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Abstract

We propose a methodology for detecting multiple change points in the mean of an
otherwise stationary, autocorrelated, linear time series. It combines solution path genera-
tion based on the wild energy maximisation principle, and an information criterion-based
model selection strategy termed gappy Schwarz criterion. The former is well-suited to
separating shifts in the mean from fluctuations due to serial correlations, while the lat-
ter simultaneously estimates the dependence structure and the number of change points
without performing the difficult task of estimating the level of the noise as quantified e.g.
by the long-run variance. We provide modular investigation into their theoretical proper-
ties and show that the combined methodology, named WEM.gSC, achieves consistency in
estimating both the total number and the locations of the change points. The good per-
formance of WEM.gSC is demonstrated via extensive simulation studies, and we further
illustrate its usefulness by applying the methodology to London air quality data.

Keywords: data segmentation, wild binary segmentation, information criterion, autoregressive
time series

1 Introduction

The objective of this paper is to propose a new methodology for detecting possibly multiple
change points in the piecewise constant mean of an otherwise stationary, linear time series.
This is a known difficult problem in multiple change point analysis, whose challenge comes
from the fact that change points can mask as natural fluctuations in a serially dependent
process and vice versa, an observation made by several authors including Mikosch and Stărică
(2004), Berkes et al. (2006) and Norwood and Killick (2018). Disentangling these two effects
usually requires performing a statistically difficult task, such as accurately estimating the long-
run variance (LRV) of the process in question in the presence of multiple shifts in the mean.
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Our proposed methodology rests on two important ingredients, both of which are designed to
mitigate the adverse effect of serial dependence.

The first ingredient relates to how we construct a solution path by iteratively locating the
next most likely change points in the data. At each iteration, the next change point candidate
is chosen as the one accounting for the most ‘energy’ in the data sections between the previously
proposed candidates, in the sense of maximising absolute cumulative sum (CUSUM) statistics
over a collection of intervals of varying lengths and locations. This approach is particularly
useful under serial dependence since with a high probability, it generates a large gap between
the max-CUSUMs attributed to change points and the remaining ones, which helps separate
the effect of change points from that of serial dependence later at the model selection stage. We
refer to this adaptive CUSUM selection as ‘wild energy maximisation’ (WEM) and justify the
label later on. The thus-constructed solution path is a decreasing sequence of max-CUSUMs
corresponding to each successively proposed change point candidate.

The second ingredient relates to how we select the preferred model along the solution
path. To this end, we propose a new Schwarz-like (Schwarz, 1978) information criterion
constructed under a parametric modelling assumption, and combine it with a novel ‘backward
elimination’ strategy for estimating the dependence structure and the number of change points
simultaneously. Information criteria have been widely adopted for model selection in change
point problems (Yao, 1988; Kühn, 2001). However, through its application on the WEM-
generated solution path, our proposal is different from the conventional use of an information
criterion in the change point literature. More specifically, thanks to the WEM principle, only
some candidate models, i.e. those corresponding to large drops in the decreasing sequence
of max-CUSUMs, are seen as serious contenders for the final model. Therefore, our model
selection strategy only considers a small subset of model candidates located (possibly non-
consecutively) on the solution path, reducing the number of model candidates and facilitating
the final model choice; hence the label of ‘gappy Schwarz criterion’ (gSC). The evaluation of
the information criterion starts from the largest to the smallest (null model corresponding to
mean stationarity) of the nested candidate models, which has an advantage over the direct
minimisation of the information criterion on a solution path, by avoiding the substantial
technical challenges linked to dealing with under-specified models in the presence of serial
dependence.

The two ingredients: WEM solution path generation and the gSC criterion make up the
WEM.gSC algorithm and throughout the paper, we highlight the important roles played by
these two components and argue that WEM.gSC offers state-of-the-art performance in the
problem of multiple change point detection under serially dependent noise.

We briefly review the existing literature on multiple change point detection in the presence
of serial dependence and situate WEM.gSC in this context; see also Aue and Horváth (2013)
for a review. One line of research extends the applicability of the test statistics developed
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for independent data, such as the CUSUM (Csörgő and Horváth, 1997) and moving sum
(MOSUM, Hušková and Slabý; 2001) statistics, to time series setting. Their performance
depends on the estimated level of noise quantified e.g. by the LRV, and the estimators of
the latter in the presence of multiple change points have been proposed (Tecuapetla-Gómez
and Munk, 2017; Eichinger and Kirch, 2018; Dette et al., 2020). The estimation of the LRV,
even when the mean changes are not present, has long been noted as a difficult problem
(Robbins et al., 2011); the popularly adopted kernel estimator of LRV tends to incur downward
bias (den Haan and Levin, 1997; Chan and Yau, 2017), and can even take negative values
when the LRV is small (Hušková and Kirch, 2010). It becomes even more challenging in
the presence of (possibly) multiple change points, and the estimators may be sensitive to
the choice of tuning parameters which are often related to the frequency of change points.
Indeed, Perron (2006) notes that ‘there is no reliable method to appropriately choose this
parameter in the context of structural changes’. Self-normalisation of test statistics avoids
direct estimation of this nuisance parameter (Shao and Zhang, 2010; Pešta and Wendler,
2020) but theoretical investigation into its validity is often limited to change point testing,
i.e. when there is at most a single change point, with the exception of Wu and Zhou (2020).
Consistency of the methods utilising penalised least squares estimation (Lavielle and Moulines,
2000) or the Schwarz criterion (Cho and Kirch, 2020b) constructed without further parametric
assumptions, has been established under general conditions permitting serial dependence and
heavy-tails, but their consistency relies on the choice of the penalty, which in turn depends
on the level of the noise.

The second line of research utilises particular linear or non-linear time series models such
as the autoregressive (AR) and conditionally heteroscedastic models, and estimates the serial
dependence and change point structures simultaneously. AR(1)-type dependence has often
been adopted to describe the serial correlations in this context: Chakar et al. (2017) and
Romano et al. (2020b) propose to minimise the penalised cost function for detection of multiple
change points in the mean of AR(1) processes via dynamic programming, while Fang and
Siegmund (2020) study a pseudo-sequential approach to change point detection in the level
or slope of the data. Fryzlewicz (2020b) proposes to circumvent the need to estimate the
AR parameters accurately through the use of a multi-resolution sup-norm (rather than the
ordinary least squares) in fitting the postulated AR model, but this is only possible because
the goal of the method is purely inferential and therefore different from ours.

More generally, Davis et al. (2006, 2008), Cho and Fryzlewicz (2012), Bardet et al. (2012),
Chan et al. (2014), Yau and Zhao (2016) and Korkas and Fryzlewicz (2017), among others,
study multiple change point detection under piecewise stationary, univariate time series mod-
els, and Cho and Fryzlewicz (2015), Safikhani and Shojaie (2020) and Wang et al. (2019)
under high-dimensional time series models.

We now describe the novelty of WEM.gSC against this literature background and sum-
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marise the main contributions of this paper.

1. The WEM principle has been adopted in the i.i.d. noise setting in Fryzlewicz (2014) and
Fryzlewicz (2020a), but its benefits have not been noted or exploited in the presence
of serial dependence. We make the key observation that WEM, i.e. fitting the CUSUM
statistic over a representative range of sub-samples of the data, is particularly useful for
change point detection in difficult dependent-data problems, achieving the (inherently
difficult) disentanglement of the large max-CUSUMs attributed to change points, from
those attributed to the fluctuations due to serial correlations.

2. The ‘gappy’ application of the information criterion, which facilitates model selection
by reducing the space of models under consideration, is, to the best of our knowledge,
new. The gSC model selection assumes a parametric AR(p) model in line with some
of the existing literature (see the references earlier), but the sequential evaluation of
the information criterion starting from the largest model candidate sets our proposed
methodology apart from the commonly used methods involving global (Davis et al., 2006;
Killick et al., 2012; Maidstone et al., 2017; Romano et al., 2020b) or approximate (Chan
et al., 2014) minimisation of an objective function, such as penalised cost functions or
information criteria.

WEM.gSC is modular in the sense that both WEM and gSC can be combined with other
model selection and solution path procedures, respectively. For example, instead of the max-
imally selected CUSUMs as in WEM, we could build a solution path out of MOSUMs as
outlined in Cho and Kirch (2020a), or residual sums of squares from the best signal fits with
varying number of change points, the latter being frequently used in ‘slope heuristics’ and
related adaptive methods for penalty selection, see Baudry et al. (2012) and the references
therein. Similarly, we can perform the model selection e.g. by applying a suitable threshold on
the max-CUSUMs, extending the approach commonly adopted in the i.i.d. setting (Fryzlewicz,
2014, 2020a). We provide separate theoretical analyses of WEM and gSC so that they can
readily be fed into the analysis of such modifications.

The paper is organised as follows. In Sections 2 and 3, we introduce the two ingredients
of WEM.gSC individually, and show its consistency in multiple change point detection in the
presence of serial dependence. In Section 4, we provide the applications of the WEM.gSC to
London air quality datasets. The Supplementary Appendix contains comprehensive simulation
studies, further real data analysis and the proofs of the theoretical results. The R software
implementing WEM.gSC is available from https://github.com/haeran-cho/wem.gsc.
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2 Change point solution path via WEM principle

2.1 WEM principle

We consider the canonical change point model

Xt = ft + Zt = f0 +

q∑
j=1

f ′j · I(t ≥ θj + 1) + Zt, t = 1, . . . , n. (1)

Under model (1), the set Θ = Θn := {θ1, . . . , θq} with θj = θj,n, contains q change points
(with θ0 = 0 and θq+1 = n) at which the mean of Xt undergoes changes of size f ′j = f ′j,n.
We assume that the number of change points q does not vary with the sample size n, and we
allow serial dependence in the sequence of errors {Zt}nt=1 with E(Zt) = 0.

A large number of multiple change point detection methodologies have been proposed for
a variant of model (1) in which the errors {Zt}nt=1 are serially independent. In particular, a
popular class of multiscale methods aim to isolate change points for their detection by drawing
a large number of sub-samples of the data living on sub-intervals of [1, n]; when a sufficient
number of sub-samples are drawn, there exists at least one interval which is well-suited for the
detection and localisation of θj for each θj , j = 1, . . . , q. Methods in this category include the
Wild Binary Segmentation (WBS, Fryzlewicz; 2014), the Narrowest-Over-Threshold method
(Baranowski et al., 2019), the Seeded Binary Segmentation (Kovács et al., 2020) and the
WBS2 (Fryzlewicz, 2020a). In all of the above, theoretical properties have been established
assuming i.i.d. (sub-)Gaussianity of {Zt}nt=1.

In the remainder of this paper, we focus on WBS2, which produces a complete solution
path to the change point detection problem. It leaves open the possibility of estimating
any number (from 0 to n − 1) of change points, and this decision is left to the subsequent
model selection procedure, which chooses a suitable model along the solution path. A key
feature of the WBS2 is that for any given 0 ≤ s < e ≤ n, we identify the sub-interval
(s◦, e◦] ⊂ (s, e] and its inner point k◦ ∈ (s◦, e◦), which obtains a local split of the data that
contains the most energy. More specifically, let Rs,e denote a set of intervals drawn from
As,e := {(`, r) ∈ Z2 : s ≤ ` < r ≤ e and r− ` > 1}, either randomly or deterministically, with
|Rs,e| = min(Rn, |As,e|) for some given Rn ≤ n(n − 1)/2. Then, we identify (s◦, e◦] ∈ Rs,e
that achieves the maximum absolute CUSUM statistic, as

(s◦, k◦, e◦) = arg max(`,k,r): `<k<r
(`,r)∈Rs,e

|X`,k,r| , where

X`,k,r =

√
(k − `)(r − k)

r − `

(
1

k − `

k∑
t=`+1

Xt −
1

r − k

r∑
t=k+1

Xt

)
. (2)

Starting with (s, e) = (0, n), recursively repeating the above operation over the segments
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defined by the thus-identified k◦, i.e. (s, k◦] and (k◦, e], generates a complete solution path
that attaches an order of importance to {1, . . . , n− 1} as change point candidates; see Algo-
rithm 1 in Appendix A for the pseudo code of the WBS2 algorithm, and for how to perform
a deterministic sampling of Rs,e from As,e.

We denote by P0 the output generated by the WBS2: each element of P0 contains the
triplet of the beginning and the end of the interval and the break that returns the maximum
energy (measured as in (2)) at a particular iteration, and the corresponding max-CUSUM
statistic. We refer to this maximal selection of the CUSUM statistic as wild energy max-
imisation (WEM). The order of the sorted max-CUSUMs (in decreasing order) provides a
natural ordering of the candidate change points, which gives rise to the following solution
path P := {(s(m), k(m), e(m),X(m)) : m = 1, . . . , P}, where

X(m) := |Xs(m),k(m),e(m)
| satisfying X(1) ≥ X(2) ≥ . . . ≥ X(P ) > 0; (3)

if X(m) = 0 for some m ≤ |P0|, then (s(m), k(m), e(m)) is not associated with any change point
and thus such entries are excluded from the solution path P.

The WEM principle provides a good basis for model selection, i.e. selecting the correct
number of change points, in the presence of serially dependent noise. This is due to the
iterative identification of the local split with the maximum energy, which helps separate the
large max-CUSUMs attributed to changes in the mean, from those which are not. This is
not to say that the WEM principle is best suited for estimating the locations of the change
points (see e.g. Proposition D.1 of Cho and Kirch (2020a)). Nonetheless, its possible lack
of location-estimation optimality is a price worth paying since the problem of estimating the
number of change points is typically more difficult than that of estimating their locations,
particularly in the dependent data setting in which change points can easily be mistaken for
fluctuations in the serially dependent noise, and vice versa. In Appendix B, we propose a
straightforward location refinement step, which achieves minimax rate optimality in multiple
change point localisation under general conditions permitting serial correlations.

In light of the WEM property of the WBS2, we expect to observe a large gap between
the CUSUM statistics X(m) computed over those intervals (s(m), e(m)) that contain change
points well within their interior, and the remaining CUSUMs. Therefore, for the purpose
of model selection, we can exploit this large gap in X(m), 1 ≤ m ≤ P or equivalently, in
Y(m) := log(X(m)); we later show that under certain assumptions on the size of changes and
the level of noise, the large log-CUSUMs Y(m) attributed to change points scale as log(n)

while the rest scale as log log(n). For the identification of a large gap in the sorted log-
CUSUM statistics and, consequently, the selection of the ‘best’ change point model for the
data under (1), we consider two approaches that iteratively generate a sequence of nested
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change point models

∅ = Θ̂0 ⊂ Θ̂1 ⊂ . . . ⊂ Θ̂M ⊂ {0, . . . , n− 1} with Θ̂l \ Θ̂l−1 6= ∅ ∀ l = 1, . . . ,M, (4)

for someM determined by a pre-specified upper bound Q = Qn ≤ P on the number of change
points. These two approaches are described next, under the labels of ‘largest difference’ and
‘double CUSUM’.

Largest difference (LD)

The simplest way of identifying a large gap in Y(m), m = 1, . . . , P , is to look for the large
difference Y(m) − Y(m+1), m = 1, . . . , P − 1. However, the largest gap may not necessarily
correspond to the difference between the max-CUSUMs attributed to mean shifts and spurious
ones attributed to fluctuations in the errors, but simply be due to the heterogeneity in the
change points (i.e. some changes being more pronounced and therefore easier to detect than
others). Therefore, we iteratively identify large gaps and generate gLD

l , 1 ≤ l ≤M such that

Y(gLD
1 ) − Y(gLD

1 +1) ≥ Y(gLD
2 ) − Y(gLD

2 +1) ≥ . . . ≥ Y(gLD
M ) − Y(gLD

M +1) (5)

with gLD
0 = 0 and gLD

l < Q for all 1 ≤ l ≤ M . This returns a sequence of nested models
∅ = Θ̂LD

0 ⊂ Θ̂LD
1 ⊂ . . . ⊂ Θ̂LD

M with Θ̂LD
l = Θ̂LD

l−1 ∪ {k(gLD
l−1+1), . . . , k(gLD

l )}, which can be
considered in the model selection stage.

Double CUSUM (DC)

We adapt the DC methodology, originally proposed in Cho (2016) for high-dimensional panel
data segmentation, to identify a large gap in the ordered log-CUSUMs Y(m), by sequentially
maximising the DC statistic

Yi,m,Q :=

√
(m− i)(Q−m)

Q− i

(
1

m− i

m∑
r=i+1

Y(r) −
1

Q−m

Q∑
r=m+1

Y(r)

)
,

over m = i + 1, . . . , Q − 1. By construction, Y0,m,Q contrasts the m largest log-CUSUMs
Y(r), 1 ≤ r ≤ m, against the remaining ones Y(r), m + 1 ≤ r ≤ Q, and thus is well-suited to
separating log-CUSUMs attributed to change points from those that are not. Then, gDC

1 =

arg max0<m<QY0,m,Q indicates where the gap in the sorted log-CUSUMs is large, and thus
Θ̂DC

1 = {kDC
(1) , . . . , k

DC
(gDC

1 )
} can serve as a candidate change point model. As with gLD

1 , however,
this large gap may merely be due to change point heterogeneity, and therefore we adopt an
iterative approach as follows: with gDC

0 = 0, we sequentially generate

gDC
l+1 = arg maxgDC

l <m<QYgDC
l ,m,Q (6)
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until, for some M , we have gDC
M < Q while gDC

M+1 ≥ Q. This results in a sequence of nested
models ∅ = Θ̂DC

0 ⊂ Θ̂DC
1 ⊂ . . . ⊂ Θ̂DC

M , where Θ̂DC
l = Θ̂DC

l−1 ∪ {k(gDC
l−1+1), . . . , k(gDC

l )}.

