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Abstract

This overview article motivates the use of wavelets in statistics, and introduces
the basic mathematics behind the construction of wavelets. Topics covered in-
clude the continuous and discrete wavelet transforms, multiresolution analysis
and the non-decimated wavelet transform. We describe the basic mechanics
of nonparametric function estimation via wavelets, emphasising the concepts
of sparsity and thresholding. A simple proof of the mean-square consistency of
the wavelet estimator is also included. The article ends with two special topics:
function estimation with Unbalanced Haar wavelets, and variance stabilisation
via the Haar-Fisz transformation.

Wavelets are mathematical functions which, when plotted, resemble “little waves”:
that is, they are compactly or almost-compactly supported, and they integrate
to zero. This is in contrast to “big waves” — sines and cosines in Fourier analy-
sis, which also oscillate, but the amplitude of their oscillation never changes.

Wavelets are useful for decomposing data into “wavelet coefficients”, which can
then be processed in a way which depends on the aim of the analysis. One
possibly advantageous feature of this decomposition is that in some set-ups,
the decomposition will be sparse, i.e. most of the coefficients will be close to
zero, with only a few coefficients carrying most of the information about the
data. One can imagine obvious uses of this fact, e.g. in image compression.
The decomposition is particularly informative, fast and easy to invert if it is
performed using wavelets at a range of scales and locations. The role of scale
is similar to the role of frequency in Fourier analysis. However, the concept of
location is unique to wavelets: as mentioned above, they are localised around
a particular point of the domain, unlike Fourier functions.

This article provides a self-contained introduction to the applications of wavelets
in statistics and attempts to justify the extreme popularity which they have en-
joyed in the literature over the past 15 years.



Motivation

Possibly the main statistical application of wavelets imdmparametric function esti-
mation, also known as “signal denoising” or “smoothing”. &snotivating example,
consider the simulated noisy signal in the top-left plot @fufe[d. Our objective is
to remove the noise and get as close as possible to revehérgue structure of the
signal. For many readers, it will be apparent that the sighabmposed of at least 5
different pieces. Itis interesting to investigate whetmne state-of-the-art smoothing
techniques can reveal more than this.

The black line in the top-right plot of Figufé 1 is the resuliapplying the “adaptive
weights smoothing” technique of Polzehl and Spokoiny (300®ie reconstruction is
good but it misses some of the dips in the signal (the trueasigrplotted in red). The
function used to produce the reconstruction was from the R packagaws (version
1.6-1, published 12 October 2009), called with its defaatgpneter values.

The black line in the bottom-left plot of Figuké 1 is the résaflsmoothing the signal
using the “taut string” methodology of Davies and Kovac (P0Again, the recon-
struction is good, but it over-detects the number of jumpth@signal. The function
used to produce the reconstruction vpasreg from the R packagénonpar  (ver-
sion 0.1-83, published 28 July 2008), called with its defpatameter values.

Finally, the black line in the bottom-right plot of Figuré 4 & reconstruction which
uses nonlinear wavelet shrinkage with Unbalanced Haar letsveT he reconstruction
is probably as good as it can be, in that it correctly detdtfamaps in this extremely
noisy signal. This methodology will be described in moreadetl in the sectiotun-
balanced Haar wavelets and function estimatiorlater on. The function used to
produce the reconstruction wag from the R packagenbalhaar (version 1.0,
published 27 July 2006), called with its default parametdues.

Wavelets

Wavelets can be informally described as localised, osoijafunctions designed to
have several attractive properties not enjoyed by “big wave sines and cosines.
Since their discovery in the early eighties, wavelets haeeived enormous attention
both in the mathematical community and in the applied s@sn&everal monographs
on the mathematical theory of wavelets appeared: for examplubechies (1992),
Meyer (1992), Mallat (1998) and Cohen (2003). Monographstatistical applications
of wavelets include Hardlet al. (1998), Vidakovic (1999) and Nason (2008). Some
of the material in this section is based on Vidakovic (1998% also note the recent
review article by Antoniadis (2007).

Formally, lety, »(x), a € R\ {0}, b € R be a family of functions being translations
and dilations of a single function(x) € La(R),

Yap(@) = la| V2 (””—_b) .

a
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Note that||1, ;(z)||2 does not depend ofa, b) (typically, ||14,(z)||2 = 1). The func-
tion ¢(z) is calledthe wavelet functionr the mother wavelett is assumed to satisfy
the admissibility condition

Cy = /Oo P@E 4, < o0, (1)

——_—

whereV (w) is the Fourier transform af(z). Condition [1) implies, in particular, that

0="(0) = /w(x)d:c (2)

Condition [1) means that(x) should be localised in frequency. On the other hand,
condition [2) means that () is localised in time, and also oscillatory. Hence the name
“wavelet”. The parametér is the location parameter, ands the scale parameter. It
can be thought of as a reciprocal of frequency.

Continuous wavelet transform

For any functionf € Lo, its continuous wavelet transform is defined as a function of
two variables,

CWT(a,b) = (£, thas) = / J (@) (@)de.

If condition () is satisfied, then the following inverserfmula (“resolution of identity”)
holds

fl@)y=cyt L CWT(e, b)as(z)a"2dadb.

