP 0 0 0 8 19 20 53 0.053 3.15 2.45
BUP 0 0 0 0 0 0 100 0.132 9.23 2.47

(M7)

TS 5 15 28 36 10 4 2 0.16 8.51 0.13
NOT 0 6 16 30 36 11 1 0.079 5.12 0.22

ID 6 3 9 18 19 15 30 0.385 12.40 0.01
TF 0 0 0 0 0 0 100 0.098 6.08 23.86

CPOP 0 0 0 0 4 5 91 0.102 3.01 0.81
BUP 69 28 3 0 0 0 0 0.266 12.12 1.47

(M8)

TS 0 0 0 99 0 0 1 0.00 0.50 0.19
NOT 0 0 0 100 0 0 0 0.001 0.00 0.17

ID 0 0 0 99 1 0 0 0.001 0.00 0.03
TF 0 0 0 65 12 9 14 0.003 14.63 36.03

CPOP 0 0 0 35 0 34 31 0.042 20.53 3.91
BUP 0 0 0 0 0 0 100 0.014 46.80 2.62
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Table C.3: Distribution of N̂ − N for models (M1)-(M4) and all methods with the noise term εt

being AR(1) process of φ = 0.3 over 100 simulation runs. Also the average MSE (Mean Squared
Error) of the estimated signal f̂t, the average Hausdorff distance dH and the average computational
time in seconds using an Intel Core i5 2.9 GHz CPU with 8 GB of RAM, all over 100 simulations.
Bold: methods within 10% of the highest empirical frequency of N̂ −N = 0 or within 10% of the
lowest empirical average dH(×102). Note that TrendSegment is shortened to TS.

N̂ − N
Model Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M1)

TS 0 1 13 82 4 0 0 0.39 3.65 0.07
NOT 0 0 0 87 8 2 3 0.35 3.10 0.23

ID 0 0 0 62 27 9 2 0.27 2.70 0.02
TF 3 0 0 0 0 0 97 0.61 6.18 3.31

CPOP 0 0 0 53 35 10 2 0.23 2.52 0.05
BUP 100 0 0 0 0 0 0 2.64 10.96 0.36

(M2)

TS 4 9 30 57 0 0 0 0.20 2.56 0.24
NOT 0 0 8 83 6 2 1 0.182 2.11 0.31

ID 0 0 0 69 24 5 2 0.155 1.75 0.40
TF 0 0 0 0 0 0 100 0.600 2.38 32.03

CPOP 0 0 0 1 6 8 85 0.163 1.98 1.50
BUP 100 0 0 0 0 0 0 0.717 4.63 2.39

(M3)

TS 0 0 17 79 4 0 0 0.05 4.79 0.30
NOT 0 0 1 89 7 2 1 0.045 3.81 0.32

ID 0 0 1 83 14 1 1 0.037 2.98 0.03
TF 0 0 0 0 0 0 100 0.258 6.24 28.76

CPOP 0 0 0 76 10 9 5 0.022 2.14 15.35
BUP 0 0 0 0 6 23 71 0.040 5.59 2.31

(M4)

TS 0 0 2 95 3 0 0 0.15 3.61 0.09
NOT 0 0 0 86 9 3 2 0.16 3.50 0.23

ID 0 0 0 84 14 0 2 0.13 2.87 0.01
TF 1 0 1 0 1 0 97 0.64 6.76 8.67

CPOP 0 0 0 51 24 15 10 0.11 3.17 0.39
BUP 1 61 38 0 0 0 0 0.50 10.43 0.58
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Table C.4: Distribution of N̂ − N for models (M5)-(M8) and all methods with the noise term εt

being AR(1) process of φ = 0.3 over 100 simulation runs. Also the average MSE (Mean Squared
Error) of the estimated signal f̂t, the average Hausdorff distance dH and the average computational
time in seconds using an Intel Core i5 2.9 GHz CPU with 8 GB of RAM, all over 100 simulations.
Bold: methods within 10% of the highest empirical frequency of N̂ −N = 0 or within 10% of the
lowest empirical average dH(×102). Note that TrendSegment is shortened to TS.

N̂ − N
Model Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M5)

TS 0 0 0 84 15 1 0 0.05 1.85 0.32
NOT 0 6 13 74 4 3 0 0.062 1.59 0.26

ID 0 0 0 1 4 17 78 0.347 8.87 0.03
TF 0 0 0 0 0 0 100 0.192 6.16 28.45

CPOP 0 0 0 2 14 20 64 0.059 2.02 3.64
BUP 0 0 0 11 32 30 27 0.131 5.19 2.32

(M6)

TS 0 6 0 93 1 0 0 0.02 1.34 0.35
NOT 6 18 28 31 4 2 11 0.094 5.30 0.25

ID 1 10 0 0 21 0 68 0.149 6.75 0.04
TF 0 0 0 0 0 0 100 0.324 9.93 29.97

CPOP 0 0 0 7 32 28 23 0.043 1.04 3.58
BUP 0 0 0 0 0 0 100 0.159 9.09 2.82

(M7)

TS 20 47 24 7 2 0 0 0.23 11.74 0.12
NOT 5 12 19 24 22 7 11 0.158 7.69 0.24

ID 11 3 15 22 18 16 15 0.405 14.22 0.01
TF 3 0 0 0 0 0 97 0.623 7.01 23.25

CPOP 0 0 0 0 0 1 99 0.162 5.27 0.85
BUP 54 43 3 0 0 0 0 0.283 11.92 1.55

(M8)

TS 0 0 0 100 0 0 0 0.00 0.00 0.19
NOT 0 0 0 93 3 3 1 0.005 2.02 0.19

ID 0 0 0 100 0 0 0 0.003 0.00 0.51
TF 0 0 0 0 0 0 100 0.551 49.94 35.81

CPOP 0 0 0 30 10 3 57 0.035 19.71 7.55
BUP 0 0 0 0 0 0 100 0.025 46.73 2.72
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Table C.5: Distribution of N̂ − N for models (M1)-(M4) and all methods with the noise term εt

being AR(1) process of φ = 0.6 over 100 simulation runs. Also the average MSE (Mean Squared
Error) of the estimated signal f̂t, the average Hausdorff distance dH and the average computational
time in seconds using 10 cores of Apple M1 Pro with 16 GB of RAM on mac OS, all over 100
simulations. Bold: methods within 10% of the highest empirical frequency of N̂ − N = 0 or
within 10% of the lowest empirical average dH(×102). Note that TrendSegment is shortened to
TS.