Applying either LD or DC iteratively yields a sequence of nested change point models (4),
on which we perform model selection without ruling out the null model Θ̂0 = ∅. Typically,
the thus-constructed sequence of model candidates is much sparser than the sequence of all
possible models K1 ⊂ K2 ⊂ . . . with Kl = {k(1), . . . , k(l)} and therefore, intuitively, our model
selection task should be easier than if we worked with the entire solution path of all nested
models.

Remark 2.1. The DC approach in (6) requires the selection of a tuning parameter Q = Qn,
which imposes an upper bound on the maximum number of change points. This bound should
not be too large, as it would otherwise be too challenging to disentangle the effect of very
frequent change points from that of the serial dependence. Later, we present Theorem 2.1
which permits Qn → ∞ at a logarithmic rate, and discuss its choice in accordance with this
theoretical requirement in Appendix C.

2.2 Theoretical properties

In this section, we establish the theoretical properties of the sequences of nested change point
models. The following assumptions are, respectively, on the distribution of {Zt}nt=1 and the
size of changes under H1 : q ≥ 1.

Assumption 2.1. Let {Zt}nt=1 be a sequence of random variables satisfying E(Zt) = 0 and
Var(Zt) = σ2

Z with σZ ∈ (0,∞). Also, let P(Zn)→ 1 with ζn satisfying
√

log(n) = O(ζn) and
ζn = O(logκ(n)) for some κ ∈ [1/2,∞), where

Zn =
{

max0≤s<e≤n(e− s)−1/2
∣∣∣∑e

t=s+1 Zt

∣∣∣ ≤ ζn}.
Assumption 2.2. Let δj = δj,n := min(θj − θj−1, θj+1 − θj) and recall that f ′j = fθj+1 − fθj
for j = 1, . . . , q. Then, max1≤j≤q |f ′j | = O(1). Also, there exists some c1 ∈ (0, 1) such that
min1≤j≤q δj ≥ c1n, and for some ϕ > 0, we have ζ2

n/(min1≤j≤q(f
′
j)

2δj) = O(n−ϕ).

Remark 2.2. Assumption 2.1 permits {Zt}nt=1 to have heavier tails than sub-Gaussian such as
sub-exponential (Vershynin, 2018) or sub-Weibull (Vladimirova et al., 2019). Bernstein-type
concentration inequalities have been developed in time series settings which, together with
the arguments similar to those adopted in Lemma 1 of Boysen et al. (2007), are applicable
to show that Assumption 2.1 holds with a logarithmic ζn for light-tailed {Zt}nt=1: Doukhan
and Neumann (2007) derive a Bernstein-type inequality for weakly dependent time series with
E(|Zt|k) ≤ (k!)νCk for all k ≥ 1 and some ν ≥ 0 and C > 0; the results from Merlevède et al.
(2011) apply to geometrically strong mixing sequences with sub-exponential tails. Alterna-
tively, under the invariance principle, if there exists (possibly after enlarging the probability
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space) a standard Wiener process W (·) such that
∑`

t=1 Zt −W (`) = O(logκ
′
(`)) a.s. with

κ′ ≥ 1, then Assumption 2.1 holds with ζn � logκ(n) for any κ > κ′, where we denote by
an � bn to indicate that an = O(bn) and bn = O(an). Such invariance principles have been
derived for dependent data under weak dependence such as mixing (Kuelbs and Philipp, 1980)
and functional dependence measure (Berkes et al., 2014) conditions, to name but a few. As
remarked in Proposition 2.1 (c.i) of Cho and Kirch (2020b), the thus-derived ζn usually does
not provide the tightest upper bound, but it suits our purpose in controlling the level of noise.

Theorem 2.1. Let Assumptions 2.1 and 2.2 hold. Suppose that Rn, the number of intervals
at each iteration, and Q = Qn, the upper bound on the number of change points, satisfy

Rn ≥
9

8

(
n

min1≤j≤q δj

)2

+ 1, and
Qn log2(ζn)

log2(n)
= o(1) with Qn > q. (7)

Then, on Zn, the following statements hold for n large enough and some c2 ∈ (0,∞).

(i) Let Θ̂[q] = {θ̂j , 1 ≤ j ≤ q : θ̂1 < . . . < θ̂q} denote the set of q change point location
estimators corresponding to the q largest max-CUSUMs X(m), 1 ≤ m ≤ q obtained as
in (3). Then, max1≤j≤q(f

′
j)

2|θ̂j − θj | ≤ c2ζ
2
n.

(ii) The sorted log-CUSUMs Y(m) satisfy Y(m) = γm log(n)(1 + o(1)) for m = 1, . . . , q,
while Y(m) ≤ κm log(ζn)(1 + o(1)) for m ≥ q + 1, where {γm}qm=1 and {κm}m≥q+1 are
non-increasing sequences with 0 < γm ≤ 1/2 and 0 ≤ κm ≤ 1.

(iii) For any i = 0, . . . , q − 1, we have q ≥ arg maxi<m<QYi,m,Q.

(iv) For some i = 0, . . . , q − 1, if γi+1 = . . . = γq, then q = arg maxi<m<QYi,m,Q.

Statements (i)–(ii) in Theorem 2.1 establish that for the solution path P obtained according
to the WEM principle, the entries corresponding to the q largest max-CUSUMs contain the
estimators of all q change points θj . Besides, the q largest log-CUSUMs are of order log(n) and
are therefore distinguished from the rest of the log-CUSUMs bounded as O(log log(n)) under
Assumption 2.1. This implies that the sequence of nested change point models (4), generated
by sequentially identifying the largest difference in Y(m) as in (5), contains the consistent
model Θ̂[q] as a candidate model. Theorem 2.1 (iii)–(iv) show that sequential maximisation
of the DC statistics as in (6) also obtains the model sequence containing Θ̂[q]. In particular,
when the change points are homogeneous in the sense that γ1 = . . . = γq, a single step leads to
q̂DC

1 = arg max0<m<QY0,m,Q = q, such that Θ̂1 = Θ̂[q] consistently estimates Θ. For example,
when d−1

j = O(1) for all j, the change points belong to the homogeneous case. Typically, it
is unknown whether the change points are homogeneous, and therefore it is of importance to
develop a consistent model selection methodology applicable to the sequence of models in (4);
this is achieved in Section 3.
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3 Model selection with gSC

We now discuss how to consistently estimate the number and the locations of change points
by choosing an appropriate model from the sequence of nested change point models (4). As
mentioned in Introduction, achieving this by estimating the LRV is difficult, particularly in the
presence of multiple mean shifts. Instead, we work with a parametric model imposing an AR
structure on {Zt}nt=1, and propose a model selection strategy based on an information criterion.
In doing so, the problem of consistently estimating the noise level characterised by the LRV is
effectively reduced to that of estimating the innovation variance, which is considerably easier.
We propose a novel, backward elimination-type application of the information criterion and
show its usefulness when the model selection is performed simultaneously with the modelling
of the serial dependence.

Section 3.1 introduces the Schwarz criterion constructed under a parametric model on the
error sequence {Zt}nt=1 in (1). Section 3.2 describes the proposed model selection methodology
termed gSC (gappy Schwarz criterion), which applies to a sequence of nested change point
models and consistently estimate the number of change points as well as their locations as
shown in Section 3.3, provided that the model sequence (including the null model) contains
such a consistent change point model. Since this is the case for the model sequence generated
by the WEM principle introduced in Section 2 (see Theorem 2.1), the combined methodology
WEM.gSC achieves consistency in multiple change point detection.

3.1 Schwarz criterion in the presence of autoregressive errors

We assume that {Zt}nt=1 in (1) is a stationary AR process of order p, i.e.

Zt =

p∑
i=1

aiZt−i + εt such that Xt = (1− a(B))ft +

p∑
i=1

aiXt−i + εt, (8)

where a(B) =
∑p

i=1 aiB
i is defined with the backshift operator B. The innovations {εt}nt=1

satisfy E(εt) = 0 and Var(εt) = σ2
ε ∈ (0,∞), and are assumed to have no serial correlations;

further assumptions on {εt}nt=1 are made in Assumption 3.1. We denote by µ◦j := (1 −∑p
i=1 ai)fθj+1 the effective mean level over each interval θj +p+1 ≤ t ≤ θj+1, for j = 0, . . . , q,

and by dj = dj,n := µ◦j − µ◦j−1 the effective size of change correspondingly. Also recall that
δj = min(θj − θj−1, θj+1 − θj). In the model selection procedure, we do not assume that the
AR order p is known; rather, its data-driven choice is incorporated into the model selection
methodology as described later.

Suppose that the AR order is set to be some integer r ≥ 0, and a change point model
given by a set of change point candidates A = {kj , 1 ≤ j ≤ m : k1 < . . . < km} ⊂ {1, . . . , n}.
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Then, the Schwarz criterion (Schwarz, 1978, SC) is defined as

SC ({Xt}nt=1,A, r) =
n

2
log
(
σ̂2
n ({Xt}nt=1,A, r)

)
+ (|A|+ r)ξn, (9)

where σ̂2
n(A, r) is an estimator of the innovation variance σ2

ε serving as a goodness-of-fit
measure, and the penalty is imposed on the model complexity given by the AR order and
the number of change points; the requirement on the penalty parameter in relation to the
distribution of {εt} is discussed in Assumption 3.4. For notational convenience, we assume
that X0, . . . , X−r+1 are available and their means remain constant such that E(Xt) = E(X1)

for t ≤ 0.
Ignoring the boundaries t = θj + 1, . . . , θj + p, 1 ≤ j ≤ q over which (1 − a(B))ft is not

exactly piecewise constant, we propose to measure the goodness-of-fit as

σ̂2
n({Xt}nt=1,A, r) =

1

n
‖Y −Xβ̂‖2, where Y = (X1, . . . , Xn)> and

X = X(A, r) =

[
L(r)︸︷︷︸
n×r

R(A)︸ ︷︷ ︸
n×(m+1)

]
=



X0 · · · X1−r 1 0 0 · · · 0
...

Xk1−1 · · · Xk1−r 1 0 0 · · · 0

Xk1 · · · Xk1−r+1 0 1 0 · · · 0
...

...
Xn−1 · · · Xn−r 0 0 0 · · · 1


. (10)

The design matrix X contains the AR part of (8) in L and the deterministic part in R.
The vector of regression parameters is partitioned accordingly into the AR parameters and
time-varying levels. To obtain its estimator, β̂ = β̂(A, r), we propose the following scheme:
for each j = 0, . . . ,m, let X(j) = X(j)(r) denote (kj+1 − kj) × (r + 1)-dimensional matrix
with (x>t , 1), kj ≤ t ≤ kj+1 − 1 as its rows where xt = xt(r) = (Xt, . . . , Xt−r+1)>, and
let Y(j) = (Xkj+1, . . . , Xkj+1

)>. Then, β̂(j) = β̂(j)(r) = (X>(j)X(j))
−1X>(j)Y(j) denotes the

ordinary least squares (OLS) estimator from the j-th segment, and it is partitioned into
β̂(j) = (α̂(j)(r)

>, µ̂j)
>. With β̂(j), j = 0, . . . ,m, we set

α̂(r) = α̂(j∗)(r) and β̂(A, r) = (α̂(r)>, µ̂0, . . . , µ̂m)>, (11)

where j∗ = arg max0≤j≤m(kj+1 − kj), i.e. the index of the longest segment defined by A. In
other words, the effective mean level over each segment [kj + 1, kj+1] is estimated locally from
the observations therein, and the AR parameters are estimated from the longest segment. In
doing so, estimation errors of the time-varying levels are related to the localisation rates of the
corresponding change point estimators, while the estimation error of the AR parameters is the
best attainable among those of the local estimators α̂(j)(r) provided that r is set adequately, an
aspect we cover below. We prefer this approach over estimating the AR parameters globally for
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the ease of theoretical analysis, but we use the global approach in the practical implementation
as motivated in Appendix C. This performs well in practice, see Section 4 and Appendix D.

Since the AR order p is typically unknown, we integrate its selection procedure in esti-
mation as follows: AR models of varying orders, r ∈ {0, . . . , pmax} with a fixed upper bound
pmax ≥ p, are fitted to the j∗-th segment (recall that j∗ = arg max0≤j≤m(kj+1 − kj)), such
that p is estimated from the data by

p̂ = p̂(A) = arg minr∈{0,...,pmax} SC
(
{Xt}

kj∗+1

t=kj∗+1, ∅, r
)
, where

SC
(
{Xt}

kj∗+1

t=kj∗+1, ∅, r
)

=
(kj∗+1 − kj∗)

2
log

(
‖Y(j∗) −X(j∗)(r)β̂(j∗)(r)‖2

kj∗+1 − kj∗

)
+ rξn. (12)

3.2 gSC: sequential model selection using the SC

We first narrow down the model selection problem to that of determining between a given
change point model A and the null model without any change points, and describe how the
proposed SC is adopted for the purpose.

The AR parameters are well-estimated by α̂(p̂) given in (11)–(12), whether the mean
remains constant or not, provided that their number and locations are consistently estimated
by some subset of A (in the sense made clear in Assumption 3.2 below). Therefore, the
proposed criterion SC({Xt}nt=1,A, p̂) gives a suitable indicator of the goodness-of-fit of the
change point model A offset by the increased model complexity. On the other hand, if any shift
in the mean is ignored in fitting an AR model, the resultant coefficient estimators are biased
and, consequently, SC evaluated at the null model as proposed in Section 3.1 is unreliable in
such a situation. Instead, we propose to compare

SC0 ({Xt}nt=1, α̂(p̂)) :=
n

2
log

(
‖(I−Π1) (Y − L(p̂)α̂(p̂))‖2

n

)
+ p̂ ξn

against SC({Xt}nt=1,A, p̂), where I−Π1 denotes the projection matrix removing the sample
mean from the right-multiplied vector. By having the plug-in estimator α̂(p̂) in its definition,
SC0 avoids the above-mentioned difficulty arising when evaluating the SC at a model under-
estimating the number of change points. We conclude that the data is well-described by the
change point model A if

SC0 ({Xt}nt=1, α̂(p̂)) > SC({Xt}nt=1,A, p̂), (13)

and if the converse holds, we prefer the null model over the change point model.
This SC-based model selection strategy is extended to be applicable with a sequence of

nested change point models ∅ = Θ̂0 ⊂ Θ̂1 ⊂ . . . ⊂ Θ̂M , such as that obtained in (4) by the
WEM principle, even when M > 1. Referred to as the gSC in the remainder of the paper,

12



the proposed methodology performs a backward search along the sequence from the largest
model Θ̂l with l = M , sequentially evaluating whether the reduction in the goodness of fit
(i.e. increase in the residual sum of squares) by moving from Θ̂l to Θ̂l−1, is sufficiently offset
by the decrease in model complexity. More specifically, let s, e ∈ Θ̂l−1 ∪ {0, n} denote two
candidates satisfying (s, e) ∩ Θ̂l−1 = ∅, and suppose that A = (s, e) ∩ (Θ̂l \ Θ̂l−1) is not
empty (by definition, {s, e} ⊂ Θ̂l ∪ {0, n}). In other words, A contains candidate estimators
detected within the local environment (s, e), which appear in Θ̂l but do not appear in the
subsequent smaller models Θ̂l′ , l

′ ≤ l − 1. Then, we compare SC({Xt}et=s+1,A, p̂s:e) against
SC0({Xt}et=s+1, α̂s:e(p̂s:e)) as in (13), with the AR parameter estimator α̂s:e(p̂s:e) and its
dimension p̂s:e obtained locally as described in (11)–(12) using the longest interval determined
by A within (s, e). If SC({Xt}et=s+1,A, p̂s:e) < SC0({Xt}et=s+1, α̂s:e(p̂s:e)), the change point
estimators in A are deemed important; if this is the case for all estimators in Θ̂l \ Θ̂l−1, we
return Θ̂l as the final model. If not, we update l← l− 1 and repeat the same procedure until
some Θ̂l, l ≥ 1, is selected as the final model, or the null model Θ̂0 = ∅ is reached. The full
algorithmic description of the gSC is provided in Appendix A.2.

In summary, the gSC methodology does not directly minimise SC but starting from the
largest model, searches for the first largest model Θ̂l where all candidate estimators in Θ̂l\Θ̂l−1

are deemed important as described above. Fang and Siegmund (2020) note that the bias in
AR parameter estimation under (8) due to multiple shifts in the mean, adversely affects the
model selection consistency. In view of this, the proposed backward approach is particularly
advantageous by avoiding the evaluation of SC at a model that under-estimates the number
of change points.

