Supplementary Appendix for

“Multiple change point detection under serial dependence:

)

Wild contrast maximisation and gappy Schwarz algorithm’

Haeran Cho! Piotr Fryzlewicz?

A Algorithms

A.1 Wild Binary Segmentation 2 algorithm

Algorithm (1| provides a pseudo code for the Wild Binary Segmentation 2 (WBS2) algorithm
proposed in |Fryzlewicz (2020).

We remark that WBS2 as defined in [Fryzlewicz (2020) uses random sampling in line 7 of
Algorithm [I] but our preference is for deterministic sampling as it generates reproducible
results without having to fix a random seed. To obtain at least R intervals over an equispaced
(or almost equispaced, if exactly equal spacing is not possible) grid on a generic interval [s, e],

we firstly select the smallest integer K for which the number of all intervals with start- and

end-points in the set {1,..., K } equals or exceeds R. Next, we map (linearly with rounding)
the integer grid [1, K] onto an integer grid within [s, €], as j — | et [%151] for each
jed{l,..., IN(}, where [-] represents rounding to the nearest integer. We then use all start-

and end-points on the resulting grid to obtain the required collection (s;,,e,,) in line 7 of
Algorithm

A.2 Gappy Schwarz algorithm

For each [ > 1, we denote @l = {é\l,j, 1<5<q: @’1 <...< 671@}, and adopt the notational
convention that é\l,o =0 and gg@ﬂ = n. Initialised with [ = M, gSa performs the following

steps.

Step 1: We identify u € {0,...,q_1} with {{/9\1_1# +1,... ,@_17u+1 —1}n @l # (; that is,
the segment {(/9\1,17u +1,..., 9\1,1#“ — 1} defined by the consecutive elements of (:)l,l,
has additional change points detected in @l such that {55_1# +1,..., é\l—l,u—&—l —1}n
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Algorithm 1: Wild Binary Segmentation 2
Input: Data {X;}}";, the number of intervals R,

Function wbs2({ X;}}_, Rn, s, €):
if e — s <1 then return(
Let Ase < {(6,r) €Z?: s<l<r<eandr—{>1}
if |As .| < R, then
‘ R« | As | and set R e <= As e
else

R« R, and draw R elements from A, o deterministically over an equispaced
grid, to form Rse = {1 <m < R: (Sm,em)}
end

Identify (so, ko, o) = arg MAX(( e R, sm<h<enm |Xs, e |

return (S, ko, €o, | Xs, koeo|) UWbs2({ X}y, R, S, ko) Uwbs2({X¢}7 1, Ry, ko, €)
Po < wbs2({ X }} 1, Rpn,0,n)
Output: Py

(6, \ ©,_1) # 0. By construction, the set of such indices, Z; = {uy,... g }, satisfies
|Z;] > 1. For each u,, v =1,...,q], we repeat the following steps with a logical vector
of length ¢j, F € {TRUE, FALSE}%, initialised as F = (TRUE. ..., TRUE).

Step 1.1: Setting A = {51 Tuy, + 1, 7@;_1’uv+1 —1in @l, obtain p that returns the

smallest SC({X; }01 01 "”+1+1,
I—1,uy

the corresponding AR parameter estimator a(p) via least squares estimation.

A,r) over r € {0,...,pmax} as outlined in (9), and

Step 1.2: If SC({X; }91 L AD) <SGo({X, }fl S @(p)), update F, +~ FALSE.

Step 2: If some elements of F satisfy F, = TRUE and [ > 1, update [l < [ — 1 and go
to Step 1. If F, = FALSE for all v = 1,...,¢], return @l as the set of change point

estimators. Otherwise, return 6 = (.

Theoremushows that we have either F, = FALSE for allv = 1,. .., ¢; when the corresponding
91 = 91* (see Assumption E 2| for the definition of @l*), or F, = TRUE for all v when | > [*
and thus all 9l \ @l—l are spurious estimators. In implementing the methodology, we take
a conservative approach in the above Step 2, to guard against the unlikely event where the

output F contains mixed results.

B Refinement of change point estimators

Throughout this section, we condition on the event that (:)[q] is chosen at the model selection

step, and discuss how the location estimators can further be refined; consistent model selection



based on the estimators of change point locations returned directly by WBS2 (without any
additional refinement), is discussed in Section

By Theorem and Assumption each é\j, 1 < j < gq, is sufficiently close to the corre-
sponding change point ¢; in the sense that ]53 —0;] < (f]{)_Qpn < ¢d; for some c € (0,1/6)
with probability tending to one, for n large enough. Defining ¢; =0, r, = n,

2~ 1~ ) 1~ 2~ )
Ej:{39j1—|—39jJ, j=2,...,q, and rj:{30j+30j+1J’ j=1,...,q—1,

we have each interval (¢;, ;) sufficiently large and contain a single change point §; well within

its interior, i.e.

min(; — 4,75 —6;) > (2/3 —¢)d; > 6;/2, and (B.1)
min(ﬁj — Gj,l, 0j+1 — T‘j) > (1/3 — C)5j > 0. (BQ)

Then, we propose to further refine the location estimator §] by éj = argmaxy <, |Xg].’k7r]. ’,
which generally improves the localisation rate. To see this, we impose the following assumption
on the error distribution which, by its formulation, trivially holds under Assumption with
zn = (,,. However, we often have the assumption met with a much tighter bound as discussed
in Remark[B-1] which leads to the improvement in the localisation rate of the refined estimators
éj as shown in Proposition .

Assumption B.1. For any sequence 1 < a, < minlgqu(fj’-)zcsj and some (, satisfying

En = O(¢p) (with ¢, as in Assumption , let P(Z~n — 1 where

~ (f})~2an &l

Z, = { max max — Z Z| <G
") 1SS () 2an<e<6,-6; 1 ¢ e |
—6,—
(f)"2an | %+ ~
ﬂ max max - Z Zt SCTL
1<G<q (f1)2an<t<6;41-0; ¢ Nyl
-]

Proposition B.1. Let the assumptions of Theorem [2.1I] and Assumption hold. Then,
there exists ¢3 € (0,00) such that

N210. _n. T N\2 ~
p (1@%(@) 10, — 0;] < c3(Cn) > > P (zn mZn> 1.

Remark B.1. When the number of change points ¢ is bounded, Assumption holds with En

diverging at an arbitrarily slow rate, provided that

> 7

t=I+1

E <C(r—0D"? forany —oco<l<r<oo (B.3)




for some constant C' > 0 and v > 2, see Proposition 2.1 (c.ii) of |Cho and Kirch| (2021). The
condition is satisfied by many time series models, see Appendix B.2 in |Kirch! (2006) and
the references therein. On the other hand, Theorem 1 of [Shao and Zhang (2010) indicates
that the lower bound \/m = O((,) cannot be improved. Therefore, Proposition
shows that the extra step indeed improves upon the localisation rate attained by the WBS2
reported in Theorem [2.1| (i). In fact, for time series models satisfying , the refinement
leads to ( f;)2|9vj — 0;] = Op(1), thus matching the minimax optimal rate of multiple change

point localisation (see Proposition 6 of |Verzelen et al.| (2020)).

C Implementation and the choice of tuning parameters

In line with the condition and Assumption we set Qn = |log"?(n)], which imposes
an upper bound on the number of change points, and we allow for at most M = 5 nested
change point models (in addition to the null model) to be considered by the model selection
methodology. By default, the number of intervals drawn by the deterministic sampling in
Algorithm [I]is set at R,, = 100, and the maximum AR order is set at pmax = 10 unless stated
otherwise when input time series is short. To ensure that there are enough observations over
each interval defined by two adjacent candidate change point estimators for numerical stability,
we set the minimum spacing to be max(20, pmax + [log(n)]) and feed this into Algorithm [1]in
the solution path generation. Finally, the penalty of SC is given by &, = 10g1'01(n) which is in

accordance with Assumption when the innovations {e;} are distributed as (sub-)Gaussian

random variables such that w, < y/log(n) fulfils Assumption .

D Complete simulation studies

In this section, we present the complete simulation results summarised in Section of the

main text.

D.1  Set-up

We consider a variety of data generating processes for {X;}; in the following, we assume
¢ ~iia N(0,02) with 0. = 1 unless stated otherwise. In addition to we simulate
datasets under the following scenarios. We also consider the case where f; = 0 in each
setting, to evaluate the size control performance of the methods considered in the comparative

simulation study (their descriptions are given below the list of data generating processes).

(M4) f; undergoes ¢ = 5 change points at (01, 62,03,04,605) = (100,300,500, 550, 750) with
n = 1000 and (fo, f1, f5: fé, 11, fg) =(0,1,-1,2,-2,—-1), and Z; = &;.



(M5)

(M6)

(M7)

(M9)

(M10)

(M11)

(M12)

(M13)

ft undergoes ¢ = 2 change points at (01, 6s) = (75,125) with n = 200 and (fo, f1, f5) =
(0,2.5,—2.5), and {Z;} follows an ARMA(1,1) model: Z; = a1Z;—1 + ¢ + b1y with
a; = 0.5, by = 0.3 and 0. = 1/2.14285.

ft undergoes ¢ = 2 change points at (01, 62) = (50,100) with n = 150 and (fo, f1, f5) =
(0,2.5,—2.5), and {Z;} follows an AR(1) model: Z; = a;Z;_1 + & with a; = 0.5 and
oo = = al.

f: undergoes ¢ = 2 change points at (61, 62) = (100,200) with n = 300 and (fo, f1, f5) =
(0,1,—1), and {Z;} follows an ARMA(1, 1) model: Z; = a1Z;—1 + & + bie;—1 with the
ARMA parameters are generated as aj,b; ~jq U(—0.9,0.9) for each realisation, and
0: = /(1 = a})/(1 + arby + 7).

ft undergoes ¢ = 5 change points at (01,62, 603,04,05) = (100,300, 500, 550, 750) with
n = 1000 and (fo, f1, 5, f3, f1. /) = (0,1,—1,2,-2,—1), and {Z;} follows an MA(1)
model Z; = ¢4 + bieg—1 with by = 0.3.

f+ undergoes ¢ = 5 change points as in with n = 1000 and (fo, f1, f5, fa, 1, [£) =
(0,3,-3,4,—4,-3), and {Z;} follows an MA(4) model: Z; = &; + 0.9¢;—1 + 0.8¢4_2 +
0.7e4_3 + 0.6€¢_4.

