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Abstract

We propose a methodology for detecting multiple change points in the mean of
an otherwise stationary, autocorrelated, linear time series. It combines solution path
generation based on the wild contrast maximisation principle, and an information
criterion-based model selection strategy termed gappy Schwarz algorithm. The for-
mer is well-suited to separating shifts in the mean from fluctuations due to serial
correlations, while the latter simultaneously estimates the dependence structure and
the number of change points without performing the difficult task of estimating the
level of the noise as quantified e.g. by the long-run variance. We provide modular in-
vestigation into their theoretical properties and show that the combined methodology,
named WCM.gSa, achieves consistency in estimating both the total number and the
locations of the change points. The good performance of WCM.gSa is demonstrated
via extensive simulation studies, and we further illustrate its usefulness by applying
the methodology to London air quality data.
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1 Introduction

This paper proposes a new methodology for detecting possibly multiple change points in

the piecewise constant mean of an otherwise stationary, linear time series. This is a well-

known difficult problem in multiple change point analysis, whose challenge stems from the

fact that change points can mask as natural fluctuations in a serially dependent process

and vice versa. We briefly review the existing literature on multiple change point detection

in the presence of serial dependence and situate our new proposed methodology in this

context; see also Aue and Horváth (2013) for a review.

One line of research extends the applicability of the test statistics developed for indepen-

dent data, such as the CUSUM (Csörgő and Horváth, 1997) and moving sum (MOSUM,

Hušková and Slabý; 2001) statistics, to time series setting. Their performance depends

on the estimated level of noise quantified e.g. by the long-run variance (LRV), and the

estimators of the latter in the presence of multiple change points have been proposed

(Tecuapetla-Gómez and Munk, 2017; Eichinger and Kirch, 2018; Dette et al., 2020). The

estimation of the LRV, even when the mean changes are not present, has long been noted

as a difficult problem (Robbins et al., 2011); the popularly adopted kernel estimator of LRV

tends to incur downward bias (den Haan and Levin, 1997; Chan and Yau, 2017), and can

even take negative values when the LRV is small (Hušková and Kirch, 2010). It becomes

even more challenging in the presence of (possibly) multiple change points, and the esti-

mators may be sensitive to the choice of tuning parameters which are often related to the

frequency of change points. Self-normalisation of test statistics avoids direct estimation of

this nuisance parameter (Shao and Zhang, 2010; Pešta and Wendler, 2020) but theoretical

investigation into its validity is often limited to change point testing, i.e. when there is at

most a single change point, with the exception of Wu and Zhou (2020) and Zhao et al.

(2021), both of which adopt local window-based procedures. Consistency of the methods

utilising penalised least squares estimation (Lavielle and Moulines, 2000) or Schwarz cri-

terion (Cho and Kirch, 2021b) constructed without further parametric assumptions, has

been established under general conditions permitting serial dependence and heavy-tails,

but their consistency relies on the choice of the penalty, which in turn depends on the level
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of the noise.

The second line of research utilises particular linear or non-linear time series models such

as the autoregressive (AR) model, and estimates the serial dependence and change point

structures simultaneously. AR(1)-type dependence has often been adopted to describe the

serial correlations in this context: Chakar et al. (2017) and Romano et al. (2021) propose

to minimise the penalised cost function for detection of multiple change points in the mean

of AR(1) processes via dynamic programming, and Fang and Siegmund (2020) study a

pseudo-sequential approach to change point detection in the level or slope of the data.

Lu et al. (2010) investigate the problem of climate time series modelling by allowing for

multiple mean shifts and periodic AR noise. Gallagher et al. (2021) propose to estimate AR

parameters from differenced data in the presence of multiple mean shifts, and investigate

the performance of change point detection methods developed for i.i.d. noise setting to the

residuals. Fryzlewicz (2020b) proposes to circumvent the need for accurate estimation of

AR parameters through the use of a multi-resolution sup-norm (rather than the ordinary

least squares) in fitting the postulated AR model, but this is only possible because the

goal of the method is purely inferential and therefore different from ours. We also mention

that Davis et al. (2006, 2008), Cho and Fryzlewicz (2012), Bardet et al. (2012), Chan

et al. (2014), Yau and Zhao (2016) and Korkas and Fryzlewicz (2017), among others, study

multiple change point detection under piecewise stationary, univariate time series models,

and Cho and Fryzlewicz (2015), Safikhani and Shojaie (2020) and Cho and Korkas (2021)

under high-dimensional time series models.

We now describe our proposed methodology against this literature background and

summarise its novelty and main contributions of this paper.

1. The first step of the proposed methodology constructs a sequence of candidate change

point models by adopting the Wild Contrast Maximisation (WCM) principle: it iter-

atively locates the next most likely change point in the data between the previously

proposed change point estimators, as the one maximising a given contrast (in our

case, the absolute CUSUM statistic) in the data sections over a collection of intervals

of varying lengths and locations. It produces a complete solution path to the change

point detection problem as a decreasing sequence of max-CUSUMs corresponding to
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the successively proposed change point candidates. The WCM principle has success-

fully been applied to the problem of multiple change point detection in the presence

of i.i.d. noise (Fryzlewicz, 2014, 2020a). We show that it is particularly useful under

serial dependence by generating a large gap between the max-CUSUMs attributed

to change points and those attributed to the fluctuations due to serial correlations.

This motivates a new, ‘gappy’ model sequence generation procedure which, by con-

sidering only some of the candidate models along the solution path that correspond

to large drops in the decreasing sequence of max-CUSUMs as serious contenders,

systematically selects a small subset of model candidates. We justify this gappy

model sequence generation theoretically and further demonstrate numerically how it

substantially facilitates the subsequent model selection step.