3.3 Theoretical properties

For the theoretical analysis of gSC, we make a set of assumptions and remark on their rela-
tionship to those made in Section 2.2. Assumption 3.1 is imposed on the stochastic part of
model (8).

Assumption 3.1. (i) The characteristic polynomial a(z) = 1 −
∑p

i=1 aiz
i has all of its

roots outside the unit circle |z| = 1.

(ii) {εt} is an ergodic and stationary martingale difference sequence with respect to an in-
creasing sequence of σ-fields Ft, such that εt andXt are Ft-measurable and E(εt|Ft−1) = 0.

(iii) There exists some ∆ > 0 such that supt E(|εt|2+∆|Ft−1) <∞ a.s.

(iv) Let P(En)→ 1 with ωn satisfying
√

log(n) = O(ωn) and ω2
n = O(min1≤j≤q δj), where

En =
{

max0≤s<e≤n(e− s)−1/2
∣∣∣∑e

t=s+1 εt

∣∣∣ ≤ ωn}.
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Assumption 3.1 (i)–(iii) are taken from Lai and Wei (1982a,b, 1983), where the strong
consistency in stochastic regression problems is established. In particular, Assumption 3.1 (i)
indicates that {Zt}nt=1 is a short-memory linear process. The bound in Assumption 3.1 (iv) is
related to the detectability of change points, and gives a lower bound on the penalty parameter
ξn of SC, see Assumption 3.4. Theorem 1.2A of De la Peña (1999) derives a Bernstein-type
inequality for a martingale difference sequence satisfying E|εt|k ≤ (k!/2)ckεE(ε2

t ) for all k ≥ 3

and some cε ∈ (0,∞), from which we readily obtain ωn � log(n). Under a more stringent
condition that {εt} is a sequence of i.i.d sub-Gaussian random variables, it suffices to set
ωn �

√
log(n) (e.g. see Proposition 2.1 (a) of Cho and Kirch (2020b)).

Remark 3.1 (Links between Assumptions 2.1 and 3.1). Assumption 2.1 does not impose any
parametric condition on the dependence structure of {Zt}nt=1. For linear, short memory
processes (implied by Assumption 3.1 (i)), Peligrad and Utev (2006) show that the invari-
ance principle for the linear process is inherited from that of the innovations at no extra
cost. Then, as discussed in Remark 2.2, a logarithmic bound ωn � logκ(n) follows from∑`

t=1 εt−W (`) = O(logκ
′
(n)) for some κ′ ∈ [1, κ), which in turn leads to ζn � ωn. In view of

Assumptions 2.1 and 2.2, the condition that ω2
n = O(min1≤j≤q δj) is a mild one.

We impose the following assumption on the nested model sequence Θ̂0 ⊂ . . . ⊂ Θ̂M , where
Θ̂l = {θ̂l,j , 1 ≤ j ≤ q̂l : θ̂l,1 < . . . < θ̂l,q̂l} for l ≥ 1.

Assumption 3.2. Let Mn denote the following event: for a given penalty ξn, we have
ξ−1
n min0≤j≤q̂M (θ̂M,j+1 − θ̂M,j) = o(1) and q̂M = |Θ̂M | is fixed for all n. Additionally, under
H1 : q ≥ 1, there exists l∗ ∈ {1, . . . ,M} such that

q̂l∗ = q and max
1≤j≤q

d2
j

∣∣∣θ̂l∗,j − θj∣∣∣ ≤ ρn (14)

for some ρn satisfying (min1≤j≤q d
2
jδj)

−1ρn → 0. Then, P(Mn)→ 1.

By Theorem 2.1, we have Assumption 3.2 satisfied by the model sequence generated by the
WEM principle with either the LD or the DC approach (see (5)–(6)) with ρn � ζ2

n. We state
this result as an assumption so that if gSC were to be applied with an alternative solution
path algorithm, our results would be directly applicable if the latter satisfied Assumption 3.2.
Since the serial dependence structure is learned from the data by fitting an AR model to each
segment, the requirement on the minimum spacing of the largest model Θ̂M is a natural one
and it may be hard-wired into the solution path generation.

Assumption 3.3 is on the effective size of changes under (8), and Assumption 3.4 on the
choice of the penalty parameter ξn. In particular, the choice of ξn connects the detectabil-
ity of change points with the level of noise remaining in the data after accounting for the
autoregressive dependence structure.

Assumption 3.3. max1≤j≤q |dj | = O(1) and Dn := min1≤j≤q d
2
j δj →∞ as n→∞.
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Assumption 3.4. ξn satisfies D−1
n ξn = o(1) and ξ−1

n max(ω2
n, ρn) = o(1).

By Assumption 3.1 (i), the effective change size dj is of the same order as f ′j since dj =

(1 −
∑p

i=1 ai)f
′
j . Therefore, Assumption 3.3 on the detection lower bound formulated with

dj , together with Assumption 3.4, is closely related to Assumption 2.2 formulated with f ′j .
In fact, we can select ξn such that Assumption 3.4 follows immediately from Assumption 2.2
when gSC is applied in combination with the sequence of nested models generated by the
WEM principle, recalling that the rate of localisation attained by the latter is ρn � ζ2

n and
ωn = O(ζn).

Theorem 3.1. Let Assumptions 3.1–3.4 hold. Then, on En ∩ Mn, the gSC methodology
returns Θ̂ = {θ̂j , 1 ≤ j ≤ q : θ̂1 < . . . < θ̂q̂} satisfying

q̂ = q and max1≤j≤q d
2
j

∣∣∣θ̂j − θj∣∣∣ ≤ ρn
for n large enough.

Theorem 3.1 establishes that gSC achieves model selection consistency. Together, Theo-
rems 2.1–3.1 lead to the consistency of WEM.gSC. Once the number of change points and
their locations are consistently estimated, we can further improve the location estimators in
Θ̂; Appendix B discusses a simple refinement procedure which achieves the minimax optimal
localisation rate.

4 Nitrogen oxides concentrations in London

Appendix C discusses in detail the choice of the tuning parameters for WEM.gSC. In Ap-
pendix D, we provide extensive simulation studies where WEM.gSC, combined with the de-
fault choice of tuning parameters, is shown to perform well in comparison with DepSMUCE
(Dette et al., 2020), DeCAFS (Romano et al., 2020b) and MACE (Wu and Zhou, 2020). In
particular, WEM.gSC is shown not to return false positives in the absence of mean shifts, and
attains good power and localisation accuracy for a variety of change point configurations and
serial dependence scenarios. In this section, we further demonstrate the good performance of
WEM.gSC on London air quality data.

NOx is a generic term for the nitrogen oxides that are the most relevant for air pollution,
namely nitric oxide (NO) and nitrogen dioxide (NO2). The main anthropogenic sources of
NOx are mobile and stationary combustion sources, and its acute and chronic health effects
have been well-documented (Kampa and Castanas, 2008). We analyse the daily average
concentrations of NO2 and NOx measured (in µg/m3) at Marylebone Road in London, U.K.,
from September 1, 2000 to September 30, 2020; the datasets are retrieved from Defra (https:
//uk-air.defra.gov.uk/). The concentration measurements are positive integers and exhibit
seasonality and weekly patterns as well as distinguished behaviour on bank holidays, since road
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traffic is the principal outdoor source of NOx in a busy London road. To correct for possible
heavy-tailedness of the raw measurements, we take the square root transform and further
remove seasonal and weekly trends and bank holiday effects from the transformed data using
a model fitted on the observations from January 2004 to December 2010; for details of the
pre-processing steps, see Appendix E.1. The resulting time series are plotted in Figure 1,
where it is also seen that the thus-transformed data exhibit persistent autocorrelations.

We analyse the transformed time series from NO2 and NOx concentrations for change
points in the level, with the tuning parameters for WEM.gSC chosen as recommended in
Appendix C apart fromM , the number of candidate models considered; given the large number
of observations (n = 7139), we allow for M = 10 instead of the default choice M = 5. The
change points detected by WEM.gSC with the LD for model sequence generation, are plotted
in Figure 1. For comparison, we also report the change points estimated by DepSMUCE and
DeCAFS, see Table 1.

From the NO2 concentrations, WEM.gSC detects different sets of estimators depending
on whether the LD or the DC approaches were adopted for model sequence generation. In
Appendix E.2, we validate the set of change point estimators detected by WEM.gSC(LD) from
the NO2 time series (by attempting to remove the bulk of serial dependence from the data
and then applying an existing procedure for change point detection for uncorrelated data),
based on which we conclude that WEM.gSC(DC) possibly under-estimates the number of
change points on this dataset. On the other hand, from the NOx concentrations, WEM.gSC
produces identical sets of change point estimators regardless of the choice of the model sequence
generating methods. Figure 1 shows that a good deal of autocorrelations remain in the data
after removing the estimated mean shifts, but the persistent autocorrelations are no longer
observed, which supports the hypothesis that NO2 and NOx concentrations undergo changes
in their levels over the period in consideration.

In February 2003, a programme of traffic management measures was introduced in central
London including the installation of particulate traps on most London buses and other heavy
duty diesel vehicles, which convert NO in the exhaust stream to NO2 and thus bring in the
increase of primary NO2 emissions from such vehicles (Air Quality Expert Group, 2004). This
accounts for the prominent increase in the concentration of NO2 detected around January 2003
by WEM.gSC (also by DepSMUCE and DeCAFS) which, however, is not observed from NOx,
since the latter contains the combined concentrations of NO and NO2. The two series share
the common change point detected at the end of March 2019 (not detected by DepSMUCE
or DeCAFS). The Ultra Low Emission Zone in central London was launched on 8 April 2019,
which includes Marylebone Road where the measurements were taken. and its introduction
coincides with the decline in the concentrations of both NO2 and NOx. Another common
change point is detected on March 18, 2020 (also detected by DepSMUCE and DeCAFS) which
confirms that the nation-wide COVID-19 lockdown on March 23, 2020 led to the substantial
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Figure 1: First (third) panel: daily average concentrations of NO2 (NOx) after transforma-
tion and de-trending, plotted together with the change points detected by WEM.gSC(LD)
(vertical lines) and estimated piecewise constant mean (bold lines). Second (fourth) panel:
autocorrelation function of transformed and de-trended NO2 (NOx) without (left) and with
(right) the time-varying mean adjusted.
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Table 1: Change points detected from the daily average concentrations of NO2 and NOx

measured at Marylebone Road in London from September 1, 2000 to September 30, 2020.
Any location estimators commonly detected from both NO2 and NOx concentrations (within
10 days from one another) are highlighted in bold. For DepSMUCE, parameterised by the
significance level α, identical estimators are returned with either of α ∈ {0.05, 0.2}.

Method NO2 NOx

WEM.gSC(DC) 2003-01-31, 2010-07-25, 2001-03-15, 2018-05-13,
2019-03-30, 2020-03-18 2019-03-22, 2020-03-18

WEM.gSC(LD) 2003-01-31, 2007-03-17, 2007-11-15, 2001-03-15, 2018-05-13,
2008-10-26, 2010-07-25, 2018-10-13, 2019-03-22, 2020-03-18
2019-03-30, 2020-03-18

DepSMUCE 2003-01-31, 2010-07-25, 2001-03-15, 2018-05-13,
2018-10-14, 2020-03-18 2020-03-18

DeCAFS 2003-02-05, 2005-12-11, 2005-12-17 2001-11-07, 2001-11-09, 2005-12-08
2007-04-25, 2007-05-05, 2007-12-10 2005-12-11, 2005-12-17, 2008-12-06
2008-03-03, 2008-03-04, 2009-09-08 2008-12-08, 2018-05-13, 2020-03-18
2009-09-20, 2012-10-20, 2012-10-27
2018-10-14, 2020-03-18

reduction of NOx levels across the country (Higham et al., 2020).
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A Algorithms

A.1 Wild Binary Segmentation 2 algorithm

Algorithm 1 provides a pseudo code for the Wild Binary Segmentation 2 (WBS2) algorithm
proposed in Fryzlewicz (2020a).

We remark that WBS2 as defined in Fryzlewicz (2020a) uses random sampling in line 7
of Algorithm 1, but our preference is for deterministic sampling as it generates reproducible
results without having to fix a random seed. To obtain at least R̃ intervals over an equispaced
(or almost equispaced, if exactly equal spacing is not possible) grid on a generic interval [s, e],
we firstly select the smallest integer K̃ for which the number of all intervals with start- and
end-points in the set {1, . . . , K̃} equals or exceeds R̃. Next, we map (linearly with rounding)
the integer grid [1, K̃] onto an integer grid within [s, e], as j → [ e−s

K̃−1
j + s − e−s

K̃−1
] for each

j ∈ {1, . . . , K̃}, where [·] represents rounding to the nearest integer. We then use all start-
and end-points on the resulting grid to obtain the required collection (sm, em) in line 7 of
Algorithm 1.

Algorithm 1: Wild Binary Segmentation 2
Input: Data {Xt}nt=1, the number of intervals Rn
Function wbs2({Xt}nt=1, Rn, s, e):

if e− s ≤ 1 then return ∅
Let As,e ← {(`, r) ∈ Z2 : s ≤ ` < r ≤ e and r − ` > 1}
if |As,e| ≤ Rn then

R̃← |As,e| and set Rs,e ← As,e
else

R̃← Rn and draw R̃ intervals from As,e deterministically over an equispaced
grid, to form Rs,e = {1 ≤ m ≤ R̃ : (sm, em)}

end
Identify (s◦, k◦, e◦) = arg max

(sm,k,em): 1≤m≤R̃, sm<k<em |Xsm,k,em |

return (s◦, k◦, e◦, |Xs◦,k◦,e◦ |) ∪ wbs2({Xt}nt=1, Rn, s, k◦) ∪ wbs2({Xt}nt=1, Rn, k◦, e)

P0 ← wbs2({Xt}nt=1, Rn, 0, n)

Output: P0

A.2 The gSC algorithm

For each l ≥ 1, we denote Θ̂l = {θ̂l,j , 1 ≤ j ≤ q̂l : θ̂l,1 < . . . < θ̂l,q̂l}, and adopt the notational
convention that θ̂l,0 = 0 and θ̂l,q̂l+1 = n. Initialised with l = M , the gSC algorithm performs
the following steps.

Step 1: We identify u ∈ {0, . . . , q̂l−1} with (θ̂l−1,u, θ̂l−1,u+1) ∩ Θ̂l 6= ∅; that is, the segment
(θ̂l−1,u, θ̂l−1,u+1) defined by the consecutive elements of Θ̂l−1, has additional change
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points detected in Θ̂l such that (θ̂l−1,u, θ̂l−1,u+1) ∩ (Θ̂l \ Θ̂l−1) 6= ∅. By construction,
the set of such indices, Il := {u1, . . . , uq′l}, satisfies |Il| ≥ 1. For each uv, v = 1, . . . , q′l,
we repeat the following steps with a logical vector of length q′l, F ∈ {TRUE, FALSE}q′l ,
initialised as F = (TRUE. . . . , TRUE).

Step 1.1: Setting A = (θ̂l−1,uv , θ̂l−1,uv+1)∩ Θ̂l, obtain p̂ ∈ {0, . . . , pmax} that returns the
smallest SC over the longest local interval defined by A within (θ̂l−1,uv , θ̂l−1,uv+1)

as outlined in (12), and the corresponding AR parameter estimator α̂(p̂) as given
in (11).

Step 1.2: If SC({Xt}
θ̂uv+1

t=θ̂uv+1
,A, p̂) < SC0({Xt}

θ̂uv+1

t=θ̂uv+1
, α̂(p̂)), update Fv ← FALSE.

Step 2: If some elements of F satisfy Fv = TRUE and l > 1, update l ← l − 1 and go
to Step 1. If Fv = FALSE for all v = 1, . . . , q′l, return Θ̂l as the set of change point
estimators. Otherwise, return Θ̂0 = ∅.

Theorem 3.1 shows that we have either Fv = FALSE for all v = 1, . . . , q′l when the cor-
responding Θ̂l = Θ̂[q], or Fv = TRUE for all v when Θ̂l contains spurious estimators. In
implementing the methodology, we take a more conservative approach in the above Step 2, to
guard against the unlikely event where the output F contains mixed results.

B Refinement of change point estimators

Throughout this section, we condition on the event that Θ̂[q] is chosen at the model selection
step, and discuss how the location estimators can further be refined; consistent model selection
based on the estimators of change point locations returned directly by WBS2 (without any
additional refinement), is discussed in Section 3.