N̂ − N
Model Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M1)

TS 2 2 22 67 7 0 0 0.82 4.82 0.07
NOT 0 1 4 50 15 9 21 0.86 4.19 0.09

ID 0 0 0 5 16 20 59 0.70 4.29 0.01
TF 28 0 0 1 0 1 70 1.44 14.23 1.84

CPOP 0 0 0 4 11 18 67 0.76 4.31 0.05
BUP 100 0 0 0 0 0 0 2.55 11.22 0.15

(M2)

TS 30 34 26 8 2 0 0 0.50 3.69 0.23
NOT 0 4 13 21 19 18 25 0.51 2.94 0.14

ID 2 5 4 33 23 17 16 0.41 3.20 0.02
TF 0 0 0 0 0 0 100 1.23 2.38 12.86

CPOP 0 0 0 0 0 0 100 0.54 2.48 0.87
BUP 100 0 0 0 0 0 0 0.70 4.43 0.70

(M3)

TS 0 4 23 45 16 8 4 0.14 6.77 0.31
NOT 0 0 4 24 7 6 59 0.21 5.95 0.20

ID 1 5 11 28 11 16 28 0.12 6.08 0.04
TF 0 0 0 0 0 0 100 0.58 6.23 19.54

CPOP 0 0 0 0 0 0 100 0.38 6.08 3.31
BUP 0 0 0 0 0 0 100 0.13 5.92 1.22

(M4)

TS 0 1 16 57 18 4 4 0.42 5.63 0.09
NOT 0 0 3 26 16 11 44 0.56 5.61 0.12

ID 0 0 8 41 24 17 10 0.35 4.78 0.01
TF 25 0 2 0 1 0 72 1.46 13.64 5.63

CPOP 0 0 0 0 2 0 98 0.59 5.72 0.26
BUP 1 37 58 4 0 0 0 0.57 9.45 0.31
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Table C.6: Distribution of N̂ − N for models (M5)-(M8) and all methods with the noise term εt

being AR(1) process of φ = 0.6 over 100 simulation runs. Also the average MSE (Mean Squared
Error) of the estimated signal f̂t, the average Hausdorff distance dH and the average computational
time in seconds using 10 cores of Apple M1 Pro with 16 GB of RAM on mac OS, all over 100
simulations. Bold: methods within 10% of the highest empirical frequency of N̂ − N = 0 or
within 10% of the lowest empirical average dH(×102). Note that TrendSegment is shortened to
TS.

N̂ − N
Model Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M5)

TS 0 0 10 40 32 10 8 0.14 3.62 0.33
NOT 0 3 10 11 11 10 55 0.22 4.46 0.18

ID 2 3 1 4 6 5 79 0.42 7.28 0.04
TF 0 0 0 0 0 0 100 0.40 6.18 18.88

CPOP 0 0 0 0 0 0 100 0.47 5.96 2.18
BUP 0 0 0 0 0 0 100 0.24 5.90 1.24

(M6)

TS 0 3 0 65 12 11 9 0.07 3.09 0.36
NOT 13 8 16 22 6 3 32 0.19 8.10 0.15

ID 39 26 2 0 19 1 13 0.28 24.64 0.04
TF 0 0 0 0 0 0 100 0.69 9.91 197.40

CPOP 0 0 0 0 0 0 100 0.52 9.50 2.91
BUP 0 0 0 0 0 0 100 0.30 9.41 1.36

(M7)

TS 25 25 26 14 5 4 1 0.40 11.82 0.13
NOT 3 4 4 11 13 3 62 0.49 8.03 0.11

ID 10 3 9 20 19 15 24 0.47 13.15 0.02
TF 24 0 2 0 0 0 74 1.47 13.14 9.90

CPOP 0 0 0 0 0 0 100 0.59 7.02 0.44
BUP 3 30 42 21 4 0 0 0.35 8.97 0.46

(M8)

TS 0 0 0 63 7 26 4 0.03 10.42 0.19
NOT 0 0 0 7 8 4 81 0.19 37.77 0.10

ID 0 0 0 96 3 0 1 0.01 0.61 0.03
TF 0 0 0 0 0 0 100 1.10 49.94 15.54

CPOP 0 0 0 0 1 0 99 0.38 45.54 2.08
BUP 0 0 0 0 0 0 100 0.11 47.44 0.85
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Table C.7: Distribution of N̂ − N for models (M1)-(M4) and all methods with the εt being AR(1)
process of φ = 0.3 with noise term following t5 over 100 simulation runs. Also the average
MSE (Mean Squared Error) of the estimated signal f̂t, the average Hausdorff distance dH and the
average computational time in seconds using 10 cores of Apple M1 Pro with 16 GB of RAM on
mac OS, all over 100 simulations. Bold: methods within 10% of the highest empirical frequency
of N̂ − N = 0 or within 10% of the lowest empirical average dH(×102). Note that TrendSegment
is shortened to TS.

N̂ − N
Model Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M1)

TS 0 0 0 100 0 0 0 0.07 1.72 0.10
NOT 0 0 0 90 7 2 1 0.06 1.61 0.09

ID 0 0 0 49 29 9 13 0.06 2.08 0.01
TF 17 0 0 0 1 0 82 0.13 9.94 1.64

CPOP 0 0 0 100 0 0 0 0.03 0.87 0.05
BUP 100 0 0 0 0 0 0 3.14 12.19 0.14

(M2)

TS 0 0 2 94 2 0 2 0.04 1.32 0.25
NOT 0 0 0 95 4 1 0 0.03 1.10 0.16

ID 0 0 0 47 25 14 14 0.08 1.18 0.02
TF 0 0 0 0 0 0 100 0.14 2.38 12.86

CPOP 0 0 0 100 0 0 0 0.04 0.82 1.38
BUP 100 0 0 0 0 0 0 1.22 5.08 0.69

(M3)

TS 0 0 0 99 0 0 1 0.01 2.52 0.31
NOT 0 0 0 88 9 2 1 0.01 2.04 0.24

ID 0 0 0 56 29 9 6 0.01 2.42 0.02
TF 0 0 0 0 0 0 100 0.04 6.23 20.08

CPOP 0 0 0 99 0 1 0 0.00 0.67 21.78
BUP 5 82 13 0 0 0 0 0.14 11.18 1.10

(M4)

