
Supplementary Appendix for
“Multiple change point detection under serial dependence:
Wild contrast maximisation and gappy Schwarz algorithm”

Haeran Cho1 Piotr Fryzlewicz2

A Algorithms

A.1 Wild Binary Segmentation 2 algorithm

Algorithm 1 provides a pseudo code for the Wild Binary Segmentation 2 (WBS2) algorithm
proposed in Fryzlewicz (2020).
We remark that WBS2 as defined in Fryzlewicz (2020) uses random sampling in line 7 of
Algorithm 1, but our preference is for deterministic sampling as it generates reproducible
results without having to fix a random seed. To obtain at least R̃ intervals over an equispaced
(or almost equispaced, if exactly equal spacing is not possible) grid on a generic interval [s, e],
we firstly select the smallest integer K̃ for which the number of all intervals with start- and
end-points in the set {1, . . . , K̃} equals or exceeds R̃. Next, we map (linearly with rounding)
the integer grid [1, K̃] onto an integer grid within [s, e], as j → [ e−s

K̃−1
j + s − e−s

K̃−1
] for each

j ∈ {1, . . . , K̃}, where [·] represents rounding to the nearest integer. We then use all start-
and end-points on the resulting grid to obtain the required collection (sm, em) in line 7 of
Algorithm 1.

A.2 Gappy Schwarz algorithm

For each l ≥ 1, we denote Θ̂l = {θ̂l,j , 1 ≤ j ≤ q̂l : θ̂l,1 < . . . < θ̂l,q̂l}, and adopt the notational
convention that θ̂l,0 = 0 and θ̂l,q̂l+1 = n. Initialised with l = M , gSa performs the following
steps.

Step 1: We identify u ∈ {0, . . . , q̂l−1} with {θ̂l−1,u + 1, . . . , θ̂l−1,u+1 − 1} ∩ Θ̂l 6= ∅; that is,
the segment {θ̂l−1,u + 1, . . . , θ̂l−1,u+1 − 1} defined by the consecutive elements of Θ̂l−1,
has additional change points detected in Θ̂l such that {θ̂l−1,u + 1, . . . , θ̂l−1,u+1 − 1} ∩
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Algorithm 1: Wild Binary Segmentation 2
Input: Data {Xt}nt=1, the number of intervals Rn
Function wbs2({Xt}nt=1, Rn, s, e):

if e− s ≤ 1 then return ∅
Let As,e ← {(`, r) ∈ Z2 : s ≤ ` < r ≤ e and r − ` > 1}
if |As,e| ≤ Rn then

R̃← |As,e| and set Rs,e ← As,e
else

R̃← Rn and draw R̃ elements from As,e deterministically over an equispaced
grid, to form Rs,e = {1 ≤ m ≤ R̃ : (sm, em)}

end
Identify (s◦, k◦, e◦) = arg max

(sm,k,em): 1≤m≤R̃, sm<k<em |Xsm,k,em |

return (s◦, k◦, e◦, |Xs◦,k◦,e◦ |) ∪ wbs2({Xt}nt=1, Rn, s, k◦) ∪ wbs2({Xt}nt=1, Rn, k◦, e)

P0 ← wbs2({Xt}nt=1, Rn, 0, n)

Output: P0

(Θ̂l \ Θ̂l−1) 6= ∅. By construction, the set of such indices, Il := {u1, . . . , uq′l}, satisfies
|Il| ≥ 1. For each uv, v = 1, . . . , q′l, we repeat the following steps with a logical vector
of length q′l, F ∈ {TRUE, FALSE}q′l , initialised as F = (TRUE. . . . , TRUE).

Step 1.1: Setting A = {θ̂l−1,uv + 1, . . . , θ̂l−1,uv+1 − 1} ∩ Θ̂l, obtain p̂ that returns the

smallest SC({Xt}
θ̂l−1,uv+1

t=θ̂l−1,uv+1
,A, r) over r ∈ {0, . . . , pmax} as outlined in (9), and

the corresponding AR parameter estimator α̂(p̂) via least squares estimation.

Step 1.2: If SC({Xt}
θ̂l−1,uv+1

t=θ̂l−1,uv+1
,A, p̂) < SC0({Xt}

θ̂l−1,uv+1

t=θ̂l−1,uv+1
, α̂(p̂)), update Fv ← FALSE.

Step 2: If some elements of F satisfy Fv = TRUE and l > 1, update l ← l − 1 and go
to Step 1. If Fv = FALSE for all v = 1, . . . , q′l, return Θ̂l as the set of change point
estimators. Otherwise, return Θ̂0 = ∅.

Theorem 3.1 shows that we have either Fv = FALSE for all v = 1, . . . , q′l when the corresponding
Θ̂l = Θ̂l∗ (see Assumption 3.2 for the definition of Θ̂l∗), or Fv = TRUE for all v when l > l∗

and thus all Θ̂l \ Θ̂l−1 are spurious estimators. In implementing the methodology, we take
a conservative approach in the above Step 2, to guard against the unlikely event where the
output F contains mixed results.

B Refinement of change point estimators

Throughout this section, we condition on the event that Θ̂[q] is chosen at the model selection
step, and discuss how the location estimators can further be refined; consistent model selection
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based on the estimators of change point locations returned directly by WBS2 (without any
additional refinement), is discussed in Section 3.
By Theorem 2.1 and Assumption 2.2, each θ̂j , 1 ≤ j ≤ q, is sufficiently close to the corre-
sponding change point θj in the sense that |θ̂j − θj | ≤ (f ′j)

−2ρn ≤ cδj for some c ∈ (0, 1/6)

with probability tending to one, for n large enough. Defining `1 = 0, rq = n,

`j =

⌊
2

3
θ̂j−1 +

1

3
θ̂j

⌋
, j = 2, . . . , q, and rj =

⌊
1

3
θ̂j +

2

3
θ̂j+1

⌋
, j = 1, . . . , q − 1,

we have each interval (`j , rj) sufficiently large and contain a single change point θj well within
its interior, i.e.

min(θj − `j , rj − θj) ≥ (2/3− c)δj > δj/2, and (B.1)

min(`j − θj−1, θj+1 − rj) ≥ (1/3− c)δj > 0. (B.2)

Then, we propose to further refine the location estimator θ̂j by θ̌j = arg max`j<k<rj
∣∣X`j ,k,rj ∣∣,

which generally improves the localisation rate. To see this, we impose the following assumption
on the error distribution which, by its formulation, trivially holds under Assumption 2.1 with
ζ̃n = ζn. However, we often have the assumption met with a much tighter bound as discussed
in Remark B.1, which leads to the improvement in the localisation rate of the refined estimators
θ̌j as shown in Proposition B.1.

Assumption B.1. For any sequence 1 ≤ an ≤ min1≤j≤q(f
′
j)

2δj and some ζ̃n satisfying
ζ̃n = O(ζn) (with ζn as in Assumption 2.1), let P(Z̃n)→ 1 where

Z̃n =

max
1≤j≤q

max
(f ′j)
−2an≤`≤θj−θj−1

√
(f ′j)

−2an

`

∣∣∣∣∣∣
θj∑

t=θj−`+1

Zt

∣∣∣∣∣∣ ≤ ζ̃n


⋂max
1≤j≤q

max
(f ′j)
−2an≤`≤θj+1−θj

√
(f ′j)

−2an

`

∣∣∣∣∣∣
θj+`∑
t=θj+1

Zt

∣∣∣∣∣∣ ≤ ζ̃n
 .

Proposition B.1. Let the assumptions of Theorem 2.1 and Assumption B.1 hold. Then,
there exists c3 ∈ (0,∞) such that

P

(
max

1≤j≤q
(f ′j)

2|θ̌j − θj | ≤ c3(ζ̃n)2

)
≥ P

(
Zn ∩ Z̃n

)
→ 1.

Remark B.1. When the number of change points q is bounded, Assumption B.1 holds with ζ̃n
diverging at an arbitrarily slow rate, provided that

E

∣∣∣∣∣
r∑

t=l+1

Zt

∣∣∣∣∣
ν

≤ C(r − l)ν/2 for any −∞ < l < r <∞ (B.3)
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for some constant C > 0 and ν > 2, see Proposition 2.1 (c.ii) of Cho and Kirch (2021). The
condition (B.3) is satisfied by many time series models, see Appendix B.2 in Kirch (2006) and
the references therein. On the other hand, Theorem 1 of Shao and Zhang (2010) indicates
that the lower bound

√
log(n) = O(ζn) cannot be improved. Therefore, Proposition B.1

shows that the extra step indeed improves upon the localisation rate attained by the WBS2
reported in Theorem 2.1 (i). In fact, for time series models satisfying (B.3), the refinement
leads to (f ′j)

2|θ̌j − θj | = Op(1), thus matching the minimax optimal rate of multiple change
point localisation (see Proposition 6 of Verzelen et al. (2020)).

C Implementation and the choice of tuning parameters

In line with the condition (5) and Assumption 3.2, we set Qn = blog1.9(n)c, which imposes
an upper bound on the number of change points, and we allow for at most M = 5 nested
change point models (in addition to the null model) to be considered by the model selection
methodology. By default, the number of intervals drawn by the deterministic sampling in
Algorithm 1 is set at Rn = 100, and the maximum AR order is set at pmax = 10 unless stated
otherwise when input time series is short. To ensure that there are enough observations over
each interval defined by two adjacent candidate change point estimators for numerical stability,
we set the minimum spacing to be max(20, pmax + dlog(n)e) and feed this into Algorithm 1 in
the solution path generation. Finally, the penalty of SC is given by ξn = log1.01(n) which is in
accordance with Assumption 3.4 when the innovations {εt} are distributed as (sub-)Gaussian
random variables such that ωn �

√
log(n) fulfils Assumption 3.1 (iv).

D Complete simulation studies

In this section, we present the complete simulation results summarised in Section 4.1 of the
main text.

D.1 Set-up

We consider a variety of data generating processes for {Xt}; in the following, we assume
εt ∼iid N (0, σ2

ε) with σε = 1 unless stated otherwise. In addition to (M1)–(M3), we simulate
datasets under the following scenarios. We also consider the case where ft = 0 in each
setting, to evaluate the size control performance of the methods considered in the comparative
simulation study (their descriptions are given below the list of data generating processes).

(M4) ft undergoes q = 5 change points at (θ1, θ2, θ3, θ4, θ5) = (100, 300, 500, 550, 750) with
n = 1000 and (f0, f

′
1, f
′
2, f
′
3, f
′
4, f
′
5) = (0, 1,−1, 2,−2,−1), and Zt = εt.
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(M5) ft undergoes q = 2 change points at (θ1, θ2) = (75, 125) with n = 200 and (f0, f
′
1, f
′
2) =

(0, 2.5,−2.5), and {Zt} follows an ARMA(1, 1) model: Zt = a1Zt−1 + εt + b1εt with
a1 = 0.5, b1 = 0.3 and σε = 1/2.14285.

(M6) ft undergoes q = 2 change points at (θ1, θ2) = (50, 100) with n = 150 and (f0, f
′
1, f
′
2) =

(0, 2.5,−2.5), and {Zt} follows an AR(1) model: Zt = a1Zt−1 + εt with a1 = 0.5 and
σε =

√
1− a2

1.

(M7) ft undergoes q = 2 change points at (θ1, θ2) = (100, 200) with n = 300 and (f0, f
′
1, f
′
2) =

(0, 1,−1), and {Zt} follows an ARMA(1, 1) model: Zt = a1Zt−1 + εt + b1εt−1 with the
ARMA parameters are generated as a1, b1 ∼iid U(−0.9, 0.9) for each realisation, and
σε =

√
(1− a2

1)/(1 + a1b1 + b21).