By Theorem 2.1 and Assumption 2.2, each θ̂j , 1 ≤ j ≤ q, is sufficiently close to the
corresponding change point θj in the sense that |θ̂j−θj | ≤ (f ′j)

−2ρn ≤ cδj for some c ∈ (0, 1/6)

with probability tending to one, for n large enough. Defining `1 = 0, rq = n,

`j =

⌊
2

3
θ̂j−1 +

1

3
θ̂j

⌋
, j = 2, . . . , q, and rj =

⌊
1

3
θ̂j +

2

3
θ̂j+1

⌋
, j = 1, . . . , q − 1,

we have each interval (`j , rj) sufficiently large and contain a single change point θj well within
its interior, i.e.

min(θj − `j , rj − θj) ≥ (2/3− c)δj > δj/2, and (B.1)

min(`j − θj−1, θj+1 − rj) ≥ (1/3− c)δj > 0. (B.2)

Then, we propose to further refine the location estimator θ̂j by θ̌j = arg max`j<k<rj
∣∣X`j ,k,rj ∣∣,

which generally improves the localisation rate. To see this, we impose the following assumption
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on the error distribution which, by its formulation, trivially holds under Assumption 2.1 with
ζ̃n = ζn. However, we often have the assumption met with a much tighter bound as discussed
in Remark B.1, which leads to the improvement in the localisation rate of the refined estimators
θ̌j as shown in Proposition B.1.

Assumption B.1. For any sequence 1 ≤ an ≤ min1≤j≤q(f
′
j)

2δj and some ζ̃n satisfying
ζ̃n = O(ζn) (with ζn as in Assumption 2.1), let P(Z̃n)→ 1 where

Z̃n =

max
1≤j≤q

max
(f ′j)−2an≤`≤θj−θj−1

√
(f ′j)

−2an

`

∣∣∣∣∣∣
θj∑

t=θj−`+1

Zt

∣∣∣∣∣∣ ≤ ζ̃n


⋂max
1≤j≤q

max
(f ′j)−2an≤`≤θj+1−θj

√
(f ′j)

−2an

`

∣∣∣∣∣∣
θj+`∑
t=θj+1

Zt

∣∣∣∣∣∣ ≤ ζ̃n
 .

Proposition B.1. Let the assumptions of Theorem 2.1 and Assumption B.1 hold. Then,
there exists c3 ∈ (0,∞) such that

P

(
max

1≤j≤q
(f ′j)

2|θ̌j − θj | ≤ c3(ζ̃n)2

)
≥ P

(
Zn ∩ Z̃n

)
→ 1.

Remark B.1. When the number of change points q is bounded, Assumption B.1 holds with ζ̃n
diverging at an arbitrarily slow rate, provided that

E

∣∣∣∣∣
r∑

t=l+1

Zt

∣∣∣∣∣
ν

≤ C(r − l)ν/2 for any −∞ < l < r <∞ (B.3)

for some constant C > 0 and ν > 2, see Proposition 2.1 (c.ii) of Cho and Kirch (2020b). The
condition (B.3) is satisfied by many time series models, see Appendix B.2 in Kirch (2006) and
the references therein. On the other hand, Theorem 1 of Shao and Zhang (2010) indicates
that the lower bound

√
log(n) = O(ζn) cannot be improved. Therefore, Proposition B.1

shows that the extra step indeed improves upon the localisation rate attained by the WBS2
reported in Theorem 2.1 (i). In fact, for time series models satisfying (B.3), the refinement
leads to (f ′j)

2|θ̌j − θj | = Op(1), thus matching the minimax optimal rate of multiple change
point localisation (see Proposition 6 of Fromont et al. (2020)).

C Implementation and the choice of tuning parameters

In line with the condition (7) and Assumption 3.2, we set Qn = blog1.9(n)c, which imposes
an upper bound on the number of change points, and we allow for at most M = 5 nested
change point models (in addition to the null model) to be considered by the model selection
methodology. By default, the number of intervals drawn by the deterministic sampling in
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Algorithm 1 is set at Rn = 100, and the maximum AR order is set at pmax = 10 unless stated
otherwise when input time series is short. To ensure that there are enough observations
over each interval defined by two adjacent candidate change point estimators for numerical
stability, we set the minimum spacing to be max(20, pmax + dlog(n)e) and feed this into
Algorithm 1 in the solution path generation. For simplicity, we directly utilise the OLS
estimator β obtained from regressing Y on X in (10) as β̂(A, r) in the implementation of
the gSC methodology, in place of the segment-wise estimation strategy described in (11);
in our numerical experiments, this modification did not alter the results greatly. Finally, the
penalty of SC is given by ξn = log1.01(n) which is in accordance with Assumption 3.4 when the
innovations {εt} are distributed as (sub-)Gaussian random variables such that ωn �

√
log(n)

fulfils Assumption 3.1 (iv).

D Simulation studies

D.1 Set-up

We consider a variety of data generating processes for {Xt}; in the following, we assume
εt ∼iid N (0, σ2

ε) with σε = 1 unless stated otherwise.

(M1) ft undergoes q = 5 change points at (θ1, θ2, θ3, θ4, θ5) = (100, 300, 500, 550, 750) with
n = 1000 and (f0, f

′
1, f
′
2, f
′
3, f
′
4, f
′
5) = (0, 1,−1, 2,−2,−1), and Zt = εt.

(M2) ft undergoes q = 2 change points at (θ1, θ2) = (75, 125) with n = 200 and (f0, f
′
1, f
′
2) =

(0, 2.5,−2.5), and {Zt} follows an ARMA(1, 1) model: Zt = a1Zt−1 + εt + b1εt with
a1 = 0.5, b1 = 0.3 and σε = 1/2.14285.

(M3) ft undergoes q = 2 change points at (θ1, θ2) = (50, 100) with n = 150 and (f0, f
′
1, f
′
2) =

(0, 2.5,−2.5), and {Zt} follows an AR(1) model: Zt = a1Zt−1 + εt with a1 = 0.5 and
σε =

√
1− a2

1.

(M4) ft undergoes q = 2 change points at (θ1, θ2) = (100, 200) with n = 300 and (f0, f
′
1, f
′
2) =

(0, 1,−1), and {Zt} follows an ARMA(1, 1) model: Zt = a1Zt−1 + εt + b1εt−1 with the
ARMA parameters are generated as a1, b1 ∼iid U(−0.9, 0.9) for each realisation, and
σε =

√
(1− a2

1)/(1 + a1b1 + b21).

(M5) ft undergoes q = 5 change points at (θ1, θ2, θ3, θ4, θ5) = (100, 300, 500, 550, 750) with
n = 1000 and (f0, f

′
1, f
′
2, f
′
3, f
′
4, f
′
5) = (0, 1,−1, 2,−2,−1), and {Zt} follows an MA(1)

model Zt = εt + b1εt−1 with b1 = 0.3.

(M6) As in (M5) but with b1 = −0.9.

(M7) ft undergoes q = 5 change points as in (M1) with n = 1000 and (f0, f
′
1, f
′
2, f
′
3, f
′
4, f
′
5) =

(0, 3,−3, 4,−4,−3), and {Zt} follows an MA(4) model: Zt = εt + 0.9εt−1 + 0.8εt−2 +

0.7εt−3 + 0.6εt−4.
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(M8) ft undergoes q = 5 change points θj as in (M1) with n = 1000 and (f0, f
′
1, f
′
2, f
′
3, f
′
4, f
′
5) =

(0, 5,−3, 6,−7,−3), and {Zt} follows an ARMA(2, 6) model: Zt = 0.75Zt−1−0.5Zt−2 +

εt + 0.8εt−1 + 0.7εt−2 + 0.6εt−3 + 0.5εt−4 + 0.4εt−5 + 0.3εt−6.

(M9) ft undergoes q = 15 change points at θj = dnj/16e, j = 1, . . . , 15 with n = 2000, where
the level parameters fθj+1 are generated uniformly as (−1)j · fθj+1 ∼iid U(1, 2), j =

0, . . . , 15, for each realisation. {Zt} follows an AR(1) model as in (M3) with a1 = 0.5.

(M10) As in (M9) but with a1 = 0.9.

(M11) ft undergoes q = 10 change points at θj = 150j, j = 1, . . . , 10 with n = 1650 and
(f0, f

′
1, f
′
2, f
′
3, f
′
4, f
′
5, f
′
6, f
′
7, f
′
8, f
′
9, f
′
10) = (0, 7,−7, 6,−6, 5,−5, 4,−4, 3,−3), and {Zt} fol-

lows an AR(2, 6) model as in (M8).

(M12) ft is as in (M1) and {Zt} follows a time-varying AR(1) model: Zt = a1(t)Zt−1 + σ(t)εt

with a1(t) = 0.5− 0.2 cos(2πt/n) and σ(t) =
√

1− a1(t)2.

(M13) ft is as in (M1) and {Zt} follows a time-varying AR(1) model: Zt = a1(t)Zt−1 + σ(t)εt

where a1(t) is piecewise constant with change points at θj , j = 1, . . . , q such that a1(t) =

0.3It≤θ1 + 0.4Iθ1<t≤θ2 + 0.6Iθ2<t≤θ3 + 0.7Iθ3<t≤θ4 + 0.5Iθ4<t≤θ5 + 0.3It>θ5 and σ(t) =√
1− a1(t)2.

Apart from Model (M1), all others model have serial correlations in {Zt}nt=1. Models (M2)
(motivated by an example in Wu and Zhou (2020)), (M3) and (M4) consider relatively short
time series with n ∈ [150, 300]. Models (M5), (M7) and (M8) are taken from Dette et al. (2020).
In (M6), the LRV is close to zero and thus its accurate estimation is difficult. Models (M9)–
(M10) have a teeth-like signal containing frequent change points and the underlying {Zt}
has strong autocorrelations in (M10), and (M11) considers frequent, heterogeneous changes
in the mean. In Models (M12)–(M13), the noise {Zt}nt=1 has time-varying serial dependence
structure.

We generate 1000 realisations under each model. For each scenario, we additionally con-
sider the case in which ft ≡ 0 (thus q = 0) in order to evaluate the proposed methodology
on its size control. On each realisation, we apply the proposed WEM.gSC with the sequence
of nested models generated as described in Section 2.1, either directly identifying the largest
differences (‘LD’) in the ordered max-CUSUMs as in (5), or by examining the double CUSUM
statistics (‘DC’) as in (6); the rest of the tuning parameters are selected as described in Ap-
pendix C except that for Model (M3), we set pmax = 5 to account for the relative shortness
of the time series.

For comparison, DepSMUCE (Dette et al., 2020), DeCAFS (Romano et al., 2020b) and
MACE (Wu and Zhou, 2020) are applied to the same datasets. DepSMUCE extends the
SMUCE procedure (Frick et al., 2014) proposed for independent data, by estimating the LRV
using a difference-type estimator. MACE is a multiscale moving sum-based procedure with
self-normalisation-based scaling that accounts for serial correlations. Although not its primary
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objective, DeCAFS can be adopted for the problem of detecting multiple change points in the
mean of an otherwise stationary AR(1) process; advised by the authors, we have adapted
the main routine of its R implementation (Romano et al., 2020a) to change point analysis
under (1). For DepSMUCE and MACE, we consider α ∈ {0.05, 0.2} since, in our experience,
higher values of α lead to inadequate performance when there are no change points present.
MACE requires the selection of the minimum and the maximum bandwidths in the rescaled
time [0, 1] and moreover, the latter, say smax, controls the maximum detectable number of
change points to be (2smax)−1; we set smax = min(1/(3q), n−1/6) for fair comparison, which
varies from one model to another. Other tuning parameters not mentioned here are chosen as
recommended by the authors.

D.2 Results

Table D.1 summarises the performance of different change point detection methodologies in-
cluded in the comparative simulation study under the null model H0 : q = 0 and the alterna-
tive H1 : q > 1. More specifically, we report the proportion of falsely detecting one or more
change points under H0 (size), as well as the following statistics under H1: the distribution
of the estimated number of change points, the relative mean squared error (MSE):

n∑
t=1

(f̂t − ft)2/
n∑
t=1

(f̂∗t − ft)2

where f̂t is the piecewise constant signal constructed with the set of estimated change point
locations Θ̂, and f̂∗t is an oracle estimator constructed with the true θj , and the Hausdorff
distance (dH) between Θ̂ and Θ:

dH(Θ̂,Θ) = max

(
max
θ∈Θ

min
θ̂∈Θ̂
|θ − θ̂|,max

θ̂∈Θ̂
min
θ∈Θ
|θ̂ − θ|

)
,

averaged over 1000 realisations. We report the MSE and dH computed with the refined
estimators as described in Appendix B for WEM.gSC.

Overall, across the various scenarios, WEM.gSC performs well under both the null and
the alternative scenarios. In particular, it keeps the size at bay under H0 regardless of the
underlying serial correlation structure; when the time series is sufficiently long (n ≥ 300), the
proportion of the events where WEM.gSC spuriously detects any change point under H0 is
strictly below 0.05 (often below 0.01). Even when the input time series is short as in (M3)
with n = 150, the proportion of such events is smaller than 0.1. Controlling for the size under
H0, especially in the presence of serial correlations, is a difficult task and as shown below,
other methods considered in the comparative study fail to do so by a large margin in some
scenarios.

Under H1, WEM.gSC performs well in most scenarios according to a variety of criteria,
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such as model selection accuracy measured by |q̂ − q| or the localisation accuracy measured
by dH . Between the two gap identification methods, DC performs marginally better than LD
in identifying the correct number of change points except for the case of (M10) and (M11). In
particular, (M11) contains heterogeneous shifts in the mean and, as seen in Figure D.1, LD
is better suited than DC for identifying the gap between those log-CUSUMs due to smaller
jumps towards the end of the signal, and those due to time series fluctuations. The results
under (M12)–(M13) show that WEM.gSC is able to handle mild nonstationarities in {Zt}nt=1.
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Figure D.1: Density of change point estimators returned by WEM.gSC(LD) (left) and
WEM.gSC(DC) (right) over 1000 realisations generated under (M11) with the true locations
of θj denoted by the vertical broken lines.

DepSMUCE performs well for short series (see (M3)) or in the presence of weak serial
correlations as in (M5), but generally suffers from a calibration issue. That is, in order
not to detect spurious change points under H0, it requires the tuning parameter to be set
conservatively at α = 0.05; however, for improved detection power, α = 0.2 is a better choice.
In addition, the estimator of the LRV proposed therein tends to under-estimate the LRV
when it is close to zero as in (M6), or when there are strong autocorrelations as in (M10),
thus incurring a large number of falsely detected change points under H0.

DeCAFS operates under the assumption that {Zt}nt=1 is an AR(1) process. Therefore, it
is applied under model mis-specification in some scenarios, but still performs reasonably well
in not returning false positives under H0. The exception is (M10) where, in the presence of
strong autocorrelations, it returns spurious estimators over 50% of realisations even though
the model is correctly specified in this scenario. Its detection power suffers under model mis-
specification in some scenarios such as (M7) and (M8) when compared to WEM.gSC, but
DeCAFS tends to attain good MSE. MACE suffers from both size inflation and lack of power,
possibly due to its sensitivity to choice of some tuning parameters such as the bandwidths.
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Table D.1: (M1)–(M13): We report the proportion of rejecting H0 (by returning q̂ ≥ 1) under H0 : q =

0 (size) and the summary of estimated change points under H1 : q > 1 according to the distribution of
q̂− q, relative MSE and the Hausdorff distance (dH) over 1000 realisations. Methods that control the
size under H0 (according to the specified α for DepSMUCE and MACE, and at 0.05 for WEM.gSC
and DeCAFS), and that achieve the best performance under H1 according to different criteria, are
highlighted in bold for each scenario.

q̂ − q
Model Method Size ≥ −3 −2 −1 0 1 2 3 ≤ RMSE dH

(M1) WEM.gSC(LD) 0.009 0.000 0.000 0.000 0.978 0.019 0.003 0.000 4.940 8.866
WEM.gSC(DC) 0.000 0.000 0.000 0.002 0.994 0.003 0.001 0.000 4.881 7.892

DepSMUCE(0.05) 0.006 0.000 0.000 0.104 0.896 0.000 0.000 0.000 6.671 22.699
DepSMUCE(0.2) 0.062 0.000 0.000 0.016 0.984 0.000 0.000 0.000 4.901 9.21

DeCAFS 0.014 0.000 0.000 0.000 0.979 0.019 0.002 0.000 4.847 8.172
MACE(0.05) 0.573 0.669 0.250 0.065 0.014 0.002 0.000 0.000 96.871 310.478
MACE(0.2) 0.810 0.376 0.336 0.204 0.069 0.013 0.002 0.000 83.401 255.7

(M2) WEM.gSC(LD) 0.102 0.000 0.000 0.000 0.862 0.098 0.029 0.011 2.826 5.475
WEM.gSC(DC) 0.080 0.000 0.000 0.000 0.884 0.086 0.015 0.015 2.753 4.583

DepSMUCE(0.05) 0.028 0.000 0.000 0.000 1.000 0.000 0.000 0.000 2.051 0.166
DepSMUCE(0.2) 0.098 0.000 0.000 0.000 1.000 0.000 0.000 0.000 2.051 0.166

DeCAFS 0.099 0.000 0.000 0.000 0.885 0.083 0.022 0.010 1.910 5.697
MACE(0.05) 0.457 0.000 0.007 0.126 0.761 0.104 0.002 0.000 25.329 11.473
MACE(0.2) 0.713 0.000 0.001 0.042 0.759 0.184 0.014 0.000 13.335 10.988

