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Abstract

We study the Gross-Neveu model in two dimensions first in continuum space-time and
then on a lattice with Wilson fermions. In the limit where the lattice spacing goes to zero
the same results are obtained for the lattice model as for the continuum model. However,
in the lattice model the bare mass has to be fine-tuned in order to restore the chiral
symmetry. We then introduce the three-dimensional Gross-Neveu model and show that
the two-dimensional model emerges from the three-dimensional model through dimensional
reduction either by imposing periodic or domain wall boundary conditions in the three
direction.
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Chapter 1

Introduction

Most of us have a good intuition for the phenomena of classical mechanics. We developed
them while looking at simple examples in our every day lives. It is, however, difficult to
obtain an intuition in quantum field theory as there are so few simple and exactly soluble
examples. Besides that, we should not expect the few toy models that exist to have any
direct implication to the real world. Still, it is important to study exactly soluble model
problems. They are sources of inspiration and provide an optimal playground for learning
more about the fascinating world of field theories. The techniques learned while working
on toy models may later be helpful for resolving the real hard problems which affect QCD.
In this work we concentrate on the Gross-Neveu model [1], a simple fermionic theory with
a scalar-scalar four-fermion interaction. The model was first studied by Gross and Neveu
in the large N limit, who found a dynamical mass generation breaking down the chiral
symmetry. The model is asymptotically free and thus resembles QCD in these two key
points. In the large N limit it is renormalizable both in two and in three dimensions. We
are particularly interested in the model from the point of view of dimensional reduction.
The two-dimensional model can be obtained through dimensional reduction of the three-
dimensional model either with periodical or with domain wall boundary conditions. The
motivation to do this is that the same should be possible for QCD. It should result from
dimensional reduction of a five-dimensional model with domain wall boundary conditions.
This is realized in the D-theory approach to field theory in which classical fields arise from
the dimensional reduction of discrete variables [2].
The structure of this work is as follows. In chapter 1, we analyze the Gross-Neveu model
in two dimensions. We show that the model has a chiral symmetry and how in the large N
limit this symmetry is spontaneously broken [3]. Chapter 2 discusses the two-dimensional
massive Gross-Neveu model on a space-time lattice with Wilson fermions [4], [5]. On the
lattice we have to fine-tune the bare mass in order to restore the chiral symmetry. This fine-
tuning is not a very natural process and besides that, if we were interested in simulations
at N <∞ the fine-tuning would be a major problem. Therefore we are looking for another
way of constructing the two-dimensional model, namely by dimensional reduction. In
chapter 3 we study the three dimensional Gross-Neveu model [6]. We find a symmetry
that includes a change of the sign in the third direction. The three-dimensional model
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can either be in a broken or an unbroken phase, depending on the strength of the coupling
constant. Chapter 4 is devoted to the dimensional reduction of the three-dimensional to the
two-dimensional model. We start with the three-dimensional model in the unbroken phase
and introduce periodic boundary conditions in the third direction. When the extension of
the third direction becomes small in units of the correlation length the two-dimensional
model emerges from the three-dimensional one. In chapter 5 the massive Gross-Neveu
model in three dimensions and three-dimensional free fermions with domain wall boundary
conditions are analyzed. Chapter 6 combines the two approaches from Chapter 5 and deals
with the three-dimensional Gross-Neveu model with a dynamical domain wall [7], [8], [9].
The model is now in the broken phase. A potential with the shape of ether a kink or a
double kink is postulated and the self consistency of these potentials is shown. When the
extension of the third direction becomes small in units of the correlation length, again, the
two dimensional model emerges.



Chapter 2

The two-dimensional Gross-Neveu
model

The Gross-Neveu model [1] is a renormalizable, asymptotically free two-dimensional toy
model which displays chiral symmetry breaking and dynamical mass generation. In Eu-
clidean continuum space-time it is defined by the action

S[Ψ̄,Ψ] =

∫
d2x

∑
i

Ψ̄i(x)γµ∂µΨi(x)− G

2

(∑
i

Ψ̄i(x)Ψi(x)

)2
 , (2.1)

where Ψ and Ψ̄ are independent N -component fermion fields (i = 1, . . . , N) and G denotes
the coupling constant. We will generally suppress the flavor indices i and use the notation

Ψ̄Ψ =
∑

i

Ψ̄iΨi,

Ψ̄γµ∂µΨ =
∑

i

Ψ̄iγµ∂µΨi.
(2.2)

The two dimensional γ-matrices are defined as γ1 = σ1, γ2 = σ2, γ3 = σ3, where σi are the
Pauli matrices.

2.1 Chiral symmetry

First we investigate the symmetry of the two-dimensional Gross-Neveu model. To do so,
the spinors are decomposed into left- and right-handed components

ΨR,L =
1± γ3

2
Ψ, (2.3)

Ψ̄R,L = Ψ̄
1∓ γ3

2
. (2.4)
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Inserting the decomposed spinors into the action we obtain

S[Ψ̄,Ψ] =

∫
d2x

[
(Ψ̄R + Ψ̄L)γµ∂µ(ΨR + ΨL)− G

2

(
(Ψ̄R + Ψ̄L)(ΨR + ΨL)

)2]
. (2.5)

By investigating the terms

Ψ̄Rγµ∂µΨL = Ψ̄
1

2
(1− γ3)γµ∂µ

1

2
(1− γ3)Ψ = Ψ̄

1

4
(1− γ3)(1 + γ3)γµ∂µΨ = 0,

Ψ̄Lγµ∂µΨR = Ψ̄
1

2
(1 + γ3)γµ∂µ

1

2
(1 + γ3)Ψ = Ψ̄

1

4
(1 + γ3)(1− γ3)γµ∂µΨ = 0,

Ψ̄RΨR = Ψ̄
1

2
(1− γ3)

1

2
(1 + γ3)Ψ = 0,

Ψ̄LΨL = Ψ̄
1

2
(1 + γ3)

1

2
(1− γ3)Ψ = 0,

(2.6)

we can write the action as

S[Ψ̄,Ψ] =

∫
d2x

[
Ψ̄Rγµ∂µΨR + Ψ̄Lγµ∂µΨL −

G

2
(Ψ̄RΨL)2 − G

2
(Ψ̄LΨR)2

]
. (2.7)

Hence the action is invariant under separate transformations of the right- and left-handed
components of the fields.

ΨL → sLΨL, Ψ̄L → sLΨ̄L and

ΨR → sRΨR, Ψ̄R → sRΨ̄R,
(2.8)

with sL = ±1, sR = ±1.

