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Abstract

The effect of treatment on the treated (ETT) is of interest to econo-
metricians as a measure of the effectiveness of schemes (such as training
programmes) that require voluntary participation from eligible members
of the population; it is also of interest in epidemiologic and similar con-
texts in cases where treatment randomisation is not possible.

ETT has usually been expressed and analysed in terms of potential re-
sponses. Here we describe a new approach to formulating and evaluating
ETT, based on an alternative decision-theoretic framework for causal in-
ference. We give simple conditions under which ETT is well-defined, and
identifiable given data from both an observational study and a control
group, and further conditions allowing identification of ETT from purely
observational data, with the assistance of a suitable instrumental variable.

We further show that the potential response formulation can be treated
as a special case of our decision-theoretic approach.

Keywords: Effect of treatment on the treated; Causal inference; Condi-
tional independence; Confounding; Self-selection; Instrumental variables

1 Introduction

One rôle of labour economics is to evaluate the impact of government initia-
tives, such as employment and education schemes, on economic indicators such
as income, the purpose being to inform the introduction of future schemes and
policy changes: Should more adult training programmes be funded? Should ed-
ucation be made compulsory until the age of 18? Evaluating the effect of such
policies is far from straightforward, most especially on account of the funda-
mental problem of self-selection (Heckman, 1979). Because of self-selection it is
typically unclear whether, and to what extent, changes in economic indicators
can be attributed to government programmes where participation is voluntary,
∗Imperial College London
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since individuals that take part in such programmes (i.e., the self-selected) tend
to be more motivated and receive higher incomes, irrespective of participation.

A similar problem emerges in epidemiologic contexts. A recent ruling in the
US (Okie, 2006) gives terminal cancer patients the right to be treated with ex-
perimental (Phase I) drugs. This means that patients can self-select themselves
into the treatment group, without randomisation. Data on response from this
group of patients will not yield reliable estimates of the average causal effect
(ACE) as estimates will be confounded by the patients’ attitude and health.

We will use the following two examples, one from labour economics and
another from epidemiology, where effect evaluation is hampered by unknown
selection criteria, to illustrate aspects of the methodology we develop in this
paper.

Example 1 Training programme. As a local government initiative, a math-
ematics refresher course aimed at adults with no higher education is introduced
into a community. After some time, the local government wants to know whether
and to what extent the course has had an impact on the income of the partic-
ipants, as it plans to introduce more refresher courses and make participation
in such courses a requirement for job-seekers enrolled in employment schemes.
The problem with evaluating the impact of the inititative is that it will be
confounded by partially unobserved individual characteristics. Thus estimates
of the effect are typically obtained by relying on additional—and generally
untestable—assumptions (Heckman, 1979). 2

Example 2 Invalid randomisation. Consider an epidemiologic trial where
drug treatment is not appropriately randomised to patients, for instance in
clinical trials with invalid blinding schemes. This may be due to a faulty protocol
or it may be that doctors involved in the trial are aware of the health status of
the patients. In contrast to Example 1, it is the doctor in charge of administering
treatment who does the “selecting”: if he believes that the drug works, he will
tend to give it to patients he thinks will benefit the most e.g. those that are
younger or fitter. The doctor’s “hunch” will thus be a confounder for the effect
of the drug, as it will both determine treatment assignment and be predictive
of health outcomes. 2

Although the situations described above are formally analogous, they differ
in focus. In Example 1 the quantity of interest is the effect of participation
for those who chose to participate. This is termed the effect of treatment on
the treated (ETT). This is also sometimes referred to as the average treatment
effect on the treated (ATET) Hotz et al. (2006). In contrast, in Example 2
the quantity of real interest is the average causal effect(ACE), as this is what
is required for FDA drug approval, for example. The average causal effect
can not usually be identified from confounded observational data unless strong
additional assumptions are made. However, with weaker assumptions it may still
be possible to identify ETT. This may not be exactly what is really wanted,
but can provide some useful information on treatment effects.
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Potential responses Current statistical approaches to defining and estimat-
ing ETT are almost exclusively based on the potential response (PR) framework
(Rubin, 1974, 1978). Thus Heckman and Robb (1985) introduced ETT in the
following terms:1

ETT := E(Y1 − Y0 | T = 1). (1)

Here T is the treatment variable, with value 1 for a subject receiving active
treatment and 0 for a control; while Y1 and Y0 are the putative “potential re-
sponses” (Rubin, 1978) of a subject to each of these treatments. By definition,
it is possible to observe at most one of the two potential responses for any given
subject—the other then becoming counterfactual . Inference about counterfac-
tuals is sensitive to arbitrary and necessarily untestable assumptions (Dawid,
2000).

Equation (1) can also be expressed as

ETT = E(Y1 | T = 1)− E(Y0 | T = 1). (2)

It appears prima facie that, in order for the expectation in (1) to be meaningful,
we must have a joint probability distribution for (Y1, Y0, T )—or at the very
least, using (2), a conditional distribution for (Y1 | T = 1) and one for (Y0 |
T = 1). However since we can never observe Y0 when T = 1, learning the latter
distribution from data—and, thus, learning ETT—appears, on the face of it,
problematic.

Another approach The above formulation employs counterfactual logic and
assumptions. We consider that the current evaluation literature is unnecessar-
ily complicated by the many typically untestable assumptions2 needed to use
counterfactuals.