TS 0 0 0 100 0 0 0 0.03 2.00 0.10
NOT 0 0 0 88 8 4 0 0.03 1.81 0.18

ID 0 0 0 54 27 15 4 0.05 2.02 0.01
TF 5 0 0 0 0 0 95 0.13 7.75 5.95

CPOP 0 0 0 100 0 0 0 0.03 1.62 0.34
BUP 85 15 0 0 0 0 0 0.85 12.55 0.30
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Table C.8: Distribution of N̂ − N for models (M5)-(M8) and all methods with the εt being AR(1)
process of φ = 0.3 with noise term following t5 over 100 simulation runs. Also the average
MSE (Mean Squared Error) of the estimated signal f̂t, the average Hausdorff distance dH and the
average computational time in seconds using 10 cores of Apple M1 Pro with 16 GB of RAM on
mac OS, all over 100 simulations. Bold: methods within 10% of the highest empirical frequency
of N̂ − N = 0 or within 10% of the lowest empirical average dH(×102). Note that TrendSegment
is shortened to TS.

N̂ − N
Model Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M5)

TS 0 0 0 98 0 0 2 0.01 0.66 0.34
NOT 0 12 7 66 6 4 5 0.03 0.74 0.17

ID 0 0 0 0 0 2 98 0.20 5.02 0.03
TF 0 0 0 0 0 0 100 0.27 5.92 18.55

CPOP 0 0 0 50 38 9 3 0.02 1.43 3.27
BUP 16 84 0 0 0 0 0 0.16 0.89 1.12

(M6)

TS 0 0 1 97 0 0 2 0.01 0.20 0.37
NOT 0 3 44 48 2 0 3 0.05 0.80 0.14

ID 0 0 0 0 0 0 100 0.09 0.39 0.03
TF 0 0 0 0 0 0 100 0.07 9.90 21.12

CPOP 0 0 0 72 24 4 0 0.01 0.09 2.01
BUP 23 36 30 11 0 0 0 0.18 0.27 1.42

(M7)

TS 32 35 26 6 0 0 1 0.13 11.69 0.13
NOT 0 0 0 74 20 4 2 0.01 0.81 0.11

ID 2 2 3 10 16 33 34 0.35 10.75 0.01
TF 0 0 0 0 0 0 100 0.14 6.24 11.24

CPOP 0 0 0 10 30 28 32 0.02 0.65 0.76
BUP 100 0 0 0 0 0 0 0.25 12.50 0.53

(M8)

TS 0 0 0 97 0 0 3 0.00 1.50 0.21
NOT 0 0 0 88 4 7 1 0.00 3.46 0.09

ID 0 0 0 100 0 0 0 0.00 0.00 0.03
TF 0 0 0 0 0 0 100 0.11 49.93 15.78

CPOP 0 0 0 99 0 1 0 0.00 0.05 5.50
BUP 0 0 0 0 100 0 0 0.00 39.45 0.84
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Table C.9: Distribution of N̂ − N for models (M1)-(M4) and all methods with the εt being AR(1)
process of φ = 0.6 with noise term following t5 over 100 simulation runs. Also the average
MSE (Mean Squared Error) of the estimated signal f̂t, the average Hausdorff distance dH and the
average computational time in seconds using 10 cores of Apple M1 Pro with 16 GB of RAM on
mac OS, all over 100 simulations. Bold: methods within 10% of the highest empirical frequency
of N̂ − N = 0 or within 10% of the lowest empirical average dH(×102). Note that TrendSegment
is shortened to TS.

N̂ − N
Model Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M1)

TS 0 0 1 99 0 0 0 0.15 2.18 0.10
NOT 0 0 0 55 12 8 25 0.17 2.90 0.10

ID 0 0 0 7 9 11 73 0.15 3.98 0.01
TF 43 0 1 0 0 0 56 0.29 18.34 1.74

CPOP 0 0 0 100 0 0 0 0.10 1.21 0.06
BUP 100 0 0 0 0 0 0 3.03 11.77 0.15

(M2)

TS 1 7 19 72 0 0 1 0.11 2.11 0.24
NOT 0 0 0 59 8 7 26 0.09 1.68 0.17

ID 0 0 0 15 11 14 60 0.11 1.80 0.03
TF 0 0 0 0 0 0 100 0.25 2.38 12.96

CPOP 0 0 0 83 15 1 1 0.07 1.13 1.34
BUP 100 0 0 0 0 0 0 1.15 5.42 0.71

(M3)

TS 0 5 17 77 0 0 1 0.04 4.38 0.31
NOT 0 0 0 16 7 8 69 0.05 5.16 0.22

ID 0 0 0 24 18 14 44 0.03 4.20 0.03
TF 0 0 0 0 0 0 100 0.10 6.23 19.46

CPOP 0 0 0 96 2 2 0 0.01 1.39 19.42
BUP 0 43 49 8 0 0 0 0.10 9.61 1.10

(M4)

TS 0 0 3 97 0 0 0 0.08 2.82 0.09
NOT 0 0 0 22 14 10 54 0.12 4.68 0.18

ID 0 0 0 27 19 21 33 0.09 3.71 0.01
TF 38 0 0 1 1 0 60 0.29 17.07 6.15

CPOP 0 0 0 95 3 2 0 0.05 2.03 0.35
BUP 72 28 0 0 0 0 0 0.79 12.41 0.31
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Table C.10: Distribution of N̂−N for models (M5)-(M8) and all methods with the εt being AR(1)
process of φ = 0.6 with noise term following t5 over 100 simulation runs. Also the average
MSE (Mean Squared Error) of the estimated signal f̂t, the average Hausdorff distance dH and the
average computational time in seconds using 10 cores of Apple M1 Pro with 16 GB of RAM on
mac OS, all over 100 simulations. Bold: methods within 10% of the highest empirical frequency
of N̂ − N = 0 or within 10% of the lowest empirical average dH(×102). Note that TrendSegment
is shortened to TS.