The parametei is often restricted to be positive (as it can be viewed asithetse” of

frequency). If this is the case, then conditibh (1) becofigs= [~ de < o0,
and the resolution of identity becomes

f(z) = qul /_OO /OOO CWT{(a, b)tba p(x)adadb.

Examples of wavelets
Haar wavelets

The best-known example of wavelets are Haar wavelets int@diby Haar (1910) (but
not called by this name at the time). They are given by

o) =T0<z<1/2)—I(1/2<z<1),
which implies

¢£{b(x):a71/2{1(b§x<a/2—|—b)—](a/2+b§x§a+b)}
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fora > 0,b € R. Awavelety is said to have: vanishing moments if

/ 2¥ip(z)de =0 for ke {0,1,...,n}.
It is easy to see that’ has0 vanishing moments. Thus, jfis constant on the inter-
val [b,a + b], then, for Haar wavelets, CWTa, b) = 0, and thus piecewise-constant
functions will be “sparsely” represented by Haar wavelefi#h their continuous Haar
transform corresponding to those intervals taking theevafizero.

Compactly supported Daubechies’ wavelets

Daubechies (1992, Chapter 6) identifiesExtremal Phaséamily of wavelet systems:

a collection of wavelet systems with compactly supportedelet functions, possess-
ing different degrees of smoothness and numbers of vamgishoments. This family

of systems is indexed by the number of vanishing momentsten#iaar system is its
zeroth member. A review of this and other families of wawglgtcluding Daubechies’

Least Asymmetritamily can be found in Vidakovic (1999), Sections 3.4 and 3.5

Figurd2 shows graphs of Daubechies’ Extremal Phase waweiitn = 0, 1,2, 3,4, 5
vanishing moments. Note that the higher the number of vargsinoments, the longer
the support and the higher the degree of smoothness. Exadfaér wavelets, explicit
formulae for other Daubechies’ wavelets are not availabtdé time domain.

Suppose now that over the supportiaf,, f is a polynomial of degree less than or
equal to the number of vanishing momentg¢f). Then the corresponding CWTa, b) =
0. We shall come back to this “sparsity” property of waveletshe sectionVavelets
for nonparametric function estimation.

Discrete wavelet transform

CWT/(a,b) is a function of two real variables, thus being a redundamsform. To
minimise the transform, the values@&ndb can be discretised so that the invertibility
of the transform is still retained. Such discretisationruztrbe coarser than the so-
calledcritical sampling or otherwise information will be lost. The critical sami
defined bya = 277, b= k277, j, k € Z, will produce a basis fof.,. Moreover, under
mild conditions on the wavelet functiaf, the resulting basis

{jn(x) =222 — k), j, k € Z} (3)

will be orthonormal. In the remainder of this article, wehaihly be looking at wavelets
for which it is the case. All the wavelet functions mentiorsedfar satisfy this condi-
tion.

Other discretisation choices are possible but the abovarigcplarly convenient as it
enables a fast implementation of the Discrete Wavelet Toams a fast decomposition
of function or vectors with respect to the above bdsis (3).efagant framework for
this is themultiresolution analysisntroduced by Mallat (1989).
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Multiresolution analysis

Statisticians are often faced with discretely-sampledalgyand therefore need to be
able to perform wavelet decomposition of vectors, rathanttontinuous functions as
above. The multiresolution analysis framework is commardgd to define discrete
wavelet filters. The starting point is a scaling functidband a multiresolution analysis
of Ly(R), i.e. a sequencfV; } ;< z of closed subspaces @ (R) such that

e {¢(x — k)}rez is an orthonormal basis far;
e ...CViCcWwCWiC...CLy(R);

o feV; = [f(2) € Vj;

« N; Vi ={0}.U;V; = La(R).

The set{\/2¢(2x — k) }re 7 is an orthonormal basis féf, since the mag — v/2f(2-)
is an isometry fronl;, ontoV;. The functiong is in V7 so it must have an expansion

$(x) =vV2> hp(2r—k), {hi}p€lo, z€R (4)
k

Once we have the scaling functign we use it to define the wavelet function (also
called themother wavelgty. We define the latter in such a way tHat(z — &)}y is
an orthonormal basis for the spadg, being the orthogonal complementidf in V;:

Vi=Vo® Wy 5)

DefiningW,; = span{v; x : k € Z}, we obtain thaiV; is the orthogonal complement
of V; in Vj41. We can write

J
T (-] Q
1=0

or, taking the limit (recall thatJ; V; is dense inL»(R)),
La(R) = Vo @ <€BWZ-> =V o | PWi|, Vi (7)
i=0 1=Jo

There are precise procedures for findihgnce¢ is known (see Daubechies, 1992,
Section 5.1). One possibility (Daubechies, 1992, Theordnibis to set

(@) = V2 haow(~1)k6(2x — k). ®)
k

It can be shown that the appropriate orthogonality conaétiare satisfied.