(M8) ft undergoes q = 5 change points at (θ1, θ2, θ3, θ4, θ5) = (100, 300, 500, 550, 750) with
n = 1000 and (f0, f

′
1, f
′
2, f
′
3, f
′
4, f
′
5) = (0, 1,−1, 2,−2,−1), and {Zt} follows an MA(1)

model Zt = εt + b1εt−1 with b1 = 0.3.

(M9) ft undergoes q = 5 change points as in (M4) with n = 1000 and (f0, f
′
1, f
′
2, f
′
3, f
′
4, f
′
5) =

(0, 3,−3, 4,−4,−3), and {Zt} follows an MA(4) model: Zt = εt + 0.9εt−1 + 0.8εt−2 +

0.7εt−3 + 0.6εt−4.

(M10) ft undergoes q = 15 change points at θj = dnj/16e, j = 1, . . . , 15 with n = 2000, where
the level parameters fθj+1 are generated uniformly as (−1)j · fθj+1 ∼iid U(1, 2), j =

0, . . . , 15, for each realisation. {Zt} follows an AR(1) model as in (M6) with a1 = 0.5.

(M11) ft undergoes q = 10 change points at θj = 150j, j = 1, . . . , 10 with n = 1650 and
(f0, f

′
1, f
′
2, f
′
3, f
′
4, f
′
5, f
′
6, f
′
7, f
′
8, f
′
9, f
′
10) = (0, 7,−7, 6,−6, 5,−5, 4,−4, 3,−3), and {Zt} fol-

lows an ARMA(2, 6) model as in (M2).

(M12) ft is as in (M4) and {Zt} follows a time-varying AR(1) model: Zt = a1(t)Zt−1 + σ(t)εt

with a1(t) = 0.5− 0.2 cos(2πt/n) and σ(t) =
√

1− a1(t)2.

(M13) ft is as in (M4) and {Zt} follows a time-varying AR(1) model: Zt = a1(t)Zt−1 + σ(t)εt

where a1(t) is piecewise constant with change points at θj , j = 1, . . . , q such that a1(t) =

0.3It≤θ1 + 0.4Iθ1<t≤θ2 + 0.6Iθ2<t≤θ3 + 0.7Iθ3<t≤θ4 + 0.5Iθ4<t≤θ5 + 0.3It>θ5 and σ(t) =√
1− a1(t)2.

Apart from Model (M4), all others model have serial correlations in {Zt}nt=1. Models (M5)
(motivated by an example in Wu and Zhou (2020)), (M6) and (M7) consider relatively short
time series with n ∈ [150, 300]. Models (M2), (M8) and (M9) are taken from Dette et al. (2020).
In (M1), the LRV is close to zero and thus its accurate estimation is difficult. Models (M3)
and (M10) have a teeth-like signal containing frequent change points and the underlying {Zt}
has strong autocorrelations in (M3), and (M11) considers frequent, heterogeneous changes in
the mean. In Models (M12) and (M13), the noise {Zt}nt=1 has time-varying serial dependence
structure.
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We generate 1000 realisations under each model. For each scenario, we additionally consider
the case in which ft ≡ 0 (thus q = 0) in order to evaluate the proposed methodology on its size
control. On each realisation, we apply the proposed WCM.gSa with the tuning parameters
are selected as described in Section C. For comparison, we consider a procedure that omits the
gappy model sequence generation step from WCM.gSa: referred to as ‘no gap’, it applies the
SC-based model selection procedure directly to the model sequence consisting of consecutive
entries from the WBS2-generated solution path.
We include DepSMUCE (Dette et al., 2020), DeCAFS (Romano et al., 2021), MACE (Wu and
Zhou, 2020) and SNCP (Zhao et al., 2021) in the simulation studies. DepSMUCE extends the
SMUCE procedure (Frick et al., 2014) proposed for independent data, by estimating the LRV
using a difference-type estimator. MACE is a multiscale moving sum-based procedure with
self-normalisation-based scaling that accounts for serial correlations. SNCP is a time series
segmentation methodology that combines self-normalisation and a nested local window-based
algorithm, and is applicable to detect multiple change points in a broad class of parameters.
Although not its primary objective, DeCAFS can be adopted for the problem of detecting
multiple change points in the mean of an otherwise stationary AR(1) process, and we adapt the
main routine of its R implementation (Romano et al., 2020) to change point analysis under (1)
as suggested by the authors. For DepSMUCE and MACE, we consider α ∈ {0.05, 0.2} and
for SNCP, α ∈ {0.01, 0.05, 0.1} as per the codes provided by the authors. MACE requires
the selection of the minimum and the maximum bandwidths in the rescaled time [0, 1] and
moreover, the latter, say smax, controls the maximum detectable number of change points to
be (2smax)−1; we set smax = min(1/(3q), n−1/6) for fair comparison, which varies from one
model to another. Other tuning parameters not mentioned here are chosen as recommended
by the authors.

D.2 Results

Table D.1 summarises the performance of different change point detection methodologies in-
cluded in the comparative simulation study under the null model H0 : q = 0 and the alterna-
tive H1 : q > 1. More specifically, we report the proportion of falsely detecting one or more
change points under H0 (size), as well as the following statistics under H1: the distribution
of the estimated number of change points, the relative mean squared error (MSE):

n∑
t=1

(f̂t − ft)2/
n∑
t=1

(f̂∗t − ft)2

where f̂t is the piecewise constant signal constructed with the set of estimated change point
locations Θ̂, and f̂∗t is an oracle estimator constructed with the true θj , and the Hausdorff
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distance (dH) between Θ̂ and Θ:

dH(Θ̂,Θ) = max

(
max
θ∈Θ

min
θ̂∈Θ̂
|θ − θ̂|,max

θ̂∈Θ̂
min
θ∈Θ
|θ̂ − θ|

)
,

averaged over 1000 realisations.
Overall, across the various scenarios, WCM.gSa performs well under both the null and the
alternative scenarios. In particular, it keeps the size at bay under H0 regardless of the un-
derlying serial correlation structure; when the time series is sufficiently long (n ≥ 300), the
proportion of the events where WCM.gSa spuriously detects any change point under H0 is
strictly below 0.05 (often below 0.01). Even when the input time series is short as in (M6)
with n = 150, the proportion of such events is smaller than 0.1. Controlling for the size under
H0, especially in the presence of serial correlations, is a difficult task and as shown below,
other methods considered in the comparative study fail to do so by a large margin in some
scenarios.
Under H1, WCM.gSa performs well in most scenarios according to a variety of criteria, such
as model selection accuracy measured by |q̂− q| or the localisation accuracy measured by dH .
The results under (M12)–(M13) show that WCM.gSa is able to handle mild nonstationarities
in {Zt}nt=1. Without the gappy model sequence generation step, the procedure suffers from
having to perform a large number of model comparison steps, and the ‘no gap’ procedure
tends to over-estimate the number of change points when q is large, or in the presence of mild
nonstationarities in the noise. From this, we conclude that the gappy model sequence genera-
tion step plays an important role in final model selection by removing those candidate models
that are not likely to be the one correctly detecting all change points from consideration.
DepSMUCE performs well for short series (see (M6)) or in the presence of weak serial correla-
tions as in (M8), but generally suffers from a calibration issue. That is, in order not to detect
spurious change points under H0, it requires the tuning parameter to be set conservatively at
α = 0.05; however, for improved detection power, α = 0.2 is a better choice. In addition, the
estimator of the LRV proposed therein tends to under-estimate the LRV when it is close to
zero as in (M1), or when there are strong autocorrelations as in (M3), thus incurring a large
number of falsely detected change points under H0.
Similar sensitivity to the choice of the level α is observable in the case of SNCP, and it tends
to return spurious change point estimators when the time series is short as in (M5)–(M6),
or when autocorrelations are strong as in (M3), and tends to under-estimate the number of
change points generally with the exception of (M1).
DeCAFS operates under the assumption that {Zt}nt=1 is an AR(1) process. Therefore, it is
applied under model mis-specification in some scenarios, but still performs reasonably well in
not returning false positives under H0. The exception is (M3) where, in the presence of strong
autocorrelations, it returns spurious estimators over 50% of realisations even though the model

7



is correctly specified in this scenario. Its detection power suffers under model mis-specification
in some scenarios such as (M2) and (M9) when compared to WCM.gSa, but DeCAFS tends
to attain good MSE. MACE suffers from both size inflation and lack of power, possibly due
to its sensitivity to choice of some tuning parameters such as the bandwidths.

Table D.1: We report the proportion of rejecting H0 (by returning q̂ ≥ 1) under H0 : q = 0 (size)
and the summary of estimated change points under H1 : q > 1 according to the distribution of q̂ − q,
relative MSE and the Hausdorff distance (dH) over 1000 realisations. Methods that control the size
under H0 (according to the specified α for DepSMUCE, MACE and SNCP, and at 0.05 for WCM.gSa
and DeCAFS), and that achieve the best performance under H1 according to different criteria, are
highlighted in bold for each scenario.

q̂ − q
Model Method Size ≥ −3 −2 −1 0 1 2 3 ≤ RMSE dH

(M1) WCM.gSa 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 68.720 1.988

no gap 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 68.720 1.988

DepSMUCE(0.05) 1.000 0.000 0.000 0.000 0.485 0.167 0.163 0.185 219.196 48.359
DepSMUCE(0.2) 1.000 0.000 0.000 0.000 0.170 0.093 0.177 0.560 437.883 90.818

DeCAFS 0.064 0.000 0.006 0.029 0.742 0.148 0.053 0.022 304.694 26.274
MACE(0.05) 0.222 0.000 0.000 0.922 0.078 0.000 0.000 0.000 1729.645 56.939
MACE(0.2) 0.515 0.000 0.000 0.805 0.187 0.008 0.000 0.000 1724.294 65.194
SNCP(0.01) 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 35.512 1.06
SNCP(0.05) 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 35.512 1.06
SNCP(0.1) 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 35.512 1.06

(M2) WCM.gSa 0.001 0.000 0.000 0.019 0.873 0.092 0.014 0.002 4.907 34.627

no gap 0.020 0.002 0.002 0.012 0.178 0.024 0.037 0.745 11.030 148.765

DepSMUCE(0.05) 0.031 0.052 0.385 0.429 0.134 0.000 0.000 0.000 18.567 145.406
DepSMUCE(0.2) 0.142 0.006 0.093 0.410 0.490 0.001 0.000 0.000 11.066 83.157

DeCAFS 0.099 0.006 0.035 0.137 0.773 0.049 0.000 0.000 3.891 61.517
MACE(0.05) 0.682 0.767 0.157 0.064 0.012 0.000 0.000 0.000 40.977 316.419
MACE(0.2) 0.874 0.477 0.273 0.156 0.083 0.009 0.002 0.000 33.876 286.084
SNCP(0.01) 0.022 0.423 0.323 0.193 0.060 0.000 0.001 0.000 24.928 249.412
SNCP(0.05) 0.084 0.117 0.293 0.372 0.215 0.002 0.001 0.000 15.428 166.724
SNCP(0.1) 0.152 0.044 0.192 0.404 0.349 0.010 0.001 0.000 11.839 126.588

(M3) WCM.gSa 0.000 0.087 0.177 0.233 0.319 0.076 0.041 0.067 3.184 86.139

no gap 0.058 0.000 0.000 0.000 0.000 0.000 0.000 1.000 4.498 92.759

DepSMUCE(0.05) 0.936 0.767 0.153 0.070 0.010 0.000 0.000 0.000 8.655 139.298
DepSMUCE(0.2) 0.989 0.276 0.320 0.303 0.101 0.000 0.000 0.000 5.537 108.339

