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Abstract

This overview article motivates the use of wavelets in statistics, and introduces
the basic mathematics behind the construction of wavelets. Topics covered in-
clude the continuous and discrete wavelet transforms, multiresolution analysis
and the non-decimated wavelet transform. We describe the basic mechanics
of nonparametric function estimation via wavelets, emphasising the concepts
of sparsity and thresholding. A simple proof of the mean-square consistency of
the wavelet estimator is also included. The article ends with two special topics:
function estimation with Unbalanced Haar wavelets, and variance stabilisation
via the Haar-Fisz transformation.

Wavelets are mathematical functions which, when plotted, resemble “little waves”:
that is, they are compactly or almost-compactly supported, and they integrate
to zero. This is in contrast to “big waves” – sines and cosines in Fourier analy-
sis, which also oscillate, but the amplitude of their oscillation never changes.

Wavelets are useful for decomposing data into “wavelet coefficients”, which can
then be processed in a way which depends on the aim of the analysis. One
possibly advantageous feature of this decomposition is that in some set-ups,
the decomposition will be sparse, i.e. most of the coefficients will be close to
zero, with only a few coefficients carrying most of the information about the
data. One can imagine obvious uses of this fact, e.g. in image compression.
The decomposition is particularly informative, fast and easy to invert if it is
performed using wavelets at a range of scales and locations. The role of scale
is similar to the role of frequency in Fourier analysis. However, the concept of
location is unique to wavelets: as mentioned above, they are localised around
a particular point of the domain, unlike Fourier functions.

This article provides a self-contained introduction to the applications of wavelets
in statistics and attempts to justify the extreme popularity which they have en-
joyed in the literature over the past 15 years.
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Motivation

Possibly the main statistical application of wavelets is innonparametric function esti-
mation, also known as “signal denoising” or “smoothing”. Asa motivating example,
consider the simulated noisy signal in the top-left plot of Figure 1. Our objective is
to remove the noise and get as close as possible to revealing the true structure of the
signal. For many readers, it will be apparent that the signalis composed of at least 5
different pieces. It is interesting to investigate whethersome state-of-the-art smoothing
techniques can reveal more than this.

The black line in the top-right plot of Figure 1 is the result of applying the “adaptive
weights smoothing” technique of Polzehl and Spokoiny (2000). The reconstruction is
good but it misses some of the dips in the signal (the true signal is plotted in red). The
function used to produce the reconstruction wasaws from the R packageaws (version
1.6-1, published 12 October 2009), called with its default parameter values.

The black line in the bottom-left plot of Figure 1 is the result of smoothing the signal
using the “taut string” methodology of Davies and Kovac (2001). Again, the recon-
struction is good, but it over-detects the number of jumps inthe signal. The function
used to produce the reconstruction waspmreg from the R packageftnonpar (ver-
sion 0.1-83, published 28 July 2008), called with its default parameter values.

Finally, the black line in the bottom-right plot of Figure 1 is a reconstruction which
uses nonlinear wavelet shrinkage with Unbalanced Haar wavelets. The reconstruction
is probably as good as it can be, in that it correctly detects all jumps in this extremely
noisy signal. This methodology will be described in more detailed in the sectionUn-
balanced Haar wavelets and function estimationlater on. The function used to
produce the reconstruction wasuh from the R packageunbalhaar (version 1.0,
published 27 July 2006), called with its default parameter values.

Wavelets

Wavelets can be informally described as localised, oscillatory functions designed to
have several attractive properties not enjoyed by “big waves” — sines and cosines.
Since their discovery in the early eighties, wavelets have received enormous attention
both in the mathematical community and in the applied sciences. Several monographs
on the mathematical theory of wavelets appeared: for example Daubechies (1992),
Meyer (1992), Mallat (1998) and Cohen (2003). Monographs onstatistical applications
of wavelets include Härdleet al. (1998), Vidakovic (1999) and Nason (2008). Some
of the material in this section is based on Vidakovic (1999).We also note the recent
review article by Antoniadis (2007).

Formally, letψa,b(x), a ∈ R \ {0}, b ∈ R be a family of functions being translations
and dilations of a single functionψ(x) ∈ L2(R),

ψa,b(x) = |a|−1/2ψ

(

x− b

a

)

.
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Note that‖ψa,b(x)‖2 does not depend on(a, b) (typically, ‖ψa,b(x)‖2 = 1). The func-
tionψ(x) is calledthe wavelet functionor the mother wavelet. It is assumed to satisfy
the admissibility condition

Cψ =

∫ ∞

−∞

|Ψ(ω)|2
|ω| dω <∞, (1)

whereΨ(ω) is the Fourier transform ofψ(x). Condition (1) implies, in particular, that

0 = Ψ(0) =

∫

ψ(x)dx. (2)

Condition (1) means thatψ(x) should be localised in frequency. On the other hand,
condition (2) means thatψ(x) is localised in time, and also oscillatory. Hence the name
“wavelet”. The parameterb is the location parameter, anda is the scale parameter. It
can be thought of as a reciprocal of frequency.

Continuous wavelet transform

For any functionf ∈ L2, its continuous wavelet transform is defined as a function of
two variables,

CWTf (a, b) = 〈f, ψa,b〉 =

∫

f(x)ψa,b(x)dx.

If condition (1) is satisfied, then the following inverse formula (“resolution of identity”)
holds

f(x) = C−1
ψ

∫

R2

CWTf (a, b)ψa,b(x)a
−2dadb.

The parametera is often restricted to be positive (as it can be viewed as the “inverse” of

frequency). If this is the case, then condition (1) becomesCψ =
∫∞

0
|Ψ(ω)|2

ω dω < ∞,
and the resolution of identity becomes

f(x) = C−1
ψ

∫ ∞

−∞

∫ ∞

0

CWTf (a, b)ψa,b(x)a−2dadb.