Algorithm for the Discrete Wavelet Transform

The nested structure of the multiresolution analysis caexipéoited to construct a fast
decomposition-reconstruction algorithm for discreteagdahalogous to the Fast Fourier
Transform of Cooley and Tukey (1965). The algorithm, calleel Discrete Wavelet
Transform(Mallat, 1989) produces a vector of wavelet coefficientshefinput vector
at dyadic scales and locations. The transformation is finad orthonormal but is not
performed via matrix multiplication to save time and memory

We first describe a singleconstructiorstep, used in computing the inverse Discrete
Wavelet Transform (DWT). The following two sets are orthomal bases foi/;:

(V2022 — k)Yrez, {0(x — k), (x — )}riez. Using [@) and[(B), we obtain for
anyf eV

f@) = > cordlz—k)+ Y dost(z — k)
k

k

> <Z hicos+ hl_l(—l)ldo,k> V2(2z — 2k — 1)
! % %
Z (Z hi—arcok + Z hl—l’+2k(_1)l/d0,k> V2622 —1').
% %

l/

Writing the expansion w.r.t. the other basis gs:) = >, c1,/V2¢(2z — I') and
equating the coefficients, we obtain

Ly = Z hir—axco,k + Z hy 1 yor(—1)" do ., 9)
% 3

which completes the reconstruction part: the coarser sadfficients{co 1}, {dox}
are used to obtain the finer scale coefficightsy, }.

Thedecompositiostep used in the DWT is equally straightforward: we have
i = [ I s
/ F@)> " hiv2¢(2x — 2k — 1)dx

— 00 1

Z hici ontr = Z c1,ihi—ak. (10)
! !

Similarly,

dox = Z(—l)l72kh1—l+2kc1,z- (11)
7

The same mechanism works for each sc@te;, } gives{c;_1 1} and{d;_1 x} for all
Jj. Onthe other hand¢; , } can be reconstructed usifig;_1 5 } and{d;_1 } forall 5.
To start this “pyramid” algorithm, we only need to compute ftaling coefficients; j,
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at the finest scale of interest, say= J. Indeed, when performing wavelet decompo-
sition of finite sequences, it is commonly assumed that quutimectorf = { f,, ff:f)l
is a vector of scaling coefficients of a functighi.e. f, = cjn = (f, ¢sn), Where

djr = 2/2¢(27x — k). The DWT off is given by
DWT(f) = (co,0,do,0,d1,0,d1,1,d2,05---,d23,...,dj—1,0,.-.,dj_127-1_1).
(12)
Informally speaking, the wavelet coefficients; contain information on the local os-

cillatory behaviour off at scalej and location2’/ 7k, whereas the coefficient,
contains information on the global “mean level"fofA few remarks are in order.

Decimation. Define

*
Cok E crihi—k

l

Z(—l)lfkhpwkq,z,

l

*
dO,k

SO thatcg_’k is a convolution ofc; 5 with Ay, andd{;_’k is a convolution ofcy j,
with (—1)*hy_j. We havecy , = Co.2k anddy , = dp o1, coarser scale coef-
ficients aredecimatedconvolutions of finer scale coefficients with fixed (scale-
independent) filters. This is in contrast to tNen-decimated Wavelet Trans-
form where no decimation is performed, yielding a shift-invati¢but redun-
dant) transform: see Sectidion-decimated Wavelet Transformfor details.

High-pass and low-pass filters.We defineg, = (—1)*h;_;. Due to its effect in
the frequency domaing; (hj) is often referred to as high-pass (low-pass)
filter in the wavelet literature. This motivates the commonly usache for the
wavelet and scaling coefficients: they are often referreabtetail andsmooth
coefficients, respectively.

Example of the DWT. By simple algebrap? (z) = I(0 < = < 1) generates the Haar
wavelet) | with a low-pass filtetu;, s.t. hg = hy = 1/\/5, h;. = 0 otherwise,
and a high-pass filtegy, s.t. g0 = —g1 = 1/v/2, gr = 0 otherwise. We shall
now decompose a four-element vector

(c2,0,¢2,1,C2,2,¢2,3) = (1,1,2,3)
using the DWT with Haar wavelets. By {|10) afdl(11), we obtain
1,0 /V2x14+1/V2x1=V2
a1 = 1/V2x2+1/V2x3=5/V2
diop = 1/\/§><1—1/\/§><1:0
dip = 1/V2x2-1/V2x3=-1/V2.
Continuing at the next coarser scale, we obtain
coo = 1/V2xV2+1/V2x5/V2="17/2
do,o 1/V2xV2-1/V2x5/V2=-3/2.
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The original vector(cz,o, c2.1, ¢2,2, ¢2,3) can now be easily reconstructed from
(c0,0,d0,0,d1,0,d1,1), (i.e. from the smooth coefficient at the coarsest scale and
the detall coefficients at all scales) using the inverse Dglthe DWT is ortho-
normal, the inverse DWT uses exactly the same filters as th&.DW

Note that the high-pass filter annihilates constants (rdeHaar wavelets have
vanishing moments up to degree 0). Wavelets with higher rusntf vanishing
moments are capable of annihilating polynomials of higtegrdes.

Boundary issue. With wavelet filters longer than Haar, there arises the mnobbf
what action to perform when the support of the filter extereloind the support
of the input vector. Several solutions have been proposetliding symmetric
reflection of the input vector at the boundaries, polynomidtapolation, perio-
dising the vector, padding it out with zeros, etc. See NasorSilverman (1994)
for an overview. Coheeet al. (1993) introducedvavelets on the interval.e.
wavelet bases for functions defined on an interval as opptosttee whole real
line. They also proposed a corresponding fast waveletfisemswhich uses fil-
ters adapted to the finite support situation. The liftingesok (Sweldens, 1996)
offers a natural way of dealing with the boundary problem.