DeCAFS 0.565 0.000 0.004 0.019 0.755 0.203 0.017 0.002 1.065 19.751
MACE(0.05) 1.000 0.053 0.059 0.084 0.129 0.169 0.170 0.336 7.092 126.325
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MACE(0.2) 1.000 0.008 0.007 0.024 0.041 0.092 0.111 0.717 5.804 107.392
SNCP(0.01) 0.105 0.995 0.004 0.000 0.001 0.000 0.000 0.000 14.135 430.912
SNCP(0.05) 0.258 0.956 0.034 0.007 0.003 0.000 0.000 0.000 11.698 290.266
SNCP(0.1) 0.397 0.890 0.074 0.027 0.009 0.000 0.000 0.000 10.342 245.351

(M4) WCM.gSa 0.000 0.000 0.000 0.002 0.994 0.003 0.001 0.000 4.881 7.892

no gap 0.009 0.000 0.000 0.000 0.873 0.026 0.044 0.057 5.587 21.121

DepSMUCE(0.05) 0.006 0.000 0.000 0.104 0.896 0.000 0.000 0.000 6.671 22.699
DepSMUCE(0.2) 0.062 0.000 0.000 0.016 0.984 0.000 0.000 0.000 4.901 9.21

DeCAFS 0.008 0.000 0.000 0.000 0.983 0.015 0.002 0.000 4.837 7.823
MACE(0.05) 0.558 0.681 0.242 0.062 0.013 0.002 0.000 0.000 97.279 311.77
MACE(0.2) 0.816 0.370 0.328 0.212 0.073 0.015 0.002 0.000 82.773 253.051
SNCP(0.01) 0.003 0.000 0.023 0.251 0.726 0.000 0.000 0.000 11.718 57.614
SNCP(0.05) 0.028 0.000 0.002 0.093 0.898 0.007 0.000 0.000 7.916 24.667
SNCP(0.1) 0.065 0.000 0.000 0.053 0.937 0.010 0.000 0.000 6.859 17.656

(M5) WCM.gSa 0.080 0.000 0.000 0.000 0.884 0.086 0.015 0.015 2.753 4.583

no gap 0.105 0.000 0.000 0.000 0.839 0.102 0.041 0.018 2.936 6.554

DepSMUCE(0.05) 0.028 0.000 0.000 0.000 1.000 0.000 0.000 0.000 2.051 0.166
DepSMUCE(0.2) 0.098 0.000 0.000 0.000 1.000 0.000 0.000 0.000 2.051 0.166

DeCAFS 0.107 0.000 0.000 0.000 0.873 0.088 0.028 0.011 1.970 6.203
MACE(0.05) 0.482 0.000 0.006 0.115 0.761 0.114 0.004 0.000 24.515 11.421
MACE(0.2) 0.747 0.000 0.000 0.040 0.743 0.201 0.016 0.000 12.031 11.458
SNCP(0.01) 0.086 0.000 0.000 0.002 0.945 0.052 0.001 0.000 9.839 2.764
SNCP(0.05) 0.220 0.000 0.000 0.000 0.851 0.138 0.011 0.000 9.367 5.774
SNCP(0.1) 0.328 0.000 0.000 0.000 0.778 0.193 0.027 0.002 9.652 8.315

(M6) WCM.gSa 0.067 0.000 0.000 0.000 0.865 0.119 0.016 0.000 5.993 4.782

no gap 0.074 0.000 0.000 0.000 0.865 0.119 0.016 0.000 5.993 4.782

DepSMUCE(0.05) 0.025 0.000 0.006 0.202 0.792 0.000 0.000 0.000 14.038 9.14
DepSMUCE(0.2) 0.104 0.000 0.000 0.041 0.959 0.000 0.000 0.000 5.876 3.057

DeCAFS 0.193 0.000 0.005 0.005 0.751 0.099 0.074 0.066 7.867 9.537
MACE(0.05) 0.621 0.000 0.143 0.433 0.391 0.033 0.000 0.000 41.943 25.549
MACE(0.2) 0.812 0.000 0.052 0.288 0.584 0.075 0.001 0.000 29.655 20.355
SNCP(0.01) 0.161 0.000 0.018 0.167 0.744 0.069 0.002 0.000 18.362 12.366
SNCP(0.05) 0.367 0.000 0.005 0.054 0.740 0.177 0.022 0.002 12.173 9.618
SNCP(0.1) 0.503 0.000 0.001 0.017 0.669 0.253 0.053 0.007 10.201 10.529

(M7) WCM.gSa 0.027 0.000 0.102 0.001 0.852 0.025 0.009 0.011 13.490 7.821

no gap 0.044 0.000 0.089 0.011 0.783 0.038 0.039 0.040 14.067 12.69

DepSMUCE(0.05) 0.266 0.000 0.091 0.196 0.565 0.030 0.031 0.087 202.355 29.781
DepSMUCE(0.2) 0.361 0.000 0.043 0.150 0.591 0.047 0.036 0.133 294.382 30.141
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DeCAFS 0.188 0.000 0.114 0.048 0.613 0.057 0.031 0.137 403.467 26.973
MACE(0.05) 0.303 0.000 0.266 0.283 0.423 0.026 0.002 0.000 60.194 34.062
MACE(0.2) 0.491 0.000 0.132 0.272 0.532 0.058 0.006 0.000 41.137 36.826
SNCP(0.01) 0.061 0.000 0.147 0.191 0.654 0.007 0.001 0.000 18.293 22.939
SNCP(0.05) 0.115 0.000 0.066 0.150 0.755 0.021 0.007 0.001 15.908 21.198
SNCP(0.1) 0.159 0.000 0.032 0.143 0.778 0.030 0.015 0.002 14.410 22.208

(M8) WCM.gSa 0.000 0.000 0.000 0.012 0.972 0.016 0.000 0.000 5.053 16.36

no gap 0.007 0.000 0.000 0.004 0.850 0.036 0.046 0.064 5.707 29.525

DepSMUCE(0.05) 0.007 0.006 0.117 0.472 0.405 0.000 0.000 0.000 15.523 114.702
DepSMUCE(0.2) 0.063 0.000 0.009 0.201 0.790 0.000 0.000 0.000 7.204 44.676

DeCAFS 0.016 0.000 0.003 0.004 0.969 0.022 0.001 0.001 4.957 15.207
MACE(0.05) 0.565 0.816 0.141 0.036 0.006 0.001 0.000 0.000 64.459 338.846
MACE(0.2) 0.808 0.523 0.269 0.162 0.035 0.011 0.000 0.000 54.656 286.868
SNCP(0.01) 0.008 0.064 0.216 0.447 0.272 0.001 0.000 0.000 18.386 162.591
SNCP(0.05) 0.034 0.005 0.080 0.355 0.554 0.006 0.000 0.000 11.438 94.291
SNCP(0.1) 0.074 0.002 0.024 0.269 0.693 0.011 0.001 0.000 8.825 64.143

(M9) WCM.gSa 0.003 0.000 0.001 0.003 0.926 0.059 0.008 0.003 4.776 21.35

no gap 0.012 0.001 0.015 0.020 0.632 0.023 0.042 0.267 7.121 68.784

DepSMUCE(0.05) 0.020 0.051 0.233 0.546 0.170 0.000 0.000 0.000 16.374 87.334
DepSMUCE(0.2) 0.127 0.003 0.052 0.406 0.537 0.002 0.000 0.000 9.544 37.717

DeCAFS 0.097 0.001 0.061 0.019 0.863 0.055 0.001 0.000 3.779 31.135
MACE(0.05) 0.670 0.779 0.167 0.041 0.012 0.001 0.000 0.000 49.668 334.816
MACE(0.2) 0.870 0.462 0.275 0.192 0.059 0.011 0.001 0.000 39.156 285.542
SNCP(0.01) 0.021 0.292 0.361 0.252 0.094 0.001 0.000 0.000 21.119 201.372
SNCP(0.05) 0.077 0.093 0.258 0.343 0.296 0.010 0.000 0.000 14.061 126.391
SNCP(0.1) 0.152 0.033 0.180 0.352 0.417 0.016 0.002 0.000 11.489 93.392

(M10) WCM.gSa 0.000 0.000 0.000 0.008 0.982 0.006 0.003 0.001 2.425 5.485

no gap 0.006 0.000 0.000 0.000 0.511 0.055 0.070 0.364 3.480 34.066

DepSMUCE(0.05) 0.020 0.118 0.332 0.380 0.170 0.000 0.000 0.000 20.085 85.553
DepSMUCE(0.2) 0.133 0.003 0.048 0.338 0.611 0.000 0.000 0.000 7.534 39.648

DeCAFS 0.023 0.000 0.000 0.000 0.974 0.023 0.003 0.000 2.112 5.564
MACE(0.05) 0.902 0.917 0.049 0.026 0.007 0.000 0.001 0.000 61.743 232.45
MACE(0.2) 0.984 0.628 0.173 0.110 0.050 0.028 0.009 0.002 47.687 177.494
SNCP(0.01) 0.011 0.035 0.106 0.292 0.567 0.000 0.000 0.000 13.030 60.337
SNCP(0.05) 0.043 0.002 0.022 0.165 0.811 0.000 0.000 0.000 9.461 29.324
SNCP(0.1) 0.104 0.000 0.006 0.096 0.898 0.000 0.000 0.000 8.556 18.968

(M11) WCM.gSa 0.001 0.080 0.360 0.252 0.287 0.013 0.006 0.002 5.435 180.548

no gap 0.012 0.003 0.014 0.003 0.069 0.022 0.021 0.868 8.287 105.137
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DepSMUCE(0.05) 0.022 0.912 0.081 0.007 0.000 0.000 0.000 0.000 15.463 351.082
DepSMUCE(0.2) 0.126 0.562 0.345 0.088 0.005 0.000 0.000 0.000 10.991 258.122

DeCAFS 0.077 0.221 0.474 0.063 0.234 0.008 0.000 0.000 4.831 286.997
MACE(0.2) 0.839 0.994 0.005 0.000 0.001 0.000 0.000 0.000 32.807 565.07
MACE(0.05) 0.960 0.925 0.049 0.020 0.004 0.002 0.000 0.000 29.778 424.598
SNCP(0.01) 0.011 0.990 0.009 0.001 0.000 0.000 0.000 0.000 23.936 510.673
SNCP(0.05) 0.070 0.862 0.113 0.023 0.002 0.000 0.000 0.000 17.976 349.351
SNCP(0.1) 0.126 0.706 0.206 0.081 0.007 0.000 0.000 0.000 15.070 290.98

(M12) WCM.gSa 0.002 0.000 0.002 0.061 0.718 0.151 0.048 0.020 5.828 50.476

no gap 0.031 0.002 0.010 0.016 0.501 0.058 0.082 0.331 7.648 73.266

DepSMUCE(0.05) 0.074 0.155 0.450 0.350 0.045 0.000 0.000 0.000 16.612 232.209
DepSMUCE(0.2) 0.273 0.026 0.177 0.471 0.325 0.001 0.000 0.000 10.426 139.304

DeCAFS 0.081 0.009 0.079 0.074 0.717 0.094 0.023 0.004 5.727 82.021
MACE(0.05) 0.675 0.790 0.161 0.043 0.005 0.001 0.000 0.000 33.749 327.001
MACE(0.2) 0.873 0.537 0.249 0.151 0.050 0.012 0.001 0.000 28.311 304.191
SNCP(0.01) 0.020 0.645 0.224 0.103 0.028 0.000 0.000 0.000 24.165 303.019
SNCP(0.05) 0.081 0.265 0.324 0.286 0.122 0.003 0.000 0.000 16.420 218.013
SNCP(0.1) 0.152 0.131 0.283 0.363 0.217 0.006 0.000 0.000 13.713 166.677