2. The second step performs model selection on the sequence of candidate change point

models generated in the first step. To this end, we propose a backward elimination

strategy termed gappy Schwarz algorithm (gSa), a new application of Schwarz crite-

rion (Schwarz, 1978) constructed under a parametric, AR model assumption on the

noise. Information criteria have been widely adopted for model selection in change

point problems (Yao, 1988; Kühn, 2001). However, through its application on the

gappy model sequence, our proposal differs from the conventional use of an informa-

tion criterion in the change point literature which involve its global (Davis et al., 2006;

Killick et al., 2012; Romano et al., 2021) or local (Chan et al., 2014; Fryzlewicz, 2014)

minimisation. Rather than setting out to minimise Schwarz criterion, the Schwarz

algorithm starts from the largest model in consideration and iteratively compares

a pair of consecutive models by evaluating the reduction of the cost due to newly

introduced change point estimators, offset by the increase of model complexity as

measured by Schwarz criterion. This has the advantage over the direct minimisation

of the information criterion on a solution path as it avoids the substantial techni-

cal challenges linked to dealing with under-specified models in the presence of serial

dependence.

The two ingredients, WCM-based gappy model sequence generation and model selection
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via Schwarz algorithm, make up the WCM.gSa methodology. Throughout the paper, we

highlight the important roles played by these two components and argue that WCM.gSa

offers state-of-the-art performance in the problem of multiple change point detection un-

der serially dependent noise. WCM.gSa is modular in the sense that each ingredient can

be combined with alternative model selection or model sequence generation procedures,

respectively. We provide separate theoretical analyses of the two steps so that they can

readily be fed into the analysis of such modifications, as well as showing that the com-

bined methodology, WCM.gSa, achieves consistency in estimating the total number and

the locations of multiple change points.

The paper is organised as follows. In Sections 2 and 3, we introduce the two ingredients

of WCM.gSa individually, and show its consistency in multiple change point detection in

the presence of serial dependence. Section 4 summarises our numerical results and applies

WCM.gSa to London air quality datasets. The Supplementary Appendix contains compre-

hensive simulation studies, an additional data application to central England temperature

data, and the proofs of the theoretical results. The R software implementing WCM.gSa is

available from https://github.com/haeran-cho/wcm.gsa.

2 Candidate model sequence generation via WCM prin-

ciple

2.1 WCM principle and solution path generation

We consider the canonical change point model

Xt = ft + Zt = f0 +

q∑
j=1

f ′j · I(t ≥ θj + 1) + Zt, t = 1, . . . , n. (1)

Under model (1), the set Θ := {θ1, . . . , θq} with θj = θj,n, contains q change points (with

θ0 = 0 and θq+1 = n) at which the mean of Xt undergoes changes of size f ′j. We assume

that the number of change points q does not vary with the sample size n, and we allow

serial dependence in the sequence of errors {Zt}nt=1 with E(Zt) = 0.
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A large number of multiple change point detection methodologies have been proposed

for a variant of model (1) in which the errors {Zt}nt=1 are independent. In particular, a

popular class of multiscale methods aim to isolate change points for their detection by

drawing a large number of sub-samples of the data living on sub-intervals of [1, n]. When

a sufficient number of sub-samples are drawn, there exists at least one interval which is

well-suited for the detection and localisation of each θj, j = 1, . . . q, whose location can be

estimated as the maximiser of the series of CUSUM statistics computed on this interval.

Methods in this category include the Wild Binary Segmentation (WBS, Fryzlewicz; 2014),

the Seeded Binary Segmentation (Kovács et al., 2020) and the WBS2 (Fryzlewicz, 2020a).

All of the above are based on the WCM principle, i.e. the recursive maximisation of the

contrast between the means of the data to the left and right of each putative change point

as measured by the CUSUM statistic, over a large number of intervals. (We propose the

term Wild Contrast Maximisation rather than, say, ‘wild CUSUM maximisation’ since, in

other change point detection problems, the WCM principle can be applied with statistics

other than CUSUM, e.g. generalised likelihood ratio tests.) Their theoretical properties

have been established assuming i.i.d. (sub-)Gaussianity on {Zt}nt=1.

In the remainder of this paper, we focus on WBS2, whose key feature is that for any

given 0 ≤ s < e ≤ n, we identify the sub-interval {s◦ + 1, . . . , e◦} ⊂ {s + 1, . . . , e}

and its inner point k◦ ∈ {s◦ + 1, . . . , e◦ − 1}, which obtains a local split of the data

that yields the maximum CUSUM statistic. More specifically, let Rs,e denote a subset

of As,e := {(`, r) ∈ Z2 : s ≤ ` < r ≤ e and r − ` > 1}, selected either randomly or

deterministically, with |Rs,e| = min(Rn, |As,e|) for some given Rn ≤ n(n− 1)/2. Then, we

identify (s◦, e◦) ∈ Rs,e that achieves the maximum absolute CUSUM statistic, as

(s◦, k◦, e◦) = arg max(`,k,r): `<k<r
(`,r)∈Rs,e

|X`,k,r| , where

X`,k,r =

√
(k − `)(r − k)

r − `

(
1

k − `

k∑
t=`+1

Xt −
1

r − k

r∑
t=k+1

Xt

)
. (2)

Starting with (s, e) = (0, n), recursively repeating the above operation over the segments

defined by the thus-identified k◦, i.e. {s+ 1, . . . , k◦} and {k◦ + 1, . . . , e}, generates a com-

plete solution path that attaches an order of importance to {1, . . . , n− 1} as change point
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candidates; see Algorithm 1 in Appendix A for the pseudo code of the WBS2 algorithm,

and for how to to select Rs,e from As,e via deterministic sampling.

We denote by P0 the output generated by the WBS2: each element of P0 contains the

triplet of the beginning and the end of the interval and the break that returns the maximum

contrast (measured as in (2)) at a particular iteration, and the corresponding max-CUSUM

statistic. The order of the sorted max-CUSUMs (in decreasing order) provides a natural

ordering of the candidate change points, which gives rise to the following solution path

P := {(s(m), k(m), e(m),X(m)) : m = 1, . . . , P}, where

X(m) := |Xs(m),k(m),e(m)
| satisfying X(1) ≥ X(2) ≥ . . . ≥ X(P ) > 0; (3)

if X(m) = 0 for some m ≤ |P0|, then (s(m), k(m), e(m)) is not associated with any change

point and thus such entries are excluded from the solution path P .