Our principal aim in this paper is to demonstrate how a different formalism,
eschewing counterfactuals, can helpfully be used to interpret and identify ETT.
Our approach is grounded on the decision theoretic (DT) framework for causal
inference introduced by Dawid (2002, 2007). This supplies a formal language
by means of which causal questions can be rigorously posed and analysed, us-
ing clear and meaningful assumptions; moreover, fewer such assumptions are
typically required than for other approaches such as PR. In the DT frame-
work, causal assumptions are expressed in terms of conditional independence
statements, that can, in principle if not always in practice, be tested, since all
quantities involved are jointly observable. Thus the DT framework provides

1Their general definition of ETT allows for further conditioning on a set of observed co-
variates X, as well as on T . For simplicity we shall omit X wherever this does not affect the
thrust of our argument.

2Some of these are ignorability and the stable unit-treatment value assumption (Rubin,
1986). The former requires that the counterfactual outcomes be independent of the treatment
received, the latter requires that the potential response to a treatment of one individual be well-
defined, independently of the treatments assigned to other individuals. Another assumption
usually invoked in counterfactual theory is consistency (Robins, 1986), which requires that
the realised response, when treatment t is actually applied, be the same as the corresponding
potential response.
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a more concise, economical and justifiable approach to inference on treatment
effects.

We shall present two alternative descriptions of ETT in decision-theoretic
terms, and show that they are equivalent. In particular, we show that, con-
trary to first impressions, ETT is well-defined, being fully determined by the
probabilistic behaviour of observable variables. We further show how the PR
framework can be formally subsumed within the DT framework as a special
case, and deduce that (again, contrary to first impressions) the PR formulation
of ETT is itself well-defined in this sense.

Outline The paper is laid out as follows. Section 2 introduces the basic prin-
ciples of the DT framework. In § 3 we provide a DT definition of ETT in terms
of a “preference variable”, governing treatment choice whenever that can be
exercised freely, and show that ETT can be identified from observational and
interventional data. In § 4 we develop an alternative DT account based on a
“sufficient covariate”, and prove that this leads to a unique definition, also agree-
ing with the earlier one. Moreover, the traditional PR account can be subsumed
as a special case of this treatment, and so must deliver the identical answer. In
§ 5 we provide a DT description of two approaches for estimating ETT, using
randomised availability trials, or instrumental variables to estimate ETT from
observational data alone. We make some concluding remarks in § 6.

2 Decision-theoretic approach to causal infer-
ence

The decision-theoretic approach to causal inference (Dawid, 2002, 2003; Dawid
and Didelez, 2005; Dawid, 2007) is grounded in the statistical theory of decision-
making under uncertainty (Raiffa, 1968; Smith, 1988). Rather than split the
response Y of a subject into several potential responses, we consider a variety
of stochastic behaviours for the single variable Y (jointly with other relevant
variables), under various different regimes that may be operating. Our principal
purpose is to identify and compare the distributions of Y for a variety of con-
templated interventional regimes. However data may only have been collected
under some observational regime. From this standpoint, the major problems to
be addressed are whether, when and how probabilistic information can usefully
be transferred across regimes.

For simplicity we restrict attention here to a comparison of two treatments,
“active” and “control”, and the three corresponding regimes, one observational
and two interventional. These represent respectively, the circumstances in which
a particular observational study of interest is conducted, and those in which one
or other of the treatments is administered to a subject. Within each regime,
subjects are regarded as exchangeable. We can consequently regard their values
on all relevant variables as being drawn, independently across subjects, from
some fixed (though generally unknown) joint distribution—which will however
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generally differ across regimes. The real-world meaning of these regimes will
necessarily be context-specific, and the plausibility of any assumptions that may
be made about them must be assessed in relation to those real-world meanings.

It is the interventional regimes that are the objects of principal interest, and
about which we should like to learn from data, since these will be of direct
relevance for guiding future action or policy choice. Thus the government, in
deciding whether or not to introduce a new initiative, would want to assess, and
compare, the consequences both of action and of inaction. A patient, faced with
the decision as to whether or not to take a treatment, needs to assess what the
response might be if he did, or if he did not. In either case, knowledge of the
distribution of the response under each proposed intervention is exactly what
is required to support rational choice between the options. But these interven-
tional distributions may be difficult to identify directly from data collected under
observational conditions. One might, näıvely, regard the observational distribu-
tion of the response, among those patients who happened to get the treatment,
as directly informative about a new patient’s response, if he were to decide to
take the treatment; but this would be valid only if he could consider himself ex-
changeable (on relevant pre-treatment variables) with that observational group.
Likewise, for the control group data to be directly relevant for this patient, he
would need to regard himself as exchangeable with the observational control
group. However it will clearly be impossible to satisfy both conditions simul-
taneously if—as is common in observational studies—those two groups are not
even exchangeable with each other. Then some more refined analysis, typically
requiring extra assumptions to be imposed and justified, becomes essential.

2.1 Formal set-up

Denote the treatment variable by T , taking value 1 for active treatment, and
0 for control treatment. We introduce a further variable F , the intervention
variable or regime indicator . The possible values for F are ∅, 0 and 1, indexing
the regimes under consideration. When F = ∅, this indicates that variables
are being generated under observational conditions, whereas F = t (t = 0, 1)
indicates that they are generated under an intervention that sets T = t.