Computational speed. O(n) operations are needed for the DWT which uses a compactly-
supported wavelet, whereis the size of the input sequence. This is an advantage
over the Fast Fourier Transform, which requié®3: log(n)) operations.

Non-decimated Wavelet Transform

An often undesirable property of the DWT is that it is not skation-invariant, and
that at any given scale, it only provides information abdnet input vector at certain
(dyadic) locations. Using the toy example above, the cadeffta:; o usescy ( and
c2,1, While the coefficient; ; usesc, 2 andcy 3, but there is no coefficient which
would use, say¢s 1 andcs 2. Motivated by this, Pesquet al. (1996) introduce a
Non-decimated DWT (NDWT) which remedies this problem by potmg wavelet
coefficients at all possible locations at all scales (se® Md&son and Silverman, 1995;
Coifman and Donoho, 1995). Continuing the example of theipus section, the
NDWT of (c2,0,¢21,¢2,2,¢2,3) = (1,1,2,3) which uses Haar wavelets is performed
as follows. We begin with

co = (1/vV2,1/V2) - (c20,¢2.1)
a1 = (1/V2,1/V2) - (c21,c22)
cra = (1/V2,1/V2)-(ca2,¢23)
13 = (1/V2,1/V2) - (c2,3,¢2,0),

where the *” denotes the dot product. The detail coefficiefits are obtained similarly
by replacing the low-pass filter with the high-pass one. Nod¢ we implicitly assume
“periodic” boundary conditions in the above (see the renmarkhe “boundary issue”



in the previous section. Before we proceed to the next stagénsert zeros between
each two elements of the wavelet filters. Thus, we have

Co,1 (1/\/57011/\/51 0) ’

00,2 = (1/\/57 07 1/\/55 O) '
(1/v2,0,1/v2,0) -

and similarly for the detail coefficients. The insertion efas is necessary since dec-

imation is not performed. Were we to compute the NDWT at yettlaer scale, we

would use the filtef1/v/2,0,0,0,1/v/2,0, 0, 0) for the smooth an¢ll /v/2,0,0,0, —1//2,0,0,0)

for the detail. The computational speed of the NDWDig: log(n)), wheren is the
length of the input vector.

€0,0 €1,0,C1,1,C1,2,C1,3

€1,1,€1,2,C1,3,C1,0

—~ o~

)
)
C1,2701,3,01,0701,1)
)

Co,3 = €1,3,C1,0,€C1,1,€C1,2),

Visualisation of discrete and non-decimated wavelet trarferms

Typically, the result of the DWT is depicted as a binary trédeoge main node is the
coefficientd, ( (scale 0, location 0), its “children” are the coefficietits) andd, ;, and
so on. The DWT of the noisy vector of Figurk 1 (using “DaubEx&h2” wavelets) is
shown in the top plot of Figufg 3. The numbers alongitrexis denote scalg (= 0 is
the coarsest scalg;= 10 = log,(2048) — 1 is the finest scale).

Contrary to the DWT where there a2&coefficients at each scajethe NDWT always
hasn coefficients at each scale. Thus it is natural to display theiin the bottom plot
of Figure3. Note that Figuifd 3 was produced in the R packemethresh by Guy
Nason.

Extensions of wavelets

Since the late eighties, several extensions and modifitatibwavelets have been pro-
posed. For more details and references on the following$ogee Vidakovic (1999),
Chapter 5:

e multivariate version of the DWT;

e biorthogonal wavelets (two mutually orthogonal waveletdmneither of which
is orthonormal itself);

e multiwavelets (which use translations and dilations of enthrat one wavelet
function);

e complex-valued wavelets;

e wavelet packets (over-complete collections of linear comtions of wavelets;
work by applying both low- and high-pass filters to both snhaarid detail coef-
ficients; can be rapidly searched for the “best basis” reqmagion);
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e lifting scheme: alternative construction of wavelets foegularly spaced data.

Some research effort has been spent trying to find sparsésoalét representations of
more complex objects such as images. Here challenges &eediffrom 1D because
the types of singularities encountered in images are @iffierThose efforts have re-
sulted inridgelets curveletswedgeletsbeamletand possibly other ‘lets’. A readable
introduction to this topic can be found at

http://www-stat.stanford.edu/"donoho/Lectures/CBMS/ CBMSLect.html

Applications of wavelets

Wavelets and their extensions have been applied in a nudtidfiareas, such as signal
and image processing, data compression, communicatiorpuier graphics, astron-
omy, quantum mechanics and turbulence: for a discussiomesktand other areas of
application see the monographs of Ruskai (1992) and Jadfaadl (2001). An im-
portant field of application is numerical analysis, exteelsi covered in Cohen (2003).
One can venture to say that wavelets are indeed one of thasedte mathematical
concepts that have almost become “household objects”xfongle, they were used in
the JPEG2000 compression algorithm, and to compress thdi@jarprint database.
Multiscale subdivision schemes, related to wavelets, werployed in some animated
movies such as “A Bug’s Life”.

Following Vidakovic (1999), who gives a comprehensive @@ of wavelet applica-
tions in statistics, we list some of the most important adasatistics where wavelets
have been successfully applied:

e time series analysis,

e non-parametric function estimation,

density estimation,

deconvolution and inverse problems,

statistical turbulence.