The WCM principle provides a good basis for model selection, i.e. selecting the correct

number of change points, in the presence of serially dependent noise. This is due to the

iterative identification of the local split with the maximum contrast, which helps separate

the large max-CUSUMs attributed to mean shifts, from those which are not. In the next

section, we propose how to utilise this property of the solution path P generated according

to the WCM principle.

2.2 Gappy model sequence generation

The solution path P consists of a sequence of candidate change point models K1 ⊂ K2 ⊂ . . .

with Kl := {k(1), . . . , k(l)}. In this section, we propose a ‘gappy’ model sequence generation

step which selects a subset of the above model sequence by discarding candidate models

that are not likely to be the final model. More specifically, by the construction of WBS2,

which iteratively identifies the local split of the data with the most contrast (max-CUSUM),

we expect to observe a large gap between the CUSUM statistics X(m) computed over those

intervals (s(m), e(m)) that contain change points well within their interior, and the remaining

CUSUMs. Therefore, for the purpose of model selection, we can exploit this large gap in

X(m), 1 ≤ m ≤ P , or equivalently, in Y(m) := log(X(m)); we later show that under some
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assumptions on the size of changes and the level of noise, the large log-CUSUMs Y(m)

attributed to change points scale as log(n) while the rest scale as log log(n).

For the identification of the large gap in Y(1) ≥ . . . ≥ Y(P ), the simplest approach

is to look for the largest difference Y(m) − Y(m+1). However, this largest gap may not

necessarily correspond to the difference between the max-CUSUMs attributed to mean

shifts and spurious ones attributed to fluctuations in the errors, but simply be due to

the heterogeneity in the change points (i.e. some changes being more pronounced and

therefore easier to detect than others). Therefore, we identify the M largest gaps from

Y(m) − Y(m+1), 1 ≤ m ≤ P − 1, and denote the corresponding indices by g1 < . . . < gM

such that

Y(gl) − Y(gl+1) > Y(m) − Y(m+1) for all m 6= gl, 1 ≤ l ≤M.

This returns a sequence of nested models

∅ = Θ̂0 ⊂ Θ̂1 ⊂ . . . ⊂ Θ̂M ⊂ {0, . . . , n− 1} with Θ̂l \ Θ̂l−1 6= ∅ ∀ l = 1, . . . ,M, (4)

with Θ̂l = Θ̂l−1 ∪ {k(gl−1+1), . . . , k(gl)}. Theorem 2.1 below shows that the model sequence

in (4) contains one which consistently detects all q change points with high probability.

Typically, this gappy model sequence is much sparser than the sequence of all possible

models from the solution path and therefore, intuitively, makes our model selection task

easier than if we worked with the entire solution path of all nested models. We confirm

this point numerically in the simulation studies reported in Appendix D.

2.3 Theoretical properties

In this section, we establish the theoretical properties of the sequence of nested change point

models obtained from combining WBS2 with the gappy model sequence generation outlined

in Sections 2.1–2.2. The following assumptions are, respectively, on the distribution of

{Zt}nt=1 and the size of changes under H1 : q ≥ 1.

Assumption 2.1. Let {Zt}nt=1 be a sequence of random variables satisfying E(Zt) = 0 and

Var(Zt) = σ2
Z with σZ ∈ (0,∞). Also, let P(Zn) → 1 with ζn satisfying

√
log(n) = O(ζn)

and ζn = O(logκ(n)) for some κ ∈ [1/2,∞), where
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Zn =
{

max0≤s<e≤n(e− s)−1/2
∣∣∣∑e

t=s+1 Zt

∣∣∣ ≤ ζn

}
.

Remark 2.1. Assumption 2.1 permits {Zt}nt=1 to have heavier tails than sub-Gaussian such

as sub-exponential or sub-Weibull (Vladimirova et al., 2020). Appendix G shows that lin-

ear time series with short-range dependence and sub-exponential innovations satisfy the

assumption, using the Nagaev-type inequality derived in Zhang and Wu (2017). Similar

arguments can be made with the concentration inequalities shown in Doukhan and Neu-

mann (2007) for weakly dependent time series fulfilling E(|Zt|k) ≤ (k!)νCk for all k ≥ 1

and some ν ≥ 0 and C > 0, or in Merlevède et al. (2011) for geometrically strong mixing

sequences with sub-exponential tails. Alternatively, under the invariance principle, if there

exists (possibly after enlarging the probability space) a standard Wiener process W (·) such

that
∑`

t=1 Zt − W (`) = O(logκ
′
(`)) a.s. with κ′ ≥ 1, then Assumption 2.1 holds with

ζn � logκ(n) for any κ > κ′, where we denote by an � bn to indicate that an = O(bn)

and bn = O(an). Such invariance principles have been derived for dependent data under

weak dependence such as mixing (Kuelbs and Philipp, 1980) and functional dependence

measure (Berkes et al., 2014) conditions. As remarked in Proposition 2.1 (c.i) of Cho and

Kirch (2021b), the thus-derived ζn usually does not provide the tightest upper bound, but

it suits our purpose in controlling the level of noise.

Assumption 2.2. Let δj = min(θj − θj−1, θj+1 − θj) and recall that f ′j = fθj+1 − fθj for

j = 1, . . . , q. Then, max1≤j≤q |f ′j| = O(1). Also, there exists some c1 ∈ (0, 1) such that

min1≤j≤q δj ≥ c1n, and for some ϕ > 0, we have ζ2
n/(min1≤j≤q(f

′
j)

2δj) = O(n−ϕ).