Examples of wavelets

Haar wavelets

The best-known example of wavelets are Haar wavelets introduced by Haar (1910) (but
not called by this name at the time). They are given by

ψH(x) = I(0 ≤ x < 1/2)− I(1/2 ≤ x ≤ 1),

which implies

ψHa,b(x) = a−1/2{I(b ≤ x < a/2 + b) − I(a/2 + b ≤ x ≤ a+ b)}
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for a > 0, b ∈ R. A waveletψ is said to haven vanishing moments if
∫ ∞

−∞

xkψ(x)dx = 0 for k ∈ {0, 1, . . . , n}.

It is easy to see thatψH has0 vanishing moments. Thus, iff is constant on the inter-
val [b, a + b], then, for Haar wavelets, CWTf (a, b) = 0, and thus piecewise-constant
functions will be “sparsely” represented by Haar wavelets,with their continuous Haar
transform corresponding to those intervals taking the value of zero.

Compactly supported Daubechies’ wavelets

Daubechies (1992, Chapter 6) identifies theExtremal Phasefamily of wavelet systems:
a collection of wavelet systems with compactly supported wavelet functions, possess-
ing different degrees of smoothness and numbers of vanishing moments. This family
of systems is indexed by the number of vanishing moments and the Haar system is its
zeroth member. A review of this and other families of wavelets, including Daubechies’
Least Asymmetricfamily can be found in Vidakovic (1999), Sections 3.4 and 3.5.

Figure 2 shows graphs of Daubechies’ Extremal Phase wavelets withn = 0, 1, 2, 3, 4, 5
vanishing moments. Note that the higher the number of vanishing moments, the longer
the support and the higher the degree of smoothness. Except for Haar wavelets, explicit
formulae for other Daubechies’ wavelets are not available in the time domain.

Suppose now that over the support ofψa,b, f is a polynomial of degree less than or
equal to the number of vanishing moments ofψ(x). Then the correspondingCWTf (a, b) =
0. We shall come back to this “sparsity” property of wavelets in the sectionWavelets
for nonparametric function estimation.

Discrete wavelet transform

CWTf (a, b) is a function of two real variables, thus being a redundant transform. To
minimise the transform, the values ofa andb can be discretised so that the invertibility
of the transform is still retained. Such discretisation cannot be coarser than the so-
calledcritical sampling, or otherwise information will be lost. The critical sampling
defined bya = 2−j , b = k2−j, j, k ∈ Z, will produce a basis forL2. Moreover, under
mild conditions on the wavelet functionψ, the resulting basis

{ψj,k(x) = 2j/2ψ(2jx− k), j, k ∈ Z} (3)

will be orthonormal. In the remainder of this article, we will only be looking at wavelets
for which it is the case. All the wavelet functions mentionedso far satisfy this condi-
tion.

Other discretisation choices are possible but the above is particularly convenient as it
enables a fast implementation of the Discrete Wavelet Transform: a fast decomposition
of function or vectors with respect to the above basis (3). Anelegant framework for
this is themultiresolution analysisintroduced by Mallat (1989).
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Multiresolution analysis

Statisticians are often faced with discretely-sampled signals and therefore need to be
able to perform wavelet decomposition of vectors, rather than continuous functions as
above. The multiresolution analysis framework is commonlyused to define discrete
wavelet filters. The starting point is a scaling functionφ and a multiresolution analysis
of L2(R), i.e. a sequence{Vj}j∈Z of closed subspaces ofL2(R) such that

• {φ(x− k)}k∈Z is an orthonormal basis forV0;

• . . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . . ⊂ L2(R);

• f ∈ Vj ⇐⇒ f(2·) ∈ Vj+1;

•
⋂

j Vj = {0},
⋃

j Vj = L2(R).

The set{
√

2φ(2x−k)}k∈Z is an orthonormal basis forV1 since the mapf 7→
√

2f(2·)
is an isometry fromV0 ontoV1. The functionφ is in V1 so it must have an expansion

φ(x) =
√

2
∑

k

hkφ(2x − k), {hk}k ∈ l2, x ∈ R. (4)

Once we have the scaling functionφ, we use it to define the wavelet function (also
called themother wavelet) ψ. We define the latter in such a way that{ψ(x − k)}k is
an orthonormal basis for the spaceW0, being the orthogonal complement ofV0 in V1:

V1 = V0 ⊕W0. (5)

DefiningWj = span{ψj,k : k ∈ Z}, we obtain thatWj is the orthogonal complement
of Vj in Vj+1. We can write

Vj+1 = Vj ⊕Wj = . . . = V0 ⊕
(

j
⊕

i=0

Wi

)

, (6)

or, taking the limit (recall that
⋃

j Vj is dense inL2(R)),

L2(R) = V0 ⊕
(

∞
⊕

i=0

Wi

)

= Vj0 ⊕





∞
⊕

i=j0

Wi



 , ∀j0. (7)

There are precise procedures for findingψ onceφ is known (see Daubechies, 1992,
Section 5.1). One possibility (Daubechies, 1992, Theorem 5.1.1) is to set

ψ(x) =
√

2
∑

k

h1−k(−1)kφ(2x− k). (8)

It can be shown that the appropriate orthogonality conditions are satisfied.
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Algorithm for the Discrete Wavelet Transform

The nested structure of the multiresolution analysis can beexploited to construct a fast
decomposition-reconstructionalgorithm for discrete data, analogous to the Fast Fourier
Transform of Cooley and Tukey (1965). The algorithm, calledthe Discrete Wavelet
Transform(Mallat, 1989) produces a vector of wavelet coefficients of the input vector
at dyadic scales and locations. The transformation is linear and orthonormal but is not
performed via matrix multiplication to save time and memory.