In SectionwWavelets for nonparametric function estimation we describe how wavelets
have been applied in this important area of statistics.

Wavelets for nonparametric function estimation
In nonparametric function estimation, the basic setup is
yi=fi/n)+e, i=1,...,n,
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where f(i/n) is unknown and needs to be estimated, and the ngise iid with
E(e;) = 0, Var(e;) = o2

Forirregular (e.g. discontinuous) functions, linear (&gynel) smoothing performsin-
adequately, and non-linear smoothing methods are needaddminal paper, Donoho
and Johnstone (1994) introduce the principle of a non-tisg@othing method called
wavelet thresholdingFirst, the signal is transformed via the DWT to obtéin, =
0.1 + €51, Whered; i, (0,1, €,1) is the DWT ofy; (f(i/n), ;). Then,d; ; are shrunk
towards zero (with the threshold chosen in an appropriatener, and finally the in-
verse DWT is taken to obtain an estimatefofThe rationale behind this principle is
twofold:

e As DWT is orthonormal, i.i.d. Gaussian noise in the time domnmteansforms
into i.i.d. Gaussian noise in the wavelet domain;

e Due to the vanishing moments property, wavelet coefficiénjscorrespond-
ing to the locations where the signal is smooth will be clasedro. On the
other hand, those (hopefully few) corresponding to disoaiities or other irreg-
ularities will be significantly different from zero: the sigl will be represented
sparselyin the wavelet domain. Therefore, we can expect that an gpiately
chosen threshold will be able to accurately separate sfgmal noise.

Two thresholding rules have been particularly commonlywsed well-studied. For a
given threshold\, hard andsoftthresholding shrinki; ;. to

Ay = dird(|djx| > N)
d;,k Sgn(dj,k)(|d‘,k| = N4,

respectively. The threshold introduced in Donoho and Joimes(1994) was the so-
calleduniversal threshold\ = o/2log(n). The authors show that the MSE of the
soft thresholding estimator with the universal thresheldlose (within a logarithmic
factor) to the ideal risk one can achieve by “keeping” orlfkd” the wavelet coeffi-
cientsd; ;; using knowledge of the underlying signal. At the same tirhe,tniversal
threshold is an efficient noise suppressor as describedctinoget.2 of their paper.

In another paper, Donoho and Johnstone (1995) consider-imear wavelet estima-
tor with soft thresholding where the threshold selectioocpdure is based on Stein’s
shrinkage method for estimating the mean of multivariatenab variables. They con-
sider the behaviour of the estimator over a range of soat@ksov spaces (Triebel,
1983), which form an extremely rich collection of functiongh various degrees of
smoothness (for certain values of the space parametersy Bpaces can be shown to
contain other better known function spaces such as Hold&8obolev spaces or the
space of functions with bounded variation). The authorsatestrate that their estima-
tor is simultaneously nearly minimawer a range of Besov balls, i.e. without knowing
the regularity of the function, it nearly achieves the optimate of convergence which
could be achieved if the regularity was known.

In most papers on the theory of non-linear wavelet estimaitos assumed that the
standard deviation of the noise is known. In practice, it needs to be estimatad the
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data. For Gaussian data, the method recommended by seuthraia(see e.g. John-
stone and Silverman, 1997) computes the scaled Median esDleviation (MAD)
on the sequence of wavelet coefficients at the finest resallgiel, thereby ensuring
robustness.

More recently, other thresholding rules have been propdsadon (1996) uses cross-
validation as a means of selecting the threshold. Abranhoaia Benjamini (1996)
set up wavelet thresholding as a multiple hypothesis tggpimblem and propose
an approach based on the so-calfal$e discovery rate Johnstone and Silverman
(1997) consider level-dependent universal thresholdingérrelated Gaussian noise.
Averkamp and Houdré (2003) extend the approach of Donotldahnstone (1994) to
other noise distributions such as exponential, mixtureafrals or compactly sup-
ported distributions. Vanreast al. (2002) consider stable wavelet transforms for
denoising data observed on non-equispaced grids. BarleNason (2004) develop
various thresholding procedures using complex-valuecless. Johnstone and Silver-
man (2005) propose an empirical Bayes approach to the tceshlection problem.
Cai and Silverman (2001), amongst others, condidieck thresholdingthey propose
a thresholding procedure whereby wavelet coefficients ansidered in overlapping
blocks and the action performed on the coefficients in thedtridf the block depends
upon the data in the whole block. Antoniadis and FryzlewR206) propose a simple
universal-type thresholding procedure where the threshalues are modelled para-
metrically across scales.

Coifman and Donoho (1995) introduttanslation invariant denoisinghe full NDWT
transform of the data is taken, then the universal thresisodgplied to all resulting
wavelet coefficients, and then an inverse NDWT transforndgi@an estimate of the
signal. As the NDWT is redundant, there are many possiblesvediygenerating an
inverse NDWT transform: the one proposed by the authorsus/algnt to taking the
average over all possible DWT’s contained in the NDWT, cgpmding to all possible
circular shifts of the data set (hence the name “translatieariant”).