Under Assumption 2.2, we assume that there are finitely many change points with the

spacing between the change points increasing linearly in n. A similar condition can be

found in the literature addressing the problems of change point detection in the presence

of serial correlations, see e.g. in Zhao et al. (2021). We may relax this assumption at the

price of increased rate of localisation in Theorem 2.1 (i) below. The upper bound on |f ′j|

is a technical assumption made to distinguish the problem of detecting change points from

that of outlier detection, see Cho and Kirch (2021a) for further discussions.
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Theorem 2.1. Let Assumptions 2.1 and 2.2 hold. Suppose that Rn, the number of intervals

at each iteration of WBS2, satisfies

Rn ≥
9

8

(
n

min1≤j≤q δj

)2

+ 1. (5)

Then, on Zn, the following statements hold for n large enough and some c2 ∈ (0,∞).

(i) Let Θ̂[q] = {θ̂j, 1 ≤ j ≤ q : θ̂1 < . . . < θ̂q} denote the set of q change point location

estimators corresponding to the q largest max-CUSUMs X(m), 1 ≤ m ≤ q, obtained

as in (3). Then, max1≤j≤q(f
′
j)

2|θ̂j − θj| ≤ c2ζ
2
n.

(ii) The sorted log-CUSUMs Y(m) satisfy Y(m) = γm log(n)(1 + o(1)) for m = 1, . . . , q,

while Y(m) ≤ κm log(ζn)(1 + o(1)) for m ≥ q + 1, where {γm}qm=1 and {κm}m≥q+1 are

non-increasing sequences with 0 < γm ≤ 1/2 and 0 ≤ κm ≤ 1.

Theorem 2.1 (i) establishes that for the solution path P obtained according to the WCM

principle, the entries corresponding to the q largest max-CUSUMs contain the estimators of

all q change points θj and further, the localisation rate attained by θ̂j is minimax optimal

up to a logarithmic factor (see e.g. Verzelen et al. (2020)). Statement (ii) shows that

the q largest log-CUSUMs are of order log(n) and are thus distinguished from the rest

of the log-CUSUMs bounded as O(log log(n)). In summary, Theorem 2.1 establishes that

the sequence of nested change point models (4) contains the consistent model Θ̂[q] as a

candidate model provided that M is sufficiently large. We emphasise that Theorem 2.1

is not (yet) a full consistency result for our complete change point estimation procedure

– this will be the objective of Section 3. Theorem 2.1 merely indicates that the solution

path we obtain contains the correctly estimated model, hence it is in principle possible to

extract it with the right model selection tool. Section 3 proposes such a tool.

3 Model selection with gSa

In this section, we discuss how to consistently estimate the number and the locations of

change points by choosing an appropriate model from the sequence of nested change point

models (4). We propose a new backward elimination-type procedure, referred to as ‘gappy
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Schwarz algorithm’ (gSa), which makes use of the Schwarz information criterion constructed

under a parametric assumption imposing an AR structure on {Zt}nt=1. The novelty of gSa

is in the new way in which it applies Schwarz criterion, rather than in the formulation of

the information criterion itself. We show the usefulness of gSa when change point model

selection is performed simultaneously with the estimation of the serial dependence.

3.1 Schwarz criterion in the presence of autoregressive errors

We assume that {Zt}nt=1 in (1) is a stationary AR process of order p, i.e.

Zt =

p∑
i=1

aiZt−i + εt such that Xt = (1− a(B))ft +

p∑
i=1

aiXt−i + εt, (6)

where a(B) =
∑p

i=1 aiB
i is defined with the backshift operator B. The innovations {εt}nt=1

satisfy E(εt) = 0 and Var(εt) = σ2
ε ∈ (0,∞), and are assumed to have no serial correlations;

further assumptions on {εt}nt=1 are made in Assumption 3.1. We denote by µ◦j := (1 −∑p
i=1 ai)fθj+1 the effective mean level over each interval θj + p + 1 ≤ t ≤ θj+1, for j =

0, . . . , q, and by dj = µ◦j−µ◦j−1 the effective size of change correspondingly. Also recall that

δj = min(θj − θj−1, θj+1 − θj).

In the model selection procedure, we do not assume that the AR order p is known, and

its data-driven choice is incorporated into the model selection methodology as described

later. For now, suppose that it is set to be some integer r ≥ 0, and that a change point

model is given by a set of change point candidates A = {kj, 1 ≤ j ≤ m : k1 < . . . < km} ⊂

{1, . . . , n}. Then, Schwarz criterion (Schwarz, 1978) is defined as

SC ({Xt}nt=1,A, r) =
n

2
log
(
σ̂2
n ({Xt}nt=1,A, r)

)
+ (|A|+ r)ξn, (7)

where σ̂2
n({Xt}nt=1,A, r) denotes a measure of goodness-of-fit (its precise definition is given

below), and a penalty is imposed on the model complexity determined by the AR order

and the number of change points; the requirement on the penalty parameter ξn in relation

to the distribution of {εt} is discussed in Assumption 3.4.
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We adopt the residual sum of squares as σ̂2
n({Xt}nt=1,A, r), i.e.

σ̂2
n({Xt}nt=1,A, r) =

1

n
‖Y −Xβ̂‖2, where Y = (X1, . . . , Xn)> and

X = X(A, r) =

[
L(r)︸︷︷︸
n×r

R(A)︸ ︷︷ ︸
n×(m+1)

]
=



X0 · · · X1−r 1 0 0 · · · 0
...

Xk1−1 · · · Xk1−r 1 0 0 · · · 0

Xk1 · · · Xk1−r+1 0 1 0 · · · 0
...

...

Xn−1 · · · Xn−r 0 0 0 · · · 1


. (8)

For notational convenience, we assume that X0, . . . , X−r+1 are available and their means

remain constant such that E(Xt) = E(X1) for t ≤ 0; in practice, we can simply omit the first

pmax observations when constructing Y and X above, where pmax denotes a pre-specified

upper bound on the AR order. The matrix X is divided into the AR part contained in

L(r) and the deterministic part in R(A) under (6). We propose to obtain the estimator

of regression parameters denoted by β̂ = β̂(A, r) = (α̂(r)>, µ̂(A)>)> via least squares

estimation, where α̂(r) ∈ Rr denotes the estimator of the AR parameters and µ̂(A) ∈

R|A|+1 that of the segment-specific levels.