2.2 The large N limit

In order to perform explicit calculations we consider the N -component fermion fields in the
large N limit where g = GN is kept fixed and show that the symmetry is spontaneously
broken. Note that in the two-dimensional model the coupling constant is dimensionless.
It is convenient to linearize (2.1) and replace it by the action

S[Ψ̄,Ψ,Φ] =

∫
d2x

[
Ψ̄(x)γµ∂µΨ(x) +

1

2G
Φ(x)2 + Ψ̄(x)Ψ(x)Φ(x)

]
, (2.9)

where
Φ(x) = −GΨ̄(x)Ψ(x). (2.10)

The two actions are related to each other by

exp(−S[Ψ̄,Ψ]) =

∫
DΦ exp(−S[Ψ̄,Ψ,Φ]). (2.11)
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In the large N limit we may restrict Φ(x) to its constant zero-mode Φ0. Hence the inte-
gration over all Φ(x) reduces to a simple integration over Φ0 (DΦ → dΦ0). We transform
the action into momentum space and obtain

S[Ψ̄,Ψ,Φ0] =
1

(2π)2

∫
d2k

∫
d2k′

[
Ψ̄(k′)(iγµkµ + Φ0)Ψ(k)×

1

(2π)2

∫
d2x exp(i(k + k′)x)

]
+
L2

2G
Φ2

0

=
1

(2π)2

∫
d2k

[
Ψ̄(−k)(iγµkµ + Φ0)Ψ(k)

]
+
L2

2G
Φ2

0,

(2.12)

where L2 is the volume of space-time. The Fourier transformation is defined as

Ψ(x) =
1

(2π)2

∫
d2k Ψ(k) exp(ikx). (2.13)

To solve the model we integrate out the fermion fields

∫
DΨ̄DΨ exp(−S[Ψ̄,Ψ,Φ0]) = exp(−Veff (Φ0)L

2), (2.14)

where Veff (Φ0) is the effective potential. To do so we introduce periodic boundary con-
ditions in space-time, thus obtain a lattice in momentum space (

∫
d2k → (2π

L
)2
∑

k) and

perform on each lattice point k the integral
∫
dΨ̄kdΨke

−Ψ̄kAΨk = Det(A). When we have
integrated out the fermion fields we let the lattice spacing go to zero and return to the
infinite volume. The integration of fermion fields is explicitly shown in appendix A.

Z =

∫
DΨ̄DΨdΦ0 exp

[
− 1

(2π)2

∫
d2k Ψ̄(−k)(iγµkµ + Φ0)Ψ(k)− L2

2G
Φ2

0

]
'
∏

k

∫
dΨ̄−kdΨkdΦ0 exp

[
− 1

L2

∑
k

(
Ψ̄−k(iγµkµ + Φ0)Ψk

)
− L2

2G
Φ2

0

]

=
∏

k

∫
dΦ0(k

2 + Φ2
0)

N exp

[
−L

2

2G
Φ2

0

]

=

∫
dΦ0 exp

[∑
k

ln(k2 + Φ2
0)

N − L2

2G
Φ2

0

]

'
∫
dΦ0 exp

[(
L

2π

)2

N

∫
d2k ln(k2 + Φ2

0)−
L2

2G
Φ2

0

]
.

(2.15)
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We introduce a momentum cutoff Λ and thus the effective potential reads

Veff (Φ0) = N

[
− 1

(2π)2

∫
d2k ln

(
k2 + Φ2

0

)
+

1

2g
Φ2

0

]
= N

[
− 1

2π

∫ Λ

0

dk k ln
(
k2 + Φ2

0

)
+

1

2g
Φ2

0

]
= N

[
Φ2

0

2g
− 1

4π

(
(Λ2 + Φ2

0) ln(Λ2 + Φ2
0)− Φ2

0 ln(Φ2
0)− Λ2

)]
.

(2.16)

For large Λ and after adding the convenient constant NΛ2

4π
(ln(Λ2)−1), the potential reduces

to

Veff (Φ0) = N

[
Φ2

0

2g
− 1

4π

(
Λ2 ln

(
Λ2 + Φ2

0

Λ2

)
+ Φ2

0 ln

(
Λ2 + Φ2

0

Λ2

))]
= N

[
Φ2

0

2g
+

Φ2
0

4π

(
ln

(
Φ2

0

Λ2

)
− 1

)]
.

(2.17)

Figure 2.1: Effective potential of the Gross-Neveu model.

Starting from (2.16), the minimum of the effective potential is given by

∂Φ0Veff (Φ0) = − 1

(2π)2

∫
d2k

2Φ0

k2 + Φ2
0

+
Φ0

g
= 0, (2.18)

and we obtain the so-called mass gap equation

1

(2π)2

∫
d2k

2

k2 + Φ2
0

=
1

g
. (2.19)

To evaluate the mass gap equation a momentum cutoff Λ is introduced and for Λ → ∞
the potential Φ0 amounts to

Φ0 = Λ
1√

exp 2π
g
− 1

. (2.20)

We assume that g � 2π and then (2.20) reduces to

Φ0 = Λ exp

(
−π
g

)
. (2.21)

As the model displays dynamical mass generation (Φ0 6= 0), the symmetry is spontaneously
broken.



Chapter 3

Lattice Gross-Neveu model

In this chapter we give a brief introduction to lattice fermions [10], [11], [12] and then
investigate the Gross-Neveu model on a two dimensional lattice [4], [5].

3.1 Lattice fermions

In the preceding chapter we have studied the continuum action and the partition function
Z =

∫
DΨ̄DΨ exp(−S[Ψ̄,Ψ]). So far the path integrals have not been given a precise

mathematical meaning. We do this now by replacing the continuum fermion fields by
variables that live on the lattice points x. The transition is performed by making the
following substitutions

Ψ(x) → Ψx,

Ψ̄(x) → Ψ̄x,

∂µΨ(x) → 1

a
(Ψx+µ̂ −Ψx−µ̂) ,∫

d2x→ a2
∑

x

,

(3.1)

where a is the lattice spacing.
The action of massive naive lattice fermions without an interaction term is

S[Ψ̄x,Ψx] =
a

2

∑
x,µ

(
Ψ̄i

xγµΨi
x+µ̂a − Ψ̄i

xγµΨi
x−µ̂a

)
+ a2m0

∑
x

Ψ̄i
xΨ

i
x

= a
∑
x,y

Ψ̄i
xKΨi

y,
(3.2)

with

K =
∑

µ

γµ
1

2
(δx+µ̂a,y − δx−µ̂a,y) + am0δx,y, (3.3)
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and |µ̂| = 1. It is instructive to transform this expression to momentum space, because it
allows us to read off the lattice fermion propagator

< Ψ̄xΨy >= K−1 =

∫ π
a

−π
a

d2k

(2π)2

−i
∑

µ γµ sin(kµa) +ma∑
µ

1
a2 sin(kµa)2 +m2

exp(ik(x− y)). (3.4)

The energies of the lattice fermions show up as poles in the propagator (3.4). For small
m the denominator (3.4) goes to zero not only at kµ = 0, but also at the corners of the
Brillouin zone, where kµ = π/a. Therefore the spectrum has 3 ( resp. 2d − 1 in a d
dimensional theory ) extra fermions that are absent in the continuum theory. These extra
states do not disappear in the continuum limit, thus the naive lattice fermion action (3.2)
does not lead to the correct continuum theory. This is the so-called fermion doubling
problem. It has been shown by Nielsen and Ninomiya [13] that one cannot solve this
problem without breaking the chiral symmetry in the limit m→ 0.
One proposal how to deal with lattice fermions was originally made by Wilson [14]. The
action in (3.2) is modified in such a way that the zeros at the edges of the Brillouin zone
in the denominator of (3.4) are lifted by an amount proportional to the inverse lattice
spacing. The so-called Wilson term thus eliminates the doublers. The price one has to
pay to eliminate the doublers and hopefully to ensure the correct continuum limit is the
explicit breaking of the chiral symmetry.