Simple example: Haar wavelets + piecewise constant regréss func-
tion

In this section, we show how to prove mean-square consigtre hard-thresholding
universal estimator of a piecewise-constant regressinctifon contaminated with in-
dependent Gaussiavi(0, 1) noise. The number of jumps in the functigiis unknown
but finite (bounded by/). As befored; i, 6; 1 ande; ; are the Haar wavelet coeffi-
cients ofy;, f(i/n) ande;, respectively. The range ¢f,k)isj =0,...,J — 1 :=
log, n—1;k=1,...,27. The only smooth coefficientis indexed by k) = (-1, 1).
The wavelet noise coefficients, are iid N (0, 1) because the Haar transform is ortho-
normal.

Except(j, k) = (—1,1) where we leave the coefficient intact, we estimte by

00 = djiI(|dji| > N),

12



where\ = /2log n, ie A is the universal threshold. Then the estiméte/n) is
constructed by applying the inverse Haar transforri tp. We are interested in the
mean-square error

MSE(f, f) =+ 3" B(f(i/n) ~ f(i/m))" (13)

=1
Lemma 1 (Parseval inequality) Let W be an orthonormal matrixy a column vector,
andy = Wz. ThenzTz = yTy.

Proof. As IV is orthonormal, we hav®’—! = W7, ThusyTy = 2" W Wz = 27 .

Applying this to [I3), we obtain MSH, f) = 1 ik E0;x —0;1)2.

Sincef is piecewise constant, at makt coefficients; ;, at each scalg are non-zero.
The rest of them (corresponding to the intervals wheigconstant), are zero. This is
because, essentially, Haar cofficients are local diffezsmehich annihilate constants,
i.e. transform them to zero.

We first consider the case ,, = 0 (so thatd; ;, is distributed asV (0, 1)). We have

B0, —0;x)* = E02, =Ed,I(|di] >\ = \/2/7T/A 22 exp(—a?/2)dx

= 2/mhexp(=A?/2) 4+ 2(1 — ®(N)),

where® is the cdf of the standard normal. By a standard result,®(\) < ¢(\)/A,
whereg is the pdf of the standard normal. Thus

) 1 1/2
B0x = 03x)” < 2/wexp<—A?/2><A+A1>—0<Ogn n)

We now move to the casg ;, # 0 and without loss of generality, we assufijg, > 0.

E(0jk—0;%)° = E(djxl(|djxl >\ —0;5)

E(djrI(|djxl > N) = 050 1(1dj k| > ) + 051 1(1dj k| > N) = 051)°
2B(dj kI (|dj k| > A) = 056 1(|dj k| > N)? +2B(0; 5 1(|dj k| > A) — 0;5)
2Var(d; ) 4 2607 . P(|dj k] < X) <2+267, P(djr < N)

2+ 2932‘,19P()‘ + 6‘]'71C — dj,k > 6‘]'71@).

VANPAN

By Markov’s inequality,
P+ 05— dj > 0;) < E(A+ 0,5 — dj 1)* /05 .
This gives
E0j1 —01)* 2+ 2B\ + 0,1 — dji)?
2 +4(\? + Var(d; ) = 4)? + 6 = O(log n).

IAINA
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This finally gives

MSE(f. /)

1 A 2
- Z Ej1 —0;1)
7,k

O(1/n?*) [smooth coefficient]

IN

logl/2 n

+ 1I/nxnxO ( ) [coefficients withd; ,, = 0]

+ 1/nxJx M xO(logn) [coefficients withd; ;, # 0]
= O(n tlog® n),

which proves the mean-square consistency of the Haar wasstlmator at the nearly-
parametric rate of)(n~ " log n).

Noise-free reconstruction property

Other than attaining the nearly-parametric MSE rate abthe,universal threshold
also enjoys the “noise-free reconstruction” property:hi true signalf is constant,
then the estimat§ is also constant and equal to the sample mean of the datgg. tieor
be constant, we need a?l},k’s to be zero with a high probability. This happens if all
d; ;;'s fall below A\ with a high probability. But iff is constant, then ail; ;’s are i.i.d.
N(0,1). The noise-free reconstruction property is implied by tieofving fact:

lim P (m%x|dj,k| > +/alog n) =0,

n—00 7,

if and only if a > 2. Thus, the universal threshold2log n is asymptotically the
lowest threshold satisfying the noise-free reconstraqgtimperty.

Unbalanced Haar wavelets and function estimation

Haar wavelets differ from other wavelet families in that parametric function esti-
mation (as described in the previous section) using thissleayamily will result in a
piecewise constant estimate. The analyst might be temptederpret this estimate
as indicating intervals where the underlying true signalédl approximated by a con-
stant, as well as indicating the likely locations of “jumps’the signal.

However, this would not normally be an entirely accurateriptetation. One must
bear in mind that Haar wavelets contain a “jump” exactly ia thiddle of their sup-
port, which, combined with the dyadic structure of the Haawv@&let transform, im-
plies that the estimator will be more likely to display jurgis'dyadic” locations, i.e.
1/2,1/4,3/4, ..., irrespective of the locations of the jumps in the true ulyiley sig-
nal.

14



To provide a more accurate description of the true pieceagsstant structure of the
underlying signal (and thus facilitate the interpretatafrthe estimate), Fryzlewicz
(2007) proposes estimation using so-called “UnbalancesirUH) wavelets, which
contain a jump not necessarily in the middle of their suppbine location of the jumps
in the UH wavelets can be chosen adaptively to match theylitelicture of the signal
at hand.