We select the typitcally unknown AR order p as follows: AR models of varying orders

r ∈ {0, . . . , pmax}, are fitted to the data from which we estimate p by

p̂ = p̂(A) = arg minr∈{0,...,pmax} SC ({Xt}nt=1,A, r) . (9)

In our theoretical analysis, we fully address that the estimator p̂(A) is used rather than

the true AR order p.

3.2 gSa: sequential model selection

We first narrow down the model selection problem to that of determining between a given

change point model A and the null model without any change points.

Suppose that the number and locations of mean shifts are consistently estimated by

(a subset of) A in the sense made clear in Assumption 3.2 below, which includes the
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case of no change point (q = 0) with the trivial subset ∅ ⊂ A. Then, the estimator

β̂(A, p̂) = (α̂(p̂)>, µ̂(A)>)> can be shown to estimate the AR parameters sufficiently well

with p̂ = p̂(A) returned by (9), and the criterion SC({Xt}nt=1,A, p̂) gives a suitable indicator

of the goodness-of-fit of the change point model A offset by the increased model complexity.

On the other hand, if any change point is ignored in fitting an AR model, the resultant AR

parameter estimators over-compensate for the under-specification of mean shifts. In our

numerical experiments (reported in Appendix D.3), this often leads to SC({Xt}nt=1, ∅, p̂(∅))

having a smaller value than SC({Xt}nt=1,A, p̂) such that their direct comparison returns

the null model even though there are multiple change points present and detected by A.

Instead, we propose to compare SC({Xt}nt=1,A, p̂) against

SC0 ({Xt}nt=1, α̂(p̂)) :=
n

2
log

(
‖(I−Π1) (Y − L(p̂)α̂(p̂))‖2

n

)
+ p̂ ξn,

where I − Π1 denotes the projection matrix removing the sample mean from the right-

multiplied vector. By having the plug-in estimator α̂(p̂) from β̂(A, p̂) in its definition, SC0

avoids the above-mentioned difficulty arising when evaluating Schwarz criterion at a model

that under-specifies the change points. We conclude that the data is better described by

the change point model A if

SC0 ({Xt}nt=1, α̂(p̂)) > SC({Xt}nt=1,A, p̂), (10)

and if the converse holds, we prefer the null model over the change point model.

This Schwarz criterion-based model selection strategy is extended to be applicable with

a sequence of nested change point models ∅ = Θ̂0 ⊂ Θ̂1 ⊂ . . . ⊂ Θ̂M as in (4) even

when M > 1. Referred to as the gappy Schwarz algorithm (gSa) in the remainder of

the paper, the proposed methodology performs a backward search along the sequence

from the largest model Θ̂l with l = M , sequentially evaluating whether the reduction

in the goodness-of-fit (i.e. increase in the residual sum of squares) by moving from Θ̂l

to Θ̂l−1, is sufficiently offset by the decrease in model complexity. More specifically, let

s, e ∈ Θ̂l−1∪{0, n} denote two candidates satisfying {s+ 1, . . . , e− 1}∩ Θ̂l−1 = ∅, and sup-

pose thatA = {s+1, . . . , e−1}∩(Θ̂l\Θ̂l−1) is not empty (by definition, {s, e} ⊂ Θ̂l∪{0, n}).

In other words, A contains candidate estimators detected within the local environment
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{s+1, . . . , e−1}, which appear in Θ̂l but do not appear in the smaller models Θ̂l′ , l
′ ≤ l−1.

Then, we compare SC({Xt}et=s+1,A, p̂s:e) against SC0({Xt}et=s+1, α̂s:e(p̂s:e)) as in (10), with

the least squares estimator of the AR parameters α̂s:e(p̂s:e) and its dimension p̂s:e obtained

locally by minimising SC({Xt}et=s+1,A, r) over r (see (9)). If SC({Xt}et=s+1,A, p̂s:e) <

SC0({Xt}et=s+1, α̂s:e(p̂s:e)), the change point estimators in A are deemed as not being spu-

rious; if this is the case for all estimators in Θ̂l \ Θ̂l−1, we return Θ̂l as the final model.

In our theoretical analysis, when q ≥ 1, we assume that there exists some 1 ≤ l∗ ≤ M

such that Θ̂l∗ correctly detects all change points and nothing else (see Assumption 3.2 be-

low), which is guaranteed by the model sequence generation method described in Section 2.

Then with high probability, we have SC({Xt}et=s+1,A, p̂s:e) < SC0({Xt}et=s+1, α̂s:e(p̂s:e)) si-

multaneously in all local regions {s+1, . . . , e} overlapping with Θ̂l∗\Θ̂l∗−1 while when l > l∗,

we have SC({Xt}et=s+1,A, p̂s:e) ≥ SC0({Xt}et=s+1, α̂s:e(p̂s:e)) in all such regions. Therefore,

sequentially examining the nested change point models from the largest model Θ̂M , gSa is

expected to return Θ̂l∗ as the final model. In its implementation, in the unlikely event of

disagreement across the regions containing Θ̂l \ Θ̂l−1, we take a conservative approach and

conclude that Θ̂l contains spurious estimators, and update l → l − 1 to repeat the same

procedure until some Θ̂l, l ≥ 1, is selected as the final model, or the null model Θ̂0 = ∅ is

reached. The full algorithmic description of gSa is provided in Appendix A.2.

In summary, gSa does not directly minimise Schwarz criterion but starting from the

largest model, searches for the first largest model Θ̂l in which all candidate estimators in

Θ̂l\Θ̂l−1 are deemed important as described above. By adopting SC0 for model comparison,

it avoids evaluating Schwarz criterion at a model that under-estimates the number of change

points (which may lead to loss of power) and achieves model selection consistency as shown

in the next section.

3.3 Theoretical properties

For the theoretical analysis of gSa, we make a set of assumptions and remark on their

relationship to those made in Section 2.3. Assumption 3.1 is imposed on the stochastic

part of model (6).