Whereas T and Y are chance variables, F is a decision or parameter variable,
and has no uncertainty associated with it. In particular, this means that all
probability statements made must be explicitly or implicitly conditional on F .
We denote the distribution [resp., expectation] of the chance variables under
regime F = τ (τ = 0, 1, ∅) by pτ ( · ) [resp., Eτ ( · )]. We note that, under our
interpretation of F , we must have, for t = 0, 1:

F = t⇒ T = t, (3)

so that
pt(T = t) = 1 (t = 0, 1). (4)
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Average causal effect The average causal effect (ACE) (of treatment T = 1,
relative to treatment T = 0) on Y is defined as follows:

ACE = E1(Y )− E0(Y ). (5)

This is a simple comparison of the expected value (implicity assumed to exist)
of Y under intervention to apply treatment 1, with that under intervention to
apply treatment 0. When utility is linear in the value of the outcome Y , a
rational subject with no additional relevant information would prefer treatment
1 to treatment 0 if and only if ACE > 0.3

No confounding In some cases (e.g. randomised trials) we might be prepared
to assume that the following conditional independence relation (Dawid, 1979,
2000, 2002) holds:

Y ⊥⊥F | T. (6)

This says that, for t = 0, 1, p∅(y | T = t) = pt(y | T = t) (= pt(y), by (3)); i.e.
given either treatment, the distribution of the response is assumed the same in
both the observational regime and the relevant interventional regime. This is the
case of “no confounding”, when, for the purpose of estimating the distributions
of Y given T , we can treat the observational regime exactly as if it had been
interventional. When (6) holds, ACE = E∅(Y | T = 1)− E∅(Y | T = 0), and so
can be identified directly from observational data.

The conditional independence assumption (6) can be represented graphi-
cally by means of the influence diagram (Dawid, 2002) of Figure 1. This is
a decision-theoretic version of a directed acyclic graph (DAG), with chance
variables represented by round nodes, and decision variables by square nodes.
Associated with the arrow from F to T is a specification of the distribution of
T in each regime specified by F (in fact degenerate for F = 0 or 1, though non-
degenerate for F = ∅). Associated with that from T to Y is a specification of
the conditional distribution of the response Y , given that treatment T has been
administered. The absence of any arrow from F to Y encodes assumption (6):
that this conditional distribution does not further depend on which regime is
in operation. (Note however that the property (4) is not encoded in the graph,
and has to be introduced explicitly when needed.) Finally we remark that, since
F is a decision variable, no probability distribution is associated with it.

In most contexts (6) can not reasonably be assumed (the case of confound-
ing). It is such cases that form the focus of this paper.

3We could, without adding any real complication, replace Y in (5) by some function of Y ,
e.g. a non-linear measure of the utility of outcome Y . Still more generally, we could compare
some other chosen feature, e.g. variance, of the distributions of Y under the two experimental
regimes F = 1 and F = 0.
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F T Y

Figure 1: Influence diagram representing the conditional independence assump-
tion Y ⊥⊥F | T

3 Decision-theoretic formulation of ETT.
I. Preference variable

3.1 Treatment allocation and treatment application

When we compare the responses in two or more treatment groups in an ob-
servational setting, what we actually see is a combination of two quite distinct
effects:

Treatment effect The specific power of the treatment to make a difference to
the outcome of interest

Selection effect The fact that we are not observing random subsets of the
population of interest

In particular, even if there were no treatment effect whatsoever, the existence
of a differential selection effect would typically lead to systematic differences
between the outcomes in the different treatment groups, because we would not
be comparing like with like: this is the essence of the problem of confounding.

We will find it helpful to elaborate our description and notation to make
the above important distinction explicit. We introduce a preference variable D,
describing the treatment which an individual would choose/be chosen to take if
free to do so. Quite separately we have the treatment variable T , which indicates
which treatment is actually taken or applied. In the observational setting the
preferred treatment will be applied, T = D: thus D and T are completely
confounded with each other. However, in an interventional setting we could
override the initial preference, and so need not have T = D.

A similar construction was used by Robins et al. (2006). However their
analysis involved an additional latent variable U . In § 4, in an alternative to
our approach above, we too introduce such a variable U—but as we never need
to consider both U and D, our description and analysis are more straightforward.

Consider Example 1. We are interested in the effect of the programme on the
income of potential participants, i.e., ETT. Each eligible individual, once made
aware of the opportunity, makes a personal choice, D, whether to participate
or not. We now consider two scenarios. In the first, participation is voluntary:
this is the observational regime, F = ∅, in which T = D. The second is the
interventional setting: e.g. a controlled trial run by the local government that
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randomises all eligible adults to participate or not in the programme, irrespective
of their personal preferences. This gives rise to two interventional regimes, F = t
(t = 0, 1). These would also be relevant to the considerations a new subject who
needs to decide whether or not to participate.

In the context of Example 2, the observational regime, F = ∅, describes
the scenario in which the doctor has a treatment preference D, based perhaps
on his hunches about the patient’s likely recovery, and then actually gives the
corresponding treatment. The interventional regimes F = t (t = 0, 1) refer to
the case where the hospital management overrules the doctor’s preference and
administers treatment t, or to the treatment decision problem faced by a new
patient. We will know the value of D in the observational regime, since it is
then identical with the treatment T actually received; but we generally will not
know it in an interventional regime, where this need not hold.