N̂ − N
Model Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M5)

TS 0 2 15 81 1 0 1 0.03 1.11 0.33
NOT 0 5 10 37 7 4 37 0.05 2.80 0.18

ID 0 0 0 0 0 1 99 0.19 4.57 0.04
TF 0 0 0 0 0 0 100 0.26 6.02 18.55

CPOP 0 0 0 29 38 28 5 0.03 1.55 3.44
BUP 13 86 1 0 0 0 0 0.16 1.32 1.17

(M6)

TS 0 0 0 99 0 0 1 0.01 0.10 0.36
NOT 1 2 36 46 4 3 8 0.06 1.98 0.14

ID 0 2 0 0 8 1 89 0.12 3.02 0.04
TF 0 0 0 0 0 0 100 0.15 9.90 20.25

CPOP 0 0 0 81 17 1 1 0.01 0.15 2.92
BUP 0 2 24 74 0 0 0 0.08 0.24 1.22

(M7)

TS 73 25 1 0 0 0 1 0.20 12.44 0.12
NOT 0 0 0 7 5 16 72 0.08 4.50 0.11

ID 0 0 2 3 7 8 80 0.24 10.13 0.01
TF 0 0 0 0 0 0 100 0.29 6.26 11.19

CPOP 0 0 0 2 17 24 57 0.07 4.48 0.84
BUP 100 0 0 0 0 0 0 0.26 12.51 0.52

(M8)

TS 0 0 0 99 0 0 1 0.00 0.50 0.20
NOT 0 0 0 3 2 13 82 0.04 40.33 0.10

ID 0 0 0 86 4 1 9 0.00 2.89 0.02
TF 0 0 0 0 0 0 100 0.22 49.93 15.67

CPOP 0 0 0 97 0 3 0 0.00 0.72 8.40
BUP 0 0 0 0 80 20 0 0.00 40.07 0.83
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C.2 Choice of the threshold

In this section, we describe the details of how the thresholds, λNaı̈ve and λRobust, are built under
different scenarios of noise introduced in Section C.1.

The naive threshold selection We first explain how the best performing threshold constant
C in the naive threshold. To cover all the noise scenario settings including dependent and/or
non-Gaussian noise, here we use a simpler version of the follwoing naı̈ve threshold:

λNaı̈ve = C
√

2 log T , (16)

by considering that the σ in λNaı̈ve = Cσ
√

2 log T can be absorbed into the constant C. To find the
best performing constant C over different noise scenarios introduced in Section C.1, we repeat
the simulations with a range of C, [0.5, 3.5]. The performance can be evaluated by the accuracy
of detecting number and location of change-points. For the number of change-point, we define

Cη

min = Median(C̃η

min,1, . . . , C̃
η

min,8), (17)

where C̃η

min, j is the minimum of those constants C that give the maximum number of the case
{N̂ − N = 0} for the jth model from 100 simulation runs. The minimum condition is actually
used when there is more than one constant giving the same maximum number of {N̂ − N = 0}.
Similarly, we can define Cη

med and Cη
max by replacing the minimum condition with median and

maximum respectively. For evaluating the performance of change-point location, we define

CdH
max = Median(C̃dH

max,1, . . . , C̃
dH
max,8), (18)

where C̃dH
max, j is the maximum of those constants C that give the minimum value of the average

Hausdorff distance for the jth model computed from 100 simulation runs. Note that in contrast
to that the maximum number of case {N̂ − N = 0} is considered in (17), the minimum value of
Hausdorff distance is used in (18) as the smaller the Hausdorff distance, the better the estimation
of the change-point locations. Similar to (17), the maximum condition actually works when there
is more than one constant giving the same minimum average Hausdorff distance, and CdH

med and
CdH

min can be defined by replacing the maximum condition with median and minimum respectively.
The best performing constants over all noise scenarios are reported in Table C.11. Compared

to the iid Gaussian noise, it seems that a larger threshold constant tends to chosen when the noise
is heavy-tailed and/or dependent. Also, compared to the other noise scenarios, when the noise is
dependent but generated with Gaussian innovation ((iii) and (iv)), the best performing constant
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Table C.11: The default thresholding constant C with its range examined for five scenarios.

εt Cη

min Cη

med Cη
max CdH

min CdH
med CdH

max

(i) 1.2 1.4 1.5 1.4 1.5 1.7
(ii) 1.4 1.5 1.6 1.3 1.5 1.5
(iii) 1.5 1.5 1.5 1.4 1.4 1.4
(iv) 1.8 1.8 1.8 1.3 1.3 1.3
(v) 1.0 1.6 1.9 1.0 1.4 1.9
(vi) 1.4 1.5 1.7 1.4 1.5 1.7

has a narrower range of C·max - C·min. Similar interpretations and behaviours can be found from
Figures C.1-C.6.

The naı̈ve threshold, λNaı̈ve, is an essential element in building the robust threshold, λRobust, as
shown in Step 5 of Algorithm 1 in the main paper. For this, we use the default constants Cη

med

in Table C.11, where there is not much difference in simulation performance presented in Tables
C.1-C.10 when Cη

max is used instead.
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(a) Number of the case, N̂ − N = 0.
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Figure C.1: Summary of the results over a sequence of the threshold constant C from 0.8 to 1.8
for all models (M1)-(M8), where εt ∼ N(0, 1). (a) The number of the case N̂ − N = 0 from 100
simulation runs and (b) Mean of dH(×102) from 100 simulation runs. X symbols show where the
maximum and minimum is obtained in (a) and (b), respectively, over a sequence of Cs. The black
vertical dashed lines present Cη

min ≤ Cη

med ≤ Cη
max in (a) and CdH

min ≤ CdH
med ≤ CdH

max in (b) defined in
(17) and (18), respectively.
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Figure C.2: Summary of the simulation results obtained over a sequence of the threshold constant
C from 1.2 to 2.2 for all models (M1)-(M8), where εt

iid
∼ t5. (a) The number of the case N̂ −N = 0

and (b) Mean of dH(×102). X symbols show where the maximum and minimum is obtained in
(a) and (b), respectively, over a sequence of Cs. The black vertical dashed lines present Cη

min ≤

Cη

med ≤ Cη
max in (a) and CdH

min ≤ CdH
med ≤ CdH

max in (b) defined in (17) and (18), respectively.
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Figure C.3: Summary of the simulation results obtained over a sequence of the threshold constant
C from 1.2 to 2.2 for all models (M1)-(M8), where εt ∼ AR(1) with φ = 0.3. (a) The number
of the case N̂ − N = 0 and (b) Mean of dH(×102). X symbols show where the maximum and
minimum is obtained in (a) and (b), respectively, over a sequence of Cs. The black vertical dashed
lines present Cη

min ≤ Cη

med ≤ Cη
max in (a) and CdH

min ≤ CdH
med ≤ CdH

max in (b) defined in (17) and (18),
respectively.
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Figure C.4: Summary of the simulation results obtained over a sequence of the threshold constant
C from 1.5 to 4.5 for all models (M1)-(M8), where εt ∼ AR(1) with φ = 0.6. (a) The number
of the case N̂ − N = 0 and (b) Mean of dH(×102). X symbols show where the maximum and
minimum is obtained in (a) and (b), respectively, over a sequence of Cs. The black vertical dashed
lines present Cη

min ≤ Cη

med ≤ Cη
max in (a) and CdH

min ≤ CdH
med ≤ CdH

max in (b) defined in (17) and (18),
respectively.