3.2 Gross-Neveu model on a two-dimensional lattice

We calculate the effective potential and the mass gap equation. It is shown that the effective
potential becomes chirally symmetric in the continuum limit if the coupling constant is
adjusted. On the lattice the action of the massive Gross-Neveu model with the Wilson
term looks as follows

S[Ψ̄,Ψ] =
a

2

∑
x,µ

(
Ψ̄i

xγµΨi
x+µ̂a − Ψ̄i

xγµΨi
x−µ̂a

)
+ a2m0

∑
x

Ψ̄i
xΨ

i
x

+r
a

2

∑
x,µ

(
2Ψ̄i

xΨ
i
x − Ψ̄i

xΨ
i
x+µ̂a − Ψ̄i

xΨ
i
x−µ̂a

)
− a2G

2

∑
x

(
Ψ̄i

xΨ
i
x

)2
.

(3.5)

We linearize the action by defining σ(x) = m0−GΨ̄xΨx, and promptly restrict σ(x) to its
zero-mode σ. Furthermore we set the Wilson parameter r = 1.

S[Ψ̄,Ψ, σ] =
a

2

∑
x,µ

(
Ψ̄i

xγµΨi
x+µ̂a − Ψ̄i

xγµΨi
x−µ̂a

)
+ a2σ

∑
x

Ψ̄i
xΨ

i
x

+
a

2

∑
x,µ

(
2Ψ̄i

xΨ
i
x − Ψ̄i

xΨ
i
x+µ̂a − Ψ̄i

xΨ
i
x−µ̂a

)
− a2

2G
(σ −m0)

2.
(3.6)

The partition function is given by

Z =

∫
DΨ̄xDΨydσ exp

(
−a
∑
x,y

Ψ̄xKΨy + a2 1

2G
(σ −m0)

2

)
, (3.7)
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with

K =
1

2

∑
µ

[γµ(δx+µ̂a,y − δx−µ̂a,y) + 2δx,y − δx+µ̂a,y − δx−µ̂a,y] + aσδx,y

=
a2

2

∑
µ

[
γµ

∫
d2k

(2π)2
exp(ik(x− y))(exp(ikµa)− exp(−ikµa))

+

∫
d2k

(2π)2
exp(ik(x− y))(2− (exp(ikµa)− exp(−ikµa)) + aσ)

]
= a2

∫
d2k

(2π)2
exp(ik(x− y))

[
iγµ sin kµa+

∑
µ

(1− cos kµa) + aσ

]
.

(3.8)

Here we introduced the notation kµ̂ = kµ. Inserting (3.8) into (3.7), replacing the sums
over x and y by integrals and going to momentum space, we obtain

Z =
∏
x,y

∫
dΨ̄xdΨydσ exp

[
−1

a

∫
d2x

∫
d2y

∫
d2k

(2π)2

∫
d2k′

(2π)2

∫
d2k′′

(2π)2
×

exp(ix(k′ + k)) exp(iy(k′′ − k))Ψk′

(
iγµ sin kµa+

∑
µ

(1− cos kµa) + aσ

)
Ψk′′

+
1

2G
(σ −m0)

2

]

=
∏

k

∫
dΨ̄−kdΨkdσ exp

[
−1

a

∫
d2k

(2π)2
Ψ̄−k

(
iγµ sin kµa+

∑
µ

(1− cos kµa) + aσ

)
Ψk

+
1

2G
(σ −m0)

2

]
.

(3.9)

Then we integrate out the fermion fields and obtain

Z = exp

[
NL2

∫ π
a

−π
a

d2k

(2π)2
Det

(
ln(iγµ sin kµa+

∑
µ

(1− cos kµa) + aσ)

)

+
L2

2G
(σ −m0)

2

]
.

(3.10)

Thus the effective potential is given by

Veff = −N
∫ π

a

−π
a

d2k

(2π)2
ln

(∑
µ

sin2 kµa+ (aσ +
∑

µ

(1− cos kµa))
2

)

+
N

2g
(σ −m0)

2.

(3.11)
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Varying the effective potential, we obtain the bare gap equation

∂Veff

∂σ
= −N

∫ π
a

−π
a

d2k

(2π)2

2(σ +
∑

µ(1− cos kµ))∑
µ sin2 kµa+ (aσ2 +

∑
µ(1− cos kµa))2

+
N

g
(σ −m0) = 0,

(3.12)

σ −m0

2g
=

∫ π
a

−π
a

d2k

(2π)2

σ +
∑

µ(1− cos kµ)∑
µ sin2 kµa+ (aσ2 +

∑
µ(1− cos kµa))2

. (3.13)

In order to evaluate the effective potential we rewrite it as follows:

Veff

N
= A− I, (3.14)

where

A =
1

2g
(σ −m0)

2, (3.15)

I =

∫ π
a

−π
a

d2k

(2π)2

(
ln ∆ + ln(1 +

ε

∆
)
)
, (3.16)

∆ =
∑

µ

sin2 kµa+ (
∑

µ

(1− cos kµa))
2 + σ2a2, (3.17)

ε = 2aσ
∑

µ

(1− cos kµa). (3.18)

We then expand the integrand into a power series of ε

I = I0 + I1 + I2 + · · · , (3.19)

where

I0 =

∫ π
a

−π
a

d2k

(2π)2
ln ∆,

In = −(−1)n

n

∫ π
a

−π
a

d2k

(2π)2

εn

∆n
, n = 1, 2, 3, . . . .

(3.20)

It can be shown that I1 reduces to a linear term in σ and I2 reduces to a quadratic term
in σ, while In(n ≥ 3) vanishes in the limit a→ 0. This is seen by rewriting (3.20), using a
rescaled variable pµ = kµa.

In = −(−1)n

n
(2σ)nan−2

∫ π

−π

d2p

(2π)2

(
∑

µ(1− cos pµ))n

(
∑

µ sin2 pµ + (
∑

µ(1− cos pµ))2 + a2σ2)n
(3.21)
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These integrals are well defined in the limit a→ 0.

I1 =
2σ

a
c1,

I2 = −2σ2c2,

In = 0, (n ≥ 3),

(3.22)

with

c1 =

∫ π

−π

d2k

(2π)2

∑
µ(1− cos pµ)∑

µ sin2 pµ + (
∑

µ(1− cos pµ))2
= 0.3849,

c2 =

∫ π

−π

d2k

(2π)2

(
∑

µ(1− cos pµ))2

(
∑

µ sin2 pµ + (
∑

µ(1− cos pµ))2)2
= 0.1548.

(3.23)

Next I0 can be written in the integral representation

I0 =

∫ σ2

0

dρF (ρ),

F (ρ) =

∫ π
a

−π
a

d2k

(2π)2

a2∑
µ sin2 kµa+ (

∑
µ(1− cos kµa))2 + ρa2

.