[t undergoes ¢ = 15 change points at §; = [nj/16], j =1,...,15 with n = 2000, where
the level parameters fp, ;1 are generated uniformly as (1) - fo,41 ~ia U(1,2), 5 =
0,...,15, for each realisation. {Z;} follows an AR(1) model as in with a; = 0.5.
ft undergoes ¢ = 10 change points at 6; = 1507, j = 1,...,10 with n = 1650 and
(fo, f1, f2: 13, f4 f55 f6» [, fs fos flo) = (0,7,=7,6,—6,5,-5,4,—4,3,-3), and {Z;} fol-
lows an ARMA (2, 6) model as in

fir is as in and {Z;} follows a time-varying AR(1) model: Z; = a1(t)Z;—1 + o(t)e;
with a1 (t) = 0.5 — 0.2 cos(27t/n) and o(t) = \/1 — a1 (t)2.

ft is as in and {Z;} follows a time-varying AR(1) model: Z; = a1(t)Zi—1 + o(t)e;
where a1 (t) is piecewise constant with change points at 6;, j = 1,..., ¢ such that a;(t) =

0.3]115391 + 0.4H91<t§§2 + 0.6H92<t§93 + 0-7H03<t§04 + 0.5H94<t§g5 + 0.3L¢>0s and (T(t) =

\/ 1-— al(t)2.

Apart from Model all others model have serial correlations in {Z;}}_ ;. Models
(motivated by an example in Wu and Zhou (2020))), (M6 )| and |(M7)| consider relatively short
time series with n € [150, 300]. Models[(M2)} [M8)|and [[M9)|are taken from Dette et al| (2020).
In the LRV is close to zero and thus its accurate estimation is difficult. Models |[(M3)
and have a teeth-like signal containing frequent change points and the underlying {Z,;}
has strong autocorrelations in [(M3)| and [(M11)| considers frequent, heterogeneous changes in
the mean. In Models|(M12)[and |(M13)| the noise {Z;}}"; has time-varying serial dependence

structure.



We generate 1000 realisations under each model. For each scenario, we additionally consider
the case in which f; = 0 (thus ¢ = 0) in order to evaluate the proposed methodology on its size
control. On each realisation, we apply the proposed WCM.gSa with the tuning parameters
are selected as described in Section [C] For comparison, we consider a procedure that omits the
gappy model sequence generation step from WCM.gSa: referred to as ‘no gap’, it applies the
SC-based model selection procedure directly to the model sequence consisting of consecutive
entries from the WBS2-generated solution path.

We include DepSMUCE (Dette et all [2020), DeCAFS (Romano et al., 2021), MACE (Wu and
Zhou,, [2020) and SNCP (Zhao et al., 2021)) in the simulation studies. DepSMUCE extends the
SMUCE procedure (Frick et all |2014)) proposed for independent data, by estimating the LRV
using a difference-type estimator. MACE is a multiscale moving sum-based procedure with
self-normalisation-based scaling that accounts for serial correlations. SNCP is a time series
segmentation methodology that combines self-normalisation and a nested local window-based
algorithm, and is applicable to detect multiple change points in a broad class of parameters.
Although not its primary objective, DeCAFS can be adopted for the problem of detecting
multiple change points in the mean of an otherwise stationary AR(1) process, and we adapt the
main routine of its R implementation (Romano et al., [2020) to change point analysis under
as suggested by the authors. For DepSMUCE and MACE, we consider o € {0.05,0.2} and
for SNCP, a € {0.01,0.05,0.1} as per the codes provided by the authors. MACE requires
the selection of the minimum and the maximum bandwidths in the rescaled time [0, 1] and
moreover, the latter, say smax, controls the maximum detectable number of change points to
be (25max) " we set Smax = min(1/(3¢),n"1/6) for fair comparison, which varies from one
model to another. Other tuning parameters not mentioned here are chosen as recommended

by the authors.

D.2 Results

Table summarises the performance of different change point detection methodologies in-
cluded in the comparative simulation study under the null model Hy : ¢ = 0 and the alterna-
tive Hy : ¢ > 1. More specifically, we report the proportion of falsely detecting one or more
change points under Hy (size), as well as the following statistics under Hi: the distribution

of the estimated number of change points, the relative mean squared error (MSE):

n

ST = 123 (= f)?
t=1

t=1

where ﬁ is the piecewise constant signal constructed with the set of estimated change point

locations @, and ﬁ* is an oracle estimator constructed with the true 6;, and the Hausdorff



distance (dg) between © and ©:

dp(©,0) = max (maxrpip 60— 6], max min = 9|> ,
0€0 pco e 0€O

averaged over 1000 realisations.
Overall, across the various scenarios, WCM.gSa performs well under both the null and the
alternative scenarios. In particular, it keeps the size at bay under Hy regardless of the un-
derlying serial correlation structure; when the time series is sufficiently long (n > 300), the
proportion of the events where WCM.gSa spuriously detects any change point under Hj is
strictly below 0.05 (often below 0.01). Even when the input time series is short as in [(M6)]
with n = 150, the proportion of such events is smaller than 0.1. Controlling for the size under
Hy, especially in the presence of serial correlations, is a difficult task and as shown below,
other methods considered in the comparative study fail to do so by a large margin in some
scenarios.
Under H;, WCM.gSa performs well in most scenarios according to a variety of criteria, such
as model selection accuracy measured by |g— ¢| or the localisation accuracy measured by dp.
The results under show that WCM.gSa is able to handle mild nonstationarities
in {Z;}}_,. Without the gappy model sequence generation step, the procedure suffers from
having to perform a large number of model comparison steps, and the ‘no gap’ procedure
tends to over-estimate the number of change points when ¢ is large, or in the presence of mild
nonstationarities in the noise. From this, we conclude that the gappy model sequence genera-
tion step plays an important role in final model selection by removing those candidate models
that are not likely to be the one correctly detecting all change points from consideration.
DepSMUCE performs well for short series (see or in the presence of weak serial correla-
tions as in but generally suffers from a calibration issue. That is, in order not to detect
spurious change points under Hy, it requires the tuning parameter to be set conservatively at
a = 0.05; however, for improved detection power, o = 0.2 is a better choice. In addition, the
estimator of the LRV proposed therein tends to under-estimate the LRV when it is close to
zero as in or when there are strong autocorrelations as in thus incurring a large
number of falsely detected change points under Hy.
Similar sensitivity to the choice of the level « is observable in the case of SNCP, and it tends
to return spurious change point estimators when the time series is short as in
or when autocorrelations are strong as in and tends to under-estimate the number of
change points generally with the exception of
DeCAFS operates under the assumption that {Z;}}_; is an AR(1) process. Therefore, it is
applied under model mis-specification in some scenarios, but still performs reasonably well in
not returning false positives under Hy. The exception is where, in the presence of strong

autocorrelations, it returns spurious estimators over 50% of realisations even though the model



is correctly specified in this scenario. Its detection power suffers under model mis-specification
in some scenarios such as |(M2)| and |(M9)| when compared to WCM.gSa, but DeCAFS tends
to attain good MSE. MACE suffers from both size inflation and lack of power, possibly due

to its sensitivity to choice of some tuning parameters such as the bandwidths.

Table D.1: We report the proportion of rejecting Hy (by returning ¢ > 1) under Hy : ¢ = 0 (size)
and the summary of estimated change points under H; : ¢ > 1 according to the distribution of § — ¢,
relative MSE and the Hausdorf! distance (dg) over 1000 realisations. Methods that control the size
under Hy (according to the specified « for DepSMUCE, MACE and SNCP, and at 0.05 for WCM.gSa
and DeCAFS), and that achieve the best performance under H; according to different criteria, are

highlighted in bold for each scenario.