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
2
0

4
0

6
0

8
0

1
0
0

(a) Number of the case, N̂ − N = 0.

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0
1
0

2
0

3
0

4
0

M1

M2

M3

M4

M5

M6

M7

M8

(b) Mean of dH(×102).

Figure C.5: Summary of the simulation results obtained over a sequence of the threshold constant
C from 1.5 to 5 for all models (M1)-(M8), where εt being AR(1) process of φ = 0.3 with noise
term following t5. (a) The number of the case N̂ − N = 0 and (b) Mean of dH(×102). X symbols
show where the maximum and minimum is obtained in (a) and (b), respectively, over a sequence
of Cs. The black vertical dashed lines present Cη

min ≤ Cη

med ≤ Cη
max in (a) and CdH

min ≤ CdH
med ≤ CdH

max

in (b) defined in (17) and (18), respectively.
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Figure C.6: Summary of the simulation results obtained over a sequence of the threshold constant
C from 3 to 6 for all models (M1)-(M8), where εt being AR(1) process of φ = 0.6 with noise term
following t5. (a) The number of the case N̂ − N = 0 and (b) Mean of dH(×102). X symbols show
where the maximum and minimum is obtained in (a) and (b), respectively, over a sequence of Cs.
The black vertical dashed lines present Cη

min ≤ Cη

med ≤ Cη
max in (a) and CdH

min ≤ CdH
med ≤ CdH

max in (b)
defined in (17) and (18), respectively.

The robust threshold selection We now describe the details of how λRobust is built. We first
justify using the ratio,

λNaı̈ve

1.3Î
√

2 log T
(19)

in the process of building the kurtosis function g in Step 5 of Algorithm 1 in the main paper.
We first recall that the ratio in (19) corresponds to the kurtosis function g(K) in the following

robust threshold:
λRobust = CIg(K)

√
2 log T . (20)

Figure C.7 shows that g(K̂) behaves like constant over a range of the K̂ under all models and
noise scenarios we considered. This is due to the condition on the minimum segment length
imposed for stable and good performance. With this condition, we found that the constant-like
behaviour is also observed in case noise has relatively extreme heavy-tail e.g. t2.1, however we
do not include such an extreme case in estimating the non-parametric function g.

We are now ready to estimate the function g(·). To avoid the situation that the estimation of
non-parametric fit is affected a lot by extremely large size of K̂ , we split K̂ into two with the
99% quantile of κ̂ as shown in Figure C.7. Then we estimate the non-parametric regression fit
for each interval, g1(K) and g2(K) respectively, and use these functions for computing the robust
threshold.
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Figure C.7: The estimated kurtosis, κ̂, of ε̂t (x-axis) and the ratio in (19) (y-axis) over all models
considered and over 6 different noise scenarios, (i)-(vi), presented in Section C.1, where each
combination of model and noise scenario has N = 100 repetitions (dots) in (a). ε̂t is obtained
from the pre-fit in Algorithm 1 of the main paper.
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D Additional data application results

D.1 Monthly average sea ice extent of Arctic and Antarctic data
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Figure D.1: Change-point analysis for the monthly average sea ice extent of the Arctic in Febru-
ary from 1979 to 2020 in Section 5.2. (a) the data series (grey dots) and estimated signal with
change-points returned by NOT ( ) and ID ( ), (b) estimated signal with change-points re-
turned by TF ( ) and CPOP ( ).

26



1980 1990 2000 2010 2020

3
4

5
6

7
8

year

ic
e
 e

x
te

n
t

NOT

ID

(a) NOT and ID

1980 1990 2000 2010 2020

3
4

5
6

7
8

year

ic
e
 e

x
te

n
t

TF

CPOP

(b) TF and CPOP

Figure D.2: Change-point analysis for the monthly average sea ice extent of the Arctic in Septem-
ber from 1979 to 2020 in Section 5.2. (a) the data series (grey dots) and estimated signal with
change-points returned by NOT ( ) and ID ( ), (b) estimated signal with change-points re-
turned by TF ( ) and CPOP ( ).
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Figure D.3: Change-point analysis for the monthly average sea ice extent of the Antarctic in
February from 1979 to 2020 in Section 5.2. (a) the data series (grey dots) and estimated signal
with change-points returned by NOT ( ) and ID ( ), (b) estimated signal with change-points
returned by TF ( ) and CPOP ( ).

28



1980 1990 2000 2010 2020

1
7
.5

1
8
.0

1
8
.5

1
9
.0

1
9
.5

2
0
.0

year

ic
e
 e

x
te

n
t

NOT

ID

(a) NOT and ID

1980 1990 2000 2010 2020

1
7
.5

1
8
.0

1
8
.5

1
9
.0

1
9
.5

2
0
.0

year

ic
e
 e

x
te

n
t

TF

CPOP

(b) TF and CPOP

Figure D.4: Change-point analysis for the monthly average sea ice extent of the Antarctic in
September from 1979 to 2020 in Section 5.2. (a) the data series (grey dots) and estimated signal
with change-points returned by NOT ( ) and ID ( ), (b) estimated signal with change-points
returned by TF ( ) and CPOP ( ).
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D.2 Nitrogen oxides concentrations
−

6
−

4
−

2
0

2
4

NO2

Index

x

2000−09 2002−10 2004−12 2007−01 2009−02 2011−04 2013−05 2015−06 2017−07 2019−09

0 10 20 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

A
C

F

ACF (before linear trend removal)

0 10 20 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

A
C

F

ACF (after linear trend removal)

Figure D.5: (Top) Daily average concentrations of NO2 (black) with the detected change-points
by TrendSegment (red) and the estimated piecewise-linear trend (green). (Bottom) Autocorrela-
tion function of NO2 before (left) and after (right) linear trend removal.