(3.24)

In the limit a→ 0 we have

F (ρ) =

∫ ∞

−∞

d2k

(2π)2

1∑
µ k

2
µ + ρ

+ c0, (3.25)

with

c0 =

∫ π

−π

d2p

(2π)2

(
∑

µ(pµ − sin pµ))2 − (
∑

µ(1− cos pµ))2

(
∑

µ sin2 pµ + (
∑

µ(1− cos pµ))2)(
∑

µ p
2
µ)

= 0.427. (3.26)

We can check (3.26) by calculating

lim
a→0

(
F (ρ)−

∫ a
π

− a
π

d2k

(2π)2

1∑
µ k

2
µ + ρ

)
=

lim
a→0

∫ π

−π

d2p

(2π)2

(
∑

µ(pµ − sin pµ))2 − (
∑

µ(1− cos pµ))2

(
∑

µ sin2 pµ + (
∑

µ(1− cos pµ))2 + ρa2)(
∑

µ p
2
µ) + ρa2

= c0.

(3.27)

Then F (ρ) and I0 are computed

F (ρ) =
1

4π
ln(

π2

a2ρ
+ 1) + c0 ≈ −

1

4π
ln(a2ρ) + ĉ0, (3.28)

I0 = − 1

4π
σ2 ln(

a2σ2

e
) + ĉ0σ

2. (3.29)
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Now we are ready to compute Veff in the limit a→ 0

Veff

N
=

1

2g
(σ −m0)

2 − 2σ

a
c1 + 2σ2c2 +

1

4π
σ2 ln

a2σ2

e
− ĉ0σ

2. (3.30)

Since we are interested in a renormalized theory with chiral symmetry, we map the lattice
spacing to the continuum cutoff

2c2 +
1

4π
ln a2 − ĉ0 =

1

4π
ln

(
1

Λ2

)
, (3.31)

and have to fine-tune the bare mass

m0 = −2c1g

a
. (3.32)

Finally we get
Veff

N
=

1

2g
σ2 +

σ2

4π
ln(

σ2

Λ
− 1). (3.33)

This is exactly the formula we obtained in the continuum model.

In this analytic calculation in the large N limit the fine-tuning of m0 was not such a
big problem. However, it is not very natural that the chiral symmetry is only restored
after the fine-tuning of the mass m0. Besides that, if one is interested in monte-carlo sim-
ulations at N <∞, fine-tuning is a mayor problem. Therefore we are interested in finding
another way of constructing the two-dimensional Gross-Neveu model.



Chapter 4

The three-dimensional Gross-Neveu
model

In this chapter we perform similar calculations as in the first one, although now in three
dimensions. One mayor difference between the two- and the three-dimensional model is
that the three-dimensional model can be in a broken or an unbroken phase, depending on
the strength of the coupling constant, whereas the two-dimensional model is always in the
broken phase. The action of the Gross-Neveu model in three dimensions is given by

S[Ψ̄,Ψ] =

∫
d3x

[
Ψ̄(x)γµ∂µΨ(x)− G(3)

2

(
Ψ̄(x)Ψ(x)

)2]
. (4.1)

Note that G(3) has the dimension m−1 whereas the two dimensional coupling constant G
was dimensionless.

4.1 Symmetry

To investigate the symmetry the spinors are, like in the two dimensional theory, decom-
posed into left- and right-handed components

ΨR,L =
1± γ3

2
Ψ,

Ψ̄R,L = Ψ̄
1∓ γ3

2
.

(4.2)

Inserting the decomposed spinors into the action we obtain

S[Ψ̄,Ψ] =

∫
d3x(Ψ̄R + Ψ̄L)γµ∂µ(ΨR + ΨL)− G(3)

2
((Ψ̄R + Ψ̄L)(ΨR + ΨL))2. (4.3)
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After investigating the following terms

Ψ̄Rγµ∂µΨL = Ψ̄
1

2
(1− γ3)γµ∂µ

1

2
(1− γ3)Ψ = Ψ̄

1

2
(1− γ3)γ3∂3Ψ,

Ψ̄Lγµ∂µΨR = Ψ̄
1

2
(1 + γ3)γµ∂µ

1

2
(1 + γ3)Ψ = Ψ̄

1

2
(1 + γ3)γ3∂3Ψ,

Ψ̄RΨR = Ψ̄
1

2
(1− γ3)

1

2
(1 + γ3)Ψ = 0,

Ψ̄LΨL = Ψ̄
1

2
(1 + γ3)

1

2
(1− γ3)Ψ = 0,

(4.4)

we can write the action as

S[Ψ̄,Ψ] =

∫
d3x

[
Ψ̄Rγµ∂µΨR + Ψ̄Lγµ∂µΨL −

G(3)

2
(Ψ̄RΨL)2 − G(3)

2
(Ψ̄LΨR)2

+ Ψ̄Rγ3∂3ΨL + Ψ̄Lγ3∂3ΨR

]
.

(4.5)

In contrast to the the two dimensional model we do not have a chiral symmetry but a
symmetry that includes a change of the sign in the third direction. The action is invariant
under the transformations

ΨL(x1, x2, x3) → sLΨL(x1, x2,−x3), Ψ̄L(x1, x2, x3) → sLΨ̄L(x1, x2,−x3) and

ΨR(x1, x2, x3) → sRΨR(x1, x2,−x3), Ψ̄R(x1, x2, x3) → sRΨ̄R(x1, x2,−x3),
(4.6)

with sR = ±1, sL = ±1.

4.2 The Large N Limit

In order to perform explicit calculations we consider the fields in the large N limit where
g(3) = G(3)N is kept fixed. In an analogous manner as in the two dimensional model, we
replace (4.1) by the action

S[Ψ̄,Ψ,Φ] =

∫
d3x

[
Ψ̄(x)γµ∂µΨ(x) +

1

2G(3)
Φ2(x) + Ψ̄(x)Ψ(x)Φ(x)

]
, (4.7)

where

Φ(x) = −G(3)Ψ̄(x)Ψ(x). (4.8)

The two actions are connected by

exp(−S[Ψ̄,Ψ]) =

∫
DΦ exp(−S[Ψ̄,Ψ,Φ]). (4.9)
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In the large N limit we may restrict Φ(x) to its zero-mode Φ0. Doing so the action in
momentum space reads

S[Ψ̄,Ψ,Φ0] =
1

(2π)3

∫
d3k

∫
d3k′Ψ̄(k′)(iγµkµ + Φ0)Ψ(k)×

1

(2π)3

∫
d3x exp(i(k + k′)x) +

L3

2G(3)
Φ2

0

=
1

(2π)3

∫
d3kΨ̄(−k)(iγµkµ + Φ0)Ψ(k) +

L3

2G(3)
Φ2

0,

(4.10)

where L3 is the volume of space-time. To solve the model we again integrate out the
fermion fields ∫

DΨ̄DΨ exp(−S[Ψ̄,Ψ,Φ0]) = exp(−Veff (Φ0)L
3). (4.11)

As in the two-dimensional model we introduce periodic boundary conditions in coordinate
space-time, thus discretize the momentum space (

∫
d3k → (2π

L
)3
∑

k) and perform on each

lattice point k the integral
∫
dΨ̄kdΨke

−Ψ̄kAΨk = Det(A). When we have integrated out the
fermion fields we let the lattice spacing go to zero and return to the infinite volume.