(M3) WEM.gSC(LD) 0.074 0.000 0.000 0.000 0.865 0.119 0.016 0.000 5.993 4.782
WEM.gSC(DC) 0.067 0.000 0.000 0.000 0.865 0.119 0.016 0.000 5.993 4.782

DepSMUCE(0.05) 0.025 0.000 0.006 0.202 0.792 0.000 0.000 0.000 14.038 9.14
DepSMUCE(0.2) 0.104 0.000 0.000 0.041 0.959 0.000 0.000 0.000 5.876 3.057

DeCAFS 0.197 0.000 0.004 0.007 0.749 0.116 0.066 0.058 9.137 9.331
MACE(0.05) 0.611 0.000 0.148 0.446 0.373 0.033 0.000 0.000 43.102 25.958
MACE(0.2) 0.781 0.000 0.060 0.321 0.554 0.064 0.001 0.000 30.616 21.736

(M4) WEM.gSC(LD) 0.033 0.000 0.096 0.010 0.832 0.035 0.018 0.009 13.588 9.39
WEM.gSC(DC) 0.027 0.000 0.102 0.001 0.852 0.025 0.009 0.011 13.490 7.821

DepSMUCE(0.05) 0.266 0.000 0.091 0.196 0.565 0.030 0.031 0.087 202.355 29.781
DepSMUCE(0.2) 0.361 0.000 0.043 0.150 0.591 0.047 0.036 0.133 294.382 30.141

DeCAFS 0.066 0.000 0.103 0.041 0.816 0.030 0.007 0.003 13.885 13.094
MACE(0.05) 0.305 0.000 0.266 0.281 0.425 0.026 0.002 0.000 60.122 33.958
MACE(0.2) 0.486 0.000 0.135 0.280 0.522 0.057 0.006 0.000 42.749 37.39

(M5) WEM.gSC(LD) 0.006 0.001 0.002 0.013 0.953 0.027 0.004 0.000 5.141 18.921
WEM.gSC(DC) 0.000 0.000 0.000 0.012 0.972 0.016 0.000 0.000 5.053 16.36

DepSMUCE(0.05) 0.007 0.006 0.117 0.472 0.405 0.000 0.000 0.000 15.523 114.702
DepSMUCE(0.2) 0.063 0.000 0.009 0.201 0.790 0.000 0.000 0.000 7.204 44.676

DeCAFS 0.019 0.000 0.004 0.004 0.968 0.023 0.000 0.001 4.956 15.819
MACE(0.05) 0.588 0.801 0.151 0.038 0.009 0.001 0.000 0.000 63.685 336.515
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MACE(0.2) 0.809 0.519 0.273 0.162 0.035 0.011 0.000 0.000 54.649 286.579
(M6) WEM.gSC(LD) 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 68.720 1.988

WEM.gSC(DC) 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 68.720 1.988
DepSMUCE(0.05) 1.000 0.000 0.000 0.000 0.485 0.167 0.163 0.185 219.196 48.359
DepSMUCE(0.2) 1.000 0.000 0.000 0.000 0.170 0.093 0.177 0.560 437.883 90.818

DeCAFS 0.001 0.000 0.000 0.000 0.995 0.004 0.001 0.000 68.909 2.002
MACE(0.05) 0.240 0.000 0.000 0.914 0.086 0.000 0.000 0.000 1729.538 57.587
MACE(0.2) 0.519 0.000 0.000 0.802 0.190 0.008 0.000 0.000 1723.032 65.264

(M7) WEM.gSC(LD) 0.008 0.041 0.029 0.016 0.899 0.013 0.001 0.001 5.691 46.539
WEM.gSC(DC) 0.003 0.000 0.001 0.003 0.926 0.059 0.008 0.003 4.776 21.35

DepSMUCE(0.05) 0.020 0.051 0.233 0.546 0.170 0.000 0.000 0.000 16.374 87.334
DepSMUCE(0.2) 0.127 0.003 0.052 0.406 0.537 0.002 0.000 0.000 9.544 37.717

DeCAFS 0.097 0.002 0.059 0.020 0.863 0.055 0.001 0.000 3.786 31.441
MACE(0.05) 0.681 0.768 0.168 0.048 0.015 0.001 0.000 0.000 48.913 331.673
MACE(0.2) 0.872 0.455 0.279 0.193 0.061 0.011 0.001 0.000 38.975 284.883

(M8) WEM.gSC(LD) 0.016 0.032 0.024 0.062 0.814 0.047 0.012 0.009 5.738 55.998
WEM.gSC(DC) 0.001 0.000 0.000 0.019 0.873 0.092 0.014 0.002 4.907 34.627

DepSMUCE(0.05) 0.031 0.052 0.385 0.429 0.134 0.000 0.000 0.000 18.567 145.406
DepSMUCE(0.2) 0.142 0.006 0.093 0.410 0.490 0.001 0.000 0.000 11.066 83.157

DeCAFS 0.099 0.010 0.037 0.140 0.766 0.047 0.000 0.000 4.082 63.433
MACE(0.05) 0.694 0.754 0.166 0.065 0.015 0.000 0.000 0.000 40.553 313.2
MACE(0.2) 0.875 0.473 0.275 0.154 0.087 0.009 0.002 0.000 33.796 284.811

(M9) WEM.gSC(LD) 0.006 0.000 0.000 0.000 0.888 0.077 0.022 0.013 2.485 9.01
WEM.gSC(DC) 0.000 0.000 0.000 0.008 0.982 0.006 0.003 0.001 2.425 5.485

DepSMUCE(0.05) 0.020 0.118 0.332 0.380 0.170 0.000 0.000 0.000 20.085 85.553
DepSMUCE(0.2) 0.133 0.003 0.048 0.338 0.611 0.000 0.000 0.000 7.534 39.648

DeCAFS 0.023 0.000 0.000 0.000 0.978 0.019 0.003 0.000 2.103 5.516
MACE(0.05) 0.905 0.910 0.053 0.028 0.008 0.000 0.001 0.000 61.217 230.091
MACE(0.2) 0.986 0.620 0.174 0.114 0.052 0.028 0.010 0.002 47.381 175.819

(M10) WEM.gSC(LD) 0.009 0.048 0.027 0.039 0.519 0.186 0.081 0.100 2.805 51.057
WEM.gSC(DC) 0.000 0.087 0.177 0.233 0.319 0.076 0.041 0.067 3.184 86.139

DepSMUCE(0.05) 0.936 0.767 0.153 0.070 0.010 0.000 0.000 0.000 8.655 139.298
DepSMUCE(0.2) 0.989 0.276 0.320 0.303 0.101 0.000 0.000 0.000 5.537 108.339

DeCAFS 0.567 0.000 0.004 0.039 0.784 0.155 0.017 0.001 1.086 16.318
MACE(0.05) 1.000 0.052 0.059 0.083 0.126 0.168 0.173 0.339 7.080 125.924
MACE(0.2) 1.000 0.007 0.006 0.021 0.042 0.089 0.109 0.726 5.741 106.281

(M11) WEM.gSC(LD) 0.012 0.166 0.205 0.032 0.503 0.060 0.028 0.006 5.761 183.927
WEM.gSC(DC) 0.001 0.080 0.360 0.252 0.287 0.013 0.006 0.002 5.435 180.548

DepSMUCE(0.05) 0.022 0.912 0.081 0.007 0.000 0.000 0.000 0.000 15.463 351.082
DepSMUCE(0.2) 0.126 0.562 0.345 0.088 0.005 0.000 0.000 0.000 10.991 258.122

DeCAFS 0.076 0.220 0.481 0.060 0.228 0.011 0.000 0.000 4.829 285.997
MACE(0.05) 0.781 0.998 0.002 0.000 0.000 0.000 0.000 0.000 33.582 604.839
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MACE(0.2) 0.942 0.961 0.022 0.012 0.004 0.001 0.000 0.000 30.708 470.998
(M12) WEM.gSC(LD) 0.025 0.045 0.060 0.118 0.686 0.058 0.021 0.012 6.846 88.52

WEM.gSC(DC) 0.002 0.000 0.002 0.061 0.718 0.151 0.048 0.020 5.828 50.476
DepSMUCE(0.05) 0.074 0.155 0.450 0.350 0.045 0.000 0.000 0.000 16.612 232.209
DepSMUCE(0.2) 0.273 0.026 0.177 0.471 0.325 0.001 0.000 0.000 10.426 139.304

DeCAFS 0.079 0.009 0.080 0.081 0.726 0.077 0.024 0.003 5.769 83.559
MACE(0.05) 0.685 0.778 0.171 0.045 0.005 0.001 0.000 0.000 33.466 325.439
MACE(0.2) 0.873 0.537 0.250 0.151 0.049 0.012 0.001 0.000 28.316 304.252

(M13) WEM.gSC(LD) 0.018 0.020 0.028 0.072 0.813 0.052 0.009 0.006 6.135 57.273
WEM.gSC(DC) 0.001 0.000 0.002 0.043 0.831 0.089 0.030 0.005 5.442 38.565

DepSMUCE(0.05) 0.053 0.093 0.381 0.423 0.103 0.000 0.000 0.000 16.547 202.408
DepSMUCE(0.2) 0.205 0.012 0.113 0.445 0.430 0.000 0.000 0.000 9.754 112.529

DeCAFS 0.041 0.004 0.043 0.049 0.840 0.052 0.012 0.000 5.105 51.444
MACE(0.05) 0.665 0.802 0.143 0.051 0.003 0.001 0.000 0.000 38.599 328.101
MACE(0.2) 0.855 0.543 0.254 0.142 0.051 0.008 0.002 0.000 32.992 301.252

E Additional real data analysis

E.1 Pre-processing of nitrogen oxides concentrations data

The concentration measurements are positive integers and possibly highly skewed, see top
panels of Figure E.1. Also, the data exhibit seasonality as well as weekly patterns, the latter
particularly visible from the autocorrelations (see middle panels of Figure E.1), and the level
of concentrations drops sharply on bank holidays, in line with the behaviour of road traffic.
We adopt the square root transform in order to bring the data to light-tailedness without
masking any shift in the level greatly. Also, after visual inspection and preliminary research
into the relevant literature, we select the period between January 2004 and December 2010 to
estimate the seasonal, weekly and bank holiday patterns, which is achieved by regressing the
square root transformed time series onto the indicator variables representing their effects. In
summary, 19 parameters including the intercept were estimated from the 2508 observations,
and all three factors (seasonal, daily and bank holiday effects) were deemed significant, with
the models fitted to the NO2 and NOx concentrations attaining the adjusted R2 coefficients
of 0.1077 and 0.1149, respectively. Bottom panels of Figure E.1 plot the fitted yearly trend,
while Figure 1 in the main text plots the residuals, which we analyse for change points in the
level.

E.2 Validating the number of change points detected from the NO2 time
series

Table 1 in the main paper shows a considerable variation in the number of detected change
points in the NO2 time series between the competing methods. To run an independent check
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Figure E.1: Various statistical properties of the daily concentrations of NO2(left) and NOx

(right) measured at Marylebone Road in London between January 2004 and December 2010.
Top: histogram of raw concentrations. Middle: autocorrelations after square root transform.
Bottom: yearly fitted patterns.

for the number of change points, we firstly remove the bulk of the serial dependence of the
data by fitting the AR(1) model to it with the AR coefficient equal to 0.5 (as suggested by the
sample autocorrelation function in Figure E.1), and work with the empirical residuals from
this fit.

On these, we perform change point detection using a method suitable for multiple level-
shift detection under serially uncorrelated noise. The method we use is the IDetect technique
with the information-criterion-based model selection (Anastasiou and Fryzlewicz, 2020), as
implemented in the R package breakfast (Anastasiou et al., 2020). The reason for the selec-
tion of this method is that it is possibly the best-performing method of the package overall (as
reported in the package vignette available at https://cran.r-project.org/web/packages/
breakfast/vignettes/breakfast-vignette.html), and it is independently commended in
Fearnhead and Rigaill (2020) as having very strong performance overall.

The R execution model.ic(sol.idetect(no2.res))$cpts, where no2.res are the resid-
uals obtained as above, returns 7 change point estimators, a number close to the 8 obtained
by our WEM.gSC(LD) method. Out of the 7 locations estimated by IDetect, there is very
good agreement with WEM.gSC(LD) for 6 out of these locations. The exception is the
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WEM.gSC(LD)-estimated change point at 2010-07-25, which IDetect estimates some 800 days
later. However, IDetect also does not estimate the following WEM.gSC(LD)-estimated change
point at 2018-10-13, which is a possible reason for IDetect to replace these twoWEM.gSC(LD)-
estimated change points by one in between them.

This, in our view, represents very good agreement on the whole, especially given that the
two methods are entirely different in nature and worked with different time series on input.
This result further enhances our confidence in the output of WEM.gSC(LD) for this dataset.

E.3 Hadley Centre central England temperature data analysis

The Hadley Centre central England temperature (HadCET) dataset (Parker et al., 1992)
contains the mean, maximum and minimum daily and monthly temperatures representative
of a roughly triangular area enclosed by Lancashire, London and Bristol, UK.

We analyse the yearly average of the monthly mean, maximum and minimum temperatures
up to 2019 for change points using the proposed WEM.gSC methodology. The mean monthly
data dates back to 1659, while the maximum and the minimum monthly data begins in 1878;
we focus on the period of 1878–2019 (n = 142) for all three time series. To take into account
that the time series are relatively short, we set pmax = 5 (maximum allowable AR order) for
WEM.gSC and the minimum spacing to be 10 (i.e. no change points occur within 10 years from
one another), while the rest of the parameters are chosen as recommended in Appendix C;
the results are invariant to the choice of the penalty ξn ∈ {log1.01(n), log1.1(n)}. Table E.1
reports the change points estimated by WEM.gSC(DC) and the WEM.gSC(LD) as well as
those detected by DepSMUCE and DeCAFS for comparison. We note that the refinement of
location estimators described in Appendix B does not alter the results.

On all three datasets, WEM.gSC(LD) and WEM.gSC(DC) return, between them, two
nearly identical estimators, and the same change points are detected by DepSMUCE (with
α = 0.2) and DeCAFS. Figure E.2 shows that there appears to be a noticeable change in the
persistence of the autocorrelations in the datasets before and after these shifts in the mean
are accounted for, which further confirms that the yearly temperatures undergo level shifts
over the years. In particular, the second change point detected at 1987/88 coincides with the
global regime shift in Earth’s biophysical systems identified around 1987 (Reid et al., 2016),
which is attributed to anthropogenic warming and a volcanic eruption.

F Proofs

For any square matrix B ∈ Rp×p, let λmax(B) and λmin(B) denote the maximum and the min-
imum eigenvalues of B, respectively, and we define the operator norm ‖B‖ =

√
λmax(B>B).

Let 1 denote a vector of ones, 0 a vector of zeros and I an identity matrix whose dimen-
sions are determined by the context. The projection matrix onto the column space of a given
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Table E.1: Change points (in year) detected from the yearly average of the mean, maximum
and minimum monthly temperatures from 1878 to 2019.

Method Mean Maximum Minimum
WEM.gSC(DC) 1892, 1988 1892, 1988 1892, 1987
WEM.gSC(LD) 1892, 1988 1892, 1988 1892, 1987

DepSMUCE(0.05) 1987 1988 1956
DepSMUCE(0.2) 1892, 1988 1988 1892, 1987

DeCAFS 1892, 1988 1892, 1988 1892, 1987

matrix A is denoted by ΠA = A(A>A)−1A>, provided that A>A is invertible. We write
a ∨ b = max(a, b) and a ∧ b = min(a, b).

F.1 Proof of the results in Section 2

Throughout the proofs, we work under the following non-asymptotic bound

max

(
nϕζ2

n

min1≤j≤q(f ′j)
2δj

,
Qn log2(ζn)

log2(n)
,

1

log(ζn)

)
≤ 1

K
(F.1)

for some K > 0, which holds for all n ≥ n(K) for some large enough n(K), which replaces the
asymptotic condition in Assumptions 2.2 and (7). The o-notation always refers to K in (F.1)
being large enough, which in turn follows for large enough n. By Fs,k,e and Zs,k,e, we denote
the CUSUM statistics defined with {ft} and {Zt} replacing {Xt} in (2), respectively.

F.1.1 Preliminaries

Lemma F.1 (Lemma B.1 of Cho and Kirch (2020b)). For max(s, θj−1) < k < θj < min(e, θj+1),
it holds that

Fs,k,e = −
√

(k − s)(e− k)

e− s

{
(e− θj) f ′j
e− k

+
(e− θj+1)+ f

′
j+1

e− k
+

(θj−1 − s)+ f
′
j−1

k − s

}
,

where a+ = a · Ia≥0. Similarly, for max(s, θj−1) < θj ≤ k < min(e, θj+1), it holds that

Fs,k,e = −
√

(k − s)(e− k)

e− s

{
(θj − s) f ′j
k − s

+
(e− θj+1)+ f

′
j+1

e− k
+

(θj−1 − s)+ f
′
j−1

k − s

}
.