In this section, we demonstrate that our TrendSegment algorithm shows a good performance
on a real-world dataset that possibly has some nonnegligible autocorrelation. London air quality
data is recently studied by Cho and Fryzlewicz (2020) in the context of proposing a methodology
for detecting multiple changes in mean of a possibly autocorrelated time series. Using the same
data but in a different context, we now detect changes in linear trend. We use the daily average
concentrations of nitrogen dioxides (NO2) measured from September 1, 2000 to September 30,
2020 at Marylebone Road in London, United Kingdom, which results in T = 7139 time points.
The data is downloaded from https://github.com/haeran-cho/wem.gsc, where the
original data can be obtained from Defra (https://uk-air.defra.gov.uk/). We follow
the pre-processing steps used in Cho and Fryzlewicz (2020) by taking the square root transform
and by removing weekly, seasonal and bank holiday effects.

Considering that the data possibly has serial dependent and/or heavy-tailedness, we use the
robust threshold (λRobust) introduced in Section 4.1.5 of the main paper. The top plot in Figure
D.5 shows the detected change-points using the robust threshold selection. From the two bottom
plots, we see that the persistent autocorrelations are not observable anymore after removing the
linear trends, although a certain amount of autocorrelations still exists.
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E Shape of the unbalanced wavelet basis

We now explore the shape of the adaptively constructed unbalanced wavelet basis. First, we
denote that ψ( j,k) is sometimes referred to as ψ( j,k)

p,q,r. One of the important properties of the unbal-
anced wavelet basis is that ψ( j,k)

p,q,r always has a shape of linear trend in regions that are previously
merged and this linearity will also be preserved in future merges, as long as later transforms are
performed under the “two together” rule. For example, two vectors (ψ(0,1), ψ(0,2)) corresponding
to the two smooth coefficients s1

1,T and s[2]
1,T , have linear trends in the region [1,T ] as they form an

orthonormal basis of the subspace {(x1, x2, . . . , xT ) | x1 − x2 = x2 − x3 = · · · = xT−1 − xT } of RT .
This is due to the fact that the local orthonormal transforms continue in a way of extending the
geometric dimension of subspace in which an orthonormal basis lives.

Through an illustrative example, we now show how a basis vector ψ( j,k)
p,q,r keeps its linearity in

subregions that are already merged in previous scales, which includes a geometric interpretation
of the TGUW transformation. Suppose that the initial data sequence is s0 = (X1, . . . , X5) and the
initial weight vectors of constancy and linearity are wc

0 = (1, 1, 1, 1, 1)> and wl
0 = (1, 2, 3, 4, 5)>,

respectively. As we have the data sequence of length 5, the complete TGUW transform consists
of 3 orthonormal transformations and the most important task for each transform is finding an
appropriate orthonormal matrix.

First merge. Assume that (X3, X4, X5) is chosen as the first triplet to be merged. To find the
values of the transform matrix Λ,

Λ =


`1,1 `1,2 `1,3

`2,1 `2,2 `2,3

a b c

 =


`>1

`>2

h>

 , (21)

we first seek the detail filter, h, which satisfies the conditions (1) h>wc
0,3:5 = 0, (2) h>wl

0,3:5 = 0
and (3) h>h = 1, where w·0,p:r is the subvector of length r− p + 1. Thus, h is obtained as a normal
vector to the plane {(x, y, z) | x− 2y + z = 0}. Then, two low filter vectors (`1 and `2) are obtained
under the conditions, (1) `>1 h = 0, (2) `>2 h = 0, (3) `>1 `2 = 0 and (4) `>1 `1 = `>2 `2 = 1 which
implies that `1 and `2 form an arbitrary orthonormal basis of the plane {(x, y, z) | x − 2y + z = 0}
and this guarantees the linear trend of `1 and `2. Now, the orthonormal transform updates the
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data sequence and weight vectors as follows,

s0 = (X1, . . . , X5) → s = (X1, X2, s
[1]
3,5, s

[2]
3,5, d3,4,5),

wc
0 = (1, 1, 1, 1, 1)> → wc = (1, 1, ec1 , ec2 , 0)>,

wl
0 = (1, 2, 3, 4, 5)> → wl = (1, 2, el1 , el2 , 0)>,

(22)

where the constants (ec1 , ec2) and (el1 , el2) are obtained by Λwc
0,3:5 = (ec1 , ec2 , 0)> and Λwl

0,3:5 =

(el1 , el2 , 0)>, respectively. As `1 and `2 form an orthonormal basis of the plane {(x, y, z) | x−2y+z =

0}, ec1 , ec2 and el1 , el2 are unique constants which represent wc
0,3:5 and wl

0,3:5 as a linear span of basis
vectors `1 and `2 as follows:

wc
0,3:5 = ec1`1 + ec2`2, wl

0,3:5 = el1`1 + el2`2. (23)

Importantly, the orthonormal transform matrix ΨT×T introduced in (5) (i.e. an orthonormal
basis in R5 in this example) is constructed by recursively updating its initial input Ψ0 = I5×5

through local orthonormal transforms. For example, if (p, q, r)th elements in s are selected to be
merged, then we extract the corresponding (p, q, r)th columns of Ψ> and update them through
the matrix multiplication with Λ used in that merge. Therefore, the first orthonormal transform
performed in (22) updates the initial matrix Ψ>0 by multiplying Λ to the corresponding (3, 4, 5)th

columns of Ψ>0 which returns the following,

Ψ> =



1 0 0 0 0

0 1 0 0 0

0 0 `1,1 `2,1 a

0 0 `1,2 `2,2 b

0 0 `1,3 `2,3 c


. (24)

The 5th column of Ψ> is now fixed (not going to be updated again) as it corresponds to the detail
coefficient but other four columns corresponding to the smooth coefficients in s would be updated
as the merging continues.