We first describe a singlereconstructionstep, used in computing the inverse Discrete
Wavelet Transform (DWT). The following two sets are orthonormal bases forV1:
{
√

2φ(2x − k)}k∈Z , {φ(x − k), ψ(x − l)}k,l∈Z . Using (4) and (8), we obtain for
anyf ∈ V1

f(x) =
∑

k

c0,kφ(x − k) +
∑

k

d0,kψ(x − k)

=
∑

l

(

∑

k

hlc0,k +
∑

k

h1−l(−1)ld0,k

)

√
2φ(2x− 2k − l)

=
∑

l′

(

∑

k

hl′−2kc0,k +
∑

k

h1−l′+2k(−1)l
′

d0,k

)

√
2φ(2x− l′).

Writing the expansion w.r.t. the other basis asf(x) =
∑

l′ c1,l′
√

2φ(2x − l′) and
equating the coefficients, we obtain

c1,l′ =
∑

k

hl′−2kc0,k +
∑

k

h1−l′+2k(−1)l
′

d0,k, (9)

which completes the reconstruction part: the coarser scalecoefficients{c0,k}, {d0,k}
are used to obtain the finer scale coefficients{c1,k}.

Thedecompositionstep used in the DWT is equally straightforward: we have

c0,k =

∫ ∞

−∞

f(x)φ(x − k)dx

=

∫ ∞

−∞

f(x)
∑

l

hl
√

2φ(2x− 2k − l)dx

=
∑

l

hlc1,2k+l =
∑

l

c1,lhl−2k. (10)

Similarly,
d0,k =

∑

l

(−1)l−2kh1−l+2kc1,l. (11)

The same mechanism works for each scale:{cj,k} gives{cj−1,k} and{dj−1,k} for all
j. On the other hand,{cj,k} can be reconstructed using{cj−1,k} and{dj−1,k} for all j.
To start this “pyramid” algorithm, we only need to compute the scaling coefficientscj,k
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at the finest scale of interest, sayj = J . Indeed, when performing wavelet decompo-
sition of finite sequences, it is commonly assumed that our input vectorf = {fn}2J−1

n=0

is a vector of scaling coefficients of a functionf , i.e. fn = cJ,n = 〈f, φJ,n〉, where
φj,k = 2j/2φ(2jx− k). The DWT off is given by

DWT(f) = (c0,0, d0,0, d1,0, d1,1, d2,0, . . . , d2,3, . . . , dJ−1,0, . . . , dJ−1,2J−1−1).
(12)

Informally speaking, the wavelet coefficientsdj,k contain information on the local os-
cillatory behaviour off at scalej and location2J−jk, whereas the coefficientc0,0
contains information on the global “mean level” off . A few remarks are in order.

Decimation. Define

c∗0,k =
∑

l

c1,lhl−k

d∗0,k =
∑

l

(−1)l−kh1−l+kc1,l,

so thatc∗0,k is a convolution ofc1,k with hk, andd∗0,k is a convolution ofc1,k
with (−1)kh1−k. We havec0,k = c∗0,2k andd0,k = d∗0,2k: coarser scale coef-
ficients aredecimatedconvolutions of finer scale coefficients with fixed (scale-
independent) filters. This is in contrast to theNon-decimated Wavelet Trans-
form where no decimation is performed, yielding a shift-invariant (but redun-
dant) transform: see SectionNon-decimated Wavelet Transformfor details.

High-pass and low-pass filters.We definegk = (−1)kh1−k. Due to its effect in
the frequency domain,gk (hk) is often referred to as ahigh-pass (low-pass)
filter in the wavelet literature. This motivates the commonly usedname for the
wavelet and scaling coefficients: they are often referred toasdetail andsmooth
coefficients, respectively.

Example of the DWT. By simple algebra,φH(x) = I(0 ≤ x ≤ 1) generates the Haar
waveletψH , with a low-pass filterhk s.t. h0 = h1 = 1/

√
2, hk = 0 otherwise,

and a high-pass filtergk s.t. g0 = −g1 = 1/
√

2, gk = 0 otherwise. We shall
now decompose a four-element vector

(c2,0, c2,1, c2,2, c2,3) = (1, 1, 2, 3)

using the DWT with Haar wavelets. By (10) and (11), we obtain

c1,0 = 1/
√

2 × 1 + 1/
√

2 × 1 =
√

2

c1,1 = 1/
√

2 × 2 + 1/
√

2 × 3 = 5/
√

2

d1,0 = 1/
√

2 × 1 − 1/
√

2 × 1 = 0

d1,1 = 1/
√

2 × 2 − 1/
√

2 × 3 = −1/
√

2.

Continuing at the next coarser scale, we obtain

c0,0 = 1/
√

2 ×
√

2 + 1/
√

2 × 5/
√

2 = 7/2

d0,0 = 1/
√

2 ×
√

2 − 1/
√

2 × 5/
√

2 = −3/2.
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The original vector(c2,0, c2,1, c2,2, c2,3) can now be easily reconstructed from
(c0,0, d0,0, d1,0, d1,1), (i.e. from the smooth coefficient at the coarsest scale and
the detail coefficients at all scales) using the inverse DWT.As the DWT is ortho-
normal, the inverse DWT uses exactly the same filters as the DWT.

Note that the high-pass filter annihilates constants (recall that Haar wavelets have
vanishing moments up to degree 0). Wavelets with higher numbers of vanishing
moments are capable of annihilating polynomials of higher degrees.