Z =

∫
DΨ̄DΨdΦ0 exp

[
− 1

(2π)3

∫
d3kΨ̄(−k)(iγµkµ + Φ0)Ψ(k)− L3

2G(3)
Φ2

0

]
'
∏

k

∫
dΨ̄kdΨkdΦ0 exp

[
− 1

L3

∑
k

(
Ψ̄−k(iγµkµ + Φ0)Ψk

)
− L3

2G(3)
Φ2

0

]

=
∏

k

∫
dΦ0(k

2 + Φ2
0)

N exp

[
− L3

2G(3)
Φ2

0

]

=

∫
dΦ0 exp

[∑
k

ln(k2 + Φ2
0)

N − L3

2G(3)
Φ2

0

]

'
∫
dΦ0 exp

[(
L

2π

)3

N

∫
d3k ln(k2 + Φ2

0)−
L3

2G(3)
Φ2

0

]
.

(4.12)

We then introduce a momentum cutoff Λ and with g(3) = G(3)N the effective potential
reads

Veff (Φ0) = N

[
− 1

(2π)3

∫
d3k ln

(
k2 + Φ2

0

)
+

1

2g(3)
Φ2

0

]
= N

[
− 4π

(2π)3

∫ Λ

0

dk k2 ln
(
k2 + Φ2

0

)
+

1

2g(3)
Φ2

0

]
= N

[
Φ2

0

2g(3)
− 1

6π2

(
Λ3 ln(Λ2 + Φ2

0)−
2

3
Λ3 + 2Φ2

0Λ− 2Φ3
0 arctan

(
Λ

Φ0

))]
.

(4.13)
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For large Λ and with the convenient additive constant NΛ3

6π2 (ln Λ2− 2
3
) the potential reduces

to

Veff (Φ0) =N

[
Φ2

0

2g(3)
− 1

6π2

(
Λ3 ln

(
Λ2 + Φ2

0

Λ2

)
+ 2Φ2

0Λ + π|Φ0|3
)]

= N

[
|Φ0|3

6π
+

(
1

2g(3)
− Λ

2π2

)
Φ2

0

]
.

(4.14)

Starting from (4.13), the minimum of the effective potential is given by

∂Φ0Veff (Φ0) = − 1

(2π)3

∫
d3k

2Φ0

k2 + Φ2
0

+
Φ0

g(3)
= 0, (4.15)

and we obtain the mass gap equation

1

(2π)3

∫
d3k

2

k2 + Φ2
0

=
1

g(3)
. (4.16)

To evaluate the mass gap equation a momentum cutoff Λ is introduced and with Λ →∞
we obtain

1

g(3)
=

1

(2π)3

∫
d3k

2

k2 + Φ2
0

=
1

π2

∫ Λ

0

dk k2 1

k2 + Φ2
0

=
1

π2

(
Λ− Φ arctan

(
Λ

Φ

))
≈ 1

π2
(Λ− π

2
|Φ|).

(4.17)

We introduce the critical coupling constant g(c) = π2/Λ. If 1/g(3) > 1/g(c) the minimum
of the potential is at Φ0 = 0, the model is in the unbroken phase. If 1/g(3) < 1/g(c) the
minimum of the potential is at |Φ0| = 2π

(
1/g(c) − 1/g(3)

)
, the model is in the broken

phase.

Figure 4.1: Effective potential of the 3D Gross-Neveu model in the unbroken phase.

Figure 4.2: Effective potential of the 3D Gross-Neveu model in the broken phase.



Chapter 5

Dimensional reduction

We start in the symmetric phase of the three-dimensional Gross-Neveu model and introduce
periodic boundary conditions in the third direction (x3 : 0 . . . β). It is shown that in the
limit β →∞ the two-dimensional model emerges from the three-dimensional one.

5.1 From the three- to the two-dimensional model

The three-dimensional mass gap equation with periodic boundary conditions in the third
direction becomes

2

(2π)3

∫
d2k

2π

β

∑
n

1

k2
1 + k2

2 + Φ2
0 + (2πn/β)2 =

1

g(3)
. (5.1)

To evaluate the sum, we use the Poisson Formula

∞∑
n=−∞

φ(2πn) =
1

2π

∞∑
ν=−∞

∫
dτφ(τ) exp(−iντ), (5.2)

and we obtain

∞∑
n=−∞

1

k2
1 + k2

2 + Φ2
0 +

(
2πn
β

)2 =
1

2π

∞∑
ν=−∞

∫ ∞

−∞
dτ

1

k2
1 + k2

2 + Φ2
0 +

(
τ
β

)2 exp(−iντ)

=
β

2E
coth

(
Eβ

2

)
,

(5.3)

where E2 = k2
1 + k2

2 + Φ2
0.

The mass gap equation then reads

1

(2π)2

∫
d2k

1

E
coth

(
Eβ

2

)
=

1

g(3)
. (5.4)



18 Chapter 5. Dimensional reduction

We introduce a spherical cutoff Λ and perform the integral

1

2π

∫ Λ

0

dk
k√

k2 + Φ2
0

coth

(√
k2 + Φ2

0

2
β

)

=
1

πβ

[
ln(sinh(

β

2

√
Λ2 + Φ2

0))− ln(sinh(
1

2
|Φ0|β))

]
=

1

g(3)
.

(5.5)

For large Λ we obtain

ln sinh(
1

2
|Φ0|β) = πβ

(
1

g(c)
− 1

g(3)

)
, (5.6)

where 1
g(c) = Λ

2π
.

Starting from the symmetric phase and taking the limit β →∞, leads to

1

2
|Φ0|β = e

−
(

1

g(3)
− 1

g(c)

)
πβ
. (5.7)

We relate the three- to the two-dimensional coupling constant 1/g = β(1/g(3) − 1/g(c)).
Now we have a hierarchy of different scales with the correlation length ξ = 1/Φ0 being
the longest, β playing the role of the inverse two-dimensional cutoff in the middle, and the
three-dimensional cutoff Λ being the shortest. In units of the correlation length ξ = 1/Φ0

the extent of the third dimension β becomes small and the two dimensional model emerges.

Figure 5.1: Φ0(
1

g(3) ) for different β.



Chapter 6

Massive fermions

In this chapter we consider massive fermions. First we introduce the massive Gross-Neveu
model at infinite volume. Then we consider free, massive fermions with domain wall
boundary conditions in the third direction s.

6.1 The massive three-dimensional Gross-Neveu model

In the massive Gross-Neveu model an explicit mass term m is added in the action. The
linearized action then reads

S[Ψ̄,Ψ,Φ0] =

∫
d3xΨ̄(x)(γµ∂µ +m)Ψ(x) +

1

2G(3)
Φ2

0 + Ψ̄(x)Ψ(x)Φ0. (6.1)

Just as in the massless model we go into momentum space, integrate out the fermion fields
and obtain the effective potential

Veff (Φ0) =N

[
− 1

(2π)3

∫
d3k ln

(
k2 + (Φ0 +m)2

)
+

1

2g(3)
Φ2

0

]
=N

[
Φ2

0

2g(3)
− 1

6π2

(
Λ3 ln(Λ2 + (Φ0 +m)2)− 2

3
Λ3

+2(Φ0 +M)2Λ− 2(Φ0 +m)3 arctan

(
Λ

Φ0 +m

))]
.