Lemma F.2 (Lemma 2.2 of Venkatraman (1992); Lemma 8 of Wang and Samworth (2018)).
For some 0 ≤ s < e ≤ n with e − s > 1, let Θ ∩ [s, e] = {θ◦1, . . . , θ◦m} with m ≤ q, and
we adopt the notations θ◦0 = s and θ◦m+1 = e. If the series Fs,k,e is not constantly zero for
θ◦j + 1 ≤ k ≤ θ◦j+1 for some j = 0, . . . ,m, one of the following is true:

(i) j = 0 and Fs,k,e, θ◦j + 1 ≤ k ≤ θ◦j+1 does not change sign and has strictly increasing
absolute values,
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Figure E.2: Left: yearly average of the mean, maximum and minimum monthly temperatures
(top to bottom), plotted together with the change points estimated by WEM.gSC (vertical
lines) and piecewise constant mean (bold lines). Middle and right: autocorrelation function
of the data without and with the time-varying mean adjusted.

(ii) j = m and Fs,k,e, θ◦j + 1 ≤ k ≤ θ◦j+1 does not change sign and has strictly decreasing
absolute values,

(iii) 1 ≤ j ≤ m− 1 and Fs,k,e, θ◦j + 1 ≤ k ≤ θ◦j+1 is strictly monotonic,

(iv) 1 ≤ j ≤ m−1 and Fs,k,e, θ◦j +1 ≤ k ≤ θ◦j+1 does not change sign and its absolute values
are strictly decreasing then strictly increasing.

Lemma F.3. For given z ∈ (0, 1), define

g(t) =
√
t(1− t) · z/t for t ∈ [z, 1].

Then, we have

g(z)− g(t) ≥

{
(t− z)/(4

√
2z) for t ∈ (z,min(2z, 1)),√

z(1− z)/4 for t ∈ [min(2z, 1), 1].
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Proof. Suppose that t ≥ z. Then,

g(z)− g(t)√
z(1− z)

= 1−

√
z(1− t)
t(1− z)

= 1−

√
1− (t− z)/t

1 + (t− z)/(1− t)

≥ 1−
√

1− t− z
t
≥ 1−

(
1− t− z

2t

)
=
t− z

2t
.

Further, by mean value theorem,

g(z)− g(t) =
1

2

(t− z)z
w3/2
√

1− w

for some w ∈ [z, t]. If t− z < z and thus w < min(2z, 1), we obtain

g(z)− g(t) ≥ t− z
4
√

2z
.

F.1.2 Proof of Theorem 2.1

Throughout the proofs, C0, C1, . . . denote some positive constants.

Proof of (i)–(ii). We define the following intervals for each j = 0, . . . , qn,

IL,j = (θj−1, θj − dδj/3e) and IR,j = (θj + dδj/3e, θj+1].

Let (s, e) denote an interval considered at some iteration of the WBS2 algorithm. By con-
struction, the minimum length of the interval obtained by deterministic sampling is given by
b(e − s)/K̃c, where K̃ satisfies Rn ≤ K̃(K̃ + 1)/2. Then, Rs,e drawn by the deterministic
sampling contains at least one interval (`m(j), rm(j)) satisfying `m(j) ∈ IL,j and rm(j) ∈ IR,j
for any θj ∈ Θ∩ (s, e) (if Θ∩ (s, e) is not empty), provided that 3b(e−s)/K̃c ≤ 2 min1≤j≤q δj .
This condition in turn is met under (7). Then, it follows from the proof of Proposition B.1
of Cho and Kirch (2020b) that there exists a permutation {π(1), . . . , π(q)} of {1, . . . , q} such
that on Zn,

max
1≤j≤q

(f ′π(j))
2|k(j) − θπ(j)| ≤ ρn = c2ζ

2
n, and (F.2)

exp(Y(j)) =
∣∣X(j)

∣∣ ≥ C0|f ′π(j)|
√
δπ(j) ≥ C1n

ϕ/2ζn (F.3)

for j = 1, . . . , q, by (F.1). From (F.2), the assertion in (i) follows readily. Also consequently,
the intervals (s(m), e(m)), m = q + 1, . . . , n− 1 meet one of the followings:

(a) (s(m), e(m)) ∩Θ = ∅, or
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(b) (s(m), e(m)) ∩Θ = {θj} and (f ′j)
2 min(θj − s(m), e(m) − θj) ≤ ρn, or

(c) (s(m), e(m)) ∩Θ = {θj , θj+1} and max{(f ′j)2(θj − s(m)), (f
′
j+1)2(e(m) − θj+1)} ≤ ρn,

for some j = 1, . . . , q. Under (a), from Assumption 2.1,

exp(Y(m)) = |Zs(m),k(m),e(m)
| ≤ 2ζn. (F.4)

Under (b), supposing that θj ≤ k(m), we obtain

exp(Y(m)) ≤ |Fs(m),k(m),e(m)
|+ |Zs(m),k(m),e(m)

|

≤

√
(k(m) − s(m))(e(m) − k(m))

e(m) − s(m)

(θj − s(m))|dj |
k(m) − s(m)

+ 2ζn

≤
√
d2
j min(θj − s(m), e(m) − θj) + 2ζn ≤

√
ρn + 2ζn ≤ C2ζn (F.5)

by Lemma F.1; the case when θj > k(m) is handled analogously. Under (c), we obtain

exp(Y(m)) ≤ max
{
|Fs(m),θj ,e(m)

|, |Fs(m),θj+1,e(m)
|
}

+ 2ζn

≤
√
d2
j (θj − s(m)) +

√
d2
j+1(e(m) − θj+1) + 2ζn ≤ C3ζn (F.6)

where the first inequality follows from Lemma F.2 and the second inequality from Lemma F.1.
From (F.3) and (F.4)–(F.6), and also that X(1) ≤ C4

√
n due to f ′j = O(1), we conclude that

Y(m) = γm log(n)(1 + o(1)) = γm log(n)(1 + o(1)) + log(ζn) for m = 1, . . . , q,

Y(m) ≤ κm log(ζn)(1 + o(1)) for m = q + 1, . . . , P,

where {γm} and {κm} meet the conditions in (ii).

Proof of (iii). Suppose m ≥ q + 1. We write Yi,m,Q = Y(1)
i,m,Q + Y(2)

i,m,Q, where

Y(1)
i,m,Q =

√
(m− i)(Q−m)

(Q− i)
1

m− i

q∑
r=i+1

γr log(n)(1 + o(1)), and

Y(2)
i,m,Q =

√
(m− i)(Q−m)

(Q− i)

{
1

m− i

m∑
r=i+1

κr log(ζn)(1 + o(1))− 1

Q−m

Q∑
r=m+1

κr log(ζn)(1 + o(1))

}
,

where κr = 1 for r = 1, . . . , q. Note that

Y(2)
i,m,Q − Y(2)

i,q,Q ≤

{√
(m− i)(Q−m)

Q− i
−

√
(q − i)(Q− q)

Q− i
Q−m
Q− q

}
log(ζn)(1 + o(1))

=
(m− q)

√
q − i(Q−m)

2
√
m̃− i(Q− m̃)3/2

log(ζn)(1 + o(1)) (F.7)
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for some m̃ ∈ [q,m], where the inequality holds under the constraints on {κr}, while the
equality follows from the mean value theorem. Similarly,

Y(2)
i,q,Q − Y(2)

i,m,Q ≤

{√
(q − i)(Q− q)

Q− i
−

√
(m− i)(Q−m)

Q− i
q − i
m− i

}
log(ζn)(1 + o(1)). (F.8)

Finally, it trivially holds that∣∣∣Y(2)
i,q,Q − Y(2)

i,m,Q

∣∣∣ ≤√Q log(ζn)(1 + o(1)). (F.9)

Also, by Lemma F.3, we obtain

Y(1)
i,q,Q − Y(1)

i,m,Q

(q − i)−1
∑q

r=i+1 γr log(n)(1 + o(1))
≥{

(m− q)/(4
√

2(q − i)) for q < m ≤ 2q − i,√
(q − i)(Q− q)/(Q− i)/4 for 2q − i < m < q.

(F.10)

From (F.7)–(F.8) and (F.10), if m− i ≤ 2(q − i), we have∣∣∣Y(2)
i,q,Q − Y(2)

i,m,Q

∣∣∣
Y(1)
i,q,Q − Y(1)

i,m,Q

≤ max(1, 4
√
Q)

log(ζn)(1 + o(1))

γq log(n)
= o(1)

for any i = 0, . . . , q − 1 under (F.1). Similarly, for m− i > 2(q − 1) and any i, we have∣∣∣Y(2)
i,q,Q − Y(2)

i,m,Q

∣∣∣
Y(1)
i,q,Q − Y(1)

i,m,Q

≤ 4
√
Q log(ζn)(1 + o(1))

γq log(n)
= o(1)

from (F.9) and (F.10), which proves the assertion.
Proof of (iv). Note that for m ≤ q − 1, we have

Y(2)
i,q,Q − Y(2)

i,m,Q =

{√
(q − i)(Q− q)

Q− i
−

√
(m− i)(Q−m)

Q− i
Q− q
Q−m

}
×1− 1

Q− q

Q∑
r=q+1

κr

 log(ζn)(1 + o(1))

such that

0 ≤ Y(2)
i,q,Q − Y(2)

i,m,Q ≤

{√
(q − i)(Q− q)

Q− i
−

√
(m− i)(q −m)

Q− i
Q− q
Q−m

}
log(ζn)(1 + o(1))
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under the constraints on {κr}, while

Y(1)
i,q,Q − Y(1)

i,m,Q =

{√
(q − i)(Q− q)

Q− i
−

√
(m− i)(Q−m)

Q− i
Q− q
Q−m

}
γq log(n)(1 + o(1)).

Therefore, we obtain ∣∣∣Y(2)
i,q,Q − Y(2)

i,m,Q

∣∣∣
Y(1)
i,q,Q − Y(1)

i,m,Q

≤ log(ζn)(1 + o(1))

γq log(n)
= o(1)

which, together with (iii), completes the proof.

F.2 Proof of the results in Section 3

We adopt the following notations throughout the proof: For a fixed integer r ≥ 1 and an
arbitrary set A = {k1, · · · , km} ⊂ {1, . . . , n} satisfying min0≤j≤m(kj+1 − kj) ≥ r + 1 (with
k0 = 0 and km+1 = n), we define X = X(A, r) = [L : R] and Y as in (10). Also we set
X(j) = [L(j) : R(j)] = [L(j) : 1] for each j = 0, . . . ,m, where L(j) has xt = (Xt, . . . , Xt−r+1)>,
kj ≤ t ≤ kj+1 − 1 as its rows. Sub-vectors of Y and ε corresponding to kj ≤ t ≤ kj+1 − 1 are
denoted by Y(j) and ε(j), respectively. When r = 0, we have X = R and X(j) = R(j),

Besides, we denote the (approximate) linear regression representation of (8) with the true
change point locations θj and AR order p by

Y = X◦β◦ + (ν◦ − L◦α◦) + ε =

[
L◦︸︷︷︸
n×p

R◦︸︷︷︸
n×(q+1)

] [
α◦

µ◦

]
+ (ν◦ − L◦α◦) + ε (F.11)

with ν◦ = ((1− a(B))ft, 1 ≤ t ≤ n)> and the rows of X◦ are given by

xt = (Xt−1, . . . , Xt−p, I1≤t≤θ1 , . . . , Iθq+1≤t≤n)>

for 1 ≤ t ≤ n, whereby X◦ ≡ X(Θ, p). When p = 0, the matrix L◦ is empty.

F.2.1 Preliminaries

The following results are frequently used throughout the proof.

Proposition F.4. Suppose that p ≥ 0 and r ∈ {max(p, 1), . . . , pmax} with pmax ≥ max(p, 1)

fixed. Also, let A = {k1, . . . , km} as an arbitrary subset of Θ̂M . With such A, define X =

X(A, r) = [L : R] as in (10), and also X(j), L(j), R(j) and ε(j), correspondingly, and let
Nj = kj+1 − kj . Then, under Assumption 3.1 (i)–(iii) and Assumption 3.2, we have the
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followings hold almost surely for all j = 0, . . . ,m and A ⊂ Θ̂M :

tr(L>L) = O(n), tr(L>(j)L(j)) = O(Nj), (F.12)

lim inf
n→∞

n−1λmin(L>L) > 0, lim inf
Nj→∞

N−1
j λmin(L>(j)L(j)) > 0, (F.13)

tr(X>(j)X(j)) = O(Nj), lim inf
Nj→∞

N−1
j λmin(X>(j)X(j)) > 0, (F.14)

(L>L)−1L>ε = O

(√
log(n)

n

)
, (X>(j)X(j))

−1X>(j)ε(j) = O

(√
log(n)

Nj

)
. (F.15)

When r = 0, we still have (F.14) and the second statement of (F.15) hold.

Proof. The results in (F.12)–(F.13) follow from Theorem 3 (ii) of Lai and Wei (1983) and the
finiteness of Θ̂M . By Corollary 2 of Lai and Wei (1982a), (F.14) follow from that R>(j)R(j) =

Nj . By Lemma 1 of Lai and Wei (1982b), we have

∥∥∥(L>L)−1/2L>ε
∥∥∥ = O

(√
log(λmax(L>L))

)
= O(

√
log(n)) a.s.,∥∥∥(X>(j)X(j))

−1/2X>(j)ε(j)

∥∥∥ = O
(√

log(λmax(X>(j)X(j)))
)

= O(
√

log(n)) a.s.

which, together with (F.12) and (F.14), leads to the rates of convergence in (F.15).

Lemma F.5 (Lemma 3.1.2 of Csörgő and Horváth (1997)). For any X = [L : R], the
OLS estimator β̂ = (X>X)−1X>Y = (α̂>, µ̂>)> satisfies α̂ = (L>L)−1L>(Y − Rµ̂) and
µ̂ = {R>(I−ΠL)R}−1R>(I−ΠL)Y.

Lemma F.6. For some R = R(A) constructed with a set A = {k1, . . . , km} ⊂ {1, . . . , n}
with k1 < . . . < km, we denote by R−j , for any 1 ≤ j ≤ m, an n × m-matrix formed by
merging the j-th and the (j+ 1)-th columns of R via summing them up, while the rest of the
columns of R are unchanged. Then,

‖(I−ΠR−j )U‖2 − ‖(I−ΠR)U‖2 = |Ckj−1,kj ,kj+1
(U)|2 (F.16)

for any U = (U1, . . . , Un−(m+1)r)
>, where

Ckj−1,kj ,kj+1
(U) :=

√
(kj+1 − kj)(kj − kj−1)

kj+1 − kj−1
× 1

kj − kj−1

kj∑
t=kj−1+1

Ut −
1

kj+1 − kj

kj+1∑
t=kj+1

Ut

 .
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Proof. Denote the (j + 1)-th column of R by Rj . Then, by simple calculations, we have

‖(I−ΠR)U‖2 = U>(I−ΠR−j )U−
(U>(I−ΠR−j )Rj)

2

R>j (I−ΠR−j )Rj
.

Also by construction,

R>−jRj = (0, . . . , 0︸ ︷︷ ︸
j−1

, kj+1 − kj , 0, . . . , 0)>,

(R>−jR−j)
−1 = diag

(
1

k1
, . . . ,

1

kj−1 − kj−2
,

1

kj+1 − kj−1
,

1

kj+2 − kj+1
, . . . ,

1

n− km

)
.

Hence,

[R−j(R
>
−jR−j)

−1R>−jRj ]i =

{
kj+1−kj
kj+1−kj−1

for kj−1 + 1 ≤ i ≤ kj+1,

0 otherwise,

[Rj −R−j(R
>
−jR−j)

−1R>−jRj ]i =


− kj+1−kj
kj+1−kj−1

for kj−1 + 1 ≤ i ≤ kj ,
kj−kj−1

kj+1−kj−1
for kj + 1 ≤ i ≤ kj+1,

0 otherwise.

Therefore,

R>j (I−ΠR−j )Rj =
(kj − kj−1)(kj+1 − kj)

kj+1 − kj−1
,

U>(I−ΠR−j )Rj =
(kj − kj−1)(kj+1 − kj)

kj+1 − kj−1

 1

kj+1 − kj

kj+1∑
t=kj+1

Ut −
1

kj − kj−1

kj∑
t=kj−1+1

Ut

 ,

which concludes the proof.

F.2.2 Proof of Theorem 3.1

Throughout the proofs, C0, C1, . . . denote some positive constants. In what follows, we operate
in En ∩Mn, and all big-O notations imply that they hold a.s. due to Proposition F.4.