(M13) WCM.gSa 0.001 0.000 0.002 0.043 0.831 0.089 0.030 0.005 5.442 38.565

no gap 0.023 0.000 0.008 0.007 0.613 0.056 0.086 0.230 6.880 57.405

DepSMUCE(0.05) 0.053 0.093 0.381 0.423 0.103 0.000 0.000 0.000 16.547 202.408
DepSMUCE(0.2) 0.205 0.012 0.113 0.445 0.430 0.000 0.000 0.000 9.754 112.529

DeCAFS 0.041 0.003 0.043 0.049 0.834 0.059 0.012 0.000 5.069 50.936
MACE(0.05) 0.646 0.819 0.133 0.044 0.003 0.001 0.000 0.000 38.863 329.921
MACE(0.2) 0.855 0.543 0.255 0.141 0.051 0.008 0.002 0.000 32.993 301.344
SNCP(0.01) 0.015 0.470 0.304 0.175 0.051 0.000 0.000 0.000 22.871 280.454
SNCP(0.05) 0.064 0.161 0.282 0.375 0.179 0.003 0.000 0.000 15.759 184.029
SNCP(0.1) 0.134 0.077 0.209 0.397 0.311 0.005 0.001 0.000 12.778 137.346

D.3 Numerical experiments motivating the use of SC0

If any change point is ignored in fitting an AR model, the information criterion SC tends to
over-compensate for the under-specification of mean shifts, which makes direct minimisation
of SC unreliable as a model selection method. To illustrate this and motivate the use of SC0 in
gSa, we present a simulation study with datasets generated under the models (M9) and (M11)
in Section D.1. Here, our aim is to compare a change point model Θ̂1 (correctly detecting all
q change points) and the null model Θ̂0 = ∅ using two different approaches – one adopted
in gSa comparing SC0 ({Xt}nt=1, α̂(p̂)) and SC({Xt}nt=1, Θ̂1, p̂) with p̂ = p̂(Θ̂1) (‘Method 1’),
and the other selecting the model minimising SC by comparing SC({Xt}nt=1, Θ̂0, p̂(Θ̂0)) and
SC({Xt}nt=1, Θ̂1, p̂) (‘Method 2’). In both scenarios, the errors do not follow an AR model of
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a finite order so we select p̂(Θ̂0) and p̂(Θ̂1) as described in (9).
For the choice of Θ̂1, we consider the no bias case Θ̂1 = {θj , 1 ≤ j ≤ q} and the biased case
Θ̂1 = {θj +sj ·λj , 1 ≤ j ≤ q}, where sj ∼iid Uniform{−1, 1} and λj ∼iid Poisson(5); the latter
case reflects that the best localisation rate in change point problems is Op(1). The result is
summarised in Table D.2 where we report the size (proportion of selecting Θ̂1 over Θ̂0 when
there is no change point), as well as the power (proportion of correctly selecting Θ̂1) out of
1000 realisations. From the results, we conclude that Method 1, which adopts SC0 as a proxy
of the goodness-of-fit adjusted by model complexity under the no change point model, works
well both in controlling the size and attaining good power. In comparison, Method 2 suffers
from loss of power due to the bias in AR parameter estimators in the presence of mean shifts,
and its performance worsens when the change point estimators do not exactly coincide with
the true locations, which is often the case in change point problems when the magnitude of
the jumps is small.

Table D.2: Size and power of Methods 1 and 2 under the models (M9) and (M11) when the
change point model is specified without any bias in change point estimators (‘no bias’) and
with bias.

(M9) (M11)
No bias Bias No bias Bias

Size Power Size Power Size power Size Power

Method 1 0 1 0 1 0 1 0 0 0.989
Method 2 0 0.876 0 0.202 0 0.793 0 0.015

E Additional real data analysis

E.1 Pre-processing of nitrogen oxides concentrations data

The concentration measurements are positive integers and possibly highly skewed, see top
panels of Figure E.1. Also, the data exhibit seasonality as well as weekly patterns, the latter
particularly visible from the autocorrelations (see middle panels of Figure E.1), and the level
of concentrations drops sharply on bank holidays, in line with the behaviour of road traffic.
We adopt the square root transform in order to bring the data to light-tailedness without
masking any shift in the level greatly. Also, after visual inspection and preliminary research
into the relevant literature, we select the period between January 2004 and December 2010 to
estimate the seasonal, weekly and bank holiday patterns, which is achieved by regressing the
square root transformed time series onto the indicator variables representing their effects. In
summary, 19 parameters including the intercept were estimated from the 2508 observations,
and all three factors (seasonal, daily and bank holiday effects) were deemed significant, with
the models fitted to the NO2 and NOx concentrations attaining the adjusted R2 coefficients
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Figure E.1: Various statistical properties of the daily concentrations of NO2(left) and NOx

(right) measured at Marylebone Road in London between January 2004 and December 2010.
Top: histogram of raw concentrations. Middle: autocorrelations after square root transform.
Bottom: yearly fitted patterns.

of 0.1077 and 0.1149, respectively. Bottom panels of Figure E.1 plot the fitted yearly trend,
while Figure 1 in the main text plots the residuals, which we analyse for change points in the
level.

E.2 Validating the number of change points detected from the NO2 time
series

Table 2 in the main paper shows a considerable variation in the number of detected change
points in the NO2 time series between the competing methods. To run an independent check
for the number of change points, we firstly remove the bulk of the serial dependence of the
data by fitting the AR(1) model to it and work with the empirical residuals from this fit. For
this, we set the AR coefficient to 0.5, as suggested by the sample autocorrelation function in
Figures E.1 and E.2. In particular, the latter figure confirms that the assumption of weak
stationarity on the noise is well-satisfied by the NO2 time series, with the leading autocorre-
lations remaining approximately the same across the segments defined by the change points
estimated by WCM.gSa.
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Figure E.2: Autocorrelations at 20 lags computed from the nine segments defined by the
change point estimators returned by WCM.gSa when applied to the de-trended and trans-
formed NO2 measurements.
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On these, we perform change point detection using a method suitable for multiple level-shift
detection under serially uncorrelated noise. The method we use is the IDetect technique with
the information-criterion-based model selection (Anastasiou and Fryzlewicz, 2020), as imple-
mented in the R package breakfast (Anastasiou et al., 2020). The reason for the selection
of this method is that it is possibly the best-performing method of the package overall (as
reported in the package vignette available at https://cran.r-project.org/web/packages/
breakfast/vignettes/breakfast-vignette.html), and it is independently commended in
Fearnhead and Rigaill (2020) as having very strong performance overall.
The R execution model.ic(sol.idetect(no2.res))$cpts, where no2.res are the residuals
obtained as above, returns 7 change point estimators, a number close to the 8 obtained by our
WCM.gSa method. Out of the 7 locations estimated by IDetect, there is very good agreement
with WCM.gSa for 6 out of these locations. The exception is the WCM.gSa-estimated change
point at 2010-07-25, which IDetect estimates some 800 days later. However, IDetect also
does not estimate the following WCM.gSa-estimated change point at 2018-10-13, which is a
possible reason for IDetect to replace these two WCM.gSa-estimated change points by one in
between them.
This, in our view, represents very good agreement on the whole, especially given that the two
methods are entirely different in nature and worked with different time series on input. This
result further enhances our confidence in the output of WCM.gSa for this dataset.

E.3 Hadley Centre central England temperature data analysis

The Hadley Centre central England temperature (HadCET) dataset (Parker et al., 1992)
contains the mean, maximum and minimum daily and monthly temperatures representative
of a roughly triangular area enclosed by Lancashire, London and Bristol, UK.
We analyse the yearly average of the monthly mean, maximum and minimum temperatures
up to 2019 for change points using the proposed WCM.gSa methodology. The mean monthly
data dates back to 1659, while the maximum and the minimum monthly data begins in 1878;
we focus on the period of 1878–2019 (n = 142) for all three time series. To take into account
that the time series are relatively short, we set pmax = 5 (maximum allowable AR order) for
WCM.gSa and the minimum spacing to be 10 (i.e. no change points occur within 10 years
from one another), while the rest of the parameters are chosen as recommended in Section C;
the results are invariant to the choice of the penalty ξn ∈ {log1.01(n), log1.1(n)}. Table E.1
reports the change points estimated by WCM.gSa as well as those detected by DepSMUCE
and DeCAFS for comparison.
On all three datasets, WCM.gSa and DeCAFS return identical estimators, and the same
change points are detected by DepSMUCE (with α = 0.2). Figure E.3 shows that there
appears to be a noticeable change in the persistence of the autocorrelations in the datasets
before and after these shifts in the mean are accounted for, which further confirms that the
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yearly temperatures undergo level shifts over the years. In particular, the second change point
detected at 1987/88 coincides with the global regime shift in Earth’s biophysical systems
identified around 1987 (Reid et al., 2016), which is attributed to anthropogenic warming and
a volcanic eruption.

Table E.1: Change points (in year) detected from the yearly average of the mean, maximum
and minimum monthly temperatures from 1878 to 2019.

Method Mean Maximum Minimum

WCM.gSa 1892, 1988 1892, 1988 1892, 1987

DepSMUCE(0.05) 1987 1988 1956
DepSMUCE(0.2) 1892, 1988 1988 1892, 1987

DeCAFS 1892, 1988 1892, 1988 1892, 1987

F Proofs

For any square matrix B ∈ Rp×p, let λmax(B) and λmin(B) denote the maximum and the min-
imum eigenvalues of B, respectively, and we define the operator norm ‖B‖ =

√
λmax(B>B).

Let 1 denote a vector of ones, 0 a vector of zeros and I an identity matrix whose dimen-
sions are determined by the context. The projection matrix onto the column space of a given
matrix A is denoted by ΠA = A(A>A)−1A>, provided that A>A is invertible. We write
a ∨ b = max(a, b) and a ∧ b = min(a, b).

F.1 Proof of the results in Section 2

Throughout the proofs, we work under the following non-asymptotic bound

max

(
nϕζ2

n

min1≤j≤q(f ′j)
2δj

,
1

log(ζn)

)
≤ 1

K
(F.1)

for some K > 0, which holds for all n ≥ n(K) for some large enough n(K), which replaces the
asymptotic condition in Assumptions 2.2 and (5). The o-notation always refers to K in (F.1)
being large enough, which in turn follows for large enough n. By Fs,k,e and Zs,k,e, we denote
the CUSUM statistics defined with {ft} and {Zt} replacing {Xt} in (2), respectively.

F.1.1 Preliminaries

Lemma F.1 (Lemma B.1 of Cho and Kirch (2021)). For max(s, θj−1) < k < θj < min(e, θj+1),
it holds that

Fs,k,e = −
√

(k − s)(e− k)

e− s

{
(e− θj) f ′j
e− k

+
(e− θj+1)+ f

′
j+1

e− k
+

(θj−1 − s)+ f
′
j−1

k − s

}
,
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Figure E.3: Left: yearly average of the mean, maximum and minimum monthly temperatures
(top to bottom), plotted together with the change points estimated by WCM.gSa (vertical
lines) and piecewise constant mean (bold lines). Middle and right: autocorrelation function
of the data without and with the time-varying mean adjusted.

where a+ = a · Ia≥0. Similarly, for max(s, θj−1) < θj ≤ k < min(e, θj+1), it holds that

Fs,k,e = −
√

(k − s)(e− k)

e− s

{
(θj − s) f ′j
k − s

+
(e− θj+1)+ f

′
j+1

e− k
+

(θj−1 − s)+ f
′
j−1

k − s

}
.