(6.2)

For large Λ and after adding the convenient integration constant NΛ3

6π2 (ln(Λ2) − 2
3
), the

potential reduces to

Veff = N

[
|Φ0 +m|3

6π
+

Φ2
0

2g(3)
− Λ

2π2
(Φ0 +m)2

]
. (6.3)
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Starting from (6.2), the mass gap equation reads

Φ0

g(3)
=

1

(2π)3

∫
d3k

2(Φ0 +m)

k2 + (Φ0 +m)2

=
1

π2

∫ Λ

0

dk k2 Φ0 +m

k2 + (Φ0 +m)2

=
Φ0 +m

π2

(
Λ− (Φ0 +m) arctan

(
Λ

Φ0 +m

))
.

(6.4)

For large Λ we obtain

Φ0 = −m− π

g(3)
+

Λ

π
±

√(
Λ

π
− π

g

)2

+
2mπ

g
. (6.5)

6.2 Free massive fermions with domain wall boundary

conditions

We consider free, massive fermions and introduce domain wall boundary conditions in the
third direction s with a domain wall at s = 0 and an anti domain wall at s = β. When
solving the Dirac equation the left-handed part of the zero mode shall live on the domain
wall and the right-handed part on the anti domain wall. The action is given by

S =

∫
dtdx

∫ β

0

ds
[
Ψ̄ (iγµ∂µ +m) Ψ

]
, (6.6)

the corresponding Dirac equation is

(iγµ∂µ +m) Ψ = 0. (6.7)

From here we work in Minkowski space and use the following representation of the gamma
matrices

γ0 =

(
0 −1
−1 0

)
, γ1 =

(
0 1
−1 0

)
, γ2 =

(
i 0
0 −i

)
. (6.8)

This leads to (
∂s +m i∂t + i∂x

i∂t − i∂x −∂s +m

)
Ψ = 0. (6.9)

Using the ansatz: Ψ = ei(Et+k1x)ψ, we get(
−∂s +m E − k1

E + k1 ∂s +m

)(
ΨR

ΨL

)
= 0. (6.10)

The equations for ΨR and ΨL thus are

∂2
sΨR,L = (m2 + k2

1 − E2)ΨR,L. (6.11)
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We impose domain wall boundary conditions

ΨR(s = 0) = 0,

ΨL(s = β) = 0,
(6.12)

where β is the distance between the two domain walls and make the following ansatz for
the wave functions ψR

ψR = A sinh

(
s
√
m2 + k2

1 − E2

)
, m2 + k2

1 > E2

ψR = B sin

(
s
√
E2 −m2 − k2

1

)
, m2 + k2

1 < E2.

(6.13)

For ψL we obtain

ψL =
A

E − k1

[
−
√
m2 + k2

1 − E2 cosh

(
s
√
m2 + k2

1 − E2

)
+m sinh

(
s
√
m2 + k2

1 − E2

)]
, m2 + k2

1 > E2,

ψL =
B

E − k1

[
−
√
E2 −m2 − k2

1 cos

(
s
√
E2 −m2 − k2

1

)
+m sin

(
s
√
E2 −m2 − k2

1

)]
, m2 + k2

1 < E2.

(6.14)

With ψL(s = β) = 0 we get√
m2 + k2

1 − E2 = m tanh

(
β
√
m2 + k2

1 − E2

)
,

m2 + k2
1 > E2,√

E2 −m2 − k2
1 = m tan

(
β
√
E2 −m2 − k2

1

)
,

m2 + k2
1 < E2.

(6.15)

In the case ofm2+k2
1 > E2 and in the limit (β →∞) we obtain tanh(β

√
m2 + k2

1 − E2) = 1
and thus E2 = k2

1.





Chapter 7

Gross-Neveu model with a dynamical
domain wall

In this chapter we study the Gross-Neveu model with a dynamical domain wall. First
we assume that this model can also be regarded as a free fermion model with a space-
dependent mass term. The mass term m(s) plays the role of Ψ̄Ψ and shall be determined
in a self-consistent way. It has been shown by Dashen et al. [15] that such a mass term
can have the shape of a kink or a double kink. We will start with the results from their
work and verify the self-consistency of the solutions, namely show that when solving the
corresponding Dirac equation and summing over all occupied states one indeed gets back
the original term [7], [8], [9]. The mass term can also be interpreted as a space dependent
potential.

7.1 Gross-Neveu model with a kink

The action of the model is given by

S =

∫
dtdxds

[
Ψ̄ (iγµ∂µ −m(s)) Ψ

]
. (7.1)

We want m(s) to have a domain wall shape and choose m(s) = m0 tanh(m0s). Hence we
have to solve the following Dirac equation

(iγµ∂µ −m(s)) Ψ = 0. (7.2)

Using the same representation of the γ matrices as in section 6.2 leads to(
−∂s −m(s) −i∂t + i∂x

−i∂t − i∂x +∂s −m(s)

)
Ψ = 0. (7.3)

With the ansatz: Ψ = ei(Et+k1x)ψ, we get(
−∂s −m(s) E − k1

E + k1 ∂s −m(s)

)(
ψR

ψL

)
= 0. (7.4)



24 Chapter 7. Gross-Neveu model with a dynamical domain wall

These two equations can be decoupled and converted into two second order differential
equations. The equations for ψR and ψL are(

−∂2
s ∓ ∂sm(s) +m(s)2 − E2 + k2

1

)
ψR,L = 0. (7.5)

Inserting m(s) in equation (7.5) and with E2 = k2
1 + k2

2 + m2
0, we obtain the following

equations (
∂2

s + 2m2
0(1− tanh2(m0s)) + k2

2

)
ψR = 0,(

∂2
s + k2

2

)
ψL = 0.

(7.6)

The solutions of this equation are one discrete state

ψ0 =

( 1
cosh(m0s)

0

)
, (7.7)

with the eigenvalues E = ±k1 and the continuum states

ψ±k =

(
(ik2 +m(s))eik2s

±(k1 − E)eik2s

)
, (7.8)

with the eigenvalues E = ±
√
k2

1 + k2
2 +m2

0. These states form a complete set of states
though they are not yet orthonormal. We can take linear combinations and form a or-
thonormal basis for the theory which we find to be

Ψk,odd =

(
1

8π3

1

E(E − k1)

) 1
2
(
k2 cos(k2s)−m(s) sin(k2s)

(−E + k1) sin(k2s)

)
ei(Et+k1x),

Ψk,even =

(
1

8π3

1

E(E − k1)

) 1
2
(
−k2 sin(k2s)−m(s) cos(k2s)

(−E + k1) cos(k2s)

)
ei(Et+k1x),

Ψk,0 =

(
1

4π2

m0

2

) 1
2
(

sech(m0s)
0

)
ei(Et+k1x).