We briefly sketch the proof, which proceeds in four steps (i)–(iv). We first suppose that
Assumption 3.2 holds with M = 1, and also that p is known. Then, a single iteration of
the gSC algorithm in Appendix A.2 boils down to choosing between Θ̂0 = ∅ and Θ̂1: If
SC({Xt}nt=1, Θ̂1, p) < SC0({Xt}nt=1, α̂(p)), we favour a change point model; if not, we conclude
that there is no change point in the data. In (i), under H0 : q = 0, we show that Rµ̂ ≈
1µ◦0 ≈ Π1(Y − Lα̂) with µ◦0 = (1 −

∑p
i=1 ai)f0 representing the time-invariant overall level,

and therefore ‖Y − Xβ̂‖2 ≈ ‖(I − Π1)(Y − Lα̂)‖2 which leads to SC0({Xt}nt=1, α̂(p)) <
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SC({Xt}nt=1, Θ̂1, p) under Assumption 3.4. In (ii), under H1 : q ≥ 1, we show that

‖(I−Π1)(Y − Lα̂)‖2 − ‖Y −Xβ̂‖2 ≥ Cq min
1≤j≤q

d2
jδj � qξn

for some fixed constant C > 0 and thus SC0({Xt}nt=1, α̂(p)) > SC({Xt}nt=1, Θ̂1, p), provided
that Θ̂1 meets (14). In (iii), we show the consistency of the proposed order selection scheme.
For the general case where M > 1, in (iv), we can repeatedly apply the above arguments for
each call of Step 1 of the gSC algorithm: When l > l∗, any θ̂l,j /∈ Θ̂l∗ are spurious estimators
and thus we have SCalg return TRUE; when l = l∗, any θ̂l∗,j /∈ Θ̂l∗−1 are detecting those change
points undetected in Θ̂l∗−1 and thus SCalg returns FALSE.

As outlined above, in the following (i)–(iii), we only consider the case of M = 1 and
consequently drop the subscript ‘1’ from Θ̂1 and θ̂1,j where there is no confusion.

For X = X(Θ̂, p) = [L : R], we define the corresponding X(j) = [L(j) : 1], Y(j), ε(j) with
respect to Θ̂ = {θ̂j , j = 1, . . . , q̂} and let Nj = θ̂j+1 − θ̂j and N = max0≤j≤q̂Nj . Then, it
trivially follows that

n ≤ (q̂ + 1)N. (F.17)

Recalling the notations in (F.11), we define R◦(j), a sub-matrix of R◦, analogously as X(j) is
defined with X with respect to Θ̂. Also defined in (F.11), for ν◦, there exists a constant A > 0

such that, for t = θj + 1, . . . , θj + p, 1 ≤ j ≤ q,

|[ν◦ −R◦µ◦]t| ≤ |dj | max
1≤i≤p

∣∣∣∣∣
p∑
i′=i

ai′

∣∣∣∣∣ ≤ |dj |, (F.18)

while [ν◦ −R◦µ◦]t = 0 elsewhere.

(i) Proof under H0 : q = 0. We first note that by Proposition F.4, we have

∥∥∥β̂(j) − (α◦>, µ◦0)>
∥∥∥ = O

(√
log(n)

Nj

)
and ‖α̂−α◦‖ = O

(√
log(n)

N

)
(F.19)

due to how the parameters are estimated, see (11).
We decompose the residual sum of squares as

‖Y −Xβ̂‖2 = ‖L(α̂−α◦) + R(µ̂− 1µ◦0)− ε‖2

=‖ε‖2 + ‖L(α̂−α◦)‖2 + ‖R(µ̂− 1µ◦0)‖2 + 2(α̂−α◦)>L>R(µ̂− 1µ◦0)

− 2ε>L(α̂−α◦)− 2ε>R(µ̂− 1µ◦0) =: ‖ε‖2 +R11 +R12 +R13 +R14 +R15.
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Invoking (F.12) and (F.19),

R11 ≤ ‖L‖2 ‖α̂−α◦‖2 = O

(
n log(n)

N

)
= O(q̂ log(n)) a.s.

due to (F.17). Also by (F.19),

R12 = O

 q̂∑
j=0

Nj ·
log(n)

Nj

 = O(q̂ log(n))

from which we obtain R13 = O(q̂ log(n)). By (F.12), (F.15) and (F.19),

|R14| ≤ ‖(L>L)−1L>ε‖ ‖L>L‖ ‖α̂−α◦‖ = O

(√
n log(n) ·

√
log(n)

N

)
= O

(√
q̂ log(n)

)
.

Also, on En, we have |[R>ε]j+1| ≤
√
Njωn for j = 0, . . . , q̂, see Assumption 3.1 (iv). Hence

by (F.19),

|R15| = O

 q̂∑
j=0

√
Njωn ·

√
log(n)

Nj

 = O
(
q̂ωn

√
log(n)

)
.

Putting together the bounds on R11–R15, we conclude that

‖Y −Xβ̂‖2 = ‖ε‖2 +O
(
q̂(log(n) ∨ ω2

n)
)
. (F.20)

Next, note that

‖(I−Π1)(Y − Lα̂)‖2 = ‖ε‖2 − ε>Π1ε+ ‖(I−Π1)L(α̂−α◦)‖2 − 2ε>(I−Π1)L(α̂−α◦)

=: ‖ε‖2 +R21 +R22 +R23.

By the arguments similar to those adopted in Proposition F.4, we have |R21| = O(log(n)).
Also, R22 ≤ R11 = O(q̂ log(n)), and

|R23| ≤ 2
∣∣∣ε>L(α̂−α◦)

∣∣∣+ 2
∣∣∣ε>Π1L(α̂−α◦)

∣∣∣
where the first term is handled as |R14| while the second term is bounded by

√
|R21R11| =

O(
√
q̂ log(n)). Therefore,

‖(I−Π1)(Y − Lα̂)‖2 = ‖ε‖2 +O(q̂ log(n)). (F.21)

Combining (F.20) and (F.21) with Assumption 3.1 (ii)–(iii), and noting that log(1 + x) ≤ x
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for all x ≥ 0,

SC0({Xt}nt=1, α̂(p))− SC({Xt}nt=1, Θ̂, p) =
n

2
log

(
1 +
‖(I−Π1)(Y − Lα̂)‖2 − ‖Y −Xβ̂‖2

‖Y −Xβ̂‖2

)
− q̂ξn

= O
(
q̂(log(n) ∨ ω2

n)
)
− q̂ξn < 0

for n large enough.

(ii) Proof under H1 : q ≥ 1. Recall that inMn, we have q̂ = q. We sometimes use that∣∣∣∣∣∣∣
θ̂j+1−1∑
t=θ̂j

Xt

∣∣∣∣∣∣∣ ≤ (1−
p∑
i=1

ai)f̄Nj +

∣∣∣∣∣∣∣
θ̂j+1−1∑
t=θ̂j

(Xt − ft)

∣∣∣∣∣∣∣
= (1−

p∑
i=1

ai)f̄Nj +O
(√

Njωn

)
= O(Nj) (F.22)

where f̄ = max0≤j≤q |fθj+1|, from Assumptions 3.1 (iv), 3.2 and that D−1
n ρn → 0.

We first establish the consistency of µ̂j in estimating µ◦j . Applying Lemma F.5, we write

µ̂j − µ◦j =(1>(I−ΠL(j)
)1)−11>(I−ΠL(j)

)(ν◦(j) − 1µ◦j )+

(1>(I−ΠL(j)
)1)−11>(I−ΠL(j)

)ε(j) =: R31 +R32,

where ν◦(j) = ((1 − a(B))ft, θ̂j + 1 ≤ t ≤ θ̂j+1)>. Since (1>(I −ΠL(j)
)1)−1 is a sub-matrix

of (X>(j)X(j))
−1, we have (1>(I−ΠL(j)

)1)−1 ≤ (λmin(X>(j)X(j)))
−1 (see e.g. Theorem 4.2.2 of

Horn and Johnson (1985)) and thus lim infNj→∞N
−1
j (1>(I −ΠL(j)

)1) > 0 by (F.14). Also,
since 1>(I−ΠL(j)

)1 ≤ Nj trivially, we obtain

|R32| = O

(√
log(n)

Nj

)

adopting the same arguments used in the proof of (F.15). Next, by (F.18) and

R◦(j)µ
◦ − 1µ◦j = (−dj , . . . ,−dj︸ ︷︷ ︸

max(0,θj−θ̂j)

, 0, . . . , 0, dj+1, . . . , dj+1︸ ︷︷ ︸
max(0,θ̂j+1−θj+1)

)>,

we obtain

|R31|2 = O

(∑j+1
l=j d

2
l · d

−2
l ρn

Nj

)
= O

(
ρn
Nj

)
.
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Putting together the bounds on R31–R32, we obtain

|µ̂j − µ◦j | = O

(√
log(n) ∨ ρn

Nj

)
. (F.23)

Similarly by Lemma F.5,

α̂(j) = α◦ + (L>(j)L(j))
−1L>(j)

{
ε(j) + (ν◦(j) − 1µ◦j )− 1(µ̂j − µ◦j )

}
and from (F.13), (F.22) and (F.23), we obtain

‖α̂(j) −α◦‖ = O

(√
log(n) ∨ ρn

Nj

)
. (F.24)

Next, we consider

‖Y −Xβ̂‖2 =‖L(α̂−α◦) + (Rµ̂− ν◦)− ε‖2

=‖ε‖2 + ‖L(α̂−α◦)‖2 + ‖Rµ̂− ν◦‖2 + 2(α̂−α◦)>L>(Rµ̂− ν◦)

− 2ε>L(α̂−α◦)− 2ε>(Rµ̂− ν◦) =: ‖ε‖2 +R41 +R42 +R43 +R44 +R45.

By (F.12) and (F.24),

R41 = O

(
n · log(n) ∨ ρn

N

)
= O (q(log(n) ∨ ρn)) .

Also, due to (F.23) and the arguments leading up to it,

R42 ≤ 2‖R(µ̂− µ◦)‖2 + 2‖Rµ◦ − ν◦‖2

= O


q∑
j=1

(
Nj ·

log(n) ∨ ρn
Nj

+ d2
j · d−2

j ρn

) = O (q(log(n) ∨ ρn)) (F.25)

and we also obtain R43 = O (q(log(n) ∨ ρn)). By (F.15) and (F.24),

R44 ≤ ‖(L>L)−1L>ε‖ ‖L>L‖ ‖α̂−α◦‖

= O

(√
n log(n)(log(n) ∨ ρn)

N

)
= O (

√
q(log(n) ∨ ρn)) ,

while with (F.23) and Assumption 3.1 (iv),

|R45| ≤ 2|ε>R(µ̂− µ◦)|+ 2|ε>(Rµ◦ − ν◦)|
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= O

 q∑
j=1

√
Njωn ·

√
log(n)

Nj

+O

 q∑
j=1

|dj | ·
√
d−2
j ρnωn


= O

(
qωn(

√
log(n) ∨√ρn)

)
.

Combining the bounds on R41–R45, we obtain

‖Y −Xβ̂‖2 = ‖ε‖2 +O
(
q
(
log(n) ∨ ω2

n ∨ ρn
))
. (F.26)

Next, note that

‖(I−Π1)(Y − Lα̂)‖2 − ‖Y −Xβ̂‖2 =
(
‖(I−Π1)(Y − Lα̂)‖2 − ‖(I−ΠR)(Y − Lα̂)‖2

)
+
(
‖(I−ΠR)(Y − Lα̂)‖2 − ‖Y −Xβ̂‖2

)
=: R51 +R52.

Repeatedly invoking Lemma F.6, we have

R51 =‖(I−Π1)(Y − Lα̂)‖2 − ‖(I−ΠR−I1
)(Y − Lα̂)‖2 +

∑
j∈I1

∣∣∣∣C(p)

θ̂j−1,θ̂j ,θ̂j+1
(Y − Lα̂)

∣∣∣∣2
≥
⌈q

2

⌉
min

1≤j≤q

∣∣∣Cθ̂j−1,θ̂j ,θ̂j+1
(Y − Lα̂)

∣∣∣2
where R−I1 denotes a matrix constructed by merging the j-th and the (j + 1)-th columns of
R via summing them up for all j ∈ I1, while the rest of the columns of R are unchanged, with
I1 denoting a subset of {1, . . . , q} consisting of all the odd indices. For notational simplicity,
let Cj(·) = C

θ̂j−1,θ̂j ,θ̂j+1
(·) where there is no confusion. Note that

Cj(Y − Lα̂) = Cj(R◦µ◦) + Cj(ν◦ −R◦µ◦) + Cj(ε) + Cj(L(α̂−α◦)).

Without loss of generality, suppose that θ̂j ≤ θj . Analogous arguments apply when θ̂j > θj .
By Lemma F.1,

Cj(R◦µ◦) =−

√
Nj−1Nj

Nj−1 +Nj

{
(Nj + θ̂j − θj)dj

Nj
+

(θ̂j+1 − θj+1)+dj+1

Nj

+
(θj−1 − θ̂j−1)+dj−1

Nj−1

}
=: R61 +R62 +R63.

Under Assumptions 3.2, 3.3 and 3.4, we have min(Nj−1, Nj)
−1d2

j |θ̂j − θj | = O(δ−1
j ρn) = o(1)

and thus

|R61| = |dj |

√
Nj−1Nj

Nj−1 +Nj
(1 + o(1)) ≥ |dj |

√
min(Nj−1, Nj)

2
(1 + o(1)) ≥

√
d2
jδj

2
(1 + o(1))
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since D−1
n ρn → 0 as n→∞ due to Assumption 3.4, while

|R62| ≤
d2
j+1(θ̂j+1 − θj+1)√
d2
j+1(θ̂j+1 − θ̂j − p)

≤ ρn√
Dn

(1 + o(1)) = o(
√
ρn)

and R63 is similarly bounded. Therefore, we conclude

min
1≤j≤q

|Cj(R◦µ◦)| ≥
√
Dn

2
(1 + o(1)) + o(

√
ρn). (F.27)

Similarly, by (F.18), we derive

|Cj(ν◦ −R◦µ◦)| ≤ p

√
Nj−1Nj

Nj−1 +Nj

{
|dj |+ |dj+1|

Nj
+
|dj−1|
Nj−1

}
= o(1). (F.28)

Invoking Assumption 3.1 (iv), it is easily seen that

|Cj(ε)| ≤ 2ωn. (F.29)

Finally, by (F.22) and (F.24),

|Cj(L(α̂−α◦))| =

√
Nj−1Nj

Nj−1 +Nj

∣∣∣∣ 1

Nj−1
1>L(j−1)(α̂−α◦)−

1

Nj
1>L(j)(α̂−α◦)

∣∣∣∣
= O

(√
min(Nj−1, Nj) ·

√
log(n) ∨ ρn

N

)
= O

(√
log(n) ∨ ρn

)
. (F.30)

By (F.27)–(F.30), under Assumption 3.3, there exists some constant C0 > 0 satisfying

R51 ≥ C0qDn for n large enough. (F.31)

Next, we note that

‖(I−ΠR)(Y − Lα̂)‖2 = ‖ε‖2 − ε>ΠRε+ ‖(I−ΠR)L(α̂−α◦)‖2 + ‖(I−ΠR)ν◦‖2

+ 2(α̂−α◦)>L>(I−ΠR)ν◦ − 2ε>(I−ΠR)L(α̂−α◦)− 2ε>(I−ΠR)ν◦

=: ‖ε‖2 −R71 +R72 +R73 +R74 +R75 +R76.

First, by Assumption 3.1 (iv), R71 ≤
∑q

j=0Njω
2
n · N−1

j = qω2
n. As in (F.30), R72 =

O(q(log(n) ∨ ρn)). Note that

R73 ≤ 2‖ν◦ −Rµ◦‖2 + 2‖R(µ◦ − (R>R)−1R>ν◦)‖2
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where the first term is bounded by O(q(log(n) ∨ ρn)) as in (F.25). From that

µ◦ − (R>R)−1R>R◦µ◦ =



(θ0−θ̂0)+d0−(θ̂1−θ1)+d1

θ̂1
(θ1−θ̂1)+d1−(θ̂2−θ2)+d2

θ̂2−θ̂1
...

(θq−θ̂q)+dq−(θ̂q+1−θq+1)+dq+1

n−θ̂q

 , (F.32)

∣∣∣[(R>R)−1R>(R◦µ◦ − ν◦)]j
∣∣∣ ≤ p(|dj−1|+ |dj |)

θ̂j − θ̂j−1

(F.33)

(recall that θ̂0 = θ0 = 0 and θ̂q+1 = θq+1 = n and (F.18)) and Assumptions 3.2 and 3.3, we
obtain

‖R(µ◦ − (R>R)−1R>R◦µ◦)‖2 ≤ C1

q∑
j=1

d2
j ·

(d−2
j ρn)2 + p2

θ̂j+1 − θ̂j
= o(qρn)

for some constant C1 > 0, hence R73 = O(q(log(n)∨ρn)). The bounds on R72 and R73 imply
the same bound on R74. Next,

|R75| ≤ 2|ε>L(α̂−α◦)|+ 2|ε>ΠRL(α̂−α◦)|

where the first term in the RHS is bounded as R44 = O(
√
q(log(n) ∨ ρn)), while the second

term is bounded by

√
ε>R(R>R)−1R>ε ‖L‖ ‖α̂−α◦‖ = O

(
√
nωn ·

√
log(n) ∨ ρn

N

)
= O

(√
q(ω2

n ∨ log(n) ∨ ρn)
)

by Assumption 3.1 (iv) and (F.12). Hence, |R75| = O(
√
q(log(n) ∨ ρn ∨ ω2

n)). Finally,

|R76| ≤ 2|ε>(ν◦ −Rµ◦)|+ 2|ε>R(µ◦ − (R>R)−1R>ν)|,

where the first term is bounded by C2
∑q

j=1

√
d−2
j ρnωn · |dj | = O(qωn

√
ρn) due to Assump-

tion 3.1 (iv), while the second term is bounded by

C3

q∑
j=1

√
Njωn ·

√
d−2
j ρn · |dj |
Nj

= O(q
√
ρn),

recalling (F.32)–(F.33) and by Assumptions 3.1 (iv), 3.2 and 3.3. Therefore,R76 = O(qωn
√
ρn).