Lemma F.2 (Lemma 2.2 of Venkatraman (1992); Lemma 8 of Wang and Samworth (2018)).
For some 0 ≤ s < e ≤ n with e − s > 1, let Θ ∩ [s, e] = {θ◦1, . . . , θ◦m} with m ≤ q, and
we adopt the notations θ◦0 = s and θ◦m+1 = e. If the series Fs,k,e is not constantly zero for
θ◦j + 1 ≤ k ≤ θ◦j+1 for some j = 0, . . . ,m, one of the following is true:

(i) j = 0 and Fs,k,e, θ◦j + 1 ≤ k ≤ θ◦j+1 does not change sign and has strictly increasing
absolute values,

(ii) j = m and Fs,k,e, θ◦j + 1 ≤ k ≤ θ◦j+1 does not change sign and has strictly decreasing
absolute values,
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(iii) 1 ≤ j ≤ m− 1 and Fs,k,e, θ◦j + 1 ≤ k ≤ θ◦j+1 is strictly monotonic,

(iv) 1 ≤ j ≤ m−1 and Fs,k,e, θ◦j +1 ≤ k ≤ θ◦j+1 does not change sign and its absolute values
are strictly decreasing then strictly increasing.

F.1.2 Proof of Theorem 2.1

Throughout the proofs, C0, C1, . . . denote some positive constants.
We define the following intervals for each j = 0, . . . , qn,

IL,j = (θj−1, θj − dδj/3e) and IR,j = (θj + dδj/3e, θj+1].

Let (s, e) denote an interval considered at some iteration of the WBS2 algorithm. By con-
struction, the minimum length of the interval obtained by deterministic sampling is given by
b(e − s)/K̃c, where K̃ satisfies Rn ≤ K̃(K̃ + 1)/2. Then, Rs,e drawn by the deterministic
sampling contains at least one interval (`m(j), rm(j)) satisfying `m(j) ∈ IL,j and rm(j) ∈ IR,j
for any θj ∈ Θ∩ (s, e) (if Θ∩ (s, e) is not empty), provided that 3b(e−s)/K̃c ≤ 2 min1≤j≤q δj .
This condition in turn is met under (5). Then, it follows from the proof of Proposition B.1 of
Cho and Kirch (2021) that there exists a permutation {π(1), . . . , π(q)} of {1, . . . , q} such that
on Zn,

max
1≤j≤q

(f ′π(j))
2|k(j) − θπ(j)| ≤ ρn = c2ζ

2
n, and (F.2)

exp(Y(j)) =
∣∣X(j)

∣∣ ≥ C0|f ′π(j)|
√
δπ(j) ≥ C1n

ϕ/2ζn (F.3)

for j = 1, . . . , q, by (F.1). From (F.2), the assertion in (i) follows readily. Also consequently,
the intervals (s(m), e(m)), m = q + 1, . . . , n− 1 meet one of the followings:

(a) (s(m), e(m)) ∩Θ = ∅, or

(b) (s(m), e(m)) ∩Θ = {θj} and (f ′j)
2 min(θj − s(m), e(m) − θj) ≤ ρn, or

(c) (s(m), e(m)) ∩Θ = {θj , θj+1} and max{(f ′j)2(θj − s(m)), (f
′
j+1)2(e(m) − θj+1)} ≤ ρn,

for some j = 1, . . . , q. Under (a), from Assumption 2.1,

exp(Y(m)) = |Zs(m),k(m),e(m)
| ≤ 2ζn. (F.4)

Under (b), supposing that θj ≤ k(m), we obtain

exp(Y(m)) ≤ |Fs(m),k(m),e(m)
|+ |Zs(m),k(m),e(m)

|

≤

√
(k(m) − s(m))(e(m) − k(m))

e(m) − s(m)

(θj − s(m))|dj |
k(m) − s(m)

+ 2ζn
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≤
√
d2
j min(θj − s(m), e(m) − θj) + 2ζn ≤

√
ρn + 2ζn ≤ C2ζn (F.5)

by Lemma F.1; the case when θj > k(m) is handled analogously. Under (c), we obtain

exp(Y(m)) ≤ max
{
|Fs(m),θj ,e(m)

|, |Fs(m),θj+1,e(m)
|
}

+ 2ζn

≤
√
d2
j (θj − s(m)) +

√
d2
j+1(e(m) − θj+1) + 2ζn ≤ C3ζn (F.6)

where the first inequality follows from Lemma F.2 and the second inequality from Lemma F.1.
From (F.3) and (F.4)–(F.6), and also that X(1) ≤ C4

√
n due to f ′j = O(1), we conclude that

Y(m) = γm log(n)(1 + o(1)) = γm log(n)(1 + o(1)) + log(ζn) for m = 1, . . . , q,

Y(m) ≤ κm log(ζn)(1 + o(1)) for m = q + 1, . . . , P,

where {γm} and {κm} meet the conditions in (ii).

F.2 Proof of the results in Section 3

We adopt the following notations throughout the proof: For a fixed integer r ≥ 1 and an
arbitrary set A = {k1, · · · , km} ⊂ {1, . . . , n} satisfying min0≤j≤m(kj+1 − kj) ≥ r + 1 (with
k0 = 0 and km+1 = n), we define X = X(A, r) = [L : R] and Y as in (8). Also we set X(j) =

[L(j) : 1] for each j = 0, . . . ,m, where L(j) has xt = (Xt, . . . , Xt−r+1)>, kj ≤ t ≤ kj+1 − 1 as
its rows. Sub-vectors of Y and ε corresponding to kj ≤ t ≤ kj+1 − 1 are denoted by Y(j) and
ε(j), respectively. When r = 0, we have X = R and X(j) = R(j),
Besides, we denote the (approximate) linear regression representation of (6) with the true
change point locations θj and AR order p by

Y = L◦α◦ + ν◦ + ε =

[
L◦︸︷︷︸
n×p

R◦︸︷︷︸
n×(q+1)

] [
α◦

µ◦

]
+ (ν◦ −R◦µ◦) + ε, (F.7)

where ν◦ = ((1−a(B))ft, 1 ≤ t ≤ n)>. Correspondingly, X◦ denotes an n×(p+q+1)-matrix
with its rows given by

xt = (Xt−1, . . . , Xt−p, I1≤t≤θ1 , . . . , Iθq+1≤t≤n)>

for 1 ≤ t ≤ n, whereby X◦ ≡ X(Θ, p). When p = 0, the matrix L◦ is empty.

F.2.1 Preliminaries

The following results are frequently used throughout the proof.

19



Proposition F.3. Suppose that p ≥ 0 and r ∈ {max(p, 1), . . . , pmax} with pmax ≥ max(p, 1)

fixed. Also, let A = {k1, . . . , km} as an arbitrary subset of Θ̂M . With such A, define X =

X(A, r) = [L : R] as in (8), and also X(j), L(j), R(j) and ε(j), correspondingly, and let
Nj = kj+1 − kj . Then, under Assumption 3.1 (i)–(iii) and Assumption 3.2, we have the
followings hold almost surely for all j = 0, . . . ,m and A ⊂ Θ̂M :

tr(L>L) = O(n), tr(L>(j)L(j)) = O(Nj), (F.8)

lim inf
n→∞

n−1λmin(L>L) > 0, lim inf
n→∞

N−1
j λmin(L>(j)L(j)) > 0, (F.9)

tr(X>X) = O(n), lim inf
n→∞

n−1λmin(X>X) > 0,

tr(X>(j)X(j)) = O(Nj), lim inf
n→∞

N−1
j λmin(X>(j)X(j)) > 0, (F.10)

(L>L)−1L>ε = O

(√
log(n)

n

)
, (X>X)−1X>ε = O

(√
log(n)

n

)
,

(X>(j)X(j))
−1X>(j)ε(j) = O

(√
log(n)

Nj

)
. (F.11)

Proof. The results in (F.8)–(F.9) follow from Theorem 3 (ii) of Lai and Wei (1983) and the
finiteness of Θ̂M . By Corollary 2 of Lai and Wei (1982a), (F.10) follow from that tr(R>R) = n

and R>(j)R(j) = Nj . By Lemma 1 of Lai and Wei (1982b), we have

∥∥∥(L>L)−1/2L>ε
∥∥∥ = O

(√
log(λmax(L>L))

)
= O(

√
log(n)) a.s.,∥∥∥(X>X)−1/2X>ε

∥∥∥ = O

(√
log(λmax(X>X))

)
= O(

√
log(n)) a.s.,∥∥∥(X>(j)X(j))

−1/2X>(j)ε(j)

∥∥∥ = O
(√

log(λmax(X>(j)X(j)))
)

= O(
√

log(n)) a.s.

which, together with (F.8) and (F.10), leads to (F.11).

Lemma F.4 (Lemma 3.1.2 of Csörgő and Horváth (1997)). For any X = [L : R], the
OLS estimator β̂ = (X>X)−1X>Y = (α̂>, µ̂>)> satisfies α̂ = (L>L)−1L>(Y − Rµ̂) and
µ̂ = {R>(I−ΠL)R}−1R>(I−ΠL)Y.

Lemma F.5. For some R = R(A) constructed with a set A = {k1, . . . , km} ⊂ {1, . . . , n}
with k1 < . . . < km, we denote by R−j , for any 1 ≤ j ≤ m, an n × m-matrix formed by
merging the j-th and the (j+ 1)-th columns of R via summing them up, while the rest of the
columns of R are unchanged. Then,

‖(I−ΠR−j )U‖2 − ‖(I−ΠR)U‖2 = |Ckj−1,kj ,kj+1
(U)|2 (F.12)

20



for any U = (U1, . . . , Un−(m+1)r)
>, where

Ckj−1,kj ,kj+1
(U) :=

√
(kj+1 − kj)(kj − kj−1)

kj+1 − kj−1
× 1

kj − kj−1

kj∑
t=kj−1+1

Ut −
1

kj+1 − kj

kj+1∑
t=kj+1

Ut

 .

Proof. Denote the (j + 1)-th column of R by Rj . Then, by simple calculations, we have

‖(I−ΠR)U‖2 = U>(I−ΠR−j )U−
(U>(I−ΠR−j )Rj)

2

R>j (I−ΠR−j )Rj
.

Also by construction,

R>−jRj = (0, . . . , 0︸ ︷︷ ︸
j−1

, kj+1 − kj , 0, . . . , 0)>,

(R>−jR−j)
−1 = diag

(
1

k1
, . . . ,

1

kj−1 − kj−2
,

1

kj+1 − kj−1
,

1

kj+2 − kj+1
, . . . ,

1

n− km

)
.

Hence,

[R−j(R
>
−jR−j)

−1R>−jRj ]i =

{
kj+1−kj
kj+1−kj−1

for kj−1 + 1 ≤ i ≤ kj+1,

0 otherwise,

[Rj −R−j(R
>
−jR−j)

−1R>−jRj ]i =


− kj+1−kj
kj+1−kj−1

for kj−1 + 1 ≤ i ≤ kj ,
kj−kj−1

kj+1−kj−1
for kj + 1 ≤ i ≤ kj+1,

0 otherwise.

Therefore,

R>j (I−ΠR−j )Rj =
(kj − kj−1)(kj+1 − kj)

kj+1 − kj−1
,

U>(I−ΠR−j )Rj =
(kj − kj−1)(kj+1 − kj)

kj+1 − kj−1

 1

kj+1 − kj

kj+1∑
t=kj+1

Ut −
1

kj − kj−1

kj∑
t=kj−1+1

Ut

 ,

which concludes the proof.