14



Assumption 3.1. (i) The characteristic polynomial a(z) = 1 −
∑p

i=1 aiz
i has all of its

roots outside the unit circle |z| = 1.

(ii) {εt} is an ergodic and stationary martingale difference sequence with respect to

an increasing sequence of σ-fields Ft, such that εt and Xt are Ft-measurable and

E(εt|Ft−1) = 0.

(iii) There exists some ∆ > 0 such that supt E(|εt|2+∆|Ft−1) <∞ a.s.

(iv) Let P(En)→ 1 with ωn satisfying
√

log(n) = O(ωn) and ω2
n = O(min1≤j≤q δj), where

En =
{

max0≤s<e≤n(e− s)−1/2
∣∣∣∑e

t=s+1 εt

∣∣∣ ≤ ωn

}
.

Assumption 3.1 (i)–(iii) are taken from Lai and Wei (1982a,b, 1983), where the strong

consistency in stochastic regression problems is established. In particular, Assumption 3.1 (i)

indicates that {Zt}nt=1 is a short-memory linear process. The bound in Assumption 3.1 (iv)

is related to the detectability of change points, and gives a lower bound on the penalty

parameter ξn of Schwarz criterion, see Assumption 3.4. Theorem 1.2A of De la Peña

(1999) derives a Bernstein-type inequality for a martingale difference sequence satisfying

E(|εt|k) ≤ (k!/2)ckεE(ε2
t ) for all k ≥ 3 and some cε ∈ (0,∞), from which we readily obtain

ωn � log(n). Under a more stringent condition that {εt} is a sequence of i.i.d. sub-Gaussian

random variables, it suffices to set ωn �
√

log(n) (e.g. see Proposition 2.1 (a) of Cho and

Kirch (2021b)); Appendix G considers i.i.d. sub-exponential {εt} for which ωn � log(n).

Remark 3.1 (Links between Assumptions 2.1, 2.2 and 3.1). Assumption 2.1 does not

impose any parametric condition on the dependence structure of {Zt}nt=1. For linear,

short memory processes (implied by Assumption 3.1 (i)), Peligrad and Utev (2006) show

that the invariance principle for the linear process is inherited from that of the innova-

tions. Then, as discussed in Remark 2.1, a logarithmic bound ωn � logκ(n) follows from∑`
t=1 εt−W (`) = O(logκ

′
(n)) for some κ′ ∈ [1, κ), which in turn leads to ζn � ωn. In view

of Assumptions 2.1 and 2.2, the condition that ω2
n = O(min1≤j≤q δj) is a mild one.

We impose the following assumption on the nested model sequence Θ̂0 ⊂ . . . ⊂ Θ̂M ,

where Θ̂l = {θ̂l,j, 1 ≤ j ≤ q̂l : θ̂l,1 < . . . < θ̂l,q̂l} for l ≥ 1.
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Assumption 3.2. Let Mn denote the following event: for a given penalty ξn, we have

ξn(min0≤j≤q̂M (θ̂M,j+1 − θ̂M,j))
−1 = o(1) and q̂M = |Θ̂M | is fixed for all n. Additionally,

under H1 : q ≥ 1, there exists l∗ ∈ {1, . . . ,M} such that

q̂l∗ = q and max
1≤j≤q

d2
j

∣∣∣θ̂l∗,j − θj∣∣∣ ≤ ρn (11)

for some ρn satisfying (min1≤j≤q d
2
jδj)

−1ρn → 0. Then, P(Mn)→ 1.

By Theorem 2.1, we have the condition (11) satisfied by the gappy model sequence

generated as in (4) with ρn � ζ2
n. We state this result as an assumption so that if gSa were

to be applied with an alternative solution path algorithm, our results would be directly

applicable if the latter satisfied Assumption 3.2. Since the serial dependence structure is

learned from the data by fitting an AR model to each segment, the requirement on the

minimum spacing of the largest model Θ̂M is a natural one and it can be hard-wired into

the solution path generation step.

Assumption 3.3 is on the effective size of changes under (6), and Assumption 3.4 on the

choice of the penalty parameter ξn. In particular, the choice of ξn connects the detectability

of change points with the level of noise remaining in the data after accounting for the

autoregressive dependence structure.

Assumption 3.3. max1≤j≤q |dj| = O(1) and Dn := min1≤j≤q d
2
j δj →∞ as n→∞.

Assumption 3.4. ξn satisfies D−1
n ξn = o(1) and ξ−1

n max(ω2
n, ρn) = o(1).

By Assumption 3.1 (i), the effective change size dj is of the same order as f ′j since

dj = (1−
∑p

i=1 ai)f
′
j. Therefore, Assumption 3.3 on the detection lower bound formulated

with dj, together with Assumption 3.4, is closely related to Assumption 2.2 formulated

with f ′j. In fact, we can select ξn such that Assumption 3.4 follows immediately from

Assumption 2.2, recalling that the rate of localisation attained by the latter is ρn � ζ2
n and

ωn = O(ζn).

Theorem 3.1. Let Assumptions 3.1–3.4 hold. Then, on En∩Mn, gSa returns Θ̂ = {θ̂j, 1 ≤

j ≤ q̂ : θ̂1 < . . . < θ̂q̂} satisfying
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q̂ = q and max1≤j≤q d
2
j

∣∣∣θ̂j − θj∣∣∣ ≤ ρn

for n large enough.

Theorem 3.1 establishes that gSa achieves model selection consistency. Together, Theo-

rems 2.1–3.1 lead to the consistency of WCM.gSa, the methodology combining WCM-based

gappy model sequence generation and Schwarz criterion-based model selection steps. Once

the number of change points and their locations are consistently estimated, we can further

improve the location estimators in Θ̂; Appendix B discusses a simple refinement procedure

which achieves the minimax optimal localisation rate.