We first give a description of the construction of the UH watekctors. Suppose that
our domain is indexed by = 1,...,n, and thatn > 2. We first construct a vector
%1, which is constant and positive for= 1,...,b%!, and constant and negative
fori = %' + 1,...,n. The breakpoint®! < n is to be chosen by the analyst.
The positive and negative values takenddy' are chosen in such a way that (a) the
elements ofy%! sum to zero, and (b) the squared elementsf sum to one.

We then recursively repeat this construction on the twospzfrthe domain determined
by«%1: thatis, provided that’! > 2, we construct (in a similar fashion) a veciot-
supported ori = 1,...,b%!, with a breakpoinb®'. Also, provided that, — b°! >

2, we construct a vectoy? supported on = b%! + 1,...,n with a breakpoint
b2, The recursion then continues in the same manner for as lerfigaaible, with
each vecton)?* having at most two “children” vectorg’*12¥—1 andi+1.2%. For
each vector)’-*, their start, breakpoint and end indices are denotes/ty v’** and
e'F, respectively. Additionally, we define a vector!:! with elements)—1(l) =
n~1/2I(1 <1 < n), wherel(-) is the indicator function. Note that to shorten notation,
we do not explicitly emphasise the dependence©f on (s7-F b7F e3F). As in the
classical wavelet theory, the indicgs: are scale and location parameters, respectively.
Small (large) values of can be thought of as corresponding to “coarse” (“fine”) scale

Example.We consider an example of a set of UH vectorsiioe 6. The rows of the
matrix W defined below contain (from top to bottom) vectagrs®!, 401, ¢1:2, 23,
24 andy®” determined by the following set of breakpoints’-*, pL2 b £ b 4 b 7)
(1,3,2,5,4).

671/2 671/2 671/2 671/2 671/2 671/2
{5/6}1/2 _3071/2 _3071/2 _3071/2 _3071/2 _3071/2
W— 0 {3/10}1/2 {3/10}'/2 —{2/15}1/2 —{2/15}}/2 —{2/15}1/2
0 2-1/2 —2-1/2 0 0
0 0 0 6-1/2 6-1/2 —{2/3}1/2
0 0 0 2-1/2 —9-1/2 0

In the above example, it is not possible to create furthetoreg?-*. There arer = 6
of them, and they are orthonormal. Thus, they form an orthmabbasis ofRS. This
is not a coincidence: the following general results holds.

Proposition 1 The collection of vector§y’*}; ; is an orthonormal basis aR™.

Nonparametric function estimation using UH wavelets peaiseas follows: we first
choose an appropriate basis, then take the transform ofalisg data with respect to
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this basis, threshold the coefficients, and take the intemssform. In other words, the
only difference between classical and Unbalanced Haarlei@vis the basis selection
step: in the classical Haar wavelets, the basis is fixed.

One basis selection procedure described in FryzlewiczARBhe following greedy
forward stagewis@rocedure, related to thmatching pursuitlgorithm of Mallat and
Zhang (1993) and tbinary segmentatioaf Sen and Srivastava (1975). We first define
the UH mother vector), ; . with elements defined by

1/2 1/2
ws,b,e(l)—{ . . } I(sélgb)—{ . ! } Ib+1<1<e).

b—s+1 Ce—s +1 e—b e—s +1

e Breakpoint’:! is chosen such that the inner prod(i&, ¢; ;0.1 ,,) between the
dataX andi; 0.1 ,, iS maximised in absolute value.

e Similarly, b/ 1! := argmay| (X, thgi+1.0 p es+1.)|, Wherel = 2k — 1, 2k.

Under a mild assumption on the permitted degree of “unbaldness” of the thus-
constructed UH basis, the computational complexity of theve procedure i®(n log n).
The motivation for this basis selection procedure can binaatas follows: it is known
that wavelet thresholding is the most successful when thieesentation of the signal
in the wavelet domain isparse In our set-up, this would require that only a few
UH coefficients were “large” in magnitude, whilst most weseriall” and thus carried
mainly noise. Typically, when performing transforms wittetstandard Haar basis, it
is often observed that large Haar coefficients are mostlgeotnated at coarser scales.
The above basis selection procedure makes this “conciemtraft power” even more
extreme: it attempts to concentrate as much as possibleaighal power at coarser
scales, in the hope of further improving the sparsity of espntation.

Following this line of thought, Fryzlewicz (2007) also poges an alternativéack-
ward stagewiséasis selection algorithm, which proceeds from the finesofarsest
scale, attempting to concentrateldée power as possible at fine scales, which pro-
duces a similar effect: concentrates the bulk of the powétesignal at coarse scales.
This strategy can be termedganerousas opposed to “greedy”, algorithm. Such a
bottom-upUH basis selection algorithm is a natural starting pointtfe meaningful
extension of the UH idea to smoother wavelet bases and toamiais.