F.2.2 Proof of Theorem 3.1

Throughout the proofs, C0, C1, . . . denote some positive constants. In what follows, we operate
in En ∩Mn, and all big-O notations imply that they hold a.s. due to Proposition F.3.
We briefly sketch the proof, which proceeds in four steps (i)–(iv) below. We first suppose
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that Assumption 3.2 holds with M = 1, and also that p is known. Then, a single iter-
ation of the gSa algorithm in Section A.2 boils down to choosing between Θ̂0 = ∅ and
Θ̂1: If SC({Xt}nt=1, Θ̂1, p) < SC0({Xt}nt=1, α̂(p)), we favour a change point model; if not,
we conclude that there is no change point in the data. In (i), when q = 0, we show that
Rµ̂ ≈ 1µ◦0 ≈ Π1(Y − Lα̂) with µ◦0 = (1−

∑p
i=1 ai)f0 representing the time-invariant overall

level, and therefore ‖Y−Xβ̂‖2 ≈ ‖(I−Π1)(Y−Lα̂)‖2 which leads to SC0({Xt}nt=1, α̂(p)) <

SC({Xt}nt=1, Θ̂1, p) under Assumption 3.4. In (ii), when q ≥ 1, we show that

‖(I−Π1)(Y − Lα̂)‖2 − ‖Y −Xβ̂‖2 ≥ Cq min
1≤j≤q

d2
jδj � qξn

for some fixed constant C > 0 and thus SC0({Xt}nt=1, α̂(p)) > SC({Xt}nt=1, Θ̂1, p), provided
that Θ̂1 meets (11). In (iii), we show the consistency of the proposed order selection scheme.
For the general case where M > 1, in (iv), we can repeatedly apply the above arguments for
each call of Step 1 of the gSa algorithm: Under Assumption 3.2, when l > l∗, any θ̂l,j /∈ Θ̂l∗

are spurious estimators and thus we have the gSa algorithm proceed to examine Θ̂l−1; when
l = l∗, any θ̂l∗,j /∈ Θ̂l∗−1 are detecting those change points undetected in Θ̂l∗−1 and thus the
gSa algorithm returns Θ̂l∗ .
As outlined above, in the following (i)–(iii), we only consider the case of M = 1 and conse-
quently drop the subscript ‘1’ from Θ̂1 and θ̂1,j where there is no confusion.
For given Θ̂, recall that X = X(Θ̂, p) = [L : R] and Nj = θ̂j+1− θ̂j . For t = θj + 1, . . . , θj + p,
we have

|[ν◦ −R◦µ◦]t| ≤ |dj | max
1≤i≤p

∣∣∣∣∣
p∑
i′=i

ai′

∣∣∣∣∣ ≤ |dj |, (F.13)

for all 1 ≤ j ≤ q, while [ν◦ −R◦µ◦]t = 0 elsewhere.

(i) When q = 0. We first note that

β̂ = (X>X)−1X> (Lα◦ + µ◦01 + ε)

such that by Proposition F.3, we have∥∥∥∥∥∥∥∥∥∥
β̂ −

[
α◦

µ◦01q̂+1

]
︸ ︷︷ ︸

β◦(q̂)

∥∥∥∥∥∥∥∥∥∥
=
∥∥∥(X>X)−1X>ε

∥∥∥ = O

(√
log(n)

n

)
. (F.14)

We decompose the residual sum of squares as

‖Y −Xβ̂‖2 = ‖ε‖2 + ‖X(β̂ − β◦(q̂))‖2 − 2ε>X(β̂ − β◦(q̂)) =: ‖ε‖2 +R11 +R12.
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Invoking Proposition F.3 and (F.14),

R11 ≤ ‖X‖2 ‖β̂ − β◦(q̂)‖2 = O

(
n log(n)

n

)
= O(log(n)) a.s.,

and

|R12| ≤ ‖(X>X)−1X>ε‖ ‖X>X‖ ‖β̂ − β◦(q̂)‖ = O

(√
n log(n) ·

√
log(n)

n

)
= O (log(n)) .

Putting together the bounds on R11–R12, we conclude that

‖Y −Xβ̂‖2 = ‖ε‖2 +O(log(n)). (F.15)

Next, note that

‖(I−Π1)(Y − Lα̂)‖2 = ‖ε‖2 − ε>Π1ε+ ‖(I−Π1)L(α̂−α◦)‖2 − 2ε>(I−Π1)L(α̂−α◦)

=: ‖ε‖2 +R21 +R22 +R23.

By the arguments similar to those adopted in Proposition F.3 and Lemma 1 of Lai and Wei
(1982a), we have |R21| = O(log(n)). Also, by Proposition F.3 and (F.14), R22 ≤ ‖L(α̂ −
α◦)‖2 = O(log(n)). Next,

|R23| ≤ 2
∣∣∣ε>L(α̂−α◦)

∣∣∣+ 2
∣∣∣ε>Π1L(α̂−α◦)

∣∣∣
where the first term is bounded by

2‖(L>L)−1L>ε‖ ‖L>L‖ ‖α̂−α◦‖ = O(log(n))

due to Proposition F.3 and Lemma 1 of Lai and Wei (1982a), and the second term is bounded
by the bound on the first term and R21 as O(log(n)). Therefore,

‖(I−Π1)(Y − Lα̂)‖2 = ‖ε‖2 +O(log(n)). (F.16)

Combining (F.15) and (F.16) with Assumption 3.1 (ii)–(iii), and noting that log(1 + x) ≤ x

for all x ≥ 0,

SC0({Xt}nt=1, α̂(p))− SC({Xt}nt=1, Θ̂, p)

=
n

2
log

(
1 +
‖(I−Π1)(Y − Lα̂)‖2 − ‖Y −Xβ̂‖2

‖Y −Xβ̂‖2

)
− q̂ξn = O(log(n))− q̂ξn < 0

for n large enough, due to Assumption 3.4.
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(ii) When q ≥ 1. Recall that inMn, we have q̂ = q. Below we use that by Proposition F.3,

tr(L>R) = O(n) and [L>(j)1]i = O(Nj) for i = 1, . . . , p, j = 0, . . . , q, (F.17)

where f̄ = max0≤j≤q |fθj+1|. We first establish the consistency of µ̂ in estimating µ◦.
Applying Lemma F.4, we write

µ̂− µ◦ =(R>(I−ΠL)R)−1R>(I−ΠL)(ν◦ −Rµ◦)+

(R>(I−ΠL)R)−1R>(I−ΠL)ε =: R31 +R32.

Since (R>(I −ΠL)R)−1 is a sub-matrix of (X>X)−1, we have λmax((R>(I −ΠL)R)−1) ≤
(λmin(X>X))−1 (Horn and Johnson, 1985, Theorem 4.2.2)) and thus lim infn→∞ n

−1λmin(R>(I−
ΠL)R) > 0 by Proposition F.3. Also, since tr(R>(I − ΠL)R) ≤ n trivially, we obtain
|R32| = O

(√
log(n)/n

)
adopting the same arguments used in the proof of (F.11). Next,

by (F.13) and since

[R◦µ◦ −Rµ◦]t =

{
dj for θj + 1 ≤ t ≤ θ̂j ,
−dj for θ̂j + 1 ≤ t ≤ θj ,

for j = 1, . . . , q

while [R◦µ◦ −Rµ◦]t = 0 otherwise, we obtain

‖ν◦ −Rµ◦‖2 ≤ 2‖ν◦ −R◦µ◦‖2 + 2‖R◦µ◦ −Rµ◦‖2 ≤ 2

q∑
j=1

d2
j · (p+ d−2

j ρn) = O(qρn)

(F.18)

and therefore |R31|2 = O (qρn/n). Putting together the bounds on R31–R32, we obtain

|µ̂− µ◦| = O

(√
log(n) ∨ qρn

n

)
. (F.19)

Also, note that by Lemma F.4,

α̂−α◦ = (L>L)−1L> {ε+ (ν◦ −Rµ◦) + R(µ◦ − µ̂)} .

Adopting Proposition F.3, (F.17), (F.18) and (F.19), we have

‖α̂−α◦‖ = O

(√
log(n) ∨ qρn

n

)
. (F.20)

Next, we consider

‖Y −Xβ̂‖2 =‖L(α̂−α◦) + (Rµ̂− ν◦)− ε‖2

24



=‖ε‖2 + ‖L(α̂−α◦)‖2 + ‖Rµ̂− ν◦‖2 + 2(α̂−α◦)>L>(Rµ̂− ν◦)

− 2ε>L(α̂−α◦)− 2ε>(Rµ̂− ν◦) =: ‖ε‖2 +R41 +R42 +R43 +R44 +R45.

By Proposition F.3 and (F.20),

R41 = O

(
n · log(n) ∨ qρn

n

)
= O (log(n) ∨ qρn) .

Also, due to (F.18) and (F.19),

R42 ≤ 2‖R(µ̂− µ◦)‖2 + 2‖Rµ◦ − ν◦‖2 = O (log(n) ∨ qρn) (F.21)

and we also obtain R43 = O (log(n) ∨ qρn). By Proposition F.3 and (F.20),

R44 ≤ ‖(L>L)−1L>ε‖ ‖L>L‖ ‖α̂−α◦‖ = O
(√

log(n)(log(n) ∨ qρn)
)

= O (log(n) ∨√qρn) ,

while with (F.13), (F.19), Assumption 3.1 and Chebyshev’s inequality,

|R45| ≤ 2|ε>R(µ̂− µ◦)|+ 2|ε>(Rµ◦ −R◦µ◦)|+ 2|ε>(R◦µ◦ − ν◦)|

= O

√n log(n) ·
√

log(n) ∨ qρn
n

+

q∑
j=1

|dj | ·
√
d−2
j ρnωn + p

√√√√ q∑
j=1

|dj |2


= O

(
log(n) ∨ q(ρn ∨ ω2

n)
)

on En. Combining the bounds on R41–R45, we obtain

‖Y −Xβ̂‖2 = ‖ε‖2 +O
(
log(n) ∨ q

(
ρn ∨ ω2

n

))
. (F.22)

Next, note that

‖(I−Π1)(Y − Lα̂)‖2 − ‖Y −Xβ̂‖2 =
(
‖(I−Π1)(Y − Lα̂)‖2 − ‖(I−ΠR)(Y − Lα̂)‖2

)
+
(
‖(I−ΠR)(Y − Lα̂)‖2 − ‖Y −Xβ̂‖2

)
=: R51 +R52.

Repeatedly invoking Lemma F.5, we have

R51 =‖(I−Π1)(Y − Lα̂)‖2 − ‖(I−ΠR−I1
)(Y − Lα̂)‖2 +

∑
j∈I1

∣∣∣Cθ̂j−1,θ̂j ,θ̂j+1
(Y − Lα̂)

∣∣∣2
≥
⌈q

2

⌉
min

1≤j≤q

∣∣∣Cθ̂j−1,θ̂j ,θ̂j+1
(Y − Lα̂)

∣∣∣2
where R−I1 denotes a matrix constructed by merging the j-th and the (j + 1)-th columns of
R via summing them up for all j ∈ I1, while the rest of the columns of R are unchanged, with
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I1 denoting a subset of {1, . . . , q} consisting of all the odd indices. For notational simplicity,
let Cj(·) = C

θ̂j−1,θ̂j ,θ̂j+1
(·) where there is no confusion. Note that

Cj(Y − Lα̂) = Cj(R◦µ◦) + Cj(ν◦ −R◦µ◦) + Cj(ε) + Cj(L(α̂−α◦)).