Boundary issue. With wavelet filters longer than Haar, there arises the problem of
what action to perform when the support of the filter extends beyond the support
of the input vector. Several solutions have been proposed, including symmetric
reflection of the input vector at the boundaries, polynomialextrapolation, perio-
dising the vector, padding it out with zeros, etc. See Nason and Silverman (1994)
for an overview. Cohenet al. (1993) introducedwavelets on the interval, i.e.
wavelet bases for functions defined on an interval as opposedto the whole real
line. They also proposed a corresponding fast wavelet transform which uses fil-
ters adapted to the finite support situation. The lifting scheme (Sweldens, 1996)
offers a natural way of dealing with the boundary problem.

Computational speed.O(n) operations are needed for the DWT which uses a compactly-
supported wavelet, wheren is the size of the input sequence. This is an advantage
over the Fast Fourier Transform, which requiresO(n log(n)) operations.

Non-decimated Wavelet Transform

An often undesirable property of the DWT is that it is not translation-invariant, and
that at any given scale, it only provides information about the input vector at certain
(dyadic) locations. Using the toy example above, the coefficient c1,0 usesc2,0 and
c2,1, while the coefficientc1,1 usesc2,2 and c2,3, but there is no coefficient which
would use, say,c2,1 and c2,2. Motivated by this, Pesquetet al. (1996) introduce a
Non-decimated DWT (NDWT) which remedies this problem by computing wavelet
coefficients at all possible locations at all scales (see also Nason and Silverman, 1995;
Coifman and Donoho, 1995). Continuing the example of the previous section, the
NDWT of (c2,0, c2,1, c2,2, c2,3) = (1, 1, 2, 3) which uses Haar wavelets is performed
as follows. We begin with

c1,0 = (1/
√

2, 1/
√

2) · (c2,0, c2,1)
c1,1 = (1/

√
2, 1/

√
2) · (c2,1, c2,2)

c1,2 = (1/
√

2, 1/
√

2) · (c2,2, c2,3)
c1,3 = (1/

√
2, 1/

√
2) · (c2,3, c2,0),

where the “·” denotes the dot product. The detail coefficientsd1,k are obtained similarly
by replacing the low-pass filter with the high-pass one. Notethat we implicitly assume
“periodic” boundary conditions in the above (see the remarkon the “boundary issue”
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in the previous section. Before we proceed to the next stage,we insert zeros between
each two elements of the wavelet filters. Thus, we have

c0,0 = (1/
√

2, 0, 1/
√

2, 0) · (c1,0, c1,1, c1,2, c1,3)
c0,1 = (1/

√
2, 0, 1/

√
2, 0) · (c1,1, c1,2, c1,3, c1,0)

c0,2 = (1/
√

2, 0, 1/
√

2, 0) · (c1,2, c1,3, c1,0, c1,1)
c0,3 = (1/

√
2, 0, 1/

√
2, 0) · (c1,3, c1,0, c1,1, c1,2),

and similarly for the detail coefficients. The insertion of zeros is necessary since dec-
imation is not performed. Were we to compute the NDWT at yet another scale, we
would use the filter(1/

√
2, 0, 0, 0, 1/

√
2, 0, 0, 0) for the smooth and(1/

√
2, 0, 0, 0,−1/

√
2, 0, 0, 0)

for the detail. The computational speed of the NDWT isO(n log(n)), wheren is the
length of the input vector.

Visualisation of discrete and non-decimated wavelet transforms

Typically, the result of the DWT is depicted as a binary tree whose main node is the
coefficientd0,0 (scale 0, location 0), its “children” are the coefficientsd1,0 andd1,1, and
so on. The DWT of the noisy vector of Figure 1 (using “DaubExPhase 2” wavelets) is
shown in the top plot of Figure 3. The numbers along they-axis denote scale (j = 0 is
the coarsest scale;j = 10 = log2(2048)− 1 is the finest scale).

Contrary to the DWT where there are2j coefficients at each scalej, the NDWT always
hasn coefficients at each scale. Thus it is natural to display themas in the bottom plot
of Figure 3. Note that Figure 3 was produced in the R packagewavethresh by Guy
Nason.

Extensions of wavelets

Since the late eighties, several extensions and modifications of wavelets have been pro-
posed. For more details and references on the following topics, see Vidakovic (1999),
Chapter 5:

• multivariate version of the DWT;

• biorthogonal wavelets (two mutually orthogonal wavelet bases neither of which
is orthonormal itself);

• multiwavelets (which use translations and dilations of more that one wavelet
function);

• complex-valued wavelets;

• wavelet packets (over-complete collections of linear combinations of wavelets;
work by applying both low- and high-pass filters to both smooth and detail coef-
ficients; can be rapidly searched for the “best basis” representation);
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• lifting scheme: alternative construction of wavelets for irregularly spaced data.

Some research effort has been spent trying to find sparse multiscale representations of
more complex objects such as images. Here challenges are different from 1D because
the types of singularities encountered in images are different. Those efforts have re-
sulted inridgelets, curvelets, wedgelets, beamletsand possibly other ‘lets’. A readable
introduction to this topic can be found at

http://www-stat.stanford.edu/˜donoho/Lectures/CBMS/ CBMSLect.html

Applications of wavelets

Wavelets and their extensions have been applied in a multitude of areas, such as signal
and image processing, data compression, communication, computer graphics, astron-
omy, quantum mechanics and turbulence: for a discussion of these and other areas of
application see the monographs of Ruskai (1992) and Jaffardet al. (2001). An im-
portant field of application is numerical analysis, extensively covered in Cohen (2003).
One can venture to say that wavelets are indeed one of those fortunate mathematical
concepts that have almost become “household objects”: for example, they were used in
the JPEG2000 compression algorithm, and to compress the CIAfingerprint database.
Multiscale subdivision schemes, related to wavelets, wereemployed in some animated
movies such as “A Bug’s Life”.