Second merge. Suppose that (X2, s
[1]
3,4,5, s

[2]
3,4,5) are selected to be merged next under the “two
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together” rule. Then we need to find the following orthonormal transform matrix,

Λ∗ =


`∗1,1 `∗1,2 `∗1,3

`∗2,1 `∗2,2 `∗2,3

a∗ b∗ c∗

 =


`∗1
>

`∗2
>

h∗>

 , (25)

where its elements would be different from those in (21). The detail filter h∗> = (a∗, b∗, c∗) is
constructed from the corresponding weight vectors, wc

2:4 = (1, ec1 , ec2)
> and wl

2:4 = (2, el1 , el2)
>,

by satisfying the conditions (1) h∗>wc
2:4 = 0, (2) h∗>wl

2:4 = 0 and (3) h∗>h∗ = 1. The detail filter
is a weight vector designed for indicating the strength of linearity in (X2, X3, X4, X5) as (ec1 , ec2)
and (el1 , el2) already contain the information of three raw observations (X3, X4, X5). Then, two
low filters, `∗1 and `∗2, are obtained by satisfying the conditions, `∗1

>h∗ = 0, `∗2
>h∗ = 0, `∗1

>`∗2 = 0
and Λ∗>Λ∗ = I. Now the data sequence and the weight vectors are updated as follows,

s = (X1, X2, s
[1]
3,5, s

[2]
3,5, d3,4,5) → s = (X1, s

[1]
2,5, s

[2]
2,5, d2,2,5, d3,4,5),

wc = (1, 1, ec1 , ec2 , 0)> → wc = (1, e∗c1
, e∗c2

, 0, 0)>, (26)

wl = (1, 2, el1 , el2 , 0)> → wl = (1, e∗l1 , e
∗
l2 , 0, 0)>,

and Ψ> is also updated into

Ψ> =



1 0 0 0 0

0 `∗1,1 `∗2,1 a∗ 0

0

0

0

`∗1,2`1 + `∗1,3`2


`∗2,2`1 + `∗2,3`2


b∗`1 + c∗`2


a

b

c


. (27)

At this scale, the 4th column of Ψ> is fixed. This corresponds to the Type 2 basis vector in (2)
whose non-zero subregion is composed of a single point (a∗) and a linear trend (b∗`1 + c∗`2).

Importantly, the orthonormal transform at this scale is performed in a way of returning an
orthonormal basis of the expanded subspace e.g. 2nd and 3rd columns of (27) (which are re-
ferred to as `∗∗1 and `∗∗2 in (28)) are obtained as an arbitrary orthonormal basis of the subspace
{(w, x, y, z) | w − x = x − y = y − z} of R4. This is due to the semi-orthogonality of the transfor-
mation matrix Π in (28) which extends the dimension from R3 to R4 but preserves the fact that
(`∗1, `

∗
2) and (`∗∗1 , `

∗∗
2 ) form an arbitrary orthonormal basis of the corresponding subspaces. This
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guarantees the properties, `∗∗1
>`∗∗2 = 0 and `∗∗1

>`∗∗1 = `∗∗2
>`∗∗2 = 1, where

`∗∗1 =



`∗1,1`∗1,2`1 + `∗1,3`2




=



1 0 0

0

0

0

`1


`2





`∗1,1

`∗1,2

`∗1,3

 = Π


`∗1,1

`∗1,2

`∗1,3

 ,

`∗∗2 =



`∗2,1`∗2,2`1 + `∗2,3`2




=



1 0 0

0

0

0

`1


`2





`∗2,1

`∗2,2

`∗2,3

 = Π


`∗2,1

`∗2,2

`∗2,3

 , (28)

and Π is obtained from the 2nd to 4th columns of (24) and the selected rows correspond to the
indices of smooth coefficients associated in the orthonormal transformation in (25).

As is in (23), now the extended subregions of the original weight vectors, wc
0,2:5 and wl

0,2:5, can
also be presented as a linear combination of `∗∗1 and `∗∗2 as follows:

wc
0,2:5 = e∗c1

`∗∗1 + e∗c2
`∗∗2 , wl

0,2:5 = e∗l1`
∗∗
1 + e∗l2`

∗∗
2 , (29)

where `∗∗1 and `∗∗2 form an orthonormal basis of the subspace {(w, x, y, z) | w − x = x − y = y − z}

of R4. This can be simply shown by 1) expressing the weight vectors as a linear combination of
two low filters,

wc
2:4 = (1, ec1 , ec2)

> = e∗c1
`∗1 + e∗c2

`∗2,

wl
2:4 = (2, el1 , el2)

> = e∗l1`
∗
1 + e∗l2`

∗
2,

(30)

and 2) performing the matrix multiplication with Π in (28) to both sides of (30),

LHS : Πwc
2:4 = (1, ec1`1 + ec2`2)> = (1, 1, 1, 1)> = wc

0,2:5, RHS : e∗c1
`∗∗1 + e∗c2

`∗∗2 ,

LHS : Πwl
2:4 = (2, el1`1 + el2`2)> = (2, 3, 4, 5)> = wl

0,2:5, RHS : e∗l1`
∗∗
1 + e∗l2`

∗∗
2 .

(31)

Last merge. In the same manner, after the last orthonormal transform is applied to
(X1, s

[1]
2,5, s

[2]
2,5), we end up with the finalised Ψ> in which an orthonormal basis of the subspace

{(v,w, x, y, z) | v − w = w − x = x − y = y − z} of R5 is shown in its first and second columns
where these two columns correspond to two basis vectors, ψ(0,1) and ψ(0,2), in (5). Regardless of
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the length of data (T ), the first two columns of the finalised Ψ> build two smooth coefficients
(s[1]

1,T , s
[2]
1,T ) and always keep a linear trend with length T , while the shape of other columns of

Ψ> corresponding to the detail coefficients depends on the type of merge and follows one of the
forms in (2).

As shown above, the non-uniqueness of the low filters has no effect on preserving the linearity
of the subregions that are already merged. In simulation studies, we empirically found that the
choice of low filters has no qualitative effect on the results as long as they are chosen by satisfying
the orthonormality condition of the transform, thus we used a fixed type of function for choosing
a set of low filters rather than choosing an arbitrary set of low filters that satisfies the orthonormal
condition every run which also saves the computational costs.

F A practical way to implement the TGUW transformation

In this section, we explore a way of implementing the TGUW transform. As briefly mentioned in
Section 2.2.3, it is implemented by consecutively updating so-called weight vectors of constancy
and linearity. These two weight vectors are initially used in the first stage of the TGUW transform
for obtaining the detail filter h and updated through the orthonormal transform. In detail, Steps 1
and 5 of the TGUW algorithm presented in Section 2.2.3 can be reformulated by weight vectors
as follows.