q—dq

Model Method Size >-3 -2 -1 0 1 2 3< RMSE dy
(M1) WCM.gSa 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 68.720 1.988
no gap 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 68.720 1.988
DepSMUCE(0.05) 1.000 0.000 0.000 0.000 0.485 0.167 0.163 0.185 219.196 48.359
DepSMUCE(0.2) 1.000 0.000 0.000 0.000 0.170 0.093 0.177 0.560 437.883 90.818
DeCAFS 0.064 0.000 0.006 0.029 0.742 0.148 0.053 0.022 304.694 26.274
MACE(0.05) 0.222 0.000 0.000 0.922 0.078 0.000 0.000 0.000 1729.645 56.939
MACE(0.2) 0.515 0.000 0.000 0.805 0.187 0.008 0.000 0.000 1724.294 65.194
SNCP(0.01) 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 35.512 1.06
SNCP(0.05) 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 35.512 1.06
SNCP(0.1) 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 35.512 1.06
(M2) WCM.gSa 0.001 0.000 0.000 0.019 0.873 0.092 0.014 0.002 4.907 34.627
no gap 0.020 0.002 0.002 0.012 0.178 0.024 0.037 0.745 11.030 148.765
DepSMUCE(0.05) 0.031 0.052 0.385 0.429 0.134 0.000 0.000 0.000 18.567 145.406
DepSMUCE(0.2) 0.142 0.006 0.093 0.410 0.490 0.001 0.000 0.000 11.066  83.157
DeCAFS 0.099 0.006 0.035 0.137 0.773 0.049 0.000 0.000 3.891 61.517
MACE(0.05) 0.682 0.767 0.157 0.064 0.012 0.000 0.000 0.000 40.977 316.419
MACE(0.2) 0.874 0.477 0.273 0.156 0.083 0.009 0.002 0.000 33.876 286.084
SNCP(0.01) 0.022 0.423 0.323 0.193 0.060 0.000 0.001 0.000 24.928 249.412
SNCP(0.05) 0.084 0.117 0.293 0.372 0.215 0.002 0.001 0.000 15.428 166.724
SNCP(0.1) 0.152 0.044 0.192 0.404 0.349 0.010 0.001 0.000 11.839 126.588
(M3) WCM.gSa 0.000 0.087 0.177 0.233 0.319 0.076 0.041 0.067 3.184 86.139
no gap 0.058 0.000 0.000 0.000 0.000 0.000 0.000 1.000 4.498 92.759
DepSMUCE(0.05) 0.936 0.767 0.153 0.070 0.010 0.000 0.000 0.000 8.655  139.298
DepSMUCE(0.2) 0.989 0.276 0.320 0.303 0.101 0.000 0.000 0.000 5.537  108.339
DeCAFS 0.565 0.000 0.004 0.019 0.755 0.203 0.017 0.002 1.065 19.751
MACE(0.05) 1.000 0.053 0.059 0.084 0.129 0.169 0.170 0.336 7.092  126.325



MACE(0.2) 1.000 0.008 0.007 0.024 0.041 0.092 0.111 0.717 5.804  107.392
SNCP(0.01) 0.105 0.995 0.004 0.000 0.001 0.000 0.000 0.000 14.135 430.912
SNCP(0.05) 0.258 0.956 0.034 0.007 0.003 0.000 0.000 0.000 11.698  290.266
SNCP(0.1) 0.397 0.890 0.074 0.027 0.009 0.000 0.000 0.000 10.342 245.351
(M4) WCM.gSa 0.000 0.000 0.000 0.002 0.994 0.003 0.001 0.000 4.881 7.892
no gap 0.009 0.000 0.000 0.000 0.873 0.026 0.044 0.057 5.587 21.121
DepSMUCE(0.05) 0.006 0.000 0.000 0.104 0.896 0.000 0.000 0.000 6.671 22.699
DepSMUCE(0.2) 0.062 0.000 0.000 0.016 0.984 0.000 0.000 0.000 4.901 9.21
DeCAFS 0.008 0.000 0.000 0.000 0.983 0.015 0.002 0.000 4.837  7.823
MACE(0.05) 0.558 0.681 0.242 0.062 0.013 0.002 0.000 0.000 97.279  311.77
MACE(0.2) 0.816 0.370 0.328 0.212 0.073 0.015 0.002 0.000 82.773 253.051
SNCP(0.01) 0.003 0.000 0.023 0.251 0.726 0.000 0.000 0.000 11.718  57.614
SNCP(0.05) 0.028 0.000 0.002 0.093 0.898 0.007 0.000 0.000 7.916 24.667
SNCP(0.1) 0.065 0.000 0.000 0.053 0.937 0.010 0.000 0.000 6.859 17.656
(M5) WCM.gSa 0.080 0.000 0.000 0.000 0.884 0.086 0.015 0.015 2.753 4.583
no gap 0.105 0.000 0.000 0.000 0.839 0.102 0.041 0.018 2.936 6.554
DepSMUCE(0.05) 0.028 0.000 0.000 0.000 1.000 0.000 0.000 0.000 2.051 0.166
DepSMUCE(0.2) 0.098 0.000 0.000 0.000 1.000 0.000 0.000 0.000 2.051 0.166
DeCAFS 0.107 0.000 0.000 0.000 0.873 0.088 0.028 0.011 1.970 6.203
MACE(0.05) 0.482 0.000 0.006 0.115 0.761 0.114 0.004 0.000 24.515 11.421
MACE(0.2) 0.747 0.000 0.000 0.040 0.743 0.201 0.016 0.000 12.031  11.458
SNCP(0.01) 0.086 0.000 0.000 0.002 0.945 0.052 0.001 0.000 9.839 2.764
SNCP(0.05) 0.220 0.000 0.000 0.000 0.851 0.138 0.011 0.000 9.367 5.774
SNCP(0.1) 0.328 0.000 0.000 0.000 0.778 0.193 0.027 0.002 9.652 8.315
(M6) WCM.gSa 0.067 0.000 0.000 0.000 0.865 0.119 0.016 0.000 5.993 4.782
no gap 0.074 0.000 0.000 0.000 0.865 0.119 0.016 0.000 5.993 4.782
DepSMUCE(0.05) 0.025 0.000 0.006 0.202 0.792 0.000 0.000 0.000 14.038 9.14
DepSMUCE(0.2) 0.104 0.000 0.000 0.041 0.959 0.000 0.000 0.000 5.876  3.057
DeCAFS 0.193 0.000 0.005 0.005 0.751 0.099 0.074 0.066 7.867 9.537
MACE(0.05) 0.621 0.000 0.143 0.433 0.391 0.033 0.000 0.000 41.943  25.549
MACE(0.2) 0.812 0.000 0.052 0.288 0.584 0.075 0.001 0.000 29.655  20.355
SNCP(0.01) 0.161 0.000 0.018 0.167 0.744 0.069 0.002 0.000 18.362  12.366
SNCP(0.05) 0.367 0.000 0.005 0.054 0.740 0.177 0.022 0.002 12.173 9.618
SNCP(0.1) 0.503 0.000 0.001 0.017 0.669 0.253 0.053 0.007 10.201  10.529
(MT7) WCM.gSa 0.027 0.000 0.102 0.001 0.852 0.025 0.009 0.011 13.490 7.821
no gap 0.044 0.000 0.089 0.011 0.783 0.038 0.039 0.040 14.067 12.69
DepSMUCE(0.05) 0.266 0.000 0.091 0.196 0.565 0.030 0.031 0.087 202.355 29.781
DepSMUCE(0.2) 0.361 0.000 0.043 0.150 0.591 0.047 0.036 0.133 294.382 30.141



DeCAFS 0.188 0.000 0.114 0.048 0.613 0.057 0.031 0.137 403.467 26.973
MACE(0.05) 0.303 0.000 0.266 0.283 0.423 0.026 0.002 0.000 60.194  34.062
MACE(0.2) 0.491 0.000 0.132 0.272 0.532 0.058 0.006 0.000 41.137  36.826
SNCP(0.01) 0.061 0.000 0.147 0.191 0.654 0.007 0.001 0.000 18.293  22.939
SNCP(0.05) 0.115 0.000 0.066 0.150 0.755 0.021 0.007 0.001 15.908  21.198
SNCP(0.1) 0.159 0.000 0.032 0.143 0.778 0.030 0.015 0.002 14.410  22.208

(M8) WCM.gSa 0.000 0.000 0.000 0.012 0.972 0.016 0.000 0.000 5.053 16.36
no gap 0.007 0.000 0.000 0.004 0.850 0.036 0.046 0.064 5.707 29.525
DepSMUCE(0.05) 0.007 0.006 0.117 0.472 0.405 0.000 0.000 0.000 15.523 114.702
DepSMUCE(0.2) 0.063 0.000 0.009 0.201 0.790 0.000 0.000 0.000 7.204 44.676

DeCAFS 0.016 0.000 0.003 0.004 0.969 0.022 0.001 0.001 4.957 15.207
MACE(0.05) 0.565 0.816 0.141 0.036 0.006 0.001 0.000 0.000 64.459 338.846
MACE(0.2) 0.808 0.523 0.269 0.162 0.035 0.011 0.000 0.000 54.656 286.868
SNCP(0.01) 0.008 0.064 0.216 0.447 0.272 0.001 0.000 0.000 18.386 162.591
SNCP(0.05) 0.034 0.005 0.080 0.355 0.554 0.006 0.000 0.000 11.438  94.291
SNCP(0.1) 0.074 0.002 0.024 0.269 0.693 0.011 0.001 0.000 8.825 64.143

(M9) WCM.gSa 0.003 0.000 0.001 0.003 0.926 0.059 0.008 0.003 4.776 21.35
no gap 0.012 0.001 0.015 0.020 0.632 0.023 0.042 0.267 7.121 68.784
DepSMUCE(0.05) 0.020 0.051 0.233 0.546 0.170 0.000 0.000 0.000 16.374  87.334
DepSMUCE(0.2) 0.127 0.003 0.052 0.406 0.537 0.002 0.000 0.000 9.544 37.717

DeCAFS 0.097 0.001 0.061 0.019 0.863 0.055 0.001 0.000 3.779  31.135
MACE(0.05) 0.670 0.779 0.167 0.041 0.012 0.001 0.000 0.000 49.668 334.816
MACE(0.2) 0.870 0.462 0.275 0.192 0.059 0.011 0.001 0.000 39.156 285.542
SNCP(0.01) 0.021 0.292 0.361 0.252 0.094 0.001 0.000 0.000 21.119 201.372
SNCP(0.05) 0.077 0.093 0.258 0.343 0.296 0.010 0.000 0.000 14.061 126.391
SNCP(0.1) 0.152 0.033 0.180 0.352 0.417 0.016 0.002 0.000 11.489  93.392

(M10) WCM.gSa 0.000 0.000 0.000 0.008 0.982 0.006 0.003 0.001 2.425 5.485
no gap 0.006 0.000 0.000 0.000 0.511 0.055 0.070 0.364 3.480 34.066
DepSMUCE(0.05) 0.020 0.118 0.332 0.380 0.170 0.000 0.000 0.000 20.085  85.553
DepSMUCE(0.2) 0.133 0.003 0.048 0.338 0.611 0.000 0.000 0.000 7.534 39.648