3.2 Assumptions

Certain variables can be classified as “pre-treatment” variables: their values are
supposed fully determined before the point at which treatment is actually ap-
plied. In particular this applies to a “covariate”, i.e. a permanent pre-existing
attribute of a subject. Other variables will be “post-treatment” variables, aris-
ing only after the point of treatment application. Although this is not a formal
description, in most contexts it will be clear whether a variable belongs to one
or other of these groups. Our models will involve only pre-treatment variables,
together with a single post-treatment variable, the response Y—and, of course,
the treatment variable T itself.4

We require the following assumptions:

i. D is a pre-treatment variable.

ii. Pre-treatment variables have the same distribution in all regimes, inter-
ventional and observational.

iii. A subject’s response to a treatment does not depend on whether the treat-
ment is self-selected or externally imposed.

Assumption (i) is usually plausible, since it will be reasonable to suppose
that, for example:

• An individual knows whether he would wish to participate in a programme,
before, and regardless of whether, he is forced to participate or not par-
ticipate.

• A doctor can decide which treatment he would like to assign to whom,
before, and regardless of, whatever the hospital management might decide
to do.

4Thus we do not here consider situations such as that treated by Robins (1989), involving
sequential decisions based on accruing time-varying information.

8



At first glance assumption (ii) appears tantamount to assuming “no back-
wards causation”, which appears entirely reasonable. However, it can fail if, for
example, the observational study was done in one population but the proposed
interventions relate to a new population, or for a subject who can not be treated
as exchangeable (on pre-treatment variables) with those in the study.

While little formal progress can be made without an assumption such as
(iii), we warn that it may well be unreasonable in many contexts. Thus in
Example 1 an individual might well respond differently to the training pro-
gramme if forced to undertake it from how he would if he himself had chosen
to do so; in Example 2, the placebo effect could lead to a patient who knows
(or whose doctor knows) what treatment has been assigned to him respond-
ing differently from how he would if the same treatment had been applied in
a double-blind clinical trial. (Note that these effects are quite distinct from
those associated with confounding). In such cases we should really regard the
“same” treatment applied in different settings as constituting several distinct
treatments, and in such a case our analyis may simply not apply. In any case,
whenever we talk about “the effect of treatment” we should be very clear as to
the nature of the treatment we are referring to, and of that with which we are
comparing it.

3.3 Regimes

Suppose we have fully specified the preference variable D, and the joint dis-
tribution of all relevant observables in the two interventional regimes F = t
(t = 0, 1). By assumption (ii), these must agree when restricted to pre-treatment
variables—including, by assumption (i), D. We can now explicitly construct
the joint observational distribution, F = ∅, of all variables as follows. We first
generate all relevant pre-treatment variables, including D, from their joint dis-
tribution (which, by (ii), is the same in both interventional regimes); and then
use the realised value of D to determine which treatment T to give.5 Finally,
if, e.g., D = 1, we assign to Y the distribution it would have in the active
treatment regime, F = 1, conditional on D = 1 (here we use assumption (iii)).

Note that this process can not be reversed: knowing only the observational
distribution, in which necessarily T = D, we can not in general identify e.g. the
distribution of Y given D = 0, T = 1, which is a necessary ingredient of the
interventional regime F = 1.

It is easy to see that D has the following properties:

D ⊥⊥ F (7)
Y ⊥⊥ F | (D,T ). (8)

Here (7) says that D has the same distribution in all regimes, be they interven-
tional or observational; while (8) says that the distribution of Y given D and T
is the same in all regimes, whenever it is meaningfully defined: because of the

5Note that T is functionally determined by D and F : T = t when F = t (t = 0, 1), and
T = D when F = ∅.
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deterministic dependence of T on F and D, this means that, for t = 0, 1, the
distribution of Y given D = t is the same in the observational regime F = ∅
and the interventional regime F = t.

The effect of treatment on the treated is now defined as:

ETT := E1(Y | D = 1)− E0(Y | D = 1). (9)

This is essentially ACE, as defined in (5), but calculated for a specific subpopu-
lation of patients: those having D = 1, i.e., those who would choose/be chosen
to receive treatment 1—whether or not they actually receive it.

We remark that (9) displays a clear separation of “treatment effect” from
“differential selection effect”. The former is effected by the comparison of ex-
pected responses under the two interventional regimes F = 1 and F = 0; the
latter is excluded because we only compare interventional regimes, and condi-
tion on the identical property (namely preference for active treatment, D = 1)
in both.

3.4 ETT is identifiable

In a randomised controlled trial, if we could record the preference variable D for
all subjects, we could identify ETT straightforwardly. In practice,however,we
will not usually be able to observe D in interventional regimes—although we
can do so indirectly in observational regimes, since then we know D = T , and T
is observed. It thus appears a priori that it would be impossible to identify the
term E0(Y | D = 1) from available data, and thus impossible to identify ETT.

The following analysis shows that, contrary to this initial appearance, ETT
can be identified—so long as we can gather data under both observational and
(some) interventional circumstances. (We must also suppose p∅(T = 1) > 0.)