Collecting the bounds on R71–R76, we obtain

‖(I−ΠR)(Y − Lα̂)‖2 = ‖ε‖2 +O
(
q(log(n) ∨ ω2

n ∨ ρn)
)
. (F.34)
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From (F.26), (F.31) and (F.34),

‖(I−Π1)(Y − L◦α̂)‖2 − ‖Y −Xβ̂‖2 ≥ C0qDn +O
(
q(log(n) ∨ ω2

n ∨ ρn)
)
. (F.35)

Note that

SC0({Xt}nt=1, α̂(p))− SC({Xt}nt=1, Θ̂, p) =
n

2
log

(
1 +
‖(I−Π1)(Y − L◦α̂)‖2 − ‖Y −Xβ̂‖2

‖Y −Xβ̂‖2

)
− qξn

=:
n

2
log(1 +R8)− qξn. (F.36)

WhenR8 ≥ 1, we have the RHS of (F.36) trivially bounded away from zero by Assumption 3.4.
When R8 < 1, note that for g(x) = log(x)/(x − 1), since limx↓1 g(x) → 1 and from its
continuity, there exists a constant C4 > 0 such that inf1≤x<2 g(x) ≥ C4. Therefore,

n

2
log(1 +R8)− qξn ≥ C5qDn +O

(
q(log(n) ∨ ω2

n ∨ ρn)
)
− qξn > 0,

invoking Assumption 3.1 (ii)–(iii), (F.26) and (F.35) for some C5 > 0.

(iii) Order selection consistency. Thus far, we have assumed that the AR order p is known.
We show next that for n large enough, the order p is consistently estimated by p̂ obtained as
in (12). Firstly, suppose that r > p while r ≤ pmax. Then, by Proposition F.4, we have

‖α̂(j∗)(r)−α◦(r)‖ = O

(√
log(n) ∨ ρn

Nj∗

)
with α◦(r) = (α◦>, 0, . . . , 0︸ ︷︷ ︸

r−p

)>,

both under H0 or H1, see (F.24). Then, the arguments similar to those leading to (F.20) or
(F.26) establish that

‖Y(j∗) −X(j∗)(r)β̂(j∗)(r)‖2 = ‖ε(j∗)‖2 +O
(
log(n) ∨ ω2 ∨ ρn

)
and therefore, we have

SC
(
{Xt}

kj∗+1

t=kj∗+1, ∅, r
)
− SC

(
{Xt}

kj∗+1

t=kj∗+1, ∅, p
)

=
Nj∗

2
log

(
1 +
‖Y(j∗) −X(j∗)(r)β̂(j∗)(r)‖2 − ‖Y(j∗) −X(j∗)(p)β̂(j∗)(p)‖2

‖Y(j∗) −X(j∗)(p)β̂(j∗)(p)‖2

)
+ (r − p)ξn

=O
(
log(n) ∨ ω2 ∨ ρn

)
+ (r − p)ξn > 0

for n large enough, by Assumption 3.4.
Next, consider r < p. For notational convenience, let Π(j∗)(r) = ΠX(j∗)(r), and the sub-

matrix of X(j∗)(p) containing its columns corresponding to the i-th lags for i = r+ 1, . . . , p by
X(j∗)(p|r). Then, [X(j∗)(p|r)>(I−Π(j∗)(r))X(j∗)(p|r)]−1 is a sub-matrix of (X(j∗)(p)

>X(j∗)(p))
−1
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and thus by Theorem 4.2.2 of Horn and Johnson (1985) and Proposition F.4, we have

λmax

(
X(j∗)(p|r)>(I−Π(j∗)(r))X(j∗)(p|r)

)
≤ λmax

(
X(j∗)(p)

>X(j∗)(p)
)

≤ tr
(
X(j∗)(p)

>X(j∗)(p)
)

= O(N) and similarly, (F.37)

λmin

(
X(j∗)(p|r)>(I−Π(j∗)(r))X(j∗)(p|r)

)
≥ λmin

(
X(j∗)(p)

>X(j∗)(p)
)

and thus

lim inf
N→∞

N−1λmin

(
X(j∗)(p|r)>(I−Π(j∗)(r))X(j∗)(p|r)

)
> 0. (F.38)

It then follows that

‖Y(j∗) −X(j∗)(r)β̂(j∗)(r)‖2 − ‖Y(j∗) −X(j∗)(p)β̂(j∗)(p)‖2

=

∥∥∥∥[X(j∗)(p|r)>(I−Π(j∗)(r))X(j∗)(p|r)
]−1/2

X(j∗)(p|r)>(I−Π(j∗)(r))Y(j∗)

∥∥∥∥2

(F.39)

≥λmin

(
X(j∗)(p|r)>(I−Π(j∗)(r))X(j∗)(p|r)

) ∥∥∥∥∥∥∥∥

α◦r+1
...
α◦p


∥∥∥∥∥∥∥∥

2

−
∥∥∥∥[X(j∗)(p|r)>(I−Π(j∗)(r))X(j∗)(p|r)

]−1/2
X(j∗)(p|r)>(I−Π(j∗)(r))ε(j∗)

∥∥∥∥2

−
∥∥∥∥[X(j∗)(p|r)>(I−Π(j∗)(r))X(j∗)(p|r)

]−1/2
X(j∗)(p|r)>(I−Π(j∗)(r))(ν(j∗) − µ◦j∗1)

∥∥∥∥2

≥C6Nj∗

p∑
i=r+1

(α◦i )
2 +O(log(n)) +O(ρn) (F.40)

for n large enough, where the O(log(n)) bound on the RHS of (F.40) is due to (F.37), (F.38)
and Lemma 1 of Lai and Wei (1982a), while the O(ρn) bound from (F.37) and the arguments
adopted in controlling R31, both regardless of whether H0 or H1 holds. Therefore, we have

SC
(
{Xt}

kj∗+1

t=kj∗+1, ∅, r
)
− SC

(
{Xt}

kj∗+1

t=kj∗+1, ∅, p
)

=
Nj∗

2
log

(
1 +
‖Y(j∗) −X(j∗)(r)β̂(j∗)(r)‖2 − ‖Y(j∗) −X(j∗)(p)β̂(j∗)(p)‖2

‖Y(j∗) −X(j∗)(p)β̂(j∗)(p)‖2

)
− (p− r)ξn

≥C7Nj∗ − (p− r)ξn > 0

for n large enough, by Assumption 3.2 on ξn. Thus we conclude that the AR order p is
consistently estimated by p̂ = arg min0≤r≤pmax

SC({Xt}
kj∗+1

t=kj∗+1
, ∅, r).

The above (i)–(iii) completes the proof in the special case when Assumption 3.2 holds with
M = 1.

(iv) Sequential model selection. In the general case where Assumption 3.2 holds with M > 1,
the above proof is readily adapted to prove the claim of the theorem.
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(a) First, note that for any l ≥ l∗, the intervals examined in Step 1 of the gSC algorithm,
(θ̂l−1,uv , θ̂l−1,uv+1), v = 1, . . . , q′l, correspond to one of the following cases under Assump-
tion 3.2: null case with no ‘detectable’ change points, i.e. either Θ∩(θ̂l−1,uv , θ̂l−1,uv+1) =

∅, or all θj ∈ Θ ∩ (θ̂l−1,uv , θ̂l−1,uv+1) satisfy d2
j min(θj − θ̂l−1,uv , θ̂l−1,uv+1 − θj) ≤ ρn, or

change point case with Θ∩ (θ̂l−1,uv , θ̂l−1,uv+1) 6= ∅ and d2
j min(θj− θ̂l−1,uv , θ̂l−1,uv+1−

θj)) > ρn for at least one θj ∈ Θ ∩ (θ̂l−1,uv , θ̂l−1,uv+1).

In fact, when l = l∗, all such intervals (θ̂l∗−1,uv , θ̂l∗−1,uv+1) correspond to the change
point case, while when l ≥ l∗ + 1, they all correspond to the null case.

(b) In the null case, the set A = Θ̂l∩ (θ̂l−1,uv , θ̂l−1,uv+1) serves the role of the set of spurious
estimators, Θ̂, in the proof of (i), with |A| serving as q̂. Besides, we account for the
possible estimation bias in the boundary points θ̂l−1,uv and θ̂l−1,uv+1 in the case of
H1 : q ≥ 1, by replacing the bound (F.19) derived under H0 in (i), with (F.23)–(F.24)
under H1 in (ii). Consequently, (F.20) is written as with O

(
q̂(log(n) ∨ ω2

n ∨ ρn)
)
and

similarly, (F.21) is written with O (q̂(log(n) ∨ ρn)), which leads to

SC0

(
{Xt}

θ̂l−1,uv+1

t=θ̂l−1,uv+1
, α̂(p)

)
− SC

(
{Xt}

θ̂l−1,uv+1

t=θ̂l−1,uv+1
,A, p

)
= O

(
|A|(log(n) ∨ ω2

n ∨ ρn)
)
− |A|ξn < 0

for n large enough.

(c) In the change point case, the arguments under (ii) are applied analogously by re-
garding A as Θ̂ therein, with |A| equal to the number of detectable change points
in (θ̂l−1,uv , θ̂l−1,uv+1) as defined in (a). Then, we obtain

SC0

(
{Xt}

θ̂l−1,uv+1

t=θ̂l−1,uv+1
, α̂(p)

)
− SC

(
{Xt}

θ̂l−1,uv+1

t=θ̂l−1,uv+1
,A, p

)
≥ C8|A|Dn +O

(
|A|(log(n) ∨ ω2

n ∨ ρn)
)
− |A|ξn > 0

for n large enough.

(d) The proof on order selection consistency in (iii) holds from Proposition F.4, regardless
of whether there are detectable change points in (θ̂l−1,uv , θ̂l−1,uv+1) or not. Thus with
(a)–(c) above, the proof is complete.

F.3 Proof of Proposition B.1

For a fixed j = 1, . . . , q, we drop the subscript j and write θ̌ = θ̌j , ` = `j , r = rj , θ = θj ,
f ′ = f ′j and δ = δj . In what follows, we assume that X`,θ̌,r > 0; otherwise, consider −Xt (resp.
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−ft and −Zt) in place of Xt (ft and Zt). Then, on Zn, we have

max
`<k<r

|Z`,k,r| ≤ max
`<k<r

(√
r − k
r − `

+

√
k − `
r − `

)
ζn =

√
2ζn, (F.41)

while by (B.1)–(B.2),

|F`,θ,r| ≥
√

(f ′)2δ

4
. (F.42)

By Lemma F.2 and (B.2), we have F`,k,r strictly increases, peaks at k = θ and then decreases
in modulus without changing signs. Also by Lemma 7 of Wang and Samworth (2018), we
obtain

|F`,θ,r −F`,k,r| ≥
2

3
√

6

|f ′| |k − θ|√
min(θ − `, r − θ)

(F.43)

for |k − θ| ≤ min(θ − `, r − θ)/2. Then, from (F.1) and (F.41)–(F.42),

|F`,θ̌,r| ≥ |F`,θ,r| − 2 max
`<k<r

|Z`,k,r| ≥
√

(f ′)2δ

4
− 2
√

2ζn >

√
(f ′)2δ

4
, (F.44)

which implies that |Z`,θ̌,r|/|F`,θ̌,r| = o(1) and consequently that F`,θ,r > F`,θ̌,r > 0 for n large
enough. Below, we consider the case where θ̌ ≤ θ; the case where θ̌ > θ can be handled
analogously. We first establish that

θ − θ̌ ≤ min(θ − `, r − θ)/2. (F.45)

If θ − θ̌ > min(θ − `, r − θ)/2 ≥ δ/4 (due to (B.1)), by Lemma F.2 and (F.43), we have

F`,θ,r −F`,θ̌,r ≥
1

3
√

3

√
(f ′)2δ

while |Z`,θ,r − Z`,θ̌,r| ≤ 2
√

2ζn, thus contradicting that X`,θ̌,r ≥ X`,θ,r under (F.1). Next, for
some ρ̃n satisfying (f ′)−2ρ̃n ≤ δ/4, we have

P
(
arg max`<k<r|X`,k,r| ≤ θ − (f ′)−2ρ̃n

)
≤ P

(
max

θ−δ/4≤k≤θ−(f ′)−2ρ̃n
X`,k,r ≥ X`,θ,r

)
≤ P

(
max

θ−δ/4≤k≤θ−(f ′)−2ρ̃n
(F`,k,r + Z`,k,r)2 − (F`,θ,r + Z`,θ,r)2 ≥ 0

)
= P

(
max

θ−δ/4≤k≤θ−(f ′)−2ρ̃n
−D1(k)D2(k)

(
1 +

A1(k)

D1(k)

)(
1 +

A2(k)

D2(k)

)
≥ 0

)
≤ P

(
max

θ−δ/4≤k≤θ−(f ′)−2ρ̃n

∣∣∣∣A1(k)A2(k)

D1(k)D2(k)
+
A1(k)

D1(k)
+
A2(k)

D2(k)

∣∣∣∣ ≥ 1

)
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≤ 2P

(
max

θ−δ/4≤k≤θ−(f ′)−2ρ̃n

|A1(k)|
D1(k)

≥ 1

3

)
+ 2P

(
max

θ−δ/4≤k≤θ−(f ′)−2ρ̃n

|A2(k)|
D2(k)

≥ 1

3

)
, where

D1(k) = F`,θ,r −F`,k,r, D2(k) = F`,θ,r + F`,k,r, A1(k) = Z`,θ,r −Z`,k,r, A2(k) = Z`,θ,r + Z`,k,r.

Note that

|A1(k)| ≤

∣∣∣∣∣
(√

r − `
(θ − `)(r − θ)

−

√
r − `

(k − `)(r − k)

)
k∑

t=`+1

(Zt − Z̄`:r)

∣∣∣∣∣
+

√
r − `

(θ − `)(r − θ)

∣∣∣∣∣
θ∑

t=k+1

(Zt − Z̄`:r)

∣∣∣∣∣ =: A11(k) +A12(k).

For k < θ, we obtain√
r − `

(θ − `)(r − θ)
−

√
r − `

(k − `)(r − k)
=

√
r − `

(θ − `)(r − θ)

(
1−

√
(θ − `)(r − θ)
(k − `)(r − k)

)

≤

√
r − `

(θ − `)(r − θ)

(
1−

√
1− θ − k

r − k

)
≤ 1

2

√
r − `

(θ − `)(r − θ)
θ − k
r − k

and similarly, √
r − `

(k − `)(r − k)
−

√
r − `

(θ − `)(r − θ)
≤ 1

2

√
r − `

(k − `)(r − k)

θ − k
θ − `

,

such that on Zn, due to (B.1) and (F.45),

A11(k) ≤

√
r − `

(θ − `)(r − θ)
2(θ − k)

min(θ − `, r − θ)

(√
k − ` ζn +

k − `√
r − `

ζn

)
≤ 4(θ − k)ζn

δ
.

Also, by (B.1),

A12(k) ≤
√

2

δ

(∣∣∣∣∣
θ∑

t=k+1

Zt

∣∣∣∣∣+
θ − k√
r − `

ζn

)
.

Then, by (F.43) and (F.1), there exists some c3 > 0 such that setting ρ̃n = c3(ζ̃n)2, we have

P

(
max

θ−δ/4≤k≤θ−(f ′)−2ρ̃n

|A1(k)|
D1(k)

≥ 1

3
, Z̃n

)
≤P

(
max

θ−δ/4≤k≤θ−(f ′)−2ρ̃n

√
(f ′)−2ρ̃n
θ − k

θ∑
t=k+1

Zt ≥
√
ρ̃n

(
1

3
− (2
√

2 + 1)ζn√
(f ′)2δ

)
, Z̃n

)
= 0,
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which holds uniformly over j = 1, . . . , q. Next, note that from (F.41),

max
θ−δ/4≤k≤θ−(f ′)−2ρ̃n

|A2(k)| ≤ 2
√

2ζn,

while from (F.42),

min
θ−δ/4≤k≤θ−(f ′)−2ρ̃n

|D2(k)| ≥
√

(f ′)2δ

2

and thus

P

(
max

θ−δ/4≤k≤θ−(f ′)−2ρ̃n

|A2(k)|
D2(k)

≥ 1

3
,Zn

)
= 0

under (F.1), which completes the proof.
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