Following Vidakovic (1999), who gives a comprehensive overview of wavelet applica-
tions in statistics, we list some of the most important areasof statistics where wavelets
have been successfully applied:

• time series analysis,

• non-parametric function estimation,

• density estimation,

• deconvolution and inverse problems,

• statistical turbulence.

In SectionWavelets for nonparametric function estimation, we describe how wavelets
have been applied in this important area of statistics.

Wavelets for nonparametric function estimation

In nonparametric function estimation, the basic setup is

yi = f(i/n) + ǫi, i = 1, . . . , n,
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wheref(i/n) is unknown and needs to be estimated, and the noiseǫi is iid with
E(ǫi) = 0, Var(ǫi) = σ2.

For irregular (e.g. discontinuous) functions, linear (e.g. kernel) smoothing performs in-
adequately, and non-linear smoothing methods are needed. In a seminal paper, Donoho
and Johnstone (1994) introduce the principle of a non-linear smoothing method called
wavelet thresholding. First, the signal is transformed via the DWT to obtaindj,k =
θj,k + ǫj,k, wheredj,k, (θj,k, ǫj,k) is the DWT ofyi (f(i/n), ǫi). Then,dj,k are shrunk
towards zero (with the threshold chosen in an appropriate manner), and finally the in-
verse DWT is taken to obtain an estimate off . The rationale behind this principle is
twofold:

• As DWT is orthonormal, i.i.d. Gaussian noise in the time domain transforms
into i.i.d. Gaussian noise in the wavelet domain;

• Due to the vanishing moments property, wavelet coefficientsθj,k correspond-
ing to the locations where the signal is smooth will be close to zero. On the
other hand, those (hopefully few) corresponding to discontinuities or other irreg-
ularities will be significantly different from zero: the signal will be represented
sparselyin the wavelet domain. Therefore, we can expect that an appropriately
chosen threshold will be able to accurately separate signalfrom noise.

Two thresholding rules have been particularly commonly used and well-studied. For a
given thresholdλ, hardandsoft thresholding shrinkdj,k to

dhj,k = dj,kI(|dj,k| > λ)

dsj,k = sgn(dj,k)(|dj,k| − λ)+,

respectively. The threshold introduced in Donoho and Johnstone (1994) was the so-
calleduniversal threshold, λ = σ

√

2 log(n). The authors show that the MSE of the
soft thresholding estimator with the universal threshold is close (within a logarithmic
factor) to the ideal risk one can achieve by “keeping” or “killing” the wavelet coeffi-
cientsdj,k using knowledge of the underlying signal. At the same time, the universal
threshold is an efficient noise suppressor as described in Section 4.2 of their paper.

In another paper, Donoho and Johnstone (1995) consider a non-linear wavelet estima-
tor with soft thresholding where the threshold selection procedure is based on Stein’s
shrinkage method for estimating the mean of multivariate normal variables. They con-
sider the behaviour of the estimator over a range of so-called Besov spaces (Triebel,
1983), which form an extremely rich collection of functionswith various degrees of
smoothness (for certain values of the space parameters, Besov spaces can be shown to
contain other better known function spaces such as Hölder or Sobolev spaces or the
space of functions with bounded variation). The authors demonstrate that their estima-
tor issimultaneously nearly minimaxover a range of Besov balls, i.e. without knowing
the regularity of the function, it nearly achieves the optimal rate of convergence which
could be achieved if the regularity was known.

In most papers on the theory of non-linear wavelet estimation, it is assumed that the
standard deviationσ of the noise is known. In practice, it needs to be estimated from the
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data. For Gaussian data, the method recommended by several authors (see e.g. John-
stone and Silverman, 1997) computes the scaled Median Absolute Deviation (MAD)
on the sequence of wavelet coefficients at the finest resolution level, thereby ensuring
robustness.

More recently, other thresholding rules have been proposed. Nason (1996) uses cross-
validation as a means of selecting the threshold. Abramovich and Benjamini (1996)
set up wavelet thresholding as a multiple hypothesis testing problem and propose
an approach based on the so-calledfalse discovery rate. Johnstone and Silverman
(1997) consider level-dependent universal thresholding for correlated Gaussian noise.
Averkamp and Houdré (2003) extend the approach of Donoho and Johnstone (1994) to
other noise distributions such as exponential, mixture of normals or compactly sup-
ported distributions. Vanreaset al. (2002) consider stable wavelet transforms for
denoising data observed on non-equispaced grids. Barber and Nason (2004) develop
various thresholding procedures using complex-valued wavelets. Johnstone and Silver-
man (2005) propose an empirical Bayes approach to the threshold selection problem.
Cai and Silverman (2001), amongst others, considerblock thresholding: they propose
a thresholding procedure whereby wavelet coefficients are considered in overlapping
blocks and the action performed on the coefficients in the middle of the block depends
upon the data in the whole block. Antoniadis and Fryzlewicz (2006) propose a simple
universal-type thresholding procedure where the threshold values are modelled para-
metrically across scales.

Coifman and Donoho (1995) introducetranslation invariant denoising: the full NDWT
transform of the data is taken, then the universal thresholdis applied to all resulting
wavelet coefficients, and then an inverse NDWT transform yields an estimate of the
signal. As the NDWT is redundant, there are many possible ways of generating an
inverse NDWT transform: the one proposed by the authors is equivalent to taking the
average over all possible DWT’s contained in the NDWT, corresponding to all possible
circular shifts of the data set (hence the name “translationinvariant”).