Without loss of generality, suppose that θ̂j ≤ θj . Analogous arguments apply when θ̂j > θj .
By Lemma F.1,

Cj(R◦µ◦) =−

√
Nj−1Nj

Nj−1 +Nj

{
(Nj + θ̂j − θj)dj

Nj
+

(θ̂j+1 − θj+1)+dj+1

Nj

+
(θj−1 − θ̂j−1)+dj−1

Nj−1

}
=: R61 +R62 +R63.

Under Assumptions 3.2, 3.3 and 3.4, min(Nj−1, Nj)
−1d2

j |θ̂j − θj | = O(δ−1
j ρn) = o(1) (due to

D−1
n ρn → 0 as n→∞) and thus

|R61| = |dj |

√
Nj−1Nj

Nj−1 +Nj
(1 + o(1)) ≥ |dj |

√
min(Nj−1, Nj)

2
(1 + o(1)) ≥

√
d2
jδj

2
(1 + o(1)),

while

|R62| ≤
d2
j+1(θ̂j+1 − θj+1)√
d2
j+1(θ̂j+1 − θ̂j − p)

≤ ρn√
Dn

(1 + o(1)) = o(
√
ρn)

and R63 is similarly bounded. Therefore, we conclude

min
1≤j≤q

|Cj(R◦µ◦)| ≥
√
Dn

2
(1 + o(1)). (F.23)

Similarly, by (F.13) and Assumption 3.2, we derive

|Cj(ν◦ −R◦µ◦)| ≤ p

√
Nj−1Nj

Nj−1 +Nj

{
|dj |+ |dj+1|

Nj
+
|dj−1|
Nj−1

}
= o(1). (F.24)

Invoking Assumption 3.1 (iv), it is easily seen that on En,

|Cj(ε)| ≤ 2ωn. (F.25)

Finally, by (F.17) and (F.20),

|Cj(L(α̂−α◦))| =

√
Nj−1Nj

Nj−1 +Nj

∣∣∣∣ 1

Nj−1
1>L(j−1)(α̂−α◦)−

1

Nj
1>L(j)(α̂−α◦)

∣∣∣∣
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= O

(√
min(Nj−1, Nj) ·

√
log(n) ∨ qρn

n

)
= O

(√
log(n) ∨ qρn

)
. (F.26)

By (F.23)–(F.26), under Assumption 3.3, there exists some constant C0 > 0 satisfying

R51 ≥ C0qDn for n large enough. (F.27)

Next, we note that

‖(I−ΠR)(Y − Lα̂)‖2 = ‖ε‖2 − ε>ΠRε+ ‖(I−ΠR)L(α̂−α◦)‖2 + ‖(I−ΠR)ν◦‖2

+ 2(α̂−α◦)>L>(I−ΠR)ν◦ − 2ε>(I−ΠR)L(α̂−α◦)− 2ε>(I−ΠR)ν◦

=: ‖ε‖2 −R71 +R72 +R73 +R74 +R75 +R76.

First, by Assumption 3.1 (iv), R71 = O(
∑q

j=0Njω
2
n · N−1

j ) = O(qω2
n) on En. Also, from

Proposition F.3 and (F.20), R72 ≤ ‖L(α̂−α◦)‖2 = O(log(n) ∨ qρn). In addition,

R73 ≤ 2‖ν◦ −Rµ◦‖2 + 2‖R(µ◦ − (R>R)−1R>ν◦)‖2

where the first term is O(qρn) as in (F.18). From (F.13) and the definition of R and R◦,

µ◦ − (R>R)−1R>R◦µ◦ =



−(θ̂1−θ1)+d1

θ̂1
(θ1−θ̂1)+d1−(θ̂2−θ2)+d2

θ̂2−θ̂1
...

(θq−θ̂q)+dq
n−θ̂q

 , (F.28)

∣∣∣[(R>R)−1R>(R◦µ◦ − ν◦)]j
∣∣∣ ≤ p(|dj−1|+ |dj |)

θ̂j − θ̂j−1

(F.29)

(recall that θ̂0 = θ0 = 0 and θ̂q+1 = θq+1 = n) such that by Assumptions 3.2 and 3.3, we
obtain

‖R(µ◦ − (R>R)−1R>ν◦)‖2 ≤ C1

q∑
j=1

d2
j ·

(d−2
j ρn)2 + p2

θ̂j+1 − θ̂j
= o(qρn)

for some constant C1 > 0, hence R73 = O(qρn). The bounds on R72 and R73 imply the
O(log(n) ∨ qρn) bound on R74. Next, since λmax((L>(I−ΠR)L)−1) ≤ λ−1

min(X>X), we have

|R75| ≤ ‖(L>(I−ΠR)L)−1L>(I−ΠR)ε‖ ‖L>(I−ΠR)L‖ ‖α̂−α◦‖ = O (log(n) ∨ qρn)
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from Lemma 1 of Lai and Wei (1982a), Proposition F.3 and (F.20). Finally,

|R76| ≤ 2|ε>(ν◦ −Rµ◦)|+ 2|ε>R(µ◦ − (R>R)−1R>ν)|

where using the arguments involved in bounding R45, we have the first term bounded by
O(q(ρn ∨ ω2

n)), while the second term is bounded as

O

 q∑
j=1

√
Njωn ·

d−2
j ρn · |dj |
Nj

 = O

 q∑
j=1

ωnρn√
Dn

 = O(qρn),

on En, recalling (F.28)–(F.29) and by Assumptions 3.1 (iv), 3.2 and 3.3. Therefore, R76 =

O(q(ρn ∨ ω2
n)). Collecting the bounds on R71–R76, we obtain

‖(I−ΠR)(Y − Lα̂)‖2 = ‖ε‖2 +O
(
log(n) ∨ q(ρn ∨ ω2

n)
)
. (F.30)

From (F.22), (F.27) and (F.30),

‖(I−Π1)(Y − L◦α̂)‖2 − ‖Y −Xβ̂‖2 ≥ C0qDn +O
(
log(n) ∨ q(ρn ∨ ω2

n)
)
. (F.31)

Note that

SC0({Xt}nt=1, α̂(p))− SC({Xt}nt=1, Θ̂, p)

=
n

2
log

(
1 +
‖(I−Π1)(Y − L◦α̂)‖2 − ‖Y −Xβ̂‖2

‖Y −Xβ̂‖2

)
− qξn =:

n

2
log(1 +R8)− qξn.

(F.32)

WhenR8 ≥ 1, we have the RHS of (F.32) trivially bounded away from zero by Assumption 3.4.
When R8 < 1, note that for g(x) = log(x)/(x − 1), since limx↓1 g(x) → 1 and from its
continuity, there exists a constant C2 > 0 such that inf1≤x<2 g(x) ≥ C2. Therefore,

n

2
log(1 +R8)− qξn ≥ C3qDn +O

(
log(n) ∨ q(ρn ∨ ω2

n)
)
− qξn > 0,

invoking Assumption 3.1 (ii)–(iii), (F.22) and (F.31) for some C3 > 0.

(iii) Order selection consistency. Thus far, we have assumed that the AR order p is known.
We show next that for n large enough, the order p is consistently estimated by p̂ obtained
as in (9). Recall the notation β̂(Θ̂, r) = (α̂>(r), µ̂>(Θ̂))>. Firstly, suppose that r > p while
r ≤ pmax. Then, by (F.14) when q = 0 or by (F.19) and (F.20) when q ≥ 1 (here, q coincides
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with the cardinality of Θ̂), we have

‖α̂(r)−α◦(r)‖ = O

(√
log(n) ∨ qρn

n

)
with α◦(r) = (α◦>, 0, . . . , 0︸ ︷︷ ︸

r−p

)>

whether there are changes or not, see the steps leading to (F.20). Then, the arguments similar
to those adopted in showing (F.15) or (F.22) establish that

‖Y −X(Θ̂, r)β̂(Θ̂, r)‖2 = ‖ε‖2 +O
(
log(n) ∨ q(ρn ∨ ω2

n)
)

and therefore, we have

SC
(
{Xt}nt=1, Θ̂, r

)
− SC

(
{Xt}nt=1, Θ̂, p

)
=− n

2
log

(
1 +
‖Y −X(Θ̂, p)β̂(Θ̂, p)‖2 − ‖Y −X(Θ̂, r)β̂(Θ̂, r)‖2

‖Y −X(Θ̂, r)β̂(Θ̂, r)‖2

)
+ (r − p)ξn

=O
(
log(n) ∨ q(ρn ∨ ω2

n)
)

+ (r − p)ξn > 0

for n large enough, by Assumption 3.4.
Next, consider r < p. For notational convenience, let Π(r) = Π

X(Θ̂,r)
, and the sub-matrix

of X(Θ̂, p) containing its columns corresponding to the i-th lags for i = r + 1, . . . , p by
X(p|r). Then, [X(p|r)>(I−Π(r))X(p|r)]−1 is a sub-matrix of (X(Θ̂, p)>X(Θ̂, p))−1 and thus
by Theorem 4.2.2 of Horn and Johnson (1985) and Proposition F.3, we have

λmax

(
X(p|r)>(I−Π(r))X(p|r)

)
≤ λmax

(
X(Θ̂, p)>X(Θ̂, p)

)
≤ tr

(
X(Θ̂, p)>X(Θ̂, p)

)
= O(n) and similarly, (F.33)

λmin

(
X(p|r)>(I−Π(r))X(p|r)

)
≥ λmin

(
X(Θ̂, p)>X(Θ̂, p)

)
and thus

lim inf
n→∞

n−1λmin

(
X(p|r)>(I−Π(r))X(p|r)

)
> 0. (F.34)

It then follows that∥∥∥Y −X(Θ̂, r)β̂(Θ̂, r)
∥∥∥2
−
∥∥∥Y −X(Θ̂, p)β̂(Θ̂, p)

∥∥∥2

=

∥∥∥∥[X(p|r)>(I−Π(r))X(p|r)
]−1/2

X(p|r)>(I−Π(r))Y

∥∥∥∥2

≥λmin

(
X(p|r)>(I−Π(r))X(p|r)

) ∥∥∥∥∥∥∥∥

α◦r+1
...
α◦p


∥∥∥∥∥∥∥∥

2
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−
∥∥∥∥[X(p|r)>(I−Π(r))X(p|r)

]−1/2
X(p|r)>(I−Π(r))ε

∥∥∥∥2

−
∥∥∥∥[X(p|r)>(I−Π(r))X(p|r)

]−1/2
X(p|r)>(I−Π(r))

(
ν◦ −R(Θ̂)µ◦

)∥∥∥∥2

≥C4n

p∑
i=r+1

(α◦i )
2 +O(log(n)) +O(qρn) (F.35)

with some constant C4 > 0 for n large enough, where the O(log(n)) bound on the RHS
of (F.35) is due to (F.33), (F.34) and Lemma 1 of Lai and Wei (1982a), while the O(qρn)

bound from (F.18), regardless of whether there are change points or not. Therefore, we have

SC
(
{Xt}nt=1, Θ̂, r

)
− SC

(
{Xt}nt=1, Θ̂, p

)
=
n

2
log

(
1 +
‖Y −X(Θ̂, r)β̂(Θ̂, r)‖2 − ‖Y −X(Θ̂, p)β̂(Θ̂, p)‖2

‖Y −X(Θ̂, p)β̂(Θ̂, p)‖2

)
− (p− r)ξn

≥C5n− (p− r)ξn > 0

with some constant C5 > 0 for n large enough, by Assumption 3.4, (F.15) and (F.22).

(iv) When M > 1. The above (i)–(iii) completes the proof in the special case when Assump-
tion 3.2 is met with M = 1. In the general case where M > 1, the above proof is readily
adapted to prove the claim of the theorem.