DeCAFS 0.023 0.000 0.000 0.000 0.974 0.023 0.003 0.000 2.112 5.564
MACE(0.05) 0.902 0.917 0.049 0.026 0.007 0.000 0.001 0.000 61.743  232.45
MACE(0.2) 0.984 0.628 0.173 0.110 0.050 0.028 0.009 0.002 47.687 177.494
SNCP(0.01) 0.011 0.035 0.106 0.292 0.567 0.000 0.000 0.000 13.030  60.337
SNCP(0.05) 0.043 0.002 0.022 0.165 0.811 0.000 0.000 0.000 9.461 29.324
SNCP(0.1) 0.104 0.000 0.006 0.096 0.898 0.000 0.000 0.000 8.556 18.968

(M11) WCM.gSa 0.001 0.080 0.360 0.252 0.287 0.013 0.006 0.002 5.435 180.548
no gap 0.012 0.003 0.014 0.003 0.069 0.022 0.021 0.868 8.287  105.137
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DepSMUCE(0.05) 0.022 0.912 0.081 0.007 0.000 0.000 0.000 0.000 15.463 351.082
DepSMUCE(0.2) 0.126 0.562 0.345 0.088 0.005 0.000 0.000 0.000 10.991 258.122
DeCAFS 0.077 0.221 0.474 0.063 0.234 0.008 0.000 0.000 4.831 286.997
MACE(0.2) 0.839 0.994 0.005 0.000 0.001 0.000 0.000 0.000 32.807  565.07
MACE(0.05) 0.960 0.925 0.049 0.020 0.004 0.002 0.000 0.000 29.778 424.598
SNCP(0.01) 0.011 0.990 0.009 0.001 0.000 0.000 0.000 0.000 23.936 510.673
SNCP(0.05) 0.070 0.862 0.113 0.023 0.002 0.000 0.000 0.000 17.976 349.351
SNCP(0.1) 0.126 0.706 0.206 0.081 0.007 0.000 0.000 0.000 15.070  290.98

(M12) WCM.gSa 0.002 0.000 0.002 0.061 0.718 0.151 0.048 0.020 5.828  50.476

no gap 0.031 0.002 0.010 0.016 0.501 0.058 0.082 0.331 7.648 73.266

DepSMUCE(0.05) 0.074 0.155 0.450 0.350 0.045 0.000 0.000 0.000 16.612 232.209
DepSMUCE(0.2) 0.273 0.026 0.177 0.471 0.325 0.001 0.000 0.000 10.426 139.304
DeCAFS 0.081 0.009 0.079 0.074 0.717 0.094 0.023 0.004 5.727  82.021
MACE(0.05) 0.675 0.790 0.161 0.043 0.005 0.001 0.000 0.000 33.749 327.001
MACE(0.2) 0.873 0.537 0.249 0.151 0.050 0.012 0.001 0.000 28.311 304.191
SNCP(0.01) 0.020 0.645 0.224 0.103 0.028 0.000 0.000 0.000 24.165 303.019
SNCP(0.05) 0.081 0.265 0.324 0.286 0.122 0.003 0.000 0.000 16.420 218.013
SNCP(0.1) 0.152 0.131 0.283 0.363 0.217 0.006 0.000 0.000 13.713 166.677

(M13) WCM.gSa 0.001 0.000 0.002 0.043 0.831 0.089 0.030 0.005 5.442  38.565

no gap 0.023 0.000 0.008 0.007 0.613 0.056 0.086 0.230 6.880 57.405

DepSMUCE(0.05) 0.053 0.093 0.381 0.423 0.103 0.000 0.000 0.000 16.547 202.408
DepSMUCE(0.2) 0.205 0.012 0.113 0.445 0.430 0.000 0.000 0.000 9.754  112.529
DeCAFS 0.041 0.003 0.043 0.049 0.834 0.059 0.012 0.000 5.069  50.936
MACE(0.05) 0.646 0.819 0.133 0.044 0.003 0.001 0.000 0.000 38.863 329.921
MACE(0.2) 0.855 0.543 0.255 0.141 0.051 0.008 0.002 0.000 32.993 301.344
SNCP(0.01) 0.015 0.470 0.304 0.175 0.051 0.000 0.000 0.000 22.871 280.454
SNCP(0.05) 0.064 0.161 0.282 0.375 0.179 0.003 0.000 0.000 15.759 184.029
SNCP(0.1) 0.134 0.077 0.209 0.397 0.311 0.005 0.001 0.000 12.778 137.346

D.3 Numerical experiments motivating the use of SC

If any change point is ignored in fitting an AR model, the information criterion SC tends to
over-compensate for the under-specification of mean shifts, which makes direct minimisation

of SC unreliable as a model selection method. To illustrate this and motivate the use of SCy in

gSa, we present a simulation study with datasets generated under the models [(M9)|and [(M11)|

in Section Here, our aim is to compare a change point model C:)l (correctly detecting all
q change points) and the null model @0 = () using two different approaches — one adopted
in gSa comparing SCo ({X;}7_,,@(p)) and SC({X:}™_,,©1,p) with p = p(0;) (‘Method 17),
and the other selecting the model minimising SC by comparing SC({X;}}, @O,ﬁ(@o)) and
SCH{ X}y, ©1,P) (‘Method 2’). In both scenarios, the errors do not follow an AR model of
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a finite order so we select p(©p) and p(©1) as described in ().

For the choice of Oy, we consider the no bias case ©1 = {6, 1 < j < q} and the biased case
(:)1 ={0;+s;-)\j, 1 <j < q}, where s; ~jig Uniform{—1,1} and A; ~jiq Poisson(5); the latter
case reflects that the best localisation rate in change point problems is Op(1). The result is
summarised in Table where we report the size (proportion of selecting @1 over (:)0 when
there is no change point), as well as the power (proportion of correctly selecting (:)1) out of
1000 realisations. From the results, we conclude that Method 1, which adopts SCq as a proxy
of the goodness-of-fit adjusted by model complexity under the no change point model, works
well both in controlling the size and attaining good power. In comparison, Method 2 suffers
from loss of power due to the bias in AR parameter estimators in the presence of mean shifts,
and its performance worsens when the change point estimators do not exactly coincide with
the true locations, which is often the case in change point problems when the magnitude of

the jumps is small.

Table D.2: Size and power of Methods 1 and 2 under the models [(M9)| and [(M11)[ when the
change point model is specified without any bias in change point estimators (‘no bias’) and
with bias.

(M9) (M11)
No bias Bias No bias Bias

Size Power Size Power Size power Size Power

Method 1 0 1 0 1 0 1 0 00.989
Method 2 0 0.876 0 0.202 0 0.793 0 0.015

E Additional real data analysis

E.1 Pre-processing of nitrogen oxides concentrations data

The concentration measurements are positive integers and possibly highly skewed, see top
panels of Figure Also, the data exhibit seasonality as well as weekly patterns, the latter
particularly visible from the autocorrelations (see middle panels of Figure , and the level
of concentrations drops sharply on bank holidays, in line with the behaviour of road traffic.
We adopt the square root transform in order to bring the data to light-tailedness without
masking any shift in the level greatly. Also, after visual inspection and preliminary research
into the relevant literature, we select the period between January 2004 and December 2010 to
estimate the seasonal, weekly and bank holiday patterns, which is achieved by regressing the
square root transformed time series onto the indicator variables representing their effects. In
summary, 19 parameters including the intercept were estimated from the 2508 observations,
and all three factors (seasonal, daily and bank holiday effects) were deemed significant, with
the models fitted to the NOg and NO,, concentrations attaining the adjusted R? coefficients
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Figure E.1: Various statistical properties of the daily concentrations of NOgz(left) and NO,
(right) measured at Marylebone Road in London between January 2004 and December 2010.

Top: histogram of raw concentrations. Middle: autocorrelations after square root transform.
Bottom: yearly fitted patterns.

of 0.1077 and 0.1149, respectively. Bottom panels of Figure plot the fitted yearly trend,
while Figure [1]in the main text plots the residuals, which we analyse for change points in the

level.

E.2 Validating the number of change points detected from the NO, time

series

Table [2] in the main paper shows a considerable variation in the number of detected change
points in the NOs time series between the competing methods. To run an independent check
for the number of change points, we firstly remove the bulk of the serial dependence of the
data by fitting the AR(1) model to it and work with the empirical residuals from this fit. For
this, we set the AR coefficient to 0.5, as suggested by the sample autocorrelation function in
Figures and In particular, the latter figure confirms that the assumption of weak
stationarity on the noise is well-satisfied by the NOs time series, with the leading autocorre-
lations remaining approximately the same across the segments defined by the change points
estimated by WCM.gSa.
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Figure E.2: Autocorrelations at 20 lags computed from the nine segments defined by the
change point estimators returned by WCM.gSa when applied to the de-trended and trans-
formed NOy measurements.
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On these, we perform change point detection using a method suitable for multiple level-shift
detection under serially uncorrelated noise. The method we use is the IDetect technique with
the information-criterion-based model selection (Anastasiou and Fryzlewicz, |2020)), as imple-
mented in the R package breakfast (Anastasiou et all [2020). The reason for the selection
of this method is that it is possibly the best-performing method of the package overall (as
reported in the package vignette available at https://cran.r-project.org/web/packages/
breakfast/vignettes/breakfast-vignette.html), and it is independently commended in
Fearnhead and Rigaill| (2020) as having very strong performance overall.