Simple example: Haar wavelets + piecewise constant regression func-
tion

In this section, we show how to prove mean-square consistency of a hard-thresholding
universal estimator of a piecewise-constant regression function contaminated with in-
dependent GaussianN(0, 1) noise. The number of jumps in the functionf is unknown
but finite (bounded byM ). As before,dj,k, θj,k andǫj,k are the Haar wavelet coeffi-
cients ofyi, f(i/n) andǫi, respectively. The range of(j, k) is j = 0, . . . , J − 1 :=
log2 n−1; k = 1, . . . , 2j. The only smooth coefficient is indexed by(j, k) = (−1, 1).
The wavelet noise coefficientsǫj,k are iidN(0, 1) because the Haar transform is ortho-
normal.

Except(j, k) = (−1, 1) where we leave the coefficient intact, we estimateθj,k by

θ̂j,k = dj,kI(|dj,k| > λ),
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whereλ =
√

2 log n, ie λ is the universal threshold. Then the estimatef̂(i/n) is
constructed by applying the inverse Haar transform toθ̂j,k. We are interested in the
mean-square error

MSE(f̂ , f) =
1

n

n
∑

i=1

E(f(i/n) − f̂(i/n))2. (13)

Lemma 1 (Parseval inequality) LetW be an orthonormal matrix,x a column vector,
andy = Wx. ThenxTx = yT y.

Proof. AsW is orthonormal, we haveW−1 = WT . ThusyT y = xTWTWx = xTx.

Applying this to (13), we obtain MSE(f̂ , f) = 1
n

∑

j,k E(θ̂j,k − θj,k)
2.

Sincef is piecewise constant, at mostM coefficientsθj,k at each scalej are non-zero.
The rest of them (corresponding to the intervals wheref is constant), are zero. This is
because, essentially, Haar cofficients are local differences which annihilate constants,
i.e. transform them to zero.

We first consider the caseθj,k = 0 (so thatdj,k is distributed asN(0, 1)). We have

E(θ̂j,k − θj,k)
2 = Eθ̂2j,k = Ed2

j,kI(|dj,k| > λ) =
√

2/π

∫ ∞

λ

x2 exp(−x2/2)dx

=
√

2/πλ exp(−λ2/2) + 2(1 − Φ(λ)),

whereΦ is the cdf of the standard normal. By a standard result,1 − Φ(λ) ≤ φ(λ)/λ,
whereφ is the pdf of the standard normal. Thus

E(θ̂j,k − θj,k)
2 ≤

√

2/π exp(−λ2/2)(λ+ λ−1) = O

(

log1/2 n

n

)

.

We now move to the caseθj,k 6= 0 and without loss of generality, we assumeθj,k > 0.

E(θ̂j,k − θj,k)
2 = E(dj,kI(|dj,k| > λ) − θj,k)

2

= E(dj,kI(|dj,k| > λ) − θj,kI(|dj,k| > λ) + θj,kI(|dj,k| > λ) − θj,k)
2

≤ 2E(dj,kI(|dj,k| > λ) − θj,kI(|dj,k| > λ))2 + 2E(θj,kI(|dj,k| > λ) − θj,k)
2

≤ 2Var(dj,k) + 2θ2j,kP (|dj,k| ≤ λ) ≤ 2 + 2θ2j,kP (dj,k ≤ λ)

= 2 + 2θ2j,kP (λ+ θj,k − dj,k ≥ θj,k).

By Markov’s inequality,

P (λ+ θj,k − dj,k ≥ θj,k) ≤ E(λ+ θj,k − dj,k)
2/θ2j,k.

This gives

E(θ̂j,k − θj,k)
2 ≤ 2 + 2E(λ+ θj,k − dj,k)

2

≤ 2 + 4(λ2 + Var(dj,k)) = 4λ2 + 6 = O(log n).
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This finally gives

MSE(f̂ , f) =
1

n

∑

j,k

E(θ̂j,k − θj,k)
2

≤ O(1/n2) [smooth coefficient]

+ 1/n× n×O

(

log1/2 n

n

)

[coefficients withθj,k = 0]

+ 1/n× J ×M ×O(log n) [coefficients withθj,k 6= 0]

= O(n−1 log2 n),

which proves the mean-square consistency of the Haar wavelet estimator at the nearly-
parametric rate ofO(n−1 log2 n).

Noise-free reconstruction property

Other than attaining the nearly-parametric MSE rate above,the universal threshold
also enjoys the “noise-free reconstruction” property: if the true signalf is constant,
then the estimatêf is also constant and equal to the sample mean of the data. Forf̂ to
be constant, we need allθ̂j,k’s to be zero with a high probability. This happens if all
dj,k ’s fall belowλ with a high probability. But iff is constant, then alldj,k ’s are i.i.d.
N(0, 1). The noise-free reconstruction property is implied by the following fact:

lim
n→∞

P

(

max
j,k

|dj,k| >
√

a log n

)

= 0,

if and only if a ≥ 2. Thus, the universal threshold
√

2 log n is asymptotically the
lowest threshold satisfying the noise-free reconstruction property.

Unbalanced Haar wavelets and function estimation

Haar wavelets differ from other wavelet families in that nonparametric function esti-
mation (as described in the previous section) using this wavelet family will result in a
piecewise constant estimate. The analyst might be tempted to interpret this estimate
as indicating intervals where the underlying true signal iswell approximated by a con-
stant, as well as indicating the likely locations of “jumps”in the signal.

However, this would not normally be an entirely accurate interpretation. One must
bear in mind that Haar wavelets contain a “jump” exactly in the middle of their sup-
port, which, combined with the dyadic structure of the Haar wavelet transform, im-
plies that the estimator will be more likely to display jumpsat “dyadic” locations, i.e.
1/2, 1/4, 3/4, . . ., irrespective of the locations of the jumps in the true underlying sig-
nal.
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To provide a more accurate description of the true piecewiseconstant structure of the
underlying signal (and thus facilitate the interpretationof the estimate), Fryzlewicz
(2007) proposes estimation using so-called “Unbalanced” Haar (UH) wavelets, which
contain a jump not necessarily in the middle of their support. The location of the jumps
in the UH wavelets can be chosen adaptively to match the likely structure of the signal
at hand.