Step 1. At each scale j, find the set of triplets that are candidates for merging under the
“two together” rule and compute the corresponding detail coefficients. Regardless of the type of
merge, a detail coefficient d·p,q,r is, in general, obtained as

d·p,q,r = as1
p:r + bs2

p:r + cs3
p:r, (32)

where p ≤ q < r, sk
p:r is the kth smooth coefficient of the subvector sp:r with a length of r − p + 1

and the constants a, b, c are the elements of the detail filter h = (a, b, c)>. Specifically, the detail
filter h is established by solving the following equations,

awc,1
p:r + bwc,2

p:r + cwc,3
p:r = 0,

awl,1
p:r + bwl,2

p:r + cwl,3
p:r = 0,

a2 + b2 + c2 = 1,

(33)

where w·,kp:r is kth non-zero element of the subvector w·p:r with a length of r − p + 1, and wc and
wl are weight vectors of constancy and linearity, respectively, in which the initial inputs have a
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form of wc
0 = (1, 1, . . . , 1)>,wl

0 = (1, 2, . . . ,T )>. The last condition in (33) is to preserve the
orthonormality of the transform and the detail filter h becomes a unit normal vector of the plane
{(x, y, z) | x − 2y + z = 0}. The solution to (33) is unique up to multiplication by −1 and this can
be simply shown by solving the equations e.g. a + b + c = 0, a + 2b + 3c = 0 and a2 + b2 + c2 = 1.

More specifically, the detail coefficient in (32) is formulated for each type of merging intro-
duced in Section 2.2.1 as follows.
Type 1: merging three initial smooth coefficients (s0

p,p, s
0
p+1,p+1, s

0
p+2,p+2),

dp,p+1,p+2 = ap,p+1,p+2s0
p,p + bp,p+1,p+2s0

p+1,p+1 + cp,p+1,p+2s0
p+2,p+2. (34)

Type 2: merging one initial and a paired smooth coefficient (s0
p,p, s

[1]
p+1,r, s

[2]
p+1,r),

dp,p,r = ap,p,r s0
p,p + bp,p,r s[1]

p+1,r + cp,p,r s[2]
p+1,r, where p + 2 < r, (35)

similarly, when merging a paired smooth coefficient and one initial, (s[1]
p,r−1, s

[2]
p,r−1, s

0
r,r),

dp,r−1,r = ap,r−1,r s[1]
p,r−1 + bp,r−1,r s[2]

p,r−1 + cp,r−1,r s0
r,r, where p + 2 < r. (36)

Type 3: merging two sets of (paired) smooth coefficients, (s[1]
p,q, s

[2]
p,q) and (s[1]

q+1,r, s
[2]
q+1,r),

d[1]
p,q,r = a1

p,q,r s[1]
p,q + b1

p,q,r s[2]
p,q + c1

p,q,r s[1]
q+1,r

d[2]
p,q,r = a2

p,q,r s01
p,r + b2

p,q,r s02
p,r + c2

p,q,r s[2]
q+1,r

=⇒ dp,q,r = max(|d[1]
p,q,r|, |d

[2]
p,q,r|), (37)

where q > p + 1 and r > q + 2. Importantly, the two consecutive merges in (37) are achieved
by visiting the same two adjacent data regions twice. In this case, after the first detail coef-
ficient, d[1]

p,q,r, has been obtained, we instantly update the corresponding triplets s, wc and wl

via an orthonormal transform as defined in (38) and (39). Therefore, the second detail filter,
(a2

p,q,r, b
2
p,q,r, c

2
p,q,r), is constructed with the updated wc and wl in a way that satisfies the conditions

(33).

Step 5. For each |d·p,q,r| extracted in step 4, merge the corresponding smooth coefficients by
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updating the corresponding triplet in s, wc and wl through the orthonormal transform as follows,


s[1]

p,r

s[2]
p,r

d·p,q,r

 =


`>1

`>2

h>



s1

p:r

s2
p:r

s3
p:r

 = Λ


s1

p:r

s2
p:r

s3
p:r

 , (38)


wc,1

p,r

wc,2
p,r

0

 = Λ


wc,1

p:r

wc,2
p:r

wc,3
p:r

 ,

wl,1

p,r

wl,2
p,r

0

 = Λ


wl,1

p:r

wl,2
p:r

wl,3
p:r

 . (39)

The key step is finding the 3×3 orthonormal matrix, Λ, which is composed of one detail and two
low-pass filter vectors in its rows. Firstly the detail filter h> is determined to satisfy the conditions
in (33), and then the two low-pass filters (`>1 , `

>
2 ) are obtained by satisfying the orthonormality

of Λ. There is no uniqueness in the choice of (`>1 , `
>
2 ), but as described in Section E, this has no

effect on the orthonormal transformation itself.

G Extension to piecewise-quadratic signal

In this section, we explore how the TGUW transform can be extended to handle piecewise-
quadratic signals. Considering the fact that we perform an orthonormal transformation to the
chosen pair (triplet) to deal with piecewise-constant (piecewise-linear) signals, it is natural to
perform a transform to the chosen quadraplet of the smooth conefficients in the process of es-
tablishing a data-adaptive unbalanced wavelet basis. In each merge, four adjacent smooth co-
efficients are selected and the orthonormal transformation converts them into one detail and
three (updated) smooth coefficients. Those three updated smooth coefficients are tripled in the
sense that they contain information about one local quadratic regression fit. Therefore, any such
triplet of smooth coefficients cannot be separated when choosing quadruplet in any subsequent
merges which can be called as “three together” rule (instead of “two together” rule invented for
piecewise-linear model). We now give a simple example to illustrate how the TGUW transform
for piecewise-quadratic siganal works. Figure G.1 shows the merging history of the modified
TGUW transform which follows the “three together” rule. Three different types of merges are
similary defined as for piecewise-linear signal except the fact that the merges are performed on
quadraplet instead of triplet. The tree structure show that the modified TGUW transform per-
forms well in detecting a single change-point in piecewise-quadratic scenario as the last type 3
merge is corresponding to the true change-point.
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19

Type 1 merging

Type 2 merging

Type 3 merging

Data

True signal

Estimated change−point

Figure G.1: Example of data with one true change-point at t = 10 in its underlying piecewise-
quadratic signal (top) along with the tree structure constructed in TGUW transform by merging
(bottom).
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