The R execution model.ic(sol.idetect(no2.res))$cpts, where no2.res are the residuals
obtained as above, returns 7 change point estimators, a number close to the 8 obtained by our
WCM.gSa method. Out of the 7 locations estimated by IDetect, there is very good agreement
with WCM.gSa for 6 out of these locations. The exception is the WCM.gSa-estimated change
point at 2010-07-25, which IDetect estimates some 800 days later. However, IDetect also
does not estimate the following WCM.gSa-estimated change point at 2018-10-13, which is a
possible reason for IDetect to replace these two WCM.gSa-estimated change points by one in
between them.

This, in our view, represents very good agreement on the whole, especially given that the two
methods are entirely different in nature and worked with different time series on input. This

result further enhances our confidence in the output of WCM.gSa for this dataset.

E.3 Hadley Centre central England temperature data analysis

The Hadley Centre central England temperature (HadCET) dataset (Parker et al. (1992)
contains the mean, maximum and minimum daily and monthly temperatures representative
of a roughly triangular area enclosed by Lancashire, London and Bristol, UK.

We analyse the yearly average of the monthly mean, maximum and minimum temperatures
up to 2019 for change points using the proposed WCM.gSa methodology. The mean monthly
data dates back to 1659, while the maximum and the minimum monthly data begins in 1878;
we focus on the period of 18782019 (n = 142) for all three time series. To take into account
that the time series are relatively short, we set ppax = 5 (maximum allowable AR order) for
WCM.gSa and the minimum spacing to be 10 (i.e. no change points occur within 10 years
from one another), while the rest of the parameters are chosen as recommended in Section
the results are invariant to the choice of the penalty &, € {log'%(n),log™!(n)}. Table
reports the change points estimated by WCM.gSa as well as those detected by DepSMUCE
and DeCAFS for comparison.

On all three datasets, WCM.gSa and DeCAFS return identical estimators, and the same
change points are detected by DepSMUCE (with o = 0.2). Figure shows that there
appears to be a noticeable change in the persistence of the autocorrelations in the datasets

before and after these shifts in the mean are accounted for, which further confirms that the
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yearly temperatures undergo level shifts over the years. In particular, the second change point
detected at 1987/88 coincides with the global regime shift in Earth’s biophysical systems
identified around 1987 (Reid et al., 2016)), which is attributed to anthropogenic warming and

a volcanic eruption.

Table E.1: Change points (in year) detected from the yearly average of the mean, maximum
and minimum monthly temperatures from 1878 to 2019.

Method Mean Maximum  Minimum
WCM.gSa 1892, 1988 1892, 1988 1892, 1987
DepSMUCE(0.05) 1987 1988 1956
DepSMUCE(0.2) 1892, 1988 1988 1892, 1987
DeCAFS 1892, 1988 1892, 1988 1892, 1987

F Proofs

For any square matrix B € RP*P | let Aax(B) and Apin(B) denote the maximum and the min-
imum eigenvalues of B, respectively, and we define the operator norm ||B|| = /Amax(B"B).
Let 1 denote a vector of ones, 0 a vector of zeros and I an identity matrix whose dimen-
sions are determined by the context. The projection matrix onto the column space of a given
matrix A is denoted by II, = A(ATA)"'AT, provided that AT A is invertible. We write
a Vb= max(a,b) and a A b = min(a, b).

F.1 Proof of the results in Section [2]

Throughout the proofs, we work under the following non-asymptotic bound
1

mase [ — n¥¢? __ <= (F.1)
mlnlgqu(fj)Q(Sj log(Cn) K

for some K > 0, which holds for all n > n(K) for some large enough n(K’), which replaces the
asymptotic condition in Assumptions and . The o-notation always refers to K in (F.1))
being large enough, which in turn follows for large enough n. By F . and Z; ., we denote
the CUSUM statistics defined with {f;} and {Z;} replacing {X;} in (2)), respectively.

F.1.1 Preliminaries

Lemma F.1 (Lemma B.1 of Cho and Kirch|(2021))). For max(s,0;_1) < k < 0; < min(e, §;41),
it holds that

k=) e—Fk) fle=0)f (e—0i)s fipa | (Oi-1—5)+ iy
fs,k,e_ e —k + e—k + k—s ’

€—S
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Figure E.3: Left: yearly average of the mean, maximum and minimum monthly temperatures
(top to bottom), plotted together with the change points estimated by WCM.gSa (vertical
lines) and piecewise constant mean (bold lines). Middle and right: autocorrelation function
of the data without and with the time-varying mean adjusted.

where a4 = a - I,>0. Similarly, for max(s,0;_1) < 0; < k < min(e, #;11), it holds that

Fop— (k—s)(e—k) {(ej—s)f;+(e—9j+1)+f;+1 +(e)j_l—s)+ ;_1}.

k—s e—k k—s

€—S

Lemma F.2 (Lemma 2.2 of Venkatraman| (1992); Lemma 8 of Wang and Samworth| (2018)).
For some 0 < s < e < nwithe—s > 1, let ©NJs,e] = {65,...,05,} with m < ¢, and

we adopt the notations 05 = s and 6, ,, = e. If the series Fy . is not constantly zero for

9;? +1<k< ‘9;+1 for some 7 =0,...,m, one of the following is true:

(1) j = 0and Fype, 07 +1 < k < 07, does not change sign and has strictly increasing

absolute values,

(ii) 7 = m and Fype, 07 +1 < k < 07, does not change sign and has strictly decreasing

absolute values,
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(ili) 1 <j<m—1and Fypp, 7+ 1<k <0;,, is strictly monotonic,

(iv) 1 <j<m—1and Fsppe, ; °+1<k< HOH does not change sign and its absolute values

are strictly decreasing then strictly increasing.

F.1.2 Proof of Theorem 2.1

Throughout the proofs, Cy, C1, ... denote some positive constants.

We define the following intervals for each j =0, ..., ¢y,

Irj=(0j-1,0; = [0;/3]) and  Ip;=(0;+ [0;/3],0;+1].

Let (s,e) denote an interval considered at some iteration of the WBS2 algorithm. By con-
struction, the minimum length of the interval obtained by deterministic sampling is given by
|(e — s)/K |, where K satisfies R, < K(K + 1)/2. Then, Rs,e drawn by the deterministic
sampling contains at least one interval (¢

Tm(j)) satisfying £ € Irj and rp;) € IR

m(j) m(j)
for any 6; € ©N(s,e) (if ©N(s,e) is not empty), provided that 3| (e —s)/K| < 2minj<;<4 ;.
This condition in turn is met under . Then, it follows from the proof of Proposition B.1 of
Cho and Kirch| (2021)) that there exists a permutation {7 (1),...,7(¢)} of {1,..., ¢} such that

on Zy,

. 2
112]?%]( () ) \k‘ (])! < pnp=c2(,;,, and (F.2)
exp(Vy)) =X = CO‘fﬂ(j |\/Or(s) = Cin?/%¢, (F.3)

for j=1,...,q, by (F.1). From (F.2), the assertion in (i) follows readily. Also consequently,

the intervals (), €(m)), m = ¢+ 1,...,n — 1 meet one of the followings:
(a) (8(m)>em)) NO =10, or
(b) (S(m)> €my) N © = {05} and (f})? min(0; — 5(n), €(m) — 05) < pn, OF
(©) (S(m)s€amy) N © = {05,041} and max{(f})*(6; — s(m))s (fj11)*(€m) = 0j+1)} < pn,

for some j =1,...,q. Under (a), from Assumption
exp(y(m)) = |ZS(7VL)7k(m)1e(7n)| S 2<TL (F4)
Under (b), supposing that 6; < k,,), we obtain

exXP(Vim)) < [Fsmy kimy ey | T 1Z50m) kiomy €omy |

- \/(k(m) — 5(m)) (€m) — K(m)) (05 — 5(m))|d;] Lo,
€(m) — 5(m) K(m) = S(m)
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< \/df min(0; — Samy, €m) — 05) + 200 < v/pn + 2¢ < C2(p (F.5)

by Lemma the case when 0; > k() is handled analogously. Under (c), we obtain

eXp(y(m)) S max {’fs<m),9j,e(m) ’7 ’FS(m),9j+1,e(m> ‘} + 2(71

< \/d?(ej - S(m)) + \/d?-i-l (e(m) - 9]'+1) + 2Gn < C3Gn (F.6)

where the first inequality follows from Lemma[F.2]and the second inequality from Lemma[F1]
From (F.3) and (F.4)—(F.6), and also that X1y < C14y/n due to fi = O(1), we conclude that

Vimy = ymlog(n)(1+0(1)) = ymlog(n)(1 + o(1)) +log(¢n) for m=1,....q,
y(m) SHmIOg(Cn)(l—i_O(l)) for mZQ+1>"'7P7

where {7} and {k,,} meet the conditions in (ii).

F.2 Proof of the results in Section [3]

We adopt the following notations throughout the proof: For a fixed integer r > 1 and an
arbitrary set A = {k1,--- ,kn} C {1,...,n} satisfying ming<j<p,(kj41 — kj) > r + 1 (with
ko = 0 and k41 = n), we define X = X(A,7) = [L: R] and Y as in (§). Also we set X ;) =
[Ljy ¢ 1] for each j = 0,...,m, where L(;) has x; = (Xy,... X)) kj <t<kj—1as
its rows. Sub-vectors of Y and € corresponding to k; <t < kj11 — 1 are denoted by Y ;) and
g(j), respectively. When r = 0, we have X = R and X(;) = Ry;),
Besides, we denote the (approximate) linear regression representation of @ with the true

change point locations ¢; and AR order p by

Y:LOaO+VO+€:[L R
nxXp  nx(q+1)

o T @ =R%°) +e, (F.7)

u

where v° = ((1—a(B))f;, 1 <t <n)'. Correspondingly, X° denotes an n x (p+4 ¢+ 1)-matrix

with its rows given by
Xy = (X _ Xi_p, 1 I )
t t—1y--+ t—py L1<t<by5- > 9q+1§t§n

for 1 <t <mn, whereby X° = X(0,p). When p = 0, the matrix L° is empty.