The first term in (9), E1(Y | D = 1), presents no difficulty. We have:

E1(Y | D = 1) = E1(Y | D = 1, T = 1)
= E∅(Y | D = 1, T = 1)
= E∅(Y | T = 1) (10)

where the first equality holds because F = 1⇒ T = 1, the second from (8), and
the third because T = 1⇒ D = 1 under F = ∅. Thus E1(Y | D = 1) is directly
identifiable from observational data on (T, Y ).

To get a handle on the problematic second term of (9), E0(Y | D = 1), we
argue as follows. We have

E0(Y ) = E0(Y | D = 0)× p0(D = 0) + E0(Y | D = 1)× p0(D = 1). (11)

From data gathered under “control” conditions, F = 0, we can identify the
left-hand side of (11), E0(Y ).

From (8), p0(D = 0) = p∅(D = 0), and this in turn is p∅(T = 0), since
D = T in the observational regime F = ∅. Likewise, p0(D = 1) = p∅(T = 1).
So these terms can be identified from observational data.
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Suppose for the moment (an extreme special case) that p∅(T = 1) = 1,
whence p∅(T = 0) = 0. Then from (11) we deduce E0(Y | D = 1) = E0(Y ).
Also, (10) becomes E∅(Y ). We thus have, from (9),

ETT = E∅(Y )− E0(Y ). (12)

In this case the observational group behaves just like an interventional treatment
group, E∅(Y ) = E1(Y ), and ETT = ACE.

Otherwise, we have, in parallel fashion to (10), E0(Y | D = 0) = E∅(Y | T =
0), which can be identified from observational data on (T, Y ). The remaining
term in equation (11), E0(Y | D = 1), can thus be solved for. Since we now
have both E1(Y | D = 1) from (10) and E0(Y | D = 1) from (11), we can obtain
ETT from (9). Doing the algebra, we obtain:

ETT =
E∅(Y )− E0(Y )
p∅(T = 1)

(13)

—a general form that also includes the special case (12).
It follows that ETT is fully identified by the distributions of the observables

(T, Y ) in the various regimes: indeed, we can identify ETT so long as, in addition
to observational data on Y and T , we have data on Y from experimental subjects
under control conditions.

Although based on different assumptions, formula (13) is essentially the same
as formula (8.20) in Pearl (2000). In § 4.2 we shall see why this must be.

4 Decision-theoretic formulation of ETT.
II. Unobserved confounder

The above development of ETT relies on the existence and meaningfulness of
the preference variable D in all regimes, observational and interventional. While
this may be a reasonable assumption in e.g. economic contexts, where agents
may be supposed to form preferences in accordance with rational principles such
as maximisation of expected utility, in other contexts it may seem somewhat
far-fetched.

We now present an alternative, more general, construction—which, as we
shall see, is fully consistent with that described above based on the preference
variable. We consider a (typically multivariate, typically unobserved) covariate
U (i.e., a permanent attribute of a subject) that can be considered as deter-
mining treatment choice—typically only probabilistically—in the observational
regime. For Example 1, U might comprise the personal characteristics of the
individuals, their motivation, natural talent, confidence, etc. For Example 2, U
could represent the attributes of the patient that determine the doctor’s hunches
as to who will benefit more from the treatment. Such an unobserved variable
U , associated with treatment in the observational regime, will be a confounder
if it is also predictive of outcome.
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U

Figure 2: A sufficient covariate U

In contrast to our analysis in § 3.1, we do not now directly construct the
observational regime F = ∅ from the interventional regimes; rather, we regard
it as having an entirely independent existence. Then to make progress we must
make (and justify!) assumptions relating this to the interventional regimes. Our
fundamental requirement is that U be a sufficient covariate (Dawid, 2002): that
is, for F ∈ {0, 1, ∅}:

U ⊥⊥ F (14)
Y ⊥⊥ F | (U, T ). (15)

Here (14) requires that U (being a pre-treatment variable) have the same distri-
bution in all regimes; while (15) requires that, if only we knew, and conditioned
on, U , the distribution of the response to an applied treatment would be the
same, no matter whether that treatment had been applied under interventional
or observational conditions.

The conditional independence relations (14) and (15) can be represented
graphically by means of the influence diagram of Figure 2. Note that the ar-
rows in Figure 2 represent stochastic dependence: in particular, T and U need
not fully determine Y , but merely modify its distribution. This probabilis-
tic interpretation of a “causal model” may be contrasted with that of (Pearl,
2000§7.1), which would treat U as an undefined exogenous (“error”) variable,
and Y as functionally determined by T and U .6 Our stochastic model is more
general, and appropriate to our intended interpretation of U as a pre-existing
real-world attribute of a subject, that could, in principle at least, be identified
and measured. It also explicitly allows treatment choice, even in the interven-
tional regime, to incorporate an element of randomisation. However, so far as
the mathematics is concerned, Pearl’s functional interpretation can be treated
as a special case of our model.

Specific causal effect We now introduce the specific causal effect of treat-
ment, relative to the specified sufficient covariate U . This is a a function of U ,
defined by

SCEU := E1(Y | U)− E0(Y | U), (16)

i.e.
SCEU (u) := E1(Y | U = u)− E0(Y | U = u).