4 Numerical results

4.1 Simulation results

Appendix C discusses in detail the choice of the tuning parameters for WCM.gSa. We

investigate the performance of WCM.gSa on simulated datasets, in comparison with De-

CAFS (Romano et al., 2021), DepSMUCE (Dette et al., 2020) and SNCP (Zhao et al.,

2021) (the latter two applied with significance level α = 0.05). Here, we present the results

from three representative settings and defer the descriptions of the full simulation results

(from thirteen scenarios with varying n, change point and serial dependence structures) and

the competing methodologies to Appendix D, where we include DepSMUCE and SNCP

applied with different choices of α as well as MACE proposed in Wu and Zhou (2020).

We generate 1000 realisations under each setting where εt ∼iid N (0, 1). In addition to

when ft undergoes mean shifts as described below, we also consider the case where ft = 0

to evaluate the size control performance.

(M1) ft undergoes q = 5 change points at (θ1, θ2, θ3, θ4, θ5) = (100, 300, 500, 550, 750) with

n = 1000 and (f0, f
′
1, f

′
2, f

′
3, f

′
4, f

′
5) = (0, 1,−1, 2,−2,−1), and {Zt} follows an MA(1)

model Zt = εt + b1εt−1 with b1 = −0.9.

(M2) ft undergoes q = 5 change points θj as in (M1) with n = 1000 and (f0, f
′
1, f

′
2, f

′
3, f

′
4, f

′
5) =

(0, 5,−3, 6,−7,−3), and {Zt} follows an ARMA(2, 6) model: Zt = 0.75Zt−1 −
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0.5Zt−2 + εt + 0.8εt−1 + 0.7εt−2 + 0.6εt−3 + 0.5εt−4 + 0.4εt−5 + 0.3εt−6.

(M3) ft undergoes q = 15 change points at θj = dnj/16e, j = 1, . . . , 15 with n =

2000, where the level parameters fθj+1 are generated uniformly as (−1)j · fθj+1 ∼iid

U(1, 2), j = 0, . . . , 15, for each realisation. {Zt} follows an AR(1) model: Zt =

a1Zt−1 +
√

1− a2
1εt with a1 = 0.9.

Table 1 summarises the simulation results; see Table D.1 in Appendix for the full

results where the exact definitions of RMSE and dH can be found. Overall, across the

various scenarios, WCM.gSa performs well both when q = 0 and q ≥ 1. In particular, the

proportion of the realisations where WCM.gSa detects spurious estimators in the absence

of any mean shift is close to 0. Controlling for the size, especially in the presence of serial

correlations, is a difficult task and as shown below, competing methods fail to do so by a

large margin in some scenarios. When q ≥ 1, WCM.gSa performs well in most scenarios

according to a variety of criteria, such as model selection accuracy measured by |q̂ − q| or

the localisation accuracy measured by dH . We highlight the importance of the gappy model

sequence generation step of Section 2.2: see the results reported under ‘no gap’ which refers

to a procedure that omits this step from WCM.gSa and applies the Schwarz criterion-based

model selection procedure directly to the model sequence consisting of consecutive entries

from the WBS2-generated solution path. It suffers from having to perform a large number

of model comparison steps and tends to over-estimate the number of change points in some

scenarios.

DepSMUCE occasionally suffers from a calibration issue; in order not to detect spurious

change points, it requires α to be set conservatively but for improved detection power,

a larger α is better. In addition, the estimator of the LRV proposed therein tends to

under-estimate the LRV when it is close to zero as in (M1), or when there are strong

autocorrelations as in (M3), thus incurring a large number of falsely detected change points.

Similar sensitivity to the choice of α is observable from SNCP. In addition, it tends to return

spurious change point estimators when q = 0 in the presence of strong autocorrelations as

in (M3), while under-detecting change points generally when q ≥ 1 with the exception

of (M1).
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DeCAFS operates under the assumption that {Zt}nt=1 is an AR(1) process. Therefore,

it is applied under model mis-specification in some scenarios, but still performs reasonably

well in not returning false positives. The exception is (M3) where, in the presence of strong

autocorrelations, it returns spurious estimators over 50% of realisations even though the

model is correctly specified in this scenario. Its detection accuracy suffers under model

mis-specification in some scenarios such as (M1) and (M2) when compared to WCM.gSa,

but DeCAFS tends to attain good MSE.

4.2 Nitrogen oxides concentrations in London

NOx is a generic term for the nitrogen oxides that are the most relevant for air pollution,

namely nitric oxide (NO) and nitrogen dioxide (NO2). The main anthropogenic sources of

NOx are mobile and stationary combustion sources, and its acute and chronic health effects

have been well-documented (Kampa and Castanas, 2008). We analyse the daily average

concentrations of NO2 and NOx measured (in µg/m3) at Marylebone Road in London,

U.K., from September 1, 2000 to September 30, 2020; the datasets were retrieved from

Defra (https://uk-air.defra.gov.uk/). The concentration measurements are positive

integers and exhibit seasonality and weekly patterns as well as distinguished behaviour on

bank holidays, since road traffic is the principal outdoor source of NOx in a busy London

road. To correct for possible heavy-tailedness of the raw measurements, we take the square

root transform and further remove seasonal and weekly trends and bank holiday effects

from the transformed data using a model trained on the observations from January 2004

to December 2010; for details of the pre-processing steps, see Appendix E.1. The resulting

time series are plotted in Figure 1, where it is also seen that the thus-transformed data

exhibit persistent autocorrelations.