We first give a description of the construction of the UH wavelet vectors. Suppose that
our domain is indexed byi = 1, . . . , n, and thatn ≥ 2. We first construct a vector
ψ0,1, which is constant and positive fori = 1, . . . , b0,1, and constant and negative
for i = b0,1 + 1, . . . , n. The breakpointb0,1 < n is to be chosen by the analyst.
The positive and negative values taken byψ0,1 are chosen in such a way that (a) the
elements ofψ0,1 sum to zero, and (b) the squared elements ofψ0,1 sum to one.

We then recursively repeat this construction on the two parts of the domain determined
byψ0,1: that is, provided thatb0,1 ≥ 2, we construct (in a similar fashion) a vectorψ1,1

supported oni = 1, . . . , b0,1, with a breakpointb1,1. Also, provided thatn − b0,1 ≥
2, we construct a vectorψ1,2 supported oni = b0,1 + 1, . . . , n with a breakpoint
b1,2. The recursion then continues in the same manner for as long as feasible, with
each vectorψj,k having at most two “children” vectorsψj+1,2k−1 andψj+1,2k. For
each vectorψj,k, their start, breakpoint and end indices are denoted bysj,k, bj,k and
ej,k, respectively. Additionally, we define a vectorψ−1,1 with elementsψ−1,1(l) =
n−1/2I(1 ≤ l ≤ n), whereI(·) is the indicator function. Note that to shorten notation,
we do not explicitly emphasise the dependence ofψj,k on (sj,k, bj,k, ej,k). As in the
classical wavelet theory, the indicesj, k are scale and location parameters, respectively.
Small (large) values ofj can be thought of as corresponding to “coarse” (“fine”) scales.

Example.We consider an example of a set of UH vectors forn = 6. The rows of the
matrixW defined below contain (from top to bottom) vectorsψ−1,1, ψ0,1, ψ1,2, ψ2,3,
ψ2,4 andψ3,7 determined by the following set of breakpoints:(b0,1, b1,2, b2,3, b2,4, b3,7) =
(1, 3, 2, 5, 4).

W =

















6−1/2 6−1/2 6−1/2 6−1/2 6−1/2 6−1/2

{5/6}1/2 −30−1/2 −30−1/2 −30−1/2 −30−1/2 −30−1/2

0 {3/10}1/2 {3/10}1/2 −{2/15}1/2 −{2/15}1/2 −{2/15}1/2

0 2−1/2 −2−1/2 0 0 0
0 0 0 6−1/2 6−1/2 −{2/3}1/2

0 0 0 2−1/2 −2−1/2 0

















In the above example, it is not possible to create further vectorsψj,k. There aren = 6
of them, and they are orthonormal. Thus, they form an orthonormal basis ofR6. This
is not a coincidence: the following general results holds.

Proposition 1 The collection of vectors{ψj,k}j,k is an orthonormal basis ofRn.

Nonparametric function estimation using UH wavelets proceeds as follows: we first
choose an appropriate basis, then take the transform of the noisy data with respect to
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this basis, threshold the coefficients, and take the inversetransform. In other words, the
only difference between classical and Unbalanced Haar wavelets is the basis selection
step: in the classical Haar wavelets, the basis is fixed.

One basis selection procedure described in Fryzlewicz (2007) is the following greedy
forward stagewiseprocedure, related to thematching pursuitalgorithm of Mallat and
Zhang (1993) and tobinary segmentationof Sen and Srivastava (1975). We first define
theUH mother vectorψs,b,e with elements defined by

ψs,b,e(l) =

{

1

b − s+ 1
− 1

e− s+ 1

}1/2

I(s ≤ l ≤ b)−
{

1

e− b
− 1

e− s+ 1

}1/2

I(b+1 ≤ l ≤ e).

• Breakpointb0,1 is chosen such that the inner product〈X, ψ1,b0,1,n〉 between the
dataX andψ1,b0,1,n is maximised in absolute value.

• Similarly, bj+1,l := argmaxb|〈X, ψsj+1,l ,b,ej+1,l〉|, wherel = 2k − 1, 2k.

Under a mild assumption on the permitted degree of “unbalancedness” of the thus-
constructed UH basis, the computational complexity of the above procedure isO(n log n).
The motivation for this basis selection procedure can be outlined as follows: it is known
that wavelet thresholding is the most successful when the representation of the signal
in the wavelet domain issparse. In our set-up, this would require that only a few
UH coefficients were “large” in magnitude, whilst most were “small” and thus carried
mainly noise. Typically, when performing transforms with the standard Haar basis, it
is often observed that large Haar coefficients are mostly concentrated at coarser scales.
The above basis selection procedure makes this “concentration of power” even more
extreme: it attempts to concentrate as much as possible of the signal power at coarser
scales, in the hope of further improving the sparsity of representation.

Following this line of thought, Fryzlewicz (2007) also proposes an alternative,back-
ward stagewisebasis selection algorithm, which proceeds from the finest tocoarsest
scale, attempting to concentrate aslittle power as possible at fine scales, which pro-
duces a similar effect: concentrates the bulk of the power ofthe signal at coarse scales.
This strategy can be termed agenerous, as opposed to “greedy”, algorithm. Such a
bottom-upUH basis selection algorithm is a natural starting point forthe meaningful
extension of the UH idea to smoother wavelet bases and to image data.

We note that the UH estimate displayed in Figure 1 was computed using the forward
UH basis selection procedure as described above. UH estimation is implemented in the
R packageunbalhaar .