F.2.1 Preliminaries

The following results are frequently used throughout the proof.
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Proposition F.3. Suppose that p > 0 and r € {max(p,1), ..., Pmax} With pmax > max(p, 1)
fixed. Also, let A = {ki,...,kn} as an arbitrary subset of ©. With such A, define X =
X(A,r) = [L : R] as in (§), and also X ), L(jy, Ryj) and €(;), correspondingly, and let
N; = kjy1 — kj. Then, under Assumption and Assumption , we have the
followings hold almost surely for all j =0,...,m and A C 5) M:

tr(LTL) = O(n), tr(L;L;) = O(N), (F.8)
lim inf n Anin(LTL) >0, lim inf Ny Amin (L) Lz)) > 0, (F.9)
tr(X'X) = O(n), lim inf 7 Amin(XTX) > 0,

(X ;X)) = O(N;), lim inf N7 Amin (X (X)) > 0, (F.10)
(LTL)—ILTE -0 ( bg(”)) ’ (XTX)_IXTE -0 ( log(n)> ’

n n

XT X)X e = O [ ]2 F.11
XinX@) Xgen = N, | (F.11)

Proof. The results in (F.8)—(F.9) follow from Theorem 3 (ii) of [Lai and Wei| (1983) and the
finiteness of © ;. By Corollary 2 of Lai and Wei| (1982a)), (F.10) follow from that trf(RTR) = n
and R(Tj)R(j) = N;. By Lemma 1 of |Lai and Wei| (1982b)), we have

H(LTL)””LTE =0 <\/log(Amax(LTL))> = 0(y/log(n)) as.,

x50 2x7e]| = 0 (Viog (XX ) = O Iog) 5.

H(X(Tj)x(j))—wxg)s(j) :o(\/log(xmax(xg)x(j)))):0( log(n)) a.s.

which, together with (F.8)) and (F.10)), leads to (F.11)). O

Lemma F.4 (Lemma 3.1.2 of (Csorgé and Horvath| (1997))). For any X = [L : R, the
OLS estimator 8 = (X'X)'XTY = (&', satisfies @ = (LTL)"'LT(Y — Rji) and
p={RTI-TI)R}"'RT(I-TI)Y.

Lemma F.5. For some R = R(A) constructed with a set A = {k1,...,kn} C {1,...,n}
with k1 < ... < ky,, we denote by R_j, for any 1 < j < m, an n X m-matrix formed by
merging the j-th and the (j 4 1)-th columns of R via summing them up, while the rest of the

columns of R are unchanged. Then,

I(T~TIr_,)U[* — (I - Or)U|* = |Ck ()P (F.12)

G—1:k5,k5+1
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for any U = (Uy,..., Un—(m+1)r)T7 where

(kj1 — kj)(k; — kj—1)
Ck] 1,k; kJ]+1(U) ::\/ = k gy ’ %
J

i+1 — ki1
kjt1
‘ Z Ui - > U
Ry =k, kj_1+1 kjs1 =k t=k;+1

Proof. Denote the (j + 1)-th column of R by R;. Then, by simple calculations, we have

(UT(I-Igr_,)R;)?
R/ (I-TIg_;)R;

|(I-Tr)U|*=U"'(I-Hg_,)U -

Also by construction,

RIR;=(0,...,0,kjy1 — k;,0,...,0)7,

j—1
1 1 1 1 1
R .R_)'=dia ( , , )
(RR) *\ki kj—1—kj—o kjy1 —kj—1 Kjr2 — Kjn n—km
Hence,
kjt1—k; , ; ,
R(RIR )RRy = Bk RIS TS
0 otherwise,
—7,6;21_;511 for kj_1 +1<i<kj,
T 1T ki—k;_ .
[Rj — Rfj(R_ijj) R_jRj]i = ﬁ for kj +1<: < kj—i-la
0 otherwise.
Therefore,
(kj — kj—1)(kjr1 — kj)
R (I-TIr )R, — 9 ™ J i)
J ( R—]) J kj—i—l _ kj—l
- (kj — kj—1) (ki1 — k) 1 ki1 1 kj
U (I-Tr )R; ="~ ’ ’ Z Up— ——F Z Ui |
Kjt1—kj-1 ki1 = ki S, A

which concludes the proof. O
F.2.2 Proof of Theorem [3.1]
Throughout the proofs, Cy, C1, . . . denote some positive constants. In what follows, we operate

in £, N M, and all big-O notations imply that they hold a.s. due to Proposition [F.3|
We briefly sketch the proof, which proceeds in four steps (i)—(iv) below. We first suppose
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that Assumption holds with M = 1, and also that p is known. Then, a single iter-
ation of the gSa algorithm in Section boils down to choosing between @0 = () and
O, If SC({Xt}?:l,@l,p) < SCo({X¢}1, a(p)), we favour a change point model; if not,
we conclude that there is no change point in the data. In (i), when ¢ = 0, we show that
Ri ~ 1u§ ~ II; (Y — La) with pj = (1 — Y_%_, a;) fo representing the time-invariant overall
level, and therefore | Y — X3||2 ~ ||(I—II1)(Y — L&)||2 which leads to SCo({ X}y, a(p)) <
SCH{ X}y, @)hp) under Assumption m In (ii), when ¢ > 1, we show that

(= T0)(Y ~ L&) = Y — XB? = Cq min 36, > .

for some fixed constant C' > 0 and thus SCo({X:}},, a(p)) > SC{ X}, ©1,p), provided
that ©; meets . In (iii), we show the consistency of the proposed order selection scheme.
For the general case where M > 1, in (iv), we can repeatedly apply the above arguments for
each call of Step 1 of the gSa algorithm: Under Assumption , when [ > [*, any @J ¢ @1*
are spurious estimators and thus we have the gSa algorithm proceed to examine (:)l,l; when
[ =1[*, any é\l*,j ¢ él*—l are detecting those change points undetected in @l*—l and thus the
gSa algorithm returns @)l*.

As outlined above, in the following (i)—(iii), we only consider the case of M = 1 and conse-
quently drop the subscript ‘1’ from (:)1 and /0\17j where there is no confusion.

For given O, recall that X = X(@,p) =[L:R]and N; = AjH — HA] Fort=0;+1,...,0; +p,

we have

p
E Q;r

=i

[v° = R°p%:| < |dj| max

< |d; .
masx < |1, (F.13)

for all 1 < j < g, while [v° — R°u°]; = 0 elsewhere.

(i) When ¢ = 0. We first note that

B=X"X)"'X" (Lo’ + gl +e)

such that by Proposition [F.3] we have

o
Holg+1 n

ﬁ—[ . ] =H(XTX)‘1XT.€H=0< log(”)>. (F.14)
5@

We decompose the residual sum of squares as

1Y = XBII* = llel® + 1X(8 - B°(@)|* - 26 "X(B ~ B°(@) = [le]|” + Rur + Ruo.
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Invoking Proposition and (F.14]),

Ruy < XI5 - @I =0 (") — 0ftog(w) .

and
Rial < (XTX) X el XX 1B - 8°@)] = <\/n log(n) -/ 2" ) = O (log(n))
Putting together the bounds on R11—R12, we conclude that
IY = XB|12 = [le]]2 + O(log(n). (F.15)
Next, note that
I~ T1)(Y — La)|* = [le]|* — e "Tye + ||(T - TI)L(& — °)||* — 2¢ (I - I )L(& — &%)

=: |le]|? + Ro1 + Raz + Ros.

By the arguments similar to those adopted in Proposition and Lemma 1 of [Lai and Wei
(1982a)), we have |Ra1| = O(log(n)). Also, by Proposition and (F.14), Ra < ||L(a —
a®)||? = O(log(n)). Next,

Ra3| < 2|e'L(a — a°) e ILL(a - a°)

where the first term is bounded by
2[(LTL) 'Ll ILTL| |& — ol = O(log(n))

due to Proposition and Lemma 1 of Lai and Wei| (1982a)), and the second term is bounded
by the bound on the first term and Ra; as O(log(n)). Therefore,

1T~ T)(Y — La)|* = [[e]|* + O(log(n)). (F.16)

Combining (F.15) and (F.16) with Assumption (i1)H(ii1)} and noting that log(1 4+ z) < =

for all z > 0,

SCo({Xt}or, &(p)) — SC({ X1}y, ©,p)
g (1 @ -Tm)(Y L&) - Y - Xﬂll2>

1Y — Xp|2 — G = O(log(n)) — G&n < 0

for n large enough, due to Assumption [3.4]
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(ii) When q > 1. Recall that in M,,, we have ¢ = ¢q. Below we use that by Proposition

tr(L'R) =0(n) and [L{1];=O(N;) fori=1,....,p,j=0,...,q, (F.17)

where f = maxp<;j<q |f6j+1|. We first establish the consistency of @ in estimating p°.

Applying Lemma [F.4] we write

p—p°=R"(I-IL)R)'RT(I - IIL)(v° — Rp®)+
(RT(I-II)R) 'R (I — IIy,)e =: R31 + Rao.

Since (RT(I — II,)R)™! is a sub-matrix of (X"X)™!, we have Apa((RT(I — IIL,)R) ™) <
(Amin(X7X))~! (Horn and Johnson,, 1985, Theorem 4.2.2)) and thus lim inf,, 0o 77 Apin (R T (I—
II;)R) > 0 by Proposition Also, since tr(RT(I — II)R) < n trivially, we obtain

R3] = O («/log(n) / n) adopting the same arguments used in the proof of (F.11). Next,
by (F.13) and since

d;  forf;+1<t<8,

A forj=1,...,q
—d; for 0; +1 <t <0;,

[RO o RIJzO:It — {
while [R°u® — Ru®]; = 0 otherwise, we obtain

q
lv° — Rp®[|* < 2|[p° — R°p®||* + 2| R°p° = Rp|> <2 d5 - (p+ d;*pn) = Olapn)
j=1
(F.18)

and therefore |R31]|?> = O (gpn/n). Putting together the bounds on R31-R32, we obtain

B :o< W) (F.19)

Also, note that by Lemma

a-a°=(L'L) LT {e+ (@° —Rp°) + R(u° — )} .