(a) First, note that for any l ≥ l∗, the intervals examined in Step 1 of the gSa algorithm,
{θ̂l−1,uv + 1, . . . , θ̂l−1,uv+1 − 1}, v = 1, . . . , q′l, correspond to one of the following cases
under Assumption 3.2: Null case with no ‘detectable’ change points, i.e. either Θ ∩
{θ̂l−1,uv + 1, . . . , θ̂l−1,uv+1− 1} = ∅, or all θj ∈ Θ∩{θ̂l−1,uv + 1, . . . , θ̂l−1,uv+1− 1} satisfy
d2
j min(θj − θ̂l−1,uv , θ̂l−1,uv+1 − θj) ≤ ρn, or change point case with Θ ∩ {θ̂l−1,uv +

1, . . . , θ̂l−1,uv+1 − 1} 6= ∅ and d2
j min(θj − θ̂l−1,uv , θ̂l−1,uv+1 − θj) ≥ Dn − ρn for at least

one θj ∈ Θ ∩ {θ̂l−1,uv + 1, . . . , θ̂l−1,uv+1 − 1}.

In fact, when l = l∗, all {θ̂l∗−1,uv + 1, . . . , θ̂l∗−1,uv+1 − 1} for v = 1, . . . , q′l∗ , correspond
to the change point case, while when l ≥ l∗ + 1, they all correspond to the null case.

(b) In the null case, the set A = Θ̂l ∩ {θ̂l−1,uv + 1, . . . , θ̂l−1,uv+1 − 1} serves the role of the
set of spurious estimators, Θ̂, as in (i) with |A| serving as q̂. Besides, we account for the
possible estimation bias in the boundary points θ̂l−1,uv and θ̂l−1,uv+1 in the case of q ≥ 1

(while there are no detectable change points within {θ̂l−1,uv + 1, . . . , θ̂l−1,uv+1 − 1}), by
replacing the bound (F.14) derived in (i), with (F.19) and (F.20) in (ii). Consequently,
(F.15) and (F.16) are written with O

(
log(n) ∨ q̂(ρn ∨ ω2

n))
)
(see (F.22) and (F.30)),
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which leads to

SC0

(
{Xt}

θ̂l−1,uv+1

t=θ̂l−1,uv+1
, α̂(p)

)
− SC

(
{Xt}

θ̂l−1,uv+1

t=θ̂l−1,uv+1
,A, p

)
= O

(
log(n) ∨ |A|(ρn ∨ ω2

n)
)
− |A|ξn < 0

for n large enough.

(c) In the change point case, the arguments under (ii) are applied analogously by regarding
A as Θ̂ therein, with |A| equal to the number of detectable change points in {θ̂l−1,uv +

1, . . . , θ̂l−1,uv+1 − 1} as defined in (a). Then, we obtain

SC0

(
{Xt}

θ̂l−1,uv+1

t=θ̂l−1,uv+1
, α̂(p)

)
− SC

(
{Xt}

θ̂l−1,uv+1

t=θ̂l−1,uv+1
,A, p

)
≥ C3|A|Dn +O

(
log(n) ∨ |A|(ρn ∨ ω2

n)
)
− |A|ξn > 0

for n large enough.

(d) The proof on order selection consistency in (iii) holds from regardless of whether there
are detectable change points in {θ̂l−1,uv + 1, . . . , θ̂l−1,uv+1−1} or not. Thus with (a)–(c)
above, the proof is complete.

F.3 Proof of Proposition B.1

For a fixed j = 1, . . . , q, we drop the subscript j and write θ̌ = θ̌j , ` = `j , r = rj , θ = θj ,
f ′ = f ′j and δ = δj . In what follows, we assume that X`,θ̌,r > 0; otherwise, consider −Xt (resp.
−ft and −Zt) in place of Xt (ft and Zt). Then, on Zn, we have

max
`<k<r

|Z`,k,r| ≤ max
`<k<r

(√
r − k
r − `

+

√
k − `
r − `

)
ζn =

√
2ζn, (F.36)

while by (B.1)–(B.2),

|F`,θ,r| ≥
√

(f ′)2δ

4
. (F.37)

By Lemma F.2 and (B.2), we have F`,k,r strictly increases, peaks at k = θ and then decreases
in modulus without changing signs. Also by Lemma 7 of Wang and Samworth (2018), we
obtain

|F`,θ,r −F`,k,r| ≥
2

3
√

6

|f ′| |k − θ|√
min(θ − `, r − θ)

(F.38)
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for |k − θ| ≤ min(θ − `, r − θ)/2. Then, from (F.1) and (F.36)–(F.37),

|F`,θ̌,r| ≥ |F`,θ,r| − 2 max
`<k<r

|Z`,k,r| ≥
√

(f ′)2δ

4
− 2
√

2ζn >

√
(f ′)2δ

4
, (F.39)

which implies that |Z`,θ̌,r|/|F`,θ̌,r| = o(1) and consequently that F`,θ,r > F`,θ̌,r > 0 for n large
enough. Below, we consider the case where θ̌ ≤ θ; the case where θ̌ > θ can be handled
analogously. We first establish that

θ − θ̌ ≤ min(θ − `, r − θ)/2. (F.40)

If θ − θ̌ > min(θ − `, r − θ)/2 ≥ δ/4 (due to (B.1)), by Lemma F.2 and (F.38), we have

F`,θ,r −F`,θ̌,r ≥
1

3
√

3

√
(f ′)2δ

while |Z`,θ,r − Z`,θ̌,r| ≤ 2
√

2ζn, thus contradicting that X`,θ̌,r ≥ X`,θ,r under (F.1). Next, for
some ρ̃n satisfying (f ′)−2ρ̃n ≤ δ/4, we have

P
(
arg max`<k<r|X`,k,r| ≤ θ − (f ′)−2ρ̃n

)
≤ P

(
max

θ−δ/4≤k≤θ−(f ′)−2ρ̃n
X`,k,r ≥ X`,θ,r

)
≤ P

(
max

θ−δ/4≤k≤θ−(f ′)−2ρ̃n
(F`,k,r + Z`,k,r)2 − (F`,θ,r + Z`,θ,r)2 ≥ 0

)
= P

(
max

θ−δ/4≤k≤θ−(f ′)−2ρ̃n
−D1(k)D2(k)

(
1 +

A1(k)

D1(k)

)(
1 +

A2(k)

D2(k)

)
≥ 0

)
≤ P

(
max

θ−δ/4≤k≤θ−(f ′)−2ρ̃n

∣∣∣∣A1(k)A2(k)

D1(k)D2(k)
+
A1(k)

D1(k)
+
A2(k)

D2(k)

∣∣∣∣ ≥ 1

)
≤ 2P

(
max

θ−δ/4≤k≤θ−(f ′)−2ρ̃n

|A1(k)|
D1(k)

≥ 1

3

)
+ 2P

(
max

θ−δ/4≤k≤θ−(f ′)−2ρ̃n

|A2(k)|
D2(k)

≥ 1

3

)
, where

D1(k) = F`,θ,r −F`,k,r, D2(k) = F`,θ,r + F`,k,r, A1(k) = Z`,θ,r −Z`,k,r, A2(k) = Z`,θ,r + Z`,k,r.

Note that

|A1(k)| ≤

∣∣∣∣∣
(√

r − `
(θ − `)(r − θ)

−

√
r − `

(k − `)(r − k)

)
k∑

t=`+1

(Zt − Z̄`:r)

∣∣∣∣∣
+

√
r − `

(θ − `)(r − θ)

∣∣∣∣∣
θ∑

t=k+1

(Zt − Z̄`:r)

∣∣∣∣∣ =: A11(k) +A12(k).

For k < θ, we obtain√
r − `

(θ − `)(r − θ)
−

√
r − `

(k − `)(r − k)
=

√
r − `

(θ − `)(r − θ)

(
1−

√
(θ − `)(r − θ)
(k − `)(r − k)

)
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≤

√
r − `

(θ − `)(r − θ)

(
1−

√
1− θ − k

r − k

)
≤ 1

2

√
r − `

(θ − `)(r − θ)
θ − k
r − k

and similarly, √
r − `

(k − `)(r − k)
−

√
r − `

(θ − `)(r − θ)
≤ 1

2

√
r − `

(k − `)(r − k)

θ − k
θ − `

,

such that on Zn, due to (B.1) and (F.40),

A11(k) ≤

√
r − `

(θ − `)(r − θ)
2(θ − k)

min(θ − `, r − θ)

(√
k − ` ζn +

k − `√
r − `

ζn

)
≤ 4(θ − k)ζn

δ
.

Also, by (B.1),

A12(k) ≤
√

2

δ

(∣∣∣∣∣
θ∑

t=k+1

Zt

∣∣∣∣∣+
θ − k√
r − `

ζn

)
.

Then, by (F.38) and (F.1), there exists some c3 > 0 such that setting ρ̃n = c3(ζ̃n)2, we have

P

(
max

θ−δ/4≤k≤θ−(f ′)−2ρ̃n

|A1(k)|
D1(k)

≥ 1

3
, Z̃n

)
≤P

(
max

θ−δ/4≤k≤θ−(f ′)−2ρ̃n

√
(f ′)−2ρ̃n
θ − k

θ∑
t=k+1

Zt ≥
√
ρ̃n

(
1

3
− (2
√

2 + 1)ζn√
(f ′)2δ

)
, Z̃n

)
= 0,

which holds uniformly over j = 1, . . . , q. Next, note that from (F.36),

max
θ−δ/4≤k≤θ−(f ′)−2ρ̃n

|A2(k)| ≤ 2
√

2ζn,

while from (F.37),

min
θ−δ/4≤k≤θ−(f ′)−2ρ̃n

|D2(k)| ≥
√

(f ′)2δ

2

and thus

P

(
max

θ−δ/4≤k≤θ−(f ′)−2ρ̃n

|A2(k)|
D2(k)

≥ 1

3
,Zn

)
= 0

under (F.1), which completes the proof.
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G Assumptions 2.1 and 3.1

In this section, we provide an example that fulfils Assumptions 2.1 and 3.1 (iv) motivated by
the Nagaev-type tail probability inequalities derived in Zhang and Wu (2017) for dependent
time series with sub-exponential innovations.
Suppose that Zt =

∑∞
`=0 b`εt−` where the innovations {εt} are i.i.d. sub-exponential random

variables with E(εt) = 0. Further, we assume that the linear coefficients decay polynomially
such that there exists some γ > 0 and β > 1 satisfying |b`| ≤ γ`−β for all ` ≥ 1. With ν = 1,
the dependence adjusted sub-exponential norm

‖Z·‖ψν ,0 = sup
m≥2

m−ν
∞∑
t=0

{
E
(∣∣Zt − Zt,{0}∣∣m)}1/m

,

is bounded from the above by some fixed constant C1 > 0, where Zt,{0} =
∑∞

`=0, ` 6=t b`εt−`+btε
′
0

with ε′0 an independent copy of ε0. Then, by Lemma C.4 of Zhang and Wu (2017), there exists
a fixed constant C2 > 0 such that

P

(
max

0≤s<e≤n

1√
e− s

∣∣∣∣∣
e∑

t=s+1

Zt

∣∣∣∣∣ ≥ ζn
)
≤ C2n(n+ 1) exp

(
− 3ζ

2/3
n

4e‖Z·‖ψ1,0

)
,

i.e. we can set ζn = C3 log3/2(n) with a large enough C3 > 0 (depending only on ‖Z·‖ψ1,0) and
have P(Zn)→ 1. Using similar arguments and Bernstein’s inequality (see e.g. Theorem 2.8.1
of Vershynin (2018)), we have P(En)→ 1 with ωn � log(n).
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