We note that the UH estimate displayed in Figure 1 was condpugéng the forward
UH basis selection procedure as described above. UH e&iimaimplemented in the
R packageinbalhaar

Haar-Fisz transforms: variance stabilisation via waveles

The previous sections describe how wavelets can be usefriparametric function
estimation. In this section, we show how wavelets can be tessthbilise noise vari-
ance in nonparametric regression set-ups where the varinbe noise depends on
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the local mean level of the signal. We deliberately changentitation to avoid confu-
sion with the previous sections and consider

Xi=a(t/n)+e, t=1,...,n, (14)

where theX,’s are modelled as independent, and(¥ar depends om(t/n). Exam-
ples of such set-ups include

e Poisson intensity estimationin Poisson intensity estimatiork’; are modelled
as independent Pdie(t/n)} variables, which implies that. are centered Pois-
son. The mean and variance &t are linked via the relationship Vax;) =
M E(X;)} with h(u) = u.

e Nonparametric volatility estimationNonparametric volatility estimation tech-
nigues are widely used in the finance industry. In this setthp X;'s rep-
resent squared log-returns on a financial instrument andhacelled as inde-
pendent and distributed a§; = «(t/n) Z?, where E(Z2?) = 1. Note that
er = a(t/n)(Z} — 1). Thus, the model is multiplicative and the variance func-
tion h(u) is proportional tau?.

e Spectral density estimationin spectral density estimation based on the peri-
odogram, theX,’s represent periodogram ordinates and are assumed to be as-
ymptotically independent and asymptotically distributes(t/n) Z2, where
a(t/n) represents the spectral density at frequeriey andZ? are Exg1) ran-
dom variables. This again makes the set-up multiplicatia asymptotically,
the variance function takes the forfu) = u?.

In the above and similar set-ups, variance stabilisatiaften desirable as many sta-
tistical estimation and testing techniques work best wherdita at hand are homoge-
neous, or even Gaussian. The classical tool for varianbdistdion is the well-known
Box-Cox transform, which in the case of Poisson intensitinettion would simply
square-root the data (up to constants), and in the case ganametric volatility or
spectral density estimation — log the data.

Alternatively, variance stabilisation can be performedha wavelet domain, leading
to the so-calledHaar-Fiszand, more generallyyavelet-Fiszransform, first introduced
in the context of Poisson intensity estimation by Fryzleaénd Nason (2004) and
described more fully in a general context by Fryzlewicz @000ne advantage of
wavelet-Fisz transforms over Box-Cox transforms is thatfdrmer lead to data with
approximately Gaussian (in particular: more symmetriégd@ounlike the latter.

In the set-up[{14), a simple Haar-Fisz transform would pedcgs follows.

1. Take the usual Haar wavelet transformgf to obtain the detail coefficients j,
and the smooth coefficients .

2. Modify the smooth coefficients at scales- 1, ..., J — 1 to transform them into
local means of the data, i.e. forn, = 20~7)/2¢; .
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3. Note that Vafd; 1) is approximately equal tb(c; 1), wherea; , denotes the
local mean of the true functiom(-) computed over the same support as the cor-
responding coefficients; , andc; ;.. Further, note that; ;, can be pre-estimated

by c7 .-

4. Thus, to stabilise the variance®f;,, form the Haar-Fisz stabilised coefficients

dr, = L
Js h1/2(c;§7k)

This can be viewed as a kind of “studentization” in the watvé@main.

5. Take the inverse Haar transform of the transformed ceeftisd; ,. The vari-
ance of the data is now stabilised.

We note that the transform is easily invertible.

As an example, consider the series of squared logged dailgnseon the Dow Jones
Industrial Average index, observed on 2048 consecutivbrigedays ending 10 March
2010. The series, together with its log and Haar-Fisz t@anss, is plotted in Figure
[. 1t is clear that both transforms stabilise the varianctheforiginal series very well.
However, the log transform leads to a distribution with a dexard skew and spikes
which obscure the picture. By contrast, the Haar-Fisz foansleads to a series with
symmetric and “almost-Gaussian” noise, and brings out tleeadl shape of the signal
more clearly.

Conclusion

Wavelets not only had revolutionised engineering and statistics, but also had
given rise to, and emphasised the importance of, other concepts which sub-
sequently took these disciplines by storm. For example, the concept of spar-
sity, popularised by wavelets, gained further popularity in the late nineties and
2000s thanks to the many attempts at solving, theoretically and practically, the
problem of high-dimensional variable selection (such as LASSO or the Dantzig
selector), as well as to modern signal recovery techniques such as compressed
sensing.

We strongly feel that the potential of wavelets in modern statistics has not yet
been fully explored. In the ongoing data revolution, statisticians are routinely
challenged by having to manipulate ever more massive and complex datasets,
which also defy classical assumptions, such as stationarity. Wavelets, with
their in-built high computational speed, and the ability to sparsify (and thereby
reduce complexity) appear ideal for handling large datasets. Another attractive
aspect is their localisation in space and frequency, which means that they are
naturally suited to provide a good descriptive framework for phenomena whose
characteristics evolve over time or space.
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Figure 1: Top-left: simulated noisy signal. Top-right: oestruction via Adaptive
Weights Smoothing (black) and true signal (red; also in oftiets). Bottom-left:

reconstruction via Taut String methodology. Bottom-rigigconstruction via Unbal-
anced Haar wavelets.
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Figure 4: Top: squared daily log-returns (normalised sbdkerall variance is one) of
the Dow Jones Industrial Average index on 2048 trading daging 10 March 2010.
Middle plot: logged. Bottom plot: Haar-Fisz'ed.
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