Adopting Proposition [F.3] (F.17), (F.18) and (F.19), we have

la—a’l|=0 < l‘)g(")nvqp”> | (F.20)

Next, we consider

IY - XB|” =|L(@ - o) + (RE —v°) —¢]?
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=llel* +L(@-a)|* + R —v°|* +2(& — ) 'LT (Rjz — v°)
— 2€TL(a — ao) — 2€T(R[/,\I, — VO) =: H€H2 4+ Ra1 + Rao + Rus + Rus + Rys.

By Proposition and ([F.20)),

Ry — O (n - “g(mnvq”) — O (log(n) v qp)

Also, due to (F.18]) and (F.19)),

Raz < 2| R( — )| + 2| Rps° — v°[|* = O (log(n) V ap) (F.21)

and we also obtain R43 = O (log(n) V qpr). By Proposition and ([F.20]),

Rus < (LTL)'L7el| |LL & — a°] = O (/log(m) (08(n) V 4p,)) = O (log(n) V' Vpy).
while with (F.13)), (F.19), Assumption and Chebyshev’s inequality,

Ras| < 20e TR — )| + 2eT (R — o) + 20 (R°° — )

q
=0 | Vnlog(n M—FZM! n 2 ppton + Z|d\2

Jj=1 j=1

= O (log(n) V q(pn V w3))
on &,. Combining the bounds on R41—R45, we obtain
I = XB|* = [lel* +O (log(n) V q (pn V 7)) (F.22)
Next, note that
(T = TI)(Y = L&) [ = Y = XB|* = (I|(T - TIx)(Y — La)|* — (T - TIr)(Y — L&)[*)
+ (I = TR)(Y = L&) |2 = Y = XB|?) =: Ry + Rs.

Repeatedly invoking Lemma [F.5 we have
~\ 112 ~\ (12 L
Rt =|(T~Th)(Y ~ L&) ~ (1~ T, )(Y L&) + 3216 55, (¥ ~ L&)
Jj€I1
> 2] min |c Y - La)|
= [ﬂ lgljllglq‘ @flvgj@ﬂ( B a)‘
where R_7, denotes a matrix constructed by merging the j-th and the (j + 1)-th columns of

R via summing them up for all j € Z;, while the rest of the columns of R are unchanged, with
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7, denoting a subset of {1,...,q} consisting of all the odd indices. For notational simplicity,

let Ci(-) =C5._ 5, B () where there is no confusion. Note that
J—1707]

Ci(Y — L&) = C;(R°p°) + C;(v° — R°u) + Cj(e) + C(L(G — a°)).

Without loss of generality, suppose that §J < 0;. Analogous arguments apply when 53 > 0.
By Lemma [F.1],

Nj—aNj ) (N;+0; = 05)dj | (0541 = Oj+1)+djnr
Nj_1+ N; N; N;j

(0j-1 = 0;-1)+dj1
Nj,1

C(Rop°) = -

} =: Re1 + Re2 + Re3s-

Under Assumptions and E min(N;_1, Nj)*ld?@ - 0| = O((Sj_lpn) = o(1) (due to
D, p, — 0 as n — oo) and thus

N;_1N; min(N,_1, N; d25;
Rl = Iy | 524 (1 of1) = R 1 o)) = SR+ o),

while

o~

2
- d51(0j41 — Oj41) < _Pn

\/d?+1(§j+1 - é\g —p) Dn

(1+0(1)) = o(/pn)

and Rgs is similarly bounded. Therefore, we conclude

min (C;(R°)| = \/?u +o(1)). (F.23)

Similarly, by (F.13)) and Assumption we derive

N;_1N; [ |dj] + |djsa]  |dj—1]
Ci(v° —R°u°)| < =2 { J Jrely = o(1). F.24
€5 WISP e v =W (F.24)

Invoking Assumption it is easily seen that on &,,

IC;(e)] < 2wn. (F.25)
Finally, by (F.17) and (F.20)),
~ N;_1N; 1 . 1 .
(L(a—a°)| = I 1L —a®)— —1"Ly(a—a°
Cj(L(a — a®))| NN, | N G-n(a—a’) N, () (e —a®)
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_0 (a/min(le,Nj) - ,/W) =0 (v/iog(n) Vapn) . (F.26)

By (F.23)—(F.26]), under Assumption there exists some constant Cy > 0 satisfying
Rs1 > CoqD,, for n large enough. (F.27)
Next, we note that

1= Tgr)(Y — La)|* = |le|* — e 'TIre + ||(T - TTR)L(& — a°)||* + ||(T — TIr)v°||?
+2(@-a°) LT(I-TR)r° — 2 (I-Ir)L(a — a°) — 2 (I — IIg)v°
=: ||e|* = R71 + Rz + Rrs + Ra + Rrs + Rre.

First, by Assumption R = 031 Njw? - Nj*l) = O(qw?) on &,. Also, from
Proposition and (F.20), R72 < |L(a — a®)||? = O(log(n) V gp,). In addition,

Ris < 2|v° — Rp® | +2|R(p° — (RTR)'RTv7)|?

where the first term is O(gp,,) as in (F.18). From (F.13) and the definition of R and R°,

—(01=01) 4 ds
6
(91*91)+gl\1*£\92*92)+d2
l'l'o o (RTR>—1RTR0 o _ 0276'1 ’ (F.28)
(aq*é\q)-&-dq
L nfeq J
di_ d;
(RTR)'RT(R°p° — v°)];| < ’W (F.29)
Jg—Yj—1

(recall that 8y = 6 = 0 and §q+1 = 0,41 = n) such that by Assumptions and we
obtain

Lo (o) +p
IR(p° - RTR)T'RW)P <O ) d - ———— = o(apn)
=1 Oj+1 —0;

for some constant C; > 0, hence R73 = O(qpn). The bounds on Rr7e and Ry3 imply the
O(log(n) V gp,) bound on R7y. Next, since Apax((LT(I — IIg)L)™) < A1 (XTX), we have

min

[Rzs| < (LT (I~ Mr)L)"'LT(I - Ogr)e| [IL7(I - HRr)L|| |& — a°|| = O (log(n) V 4pn)
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from Lemma 1 of |[Lai and Wei (1982a)), Proposition and (F.20). Finally,
[Rrs| < 2le” (v° — Rp®)| + 2 " R(p® — (R'R) 'R w)|

where using the arguments involved in bounding R45, we have the first term bounded by

O(q(pn V w?2)), while the second term is bounded as

;2 pn - |dj|

Z\/T nij = anpn O(qpn),

on &, recalling (F.28)—(F.29) and by Assumptions and Therefore, R7¢ =

O(q(pn V w2)). Collecting the bounds on R71-R76, we obtain
IX—TRr)(Y —L&)|? = [le]|* + O (log(n) V a(pn V wy)) - (F.30)
From , and ,
I(T = T)(Y = L°&)|* — |Y = XB]|* > CogDy + O (log(n) V q(pn V w2)) . (F.31)
Note that

SCo({ X}y, a(p)) — SC({ X}y, (:)717)

I-1II,)(Y - L°a)|? — |[Y — X3]2
:n10g<1+u< (Y - L°a)|* - | ,eu)
2 1Y — XBJ?

n
—q&n =: 5 log(1 + Rg) — ¢&n-

(F.32)

When Rg > 1, we have the RHS of (F.32)) trivially bounded away from zero by Assumption
When Rg < 1, note that for g(x) = log(x)/(x — 1), since limy); g(x) — 1 and from its
continuity, there exists a constant Cy > 0 such that inf1<,<2 g(x) > Cy. Therefore,

n
9 IOg(l + RB) —qén > C3qDy + O (IOg(n) \% Q(pn \ Wi)) —qén >0,

invoking Assumption [B.1][iD)H(ii)} (F.22) and (F.31)) for some C5 > 0.

(i4i) Order selection consistency. Thus far, we have assumed that the AR order p is known.

We show next that for n large enough, the order p is consistently estimated by p obtained
as in @D Recall the notation 3((:),7“) = (a'(r), ﬁ,T((:)))T Firstly, suppose that » > p while
7 < Pmax. Then, by (F.14) when ¢ = 0 or by (F.19) and (F.20) when ¢ > 1 (here, g coincides
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with the cardinality of ©), we have

. o NI log(n) Varn \ 1 oo(r) = (0T T
Ha(r)—a(r)H—O( — > th a®(r) = ( ,0,-._-,0)

whether there are changes or not, see the steps leading to (F.20)). Then, the arguments similar
to those adopted in showing (F.15)) or (F.22) establish that
IY —X(0.7)B(8,7)|” = [le]|* + O (log(n) V q(pn V wy))

and therefore, we have

SC ({Xt},?:l, @,r) —-SC ({Xt}?:la @717)

g (1 L IY =X(6.9)8®.p)* - Y — X(8,1B(®,1)|*
2 ||Y - X(@vT)ﬂ(@aT)H2

=0 (log(n) V q(pn Vw2)) + (r —p)&n >0

> + (r —p)én

for n large enough, by Assumption |3.4]

Next, consider r < p. For notational convenience, let II(r) = HX(é,r)’ and the sub-matrix
of X(©,p) containing its columns corresponding to the i-th lags for ¢ = » + 1,...,p by
X (p|r). Then, [X(p|r) " (I—TI(r))X(p|r)] ! is a sub-matrix of (X(O,p) X (O, p))~! and thus
by Theorem 4.2.2 of Horn and Johnson (1985) and Proposition we have

A (X (pIr) T (L= L)X (pIr) ) < Ao (X(0,7) X (6, p)

< tr <X((:),p)TX((:),p)> = O(n) and similarly, (F.33)
Amin <X(p|r)T(I - H(r))X(p|r)) > Amin (X(é, p)TX(@,p)) and thus
lim inf ™ i (X(me(I - H(r))X(p\r)) > 0. (F.34)

It then follows that
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>Cyn Y (af)? + O(log(n)) + O(gpn) (F.35)
i=r+1

with some constant Cy > 0 for n large enough, where the O(log(n)) bound on the RHS

of (F.35) is due to (F.33)), (F.34) and Lemma 1 of |Lai and Wei (1982a), while the O(gp,)
bound from ([F.18]), regardless of whether there are change points or not. Therefore, we have

SC ({Xt}?zl, o, r) - 8SC ({Xt}?zla @713)

_n <1+ [Y —X(6,18(6, 1) ~ Y - X(é,mB(é,p)rP) o
2 Y~ X(@.0B@.p)? =

2057'1 - (p - T)gn >0

with some constant Cs > 0 for n large enough, by Assumption (F.15) and (F.22)).