6There appears to be a common perception that graphical models are somehow tied to
such a deterministic interpretation. In fact the opposite is true: they are fundamentally tools
for representing and handling probability distributions, not functional relationships.
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That is, SCEU (u) is the average causal effect in the subpopulation of individuals
having the specified value u for U .

By (15) we can also express

SCEU = E∅(Y | T = 1, U)− E∅(Y | T = 0, U). (17)

Thus SCEU could be identified from observational data if U were to be observed
in addition to T and Y .7 However typically this will not be the case.

We remark that, by (14), for t = 0, 1,

E∅{Et(Y | U)} = Et{Et(Y | U)}
= Et(Y ),

whence

E∅(SCEU ) = E1(Y )− E0(Y )
= ACE. (18)

In particular, E∅(SCEU ) can not depend on the choice of sufficient covariate U .
Formulas (17) and (18) enable us to identify ACE from an observational study
whenever we can measure some sufficient covariate.8

4.1 Definition and uniqueness of ETT

After the above preliminaries, we are ready to define the effect of treatment on
the treated in this setting:

ETTU := E∅{SCEU | T = 1}. (19)

That is, ETTU is the average, in the observational regime, of the specific causal
effect (relative to U), for those individuals who in fact receive the active treat-
ment T = 1.9 This could be identified if we had observational data on all three
variables (T,U, Y ). But in general U will not be observable, in any regime: a
seemingly fatal handicap to identifying ETTU .

When a sufficient covariate exists, it need not be unique. The above defini-
tion of ETTU appears, prima facie, to depend on the specific choice of sufficient
covariate U , and its probabilistic relationship with the observables (T, Y ). How-
ever, Theorem 4.1 below (a generalization of the argument of § 3.4) will show
that this is not in fact the case: ETTU does not depend on the choice of U ,
but only on the joint distributions of the observables in the various regimes. In
particular, it can be identified from such data even when we do not specify, or
observe, any sufficient covariate.

7We also need that, for each value of U , both values of T are observed in the data—which
in particular would disallow the choice U = D.

8Of course, if we could also measure U on a new individual, it would be SCEU , rather than
ACE, that would be relevant for his decision problem.

9For this to be meaningful we need to assume p∅(T = 1) > 0. Note also that (16)
defines SCEU only up to a set of probability 0 under the distribution (common to all regimes
considered) of U ; but since such a set also has probability 0 in the observational regime
conditional on T = 1, ETTU is well-defined.
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Theorem 4.1 Suppose p∅(T = 1) > 0. Then, for any sufficient covariate U ,

ETTU =
E∅(Y )− E0(Y )
p∅(T = 1)

. (20)

Suppose first p∅(T = 0) > 0. For t = 0, 1, define

k(t) := E∅{E0(Y | U) | T = t} (21)
= E∅{E∅(Y | U, T = 0) | T = t} (22)

by (15). In particular, k(0) = E∅(Y | T = 0).
By (17) and conditional independence property (15), (19) is equal to

ETTU = E∅(Y | T = 1)− k(1). (23)

Also,

E0(Y ) = E0{E0(Y | U)}
= E0{E∅(Y | U, T = 0)}
= E∅{E∅(Y | U, T = 0)} (24)

by (15) and (14). It follows that

E0(Y ) = E∅{k(T )}
= p∅(T = 0) k(0) + p∅(T = 1) k(1).

Hence

k(1) =
E0(Y )− p∅(T = 0) E∅(Y | T = 0)

p∅(T = 1)
. (25)

Formula (20) now follows on substituting into (23).
Finally, the special case p∅(T = 0) = 0 can be handled by a similar (and

simpler) argument.
In the light of the above result, we no longer need to specify which sufficient

covariate U is used to define the effect of treatment on the treated; consequently
we can just use the notation ETT.

Comments:

i. Our analysis in § 3.1 in terms of the preference variable D can be treated
as a special case of that above, on identifying U with D.

ii. Suppose that in fact there is no confounding. In that case E∅(Y ) =
E0(Y ) × p∅(T = 0) + E1(Y ) × p∅(T = 1), and formula (20) reduces to
ETT = ACE.

iii. It is surprising, though of no ultimate significance, that to identify ETT
we do not need data on subjects receiving the treatment by intervention.

14



iv. The fact that ETT is well-defined in terms of observable distributions
in the various regimes does not mean that, in Example 1, it would be
the same for two communities with different population distributions and
attitudes—since the relevant observational regimes would be different.
Similarly in Example 2, different distributions of patients, or different be-
haviour of the doctors, would typically yield different values for ETT. It is
thus a matter for careful consideration whether, and under what circum-
stances, ETT will be informative about subjects who can not be regarded
as exchangeable with those in the study population.

v. Although the value of ETT does not depend on which sufficient covariate
U is being considered, its definition and interpretation require that some
such variable U should exist. In some contexts we might not be willing
to accept this assumption. Then—notwithstanding the fact that we could
still calculate the right-hand side of (20) from knowledge of the distribu-
tions of observables in the observational and control regimes—we perhaps
should not attempt to interpret this as “the effect of treatment on the
treated”.