Haar-Fisz transforms: variance stabilisation via wavelets

The previous sections describe how wavelets can be useful innonparametric function
estimation. In this section, we show how wavelets can be usedto stabilise noise vari-
ance in nonparametric regression set-ups where the variance of the noise depends on
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the local mean level of the signal. We deliberately change the notation to avoid confu-
sion with the previous sections and consider

Xt = α(t/n) + εt, t = 1, . . . , n, (14)

where theXt’s are modelled as independent, and Var(εt) depends onα(t/n). Exam-
ples of such set-ups include

• Poisson intensity estimation.In Poisson intensity estimation,Xt are modelled
as independent Pois{α(t/n)} variables, which implies thatεt are centered Pois-
son. The mean and variance ofXt are linked via the relationship Var(Xt) =
h{E(Xt)} with h(u) = u.

• Nonparametric volatility estimation.Nonparametric volatility estimation tech-
niques are widely used in the finance industry. In this set-up, theXt’s rep-
resent squared log-returns on a financial instrument and aremodelled as inde-
pendent and distributed asXt = α(t/n)Z2

t , whereE(Z2
t ) = 1. Note that

εt = α(t/n)(Z2
t − 1). Thus, the model is multiplicative and the variance func-

tion h(u) is proportional tou2.

• Spectral density estimation.In spectral density estimation based on the peri-
odogram, theXt’s represent periodogram ordinates and are assumed to be as-
ymptotically independent and asymptotically distributedasα(t/n)Z2

t , where
α(t/n) represents the spectral density at frequencyt/n, andZ2

t are Exp(1) ran-
dom variables. This again makes the set-up multiplicative and, asymptotically,
the variance function takes the formh(u) = u2.

In the above and similar set-ups, variance stabilisation isoften desirable as many sta-
tistical estimation and testing techniques work best when the data at hand are homoge-
neous, or even Gaussian. The classical tool for variance stabilisation is the well-known
Box-Cox transform, which in the case of Poisson intensity estimation would simply
square-root the data (up to constants), and in the case of nonparametric volatility or
spectral density estimation – log the data.

Alternatively, variance stabilisation can be performed inthe wavelet domain, leading
to the so-calledHaar-Fiszand, more generally,wavelet-Fisztransform, first introduced
in the context of Poisson intensity estimation by Fryzlewicz and Nason (2004) and
described more fully in a general context by Fryzlewicz (2008). One advantage of
wavelet-Fisz transforms over Box-Cox transforms is that the former lead to data with
approximately Gaussian (in particular: more symmetric) noise, unlike the latter.

In the set-up (14), a simple Haar-Fisz transform would proceed as follows.

1. Take the usual Haar wavelet transform ofXt, to obtain the detail coefficientsdj,k
and the smooth coefficientscj,k.

2. Modify the smooth coefficients at scalesj = 1, . . . , J−1 to transform them into
local means of the data, i.e. formc∗j,k = 2(j−J)/2cj,k.
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3. Note that Var(dj,k) is approximately equal toh(αj,k), whereαj,k denotes the
local mean of the true functionα(·) computed over the same support as the cor-
responding coefficientsdj,k andcj,k. Further, note thatαj,k can be pre-estimated
by c∗j,k.

4. Thus, to stabilise the variance ofdj,k, form the Haar-Fisz stabilised coefficients

d∗j,k =
dj,k

h1/2(c∗j,k)
.

This can be viewed as a kind of “studentization” in the wavelet domain.

5. Take the inverse Haar transform of the transformed coefficientsd∗j,k. The vari-
ance of the data is now stabilised.

We note that the transform is easily invertible.

As an example, consider the series of squared logged daily returns on the Dow Jones
Industrial Average index, observed on 2048 consecutive trading days ending 10 March
2010. The series, together with its log and Haar-Fisz transforms, is plotted in Figure
4. It is clear that both transforms stabilise the variance ofthe original series very well.
However, the log transform leads to a distribution with a downward skew and spikes
which obscure the picture. By contrast, the Haar-Fisz transform leads to a series with
symmetric and “almost-Gaussian” noise, and brings out the overall shape of the signal
more clearly.

Conclusion

Wavelets not only had revolutionised engineering and statistics, but also had
given rise to, and emphasised the importance of, other concepts which sub-
sequently took these disciplines by storm. For example, the concept of spar-
sity, popularised by wavelets, gained further popularity in the late nineties and
2000s thanks to the many attempts at solving, theoretically and practically, the
problem of high-dimensional variable selection (such as LASSO or the Dantzig
selector), as well as to modern signal recovery techniques such as compressed
sensing.

We strongly feel that the potential of wavelets in modern statistics has not yet
been fully explored. In the ongoing data revolution, statisticians are routinely
challenged by having to manipulate ever more massive and complex datasets,
which also defy classical assumptions, such as stationarity. Wavelets, with
their in-built high computational speed, and the ability to sparsify (and thereby
reduce complexity) appear ideal for handling large datasets. Another attractive
aspect is their localisation in space and frequency, which means that they are
naturally suited to provide a good descriptive framework for phenomena whose
characteristics evolve over time or space.
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Figure 1: Top-left: simulated noisy signal. Top-right: reconstruction via Adaptive
Weights Smoothing (black) and true signal (red; also in other plots). Bottom-left:
reconstruction via Taut String methodology. Bottom-right: reconstruction via Unbal-
anced Haar wavelets.
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Figure 3: Top: DWT of noisy vector of Figure 1. Bottom: its NDWT. Both using
“DaubExPhase 2” wavelets. 24
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Figure 4: Top: squared daily log-returns (normalised so that overall variance is one) of
the Dow Jones Industrial Average index on 2048 trading days ending 10 March 2010.
Middle plot: logged. Bottom plot: Haar-Fisz’ed.
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