(7.9)

The subscript k, α characterizes the different states. k refers to (E, k1, k2) and α refers to
odd, even or zero. The allowed range of k is given by −∞ < E, k1 < +∞ and 0 ≤ k2 <∞.
The asymmetry in the range for k2 arises because we have made linear combinations of
+k2 and −k2 to form the odd and even states. The orthogonality can be tested by showing∫
ds dx dt Ψ†

k,αΨk′,α′ = δα,α′δ
3(k−k′) when α and α′ are not zero. If both α and α′ are zero

the three dimensional delta function is replaced by a two dimensional delta function in E
and k1. In appendix B the integral is explicitly calculated for all possible combinations
of α and α′. Having solved these equations, we want to verify the self-consistency of the
solutions and get

Ψ̄k,0Ψk,0 = 0,

Ψ̄k,oddΨk,odd =
1

4π3E
(k2 sin k2s cos k2s− sin2 k2sm0 tanhm0s),

Ψ̄k,evenΨk,even =
1

4π3E
(−k2 sin k2s cos k2s− cos2 k2sm0 tanhm0s),

(7.10)
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and ∑
α

Ψ̄k,αΨk,α = Ψ̄kΨk = − m0

4π3E(k)
tanhm0s. (7.11)

Summing over the filled Dirac sea, the self-consistency condition leads to

NG(3)m0

4π3
tanhm0s

∫ Λ/2

−Λ/2

d2k

(2π)2

1

E(k)
= m0 tanhm0s, (7.12)

where the factor N comes from the fact that each negative state is filled with N fermions.
To get back the original potential we thus must require

NG(3)

4π3

∫ Λ/2

−Λ/2

d2k

(2π)2

1√
k2 +m2

0

=

NG(3)

8π4

∫ Λ′

0

dk
k√

k2 +m2
0

=

NG(3)

8π4
(
√

Λ′2 +m2
0 −m0) = 1.

(7.13)

7.2 Gross-Neveu model with a double kink

Again we consider the action

S =

∫
dtdxds

[
Ψ̄ (iγµ∂µ −m(s)) Ψ

]
. (7.14)

Now the mass term has the form m(s) = m0(1 + y(tanh(ξ−) − tanh(ξ+))), with y =
sin
(

π
2

n
N

)
, ξ± = ym0s ± c0, c0 = 1

2
arctanh(y). N is the number of flavors and n is the

occupation number of the discrete positive state. To solve the Dirac equation

(iγµ∂µ −m(s)) Ψ = 0, (7.15)

we start in the same way as in the preceding section and obtain(
−∂s −m(s) −i∂t + i∂x

−i∂t − i∂x ∂s −m(s)

)
Ψ = 0. (7.16)

With the ansatz: Ψ = ei(Et+k1x)ψ, we get(
−∂s −m(s) E − k1

E + k1 ∂s −m(s)

)(
ΨR

ΨL

)
= 0. (7.17)

The equations for ΨR and ΨL thus are(
−∂2

s ∓ ∂sm(s) +m(s)2 − E2 + k2
1

)
ΨR,L = 0. (7.18)
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We subtract on both sides of (7.18) the termm2
0Ψ, to make the potential in this Schrödinger

like equation vanish asymptotically and use E2 = m2
0 + k2

1 + k2
2. This leads to(

∂2
s ± ∂sm(s)−m(s)2 +m2

0

)
ΨR,L = −k2

2ΨR,L. (7.19)

Now we insert the explicit form of m(s) into (7.19) and evaluate the expression term by
term

∂m(s)

∂s
= m2

0y
2
(
tanh2(ξ+)− tanh2(ξ−)

)
= m2

0y
2

(
1

cosh2(ξ−)
− 1

cosh2(ξ+)

) (7.20)

and

m(s)2 −m2
0 = (m(s)−m0)(m(s) +m0)

= m2
0y(tanh(ξ−)− tanh(ξ+))(2 + y(tanh(ξ−)− tanh(ξ+)))

= m2
0y

2(tanh2(ξ−) + tanh2(ξ+))

+ 2m2
0y(tanh(ξ−)− tanh(ξ+)− y tanh(ξ−) tanh(ξ+)).

(7.21)

Using (B.8) one finds

m(s)2 −m2
0 = m2

0y
2
(
tanh(ξ−)2 + tanh(ξ+)2 − 2

)
= −m2

0y
2

(
1

cosh2(ξ−)
+

1

cosh2(ξ+)

)
.

(7.22)

Combining (7.20) and (7.22) we get

±∂m(s)

∂s
−m(s)2 +m2

0 = 2m2
0y

2 1

cosh2(ξ∓)
. (7.23)

Inserting (7.23) into (7.19) we finally obtain(
∂2

∂s2
+

2y2m2
0

cosh2(ξ∓)

)
ΨR,L = −k2

2ΨR,L. (7.24)

The solutions of (7.24) are two discrete states ψ±0 and two continua of states ψ±k . The wave
functions of the discrete states are given by

ψ±0 =

√
ym0

2

(
1

cosh(ξ−)

∓ 1
cosh(ξ+)

)
(7.25)

with the eigenvalues

E±
0 = ±

√
m2

0(1− y2) + k2
1. (7.26)
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The continuum states are

ψ±k =
1

E(k)(ik2 + ym0)

(
(ik2 −m0)(ik2 − ym0 tanh(ξ−))
±E(k)(ik2 − ym0 tanh(ξ+))

)
eik2s, (7.27)

with the eigenvalues E2 = k2
1 + k2

2 +m2
0.

Now we verify the self-consistency of the solutions. Summing Ψ̄Ψ over all occupied states
we want to get m(s) back. The negative states are fully occupied whereas the discrete
positive state has n fermions and the continuous positive state is empty. Hence the following
condition has to be fulfilled

S(s)
.
= −G(3)N

(∑
α

Ψ̄−
α Ψ−

α +
n

N
Ψ̄+

0 Ψ+
0

)
= m(s). (7.28)

For the discrete states we obtain

Ψ̄±
0 Ψ±

0 = ∓ym0

4

2

cosh(ξ+) cosh(ξ−)

= ∓
√

1− y2m0

2
(tanh(ξ+)− tanh(ξ−)).

(7.29)

The negative energy state Ψ−
0 is fully occupied, whereas the positive state Ψ+

0 contains n
fermions.

S(s)discrete = G(3)(N − n)
√

1− y2
m0

2
(tanh(ξ+)− tanh(ξ−)) (7.30)

The continuum states are

Ψ̄±
k Ψ±

k =
1

2E(k)2(k2
2 + y2m2)

[E(k)(−ik2 − ym0 tanh(ξ+))(ik2 −m0)(ik2 − ym0 tanh(ξ−))

+ (−ik2 −m0)(−ik2 − ym0 tanh(ξ−))E(k)(ik2 − ym0 tanh(ξ+))
]

=
m0

2E(k)(k2
2 + y2m2

0)

×
[
−2k2

2y(tanh(ξ−)− tanh(ξ+))− 2k2
2 − 2y2m2

0(tanh(ξ−)− tanh(ξ+))
]
.

(7.31)

Using (B.8) this reduces to

m0

E(k)(k2
2 + y2m2

0)

[
−(k2

2 + y2m2
0)− (k2

2y +m2
0y)(tanh(ξ−)− tanh(ξ+))

]
= − m0

E(k)

[
1 +

y(k2
2 +m2

0)

k2
2 + y2m2

0

(tanh(ξ−)− tanh(ξ+))

]
.