We analyse the transformed time series from NO2 and NOx concentrations for change

points in the level, with the tuning parameters for WCM.gSa chosen as recommended in

Appendix C apart from M , the number of candidate models considered; given the large

number of observations (n = 7139), we allow for M = 10 instead of the default choice

M = 5. The change points detected by WCM.gSa are plotted in Figure 1. For comparison,
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Table 1: (M1)–(M11): We report the proportion of returning q̂ ≥ 1 when q = 0 (size) and the

summary of estimated change points when q > 1 according to the distribution of q̂ − q, relative

MSE (RMSE) and the Hausdorff distance (dH) over 1000 realisations. Methods that control the

size at 0.05, and that achieve the best performance when q > 1 according to different criteria, are

highlighted in bold for each scenario.

q̂ − q

Model Method Size ≥ −3 −2 −1 0 1 2 3 ≤ RMSE dH

(M1) WCM.gSa 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 68.720 1.988

no gap 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 68.720 1.988

DepSMUCE 1.000 0.000 0.000 0.000 0.485 0.167 0.163 0.185 219.196 48.359

DeCAFS 0.064 0.000 0.006 0.029 0.742 0.148 0.053 0.022 304.694 26.274

SNCP 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 35.512 1.06

(M2) WCM.gSa 0.001 0.000 0.000 0.019 0.873 0.092 0.014 0.002 4.907 34.627

no gap 0.020 0.002 0.002 0.012 0.178 0.024 0.037 0.745 11.030 148.765

DepSMUCE 0.031 0.052 0.385 0.429 0.134 0.000 0.000 0.000 18.567 145.406

DeCAFS 0.099 0.006 0.035 0.137 0.773 0.049 0.000 0.000 3.891 61.517

SNCP 0.084 0.117 0.293 0.372 0.215 0.002 0.001 0.000 15.428 166.724

(M3) WCM.gSa 0.000 0.087 0.177 0.233 0.319 0.076 0.041 0.067 3.184 86.139

no gap 0.058 0.000 0.000 0.000 0.000 0.000 0.000 1.000 4.498 92.759

DepSMUCE 0.936 0.767 0.153 0.070 0.010 0.000 0.000 0.000 8.655 139.298

DeCAFS 0.565 0.000 0.004 0.019 0.755 0.203 0.017 0.002 1.065 19.751

SNCP 0.258 0.956 0.034 0.007 0.003 0.000 0.000 0.000 11.698 290.266
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we also report the change points estimated by DepSMUCE and DeCAFS, see Table 2.

Figure 1 shows that a good deal of autocorrelations remain in the data after removing

the estimated mean shifts, but the persistent autocorrelations are no longer observed. This

supports the hypothesis that the (de-trended and transformed) NO2 and NOx concentra-

tions over the period in consideration, can plausibly be accounted for by a model with

short-range dependence and multiple mean shifts; we refer to Mikosch and Stărică (2004),

Berkes et al. (2006) Yau and Davis (2012) and Norwood and Killick (2018) for discussions

on how weakly dependent time series with mean shifts may appear as a long-range depen-

dent time series. In Appendix E.2, we further validate the set of change point estimators

detected by WCM.gSa from the NO2 time series, by attempting to remove the bulk of

serial dependence from the data and then applying an existing procedure for change point

detection for uncorrelated data.

In February 2003, a programme of traffic management measures was introduced in cen-

tral London including the installation of particulate traps on most London buses and other

heavy duty diesel vehicles, which convert NO in the exhaust stream to NO2 and thus bring

in the increase of primary NO2 emissions from such vehicles (Air Quality Expert Group,

2004). This accounts for the prominent increase in the concentration of NO2 detected

around January 2003 by WCM.gSa (also by DepSMUCE and DeCAFS) which, however, is

not observed from NOx, since the latter contains the combined concentrations of NO and

NO2. The two series share the common change point detected at the end of March 2019 (not

detected by DepSMUCE or DeCAFS). The Ultra Low Emission Zone in central London was

launched on 8 April 2019, which includes Marylebone Road where the measurements were

taken, and its introduction coincides with the decline in the concentrations of both NO2

and NOx. Another common change point is detected on March 18, 2020 (also detected by

DepSMUCE and DeCAFS) which confirms that the nation-wide COVID-19 lockdown on

March 23, 2020 led to the substantial reduction of NOx levels across the country (Higham

et al., 2020).

21



−
6

−
4

−
2

0
2

4

NO2

2000−09 2001−10 2002−10 2003−11 2004−12 2006−01 2007−01 2008−02 2009−02 2010−03 2011−04 2012−04 2013−05 2014−06 2015−06 2016−07 2017−07 2018−08 2019−09 2020−09

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

NO2: before mean shift adjustment

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

NO2: after mean shift adjustment

−
10

−
5

0
5

10
15

NOx

2000−09 2001−10 2002−10 2003−11 2004−12 2006−01 2007−01 2008−02 2009−02 2010−03 2011−04 2012−04 2013−05 2014−06 2015−06 2016−07 2017−07 2018−08 2019−09 2020−09

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

NOx: before mean shift adjustment

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

A
C

F

NOx: after mean shift adjustment

Figure 1: First (third) panel: daily average concentrations of NO2 (NOx) after transfor-

mation and de-trending, plotted together with the change points detected by WCM.gSa

(vertical lines) and estimated piecewise constant mean (bold lines). Second (fourth) panel:

autocorrelation function of transformed and de-trended NO2 (NOx) without (left) and with

(right) the time-varying mean adjusted.
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Table 2: Change points detected from the daily average concentrations of NO2 and NOx

measured at Marylebone Road in London from September 1, 2000 to September 30,

2020. Any location estimators commonly detected from both NO2 and NOx concentra-

tions (within 10 days from one another) by each method are highlighted in bold. For

DepSMUCE, parameterised by the significance level α, identical estimators are returned

with either of α ∈ {0.05, 0.2}.

Method NO2 NOx

WCM.gSa 2003-01-31, 2007-03-17, 2007-11-15, 2001-03-15, 2018-05-13,

2008-10-26, 2010-07-25, 2018-10-13, 2019-03-22, 2020-03-18

2019-03-30, 2020-03-18

DepSMUCE 2003-01-31, 2010-07-25, 2001-03-15, 2018-05-13,

2018-10-14, 2020-03-18 2020-03-18

DeCAFS 2003-02-05, 2005-12-11, 2005-12-17 2001-11-07, 2001-11-09, 2005-12-08

2007-04-25, 2007-05-05, 2007-12-10 2005-12-11, 2005-12-17, 2008-12-06

2008-03-03, 2008-03-04, 2009-09-08 2008-12-08, 2018-05-13, 2020-03-18

2009-09-20, 2012-10-20, 2012-10-27

2018-10-14, 2020-03-18
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