4.2 Application to potential response framework

In the potential response framework we conceive of the existence of the pair of
potential responses (Y0, Y1). These are implicitly supposed to have the same
values, and the same joint distribution, no matter what regime operates. That
is:

(Y0, Y1)⊥⊥F. (26)

It is also assumed that, no matter what regime operates, the actual response
Y is fully determined by the pair (Y0, Y1) and the treatment T applied: Y = YT .
This functional dependence implies, in particular:

Y ⊥⊥F | (Y0, Y1, T ). (27)

Comparing (26) and (27) with (14) and (15), we see that we can formally
treat U∗ = (Y0, Y1) as a sufficient covariate. Since Et(Y | U∗) = Yt, the associ-
ated specific causal effect is SCE∗ = Y1−Y0, and hence the associated definition
of ETT is ETT∗ = E∅(Y1 − Y0 | T = 1). This recovers the “traditional” defini-
tion (1) of ETT in the potential response framework.

Now Theorem 4.1 shows that:

i. The PR definition can be expressed as in (20).

ii. It agrees with the definition of ETT given in § 3.1, as well as with any of
the variations, as in (19), in terms of an arbitrary sufficient covariate U .
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5 Estimating ETT

5.1 Availability trials and policy analysis

It follows from (20) that we could readily identify ETT if, in addition to having
data on T and Y from an observational study, we had data on Y from a group
of subjects (randomly selected from the same population) who were made to
take the control treatment.

One way of obtaining the required data is by performing a randomised avail-
ability trial : a study in which the treatment is made available to (but not forced
on) a random subgroup of the population, while being denied to another such
subgroup. Assuming that both the take-up and the response behaviour of the
individuals in the first (availability) subgroup is unaffected by the conduct of
the trial, we can use the data from that subgroup directly to estimate E∅(Y ) and
p∅(T = 1); while E0(Y ) can be estimated from the other (control) subgroup.
We can then substitute into formula (20) to estimate ETT.

Such a trial would be of obvious direct relevance to policy analysis, where the
aim is to assess the benefit of the policy decision to make the treatment available.
The numerator of (13) is exactly what is being estimated by the simple contrast
between the average responses in the two arms of the availability trial: it directly
measures the additional benefit, per individual in the population, of introducing
this policy. This average benefit could then be balanced against the average cost
per individual of introducing the policy, to aid the decision as to whether or not
to make treatment available.

The further inclusion of the denominator in formula (20) has the effect of
adjusting it to measure the benefit of the policy introduction per individual
taking up the treatment—so supplying a simple and intuitive interpretation of
formula (20). It could be argued that this is of less direct value for policy
analysis than the straightforward use of the numerator without this adjustment.
If, however, the cost of introduction were directly proportional to the number
taking up the treatment, then it would indeed be appropriate to base the decision
on ETT. In more realistic scenarios, one would need to combine, appropriately,
the overall benefit (proportional to the numerator of (20) and population size),
fixed set-up costs, costs pro rata to population size, and costs pro rata to the
number taking up the treatment. While such an analysis would still use the
ingredients of (20), it could do so in a more flexible manner.

5.2 Estimation using an instrumental variable

When no controlled randomisation is possible, we can sometimes substitute
pseudo-randomisation devices, such as instrumental variables (Heckman and
Navarro-Lozano, 2004; Heckman, 2005; Didelez and Sheehan, 2007).

Consider Example 2 with a twist. The doctor visits a group of patients and,
based on his initial diagnosis, he prescribes some of them the new drug. After
the doctor has completed this process, these patients are given a preliminary
allergy test, and a subset group of them is identified as allergic to some of the
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components of the drug. As a consequence, the doctor’s prescription is overruled
for these patients and they are not administered the drug.

We assume:

i. The presence of the allergy is independent of the doctor’s treatment pref-
erence.

ii. Conditional on the doctor’s treatment preference, response to control
treatment (in this case, not taking the drug) is independent of the presence
of allergy.

Property (i) will be plausible when the doctor can not tell which patients are
allergic just by talking to them; it also requires that the patient’s medical records
do not contain information on allergies to the drug ingredients. This might be
the case for instance, when the drug is new, or the ingredients it contains are
not in commonly available medication and thus allergy has not been reported.
Property (ii) will be plausible if the physiological systems responsible for the
allergy and the disease under study are unconnected. Thus, for patients who
do not receive the treatment (whether due to the doctor’s treatment preference,
or because they have the allergy), response will not be systematically different
amongst those who have the allergy. When (i) and (ii) hold, the allergy status
of a patient is an instrumental variable.

In this case we can use the allergic patients, from whom treatment is with-
held, as a proxy for an experimental control group, and so estimate E0(Y ) from
these; the remaining patients form, essentially, an observational study group,
allowing us to estimate E∅(Y ) and p∅(T = 1). Hence we can identify ETT from
(20).

5.2.1 Formal construction

Informal arguments such as the above can be valuable and revealing, but it is
necessary to have a rigorous formal system to express and derive such results.
To demonstrate how this is provided by our decision-theoretic framework, we
present the formal construction below.

We frame our argument in the set-up of § 3 (a similar argument could be
applied for that of § 4). We have variables F,D, T, Y as before—except now we
only need to consider F ∈ {0, ∅}. In addition we have a binary pre-treatment
variable A (indicating presence of allergy) such that p(A = 0) > 0, and in the
observational regime F = ∅, whatever be the value of U :

A = 0⇒ T = 0. (28)

In particular, when A = 0 this overrides the original treatment preference D.
Clearly D, being a pre-treatment variable, continues to satisfy (7). However our
original argument for (8) no longer stands. We replace it by

Y ⊥⊥F | (D,T = 0), (29)

17



which says that, conditional always on treatment preference, the observational
distribution of response among those who receive the control treatment is the
same as its distribution in the control interventional regime. In particular this
will hold if D is a sufficient covariate.