(iv) When M > 1. The above (i)—(iii) completes the proof in the special case when Assump-

tion [3.2] is met with M = 1. In the general case where M > 1, the above proof is readily

adapted to prove the claim of the theorem.

(a)

First, note that for any [ > [*, the intervals examined in Step 1 of the gSa algorithm,
{51_1,uv +1,.. .7@_17uv+1 — 1}, v =1,...,q, correspond to one of the following cases
under Assumption [3.2} Null case with no ‘detectable’ change points, i.e. either © N
{5171,uv +1,..., é\l,l,uvﬂ —1}=0,0rallg; € ON {@,1,% +1,..., é\l,l,uvﬂ — 1} satisfy
dJZ min(6; — @_17%,@_1,%“ —6;) < pn, or change point case with © N {@_Luv +
1,... ,@,1,uv+1 — 1} # () and d? min(6; — /9\171,%7 51717%“ —0;) > D,, — py, for at least
one §; € ON {é\l—l,uv +1,..., @_17%_,_1 —1}.

In fact, when [ = [*, all {5;*_1,% +1,.. .,é\l*_l,uv_l’_]_ — 1} for v = 1,..., g}, correspond

to the change point case, while when [ > [* + 1, they all correspond to the null case.

In the null case, the set A = (:)l N {é\l,l,uv +1,..., @,17%“ — 1} serves the role of the
set of spurious estimators, O, as in (i) with |A| serving as q. Besides, we account for the
possible estimation bias in the boundary points @\l,l’uv and @\l,l,uvﬂ in the case of ¢ > 1
(while there are no detectable change points within {é\l_lﬂlzv +1,... ,@_17%“ —1}), by
replacing the bound derived in (i), with and in (ii). Consequently,
and are written with O (log(n) V q(p, V w?))) (see and (F.30)),
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which leads to

tellu +17 t9,1u+1’

SCo <{X Vot a(p)> —sC ({X Vit g p>
= 0 (log(n) V | Al(pn V &3)) — | Alén < 0

for n large enough.

(c) In the change point case, the arguments under (ii) are applied analogously by regarding
Aas © therein, with |A| equal to the number of detectable change points in {@_17% +
. ,@\l,l,uﬁl — 1} as defined in (a). Then, we obtain

0 s Uy = 9 sUv
sco (L) a)) - se (oralge )

> C3]A[Dn + O (log(n) V [Al(pn V wp)) — !Alfn >0

for n large enough.

(d) The proof on order selection consistency in (iii) holds from regardless of whether there
are detectable change points in {51_1,% +1,... 7‘/9\1—1,%4-1 —1} or not. Thus with (a)—(c)

above, the proof is complete.

F.3 Proof of Proposition

For a fixed j = 1,...,q, we drop the subscript j and write § = éj, =1V, r=mr;0=10;
= f; and 0 = 4;. In what follows, we assume that X, 5. > 0; otherwise, consider —X (resp.
—fr and —Z;) in place of X; (f; and Z;). Then, on Z,, we have

r—k k—2¢
< _ _
o 2okl e@gg(\/r_£+\/r_£>cn V2o, (F.36)

while by 7,

(f7)%0
T

|Feorl > (F.37)

By Lemma and (B.2)), we have Fy, , strictly increases, peaks at k = 6 and then decreases
in modulus without changing signs. Also by Lemma 7 of [Wang and Samworth| (2018]), we

obtain

2 ' 1k — 6]
3\[\/m1n9 Lr—0)

|\ Feor —

(F.38)
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for |k — 0] < min(§ — ¢,r — 0)/2. Then, from (F.I)) and (F.36)-(F.37),

(f)?0 (f)%0
4

4 Y

el = [Feorl =2 max | Zpp,| > (F.39)

which implies that |2, 5 [/[F, 4 .| = o(1) and consequently that Frg, > F, 5, > 0 for n large
enough. Below, we consider the case where § < 6; the case where § > 6 can be handled

analogously. We first establish that
6 —0 <min(d — 0,7 —0)/2. (F.40)
If 0 — 0 >min(d — £,r — 0)/2 > §/4 (due to (B.)), by Lemmaand , we have

Feor —Fogr > 3\[ (f1)?é
while |Zp9, — 2,5, < 2v/2(,,, thus contradicting that X, 5, > Xog,r under (F.1)). Next, for

some p, satisfying (f')~2p, < 0/4, we have

72/-\/
P (arg max, g |Xp ks <0 — (f)72pn) <P <96/4§krggt><(f/)_zﬁn X > Xe,e,r)

IN

P < max (Fokr+ Zoxs)? — (Fopr + Z0gr)? > 0)
0—5/4<k<0—(f')~2Fn

(1 syl o, ~PIDE (1 o) (4 5w 2°)

Ai(k)Aa(k) | Ar(k) Az()' >
Dy(k)D () Di(k)  Da(k)

[Ar(F)| [A2(k)| _ 1
<2P > = h
- <0—6/4<kn<13§(f’)—25n Dy(k) — 3 0— 5/4<k<9 (f’ pn Do(k) —3)° where

Di(k) = Foor — Fopr Do(k) = Foor + Foir, A1(k) = Z09r — Ze,k,r, As(k) = Zpor + Zojir-

I
-

P

IN

(0 5/4<kS0- (')~

Note that
r—1/ r—/ k _
|A1(k)| < (\/(9 — 6)(7‘ — 9) - \/(k‘ — Z)(T — k‘)) tzz—;l(zt - ZE:T)
6
+ (9_2)_(5_9) Z (Zy — Zpy)| =t Ar11(k) + Ara(k).
t=k+1

For k < 0, we obtain
=t =t vt OO0 —0)
@ —20)(r—20) (k=0 —k) \@O—-0(r—0) (k—=0)(r—k)
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r—ﬁ(l_ 1_0—k><1
(0 —L4)(r—8) r—k) 2\ (O0—-0O)(r—-0)r—k

and similarly,

r—/ r—40 < 1 r—/ 00—k
k=00 -k NO=00r—-0 2\ k=0 —-ko-20
such that on Z,,, due to and -,
r—¢ 2(6 — k) (0 — k)¢
Ak <\ G =0 mn0 —t,r 0 )(” tnt \/7%) =T

Also, by ,
> 4+

t=k+1

o= |3

Then, by (F.38) and (F.1), there exists some c3 > 0 such that setting py, = ¢3(C,)2, we have

P max A1 (k) > = gn
0—6/4<k<0—(f)=2pn D1(k)

V') "Pn f/ Pn 1 (2\/§+1)Cn 5 | _
< (el > 72V (- Se) 7)o

—5/4<k<6—(F")~2p
0—06/4<k<0—(f") 1

o)

which holds uniformly over j = 1,...,q. Next, note that from (F.36]),

max |As(K)| < 2v/2¢,,
0—6/4<k<0—(f')~2pn
while from (F.37)),
25
win Do) = Y
0—38/4<k<0—(f")~2pn 2
and thus

|A2(k‘)| 1
P >-.Z,]=0
(9 6/4<k<9 (f’) pn Do(k) — 3’

under ([F.1J), which completes the proof.
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G Assumptions and

In this section, we provide an example that fulfils Assumptions and motivated by
the Nagaev-type tail probability inequalities derived in |Zhang and Wu| (2017)) for dependent
time series with sub-exponential innovations.

Suppose that Z; = > ;2 bye;—¢ where the innovations {e;} are i.i.d. sub-exponential random
variables with E(e;) = 0. Further, we assume that the linear coefficients decay polynomially
such that there exists some v > 0 and § > 1 satisfying |bs| < v¢~7 for all £ > 1. With v = 1,

the dependence adjusted sub-exponential norm

12,0 = supm™ S~ {E (1% = Zu oy}
m= t=0

is bounded from the above by some fixed constant C; > 0, where Z; () = Yo At beet—o+biel
with &f, an independent copy of 9. Then, by Lemma C.4 of Zhang and Wu/ (2017)), there exists

a fixed constant C5 > 0 such that
e 3g2/3
Zi| > G| <Con(n+)exp | =2 |,
2 ) rA T

t=s+1

5 1
max
0<s<esn y/e — S8

i.e. we can set ¢, = C3 10g3/2(n) with a large enough C3 > 0 (depending only on || Z. ||y, 0) and
have P(Z,) — 1. Using similar arguments and Bernstein’s inequality (see e.g. Theorem 2.8.1
of |Vershynin (2018)), we have P(&,) — 1 with w, =< log(n).
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