We further assume that in the observational regime F = ∅:

A ⊥⊥ D (30)
Y ⊥⊥ A | (D, T = 0). (31)

Here (30) and (31) formalise (i) and (ii) above, respectively. Property (30)
must in fact hold in all regimes, since A and D are pre-treatment variables.
Condition (31) could have been imposed for active as well as control treatment,
but this turns out not to be required for our analysis below.

Note that (28), (30) and (31) are analogous to (3) (for t = 0), (7) and (29),
respectively, but with A replacing F .

Theorem 5.1 Under the above conditions, E∅(Y | A = 1) = E0(Y ).

E∅(Y | A = 0) = E∅{E∅(Y | D,A = 0) | A = 0}
= E∅{E∅(Y | D,A = 0)}

by (30)
= E∅{E∅(Y | D,A = 0, T = 0)}

by (28)
= E0{E∅(Y | D,A = 0, T = 0)}

by (7)
= E0{E∅(Y | D,T = 0)}

by (31)
= E0{E0(Y | D,T = 0)}

by (29)
= E0{E0(Y | D)}

by (3)
= E0(Y ).

Using (13), the above result now enables us to identify ETT from data collected
under purely observational conditions. The proof extends trivially to whole
distribution of Y , not merely its expectation, allowing us to consider alternative
loss functions.

5.2.2 IV identification in practice

For the above identification of ETT to work, we only need use an IV to create a
proxy for the response of an experimental control group. We are thus more likely
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to be able to find an appropriate instrument than when IV methods are used
to identify ACE, requiring both experimental treatment and control proxies.

A disadvantage is that (31) cannot be empirically tested if, as would be
common, we can not observe D when A = 0. We will often need to rely on bold
and debatable arguments as to the suitability of a purported IV.

For example, Denmark has recently outlawed the use of trans-fats (trans
fatty acids) in packaged foods (Stender et al., 2006). Thus, if we wanted to
investigate the effect of trans-fats on some health outcomes in Nordic countries,
where diets might plausibly be assumed similar, we might treat “being danish”
as an IV, so using a random sample of the Danish population as a proxy for
an experimental control group, and a random sample of the population of other
Nordic countries as the non-experimental treatment group. The assumption
of similar diets and lifestyles is debatable, and trans-fats are so widespread in
packaged foods that it might be difficult to find a large enough sample of non-
experimental untreated. However, it is a plausible approach that might provide
valuable information.

5.3 Matching and control functions

Two other methods commonly used to identify ETT from observational data are
matching and control functions (Heckman and Navarro-Lozano, 2004; Heckman
and Vytlacil, 2005; Rubin, 2006), developed for use in the context of labour
economics.

Matching essentially defines the problem away by assuming we have an ob-
servable sufficient covariate, so allowing identification of ETT by (19), or indeed
of ACE by (18).

Control functions seek to relate the observed variables to unobserved vari-
ables via deterministic functions—in particular, in an econometric setting per-
sonal utility functions, which are used to measure the likelihood of self-selection,
are of crucial importance. Although the method of control functions can be
given a DT formulation, we do not consider it further here, since we seek to
avoid strong assumptions about unobservable deterministic relations. We do
however recognise that in particular contexts, such as the economic problems
for which they were introduced, such strong assumptions may be acceptable.

6 Discussion

We have described two related ways in which the concept of “effect of treatment
on the treated” can be given a meaningful decision-theoretic interpretation. The
first operates by distinguishing between “selection for treatment” and “receipt of
treatment”. The second makes use of the existence of an unobserved “sufficient
covariate” U . We have shown that the latter approach yields a unique value for
ETT, no matter what choice may be made for U , and that this agrees with the
value delivered by the former approach. There is also a formal connexion with
the approach based on potential responses, ensuring agreement with that too.
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We have further shown that ETT can be identified so long as we have data both
from the observational regime and from an experimental control group.

We have also proposed two alternative ways of estimating ETT and by using
the availability trial approach in § 5.1 have given an alternative interpretation
of ETT as effectiveness of making treatment available per individual taking up
the treatment.

Identifying ETT in our DT framework relies only on the standard proba-
bilistic machinery once the assumptions (i)–(iii) in § 3.2 are deemed to hold.
We do not need to impose additional assumptions, required in the potential
response framework to construct counterfactuals, such as consistency (Robins,
1986) or stable unit-treatment value assumption¡ (Rubin, 1974). The DT ap-
proach should be more acceptable to those who appreciate the overall stochas-
tic emphasis of the enterprise of statistical science, since it does not demand
a deterministic understanding of causality such as advocated by e.g. Heckman
(2005).

Whether our assumptions (i)–(iii) in § 3.2, or alternatively (14)–(15) in § 4,
are appropriate will depend on the context under consideration, and must be
evaluated in the light of specific information. But since these assumptions relate
only to the actual world, not to counterfactual parallel worlds, they are relatively
straightforward to think about.
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