(7.32)

Performing the integral over all negative continuum states we obtain

S(s)cont = NG(3)m0

∫ Λ/2

−Λ/2

d2k

(2π)2

1

E(k)

[
1 + y

(
1 +

m2
0 −m2

0y
2

k2
2 + y2m2

0

)
(tanh(ξ−)− tanh(ξ+))

]
.

(7.33)
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Now S(s) is split into two parts S(s)cont = S̃(s)cont + δS(s)cont. Where

S̃(s)cont = NG(3)m0 [1 + y(tanh(ξ−)− tanh(ξ+))]

∫ Λ/2

−Λ/2

d2k

(2π)2

1

E(k)
(7.34)

and

δS(s)cont = NG(3)m3
0(1− y2)(tanh(ξ−)− tanh(ξ+))

∫ Λ/2

−Λ/2

d2k

(2π)2

1

E(k)(k2
2 +m2

0y
2)
. (7.35)

δS(s)cont can be evaluated in the limit (Λ →∞). With (B.12) we get

δS(s)cont =
NG(3)m0

π

√
1− y2(tanh(ξ−)− tanh(ξ+))

∫
dk1

1

m0y

1

m2
0(1− y2) + k2

1

×

(
π − 2arcsin

(
m0y√
k2

1 +m2
0

))
.

(7.36)

We now fill all discrete negative states. These have energy E0 = −
√
m2

0(1− y2) + k2
1 and

exactly cancel the contribution π in (7.36). In order to cancel the arcsin-term in (7.36) as
well, we need to fill some positive energy states. In order to stabilize the configuration, we
occupy all positive states localized on the wall (with energy E0 =

√
m2

0(1− y2) + k2
1) up

to some Fermi momentum kF . The cancellation condition which determines the value of
kF takes the form∫ kF

−kF

dk1√
k2

1 +m2
0(1− y2)

=

∫ ∞

−∞

dk1√
m2

0(1− y2) + k2
1

2

π
arcsin(

ym0√
k2

1 +m2
0

) = log

√
1 + y

1− y

(7.37)
and hence,

kF → ym0. (7.38)

The energy of the particles on the Fermi-surface√
k2

F +m2
0(1− y2) =

√
y2m2

0 + (1− y2)m2
0 = m0 (7.39)

is therefore equal to the lowest energy m0 of the states propagating in the (2+1)-d bulk of
the extra dimension. Any fermion that is added on the wall has enough energy to escape
into the extra dimension.
Finally we want to dimensionally reduce this model to the two-dimensional one and thus
further analyze the zero mode. We define the distance between the two kinks as β =
arctanhy/ym0. For large β we get y ≈ 1 and thus y = tanh βm0 ≈ 1− 2e−2βm0 . Inserting
this in (7.26) we obtain

E2 = 4m2
0e
−2βm0 + k2

1, (7.40)

and finally

µ =
√
E2 − k2

1 = 2m0e
−βm0 . (7.41)

In units of the correlation length ξ = 1/µ the third dimension becomes small and the
two-dimensional model emerges.



Conclusion and outlook

This chapter summarizes the main results and gives an outlook for possible further studies.
It has been shown that the two-dimensional continuum Gross-Neveu model has a chiral
symmetry that is spontaneously broken. When the model is considered on a lattice the bare
mass has to be fine-tuned in order to preserve the chiral symmetry. The three-dimensional
model can be in a broken or an unbroken phase. We showed two ways of reducing the
three-dimensional to the two dimensional model. One can ether start in the unbroken
phase of the three-dimensional model and impose periodic boundary conditions or start in
the broken phase and impose domain wall boundary conditions.
The following studies are suggested to be worked out in further studies: It would be
interesting to study the dimensional reduction in the Gross-Neveu model at finite N and
check whether the right dynamics are generated. This could be done through numerical
calculations such as Monte Carlo simulations.
Dimensional reduction is a generic phenomenon that occurs in a variety of models. Similar
calculations as the ones done here in the Gross-Neveu model should be possible eg. in the
O(3) model. The final goal would be to apply the techniques learned while working on toy
models to QCD. It should be possible obtain QCD through dimensional reduction of a five-
dimensional model. Such a to dimensional reduction approach to QCD is realized in the
D-theory where classical fields arise from the dimensional reduction of discrete variables.
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Appendix A

Grassmann algebras

Fermion fields are described by anticommuting (Grassmann) variables. Hence, let us have
a look at the so-called Grassmann algebra.
The generators of a n-dimensional Grassmann algebra are anticommuting classical variables
ηi with (i = 1 . . . n),

{ηi, ηj} = 0. (A.1)

A general element of a Grassmann algebra is defined as a power series of the generators.
Since η2

i = 0, the power series has only a finite number of elements.

f(η) = f0 +
∑

i

fiηi +
∑
i,j

fijηiηj +
∑
i,j,k

fijkηiηjηk + · · ·+ f12...Nη1η2 . . . ηN . (A.2)

The fij...l are ordinary complex numbers, which are antisymmetric in i, j, . . . , l. The inte-
gration rules for Grassmann variables are∫

dηi = 0,

∫
dηiηi = 1,

∫
dηidηjηiηj = −1, (A.3)

and the differentiation is defined by

∂

∂ηi

1 = 0,
∂

∂ηi

ηi = 1,
∂

∂ηi

∂

∂ηj

ηiηj = −1. (A.4)

Notice that, because of the peculiar definition of Grassmann variables the integration over
ηi is equivalent to partial differentiation with respect to this variable. The Grassmann
algebra we use to define fermion fields is generated by the Grassmann numbers

Ψ =


Ψ1

Ψ2

...
ΨN

 , Ψ̄ =
(
Ψ̄1, Ψ̄2, . . . , Ψ̄N

)
, (A.5)
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which are completely independent. We show that∫
DΨ̄DΨ exp(−Ψ̄AΨ) =

N∑
i=1

∫
dΨ̄idΨi exp(−Ψ̄iAΨi) = Det(A), (A.6)

where A is a Hermitian N×N matrix. Using the power series expansion of the exponential
function and the properties of the Grassmann numbers we get∫

DΨ̄DΨ exp(−Ψ̄Ψ) =

∫
DΨ̄DΨ

1

N !
(−Ψ̄Ψ)N

=

∫
DΨ̄DΨ

(−1)N

N !
N !
(
Ψ̄1Ψ1 · . . . · Ψ̄NΨN

)
= (−1)N · (−1)(

2N(2N−1)
2 ) = 1.

(A.7)

Then the variables are transformed as

Ψ = BΦ, Ψ̄ = Φ̄C, (A.8)

where B and C are the transformation matrices. Thus we get∏
i

Ψi = Det(B)
∏

i

Φi,∏
i

Ψ̄i = Det(C)
∏

i

Φ̄i.
(A.9)

To preserve the integration rules
∫
DΨ̄DΨ Ψ̄Ψ =

∫
DΦ̄DΦ Φ̄Φ we require∏

i

dΨi =
1

Det(B)

∏
i

dΦi,

∏
i

dΨ̄i =
1

Det(C)

∏
i

dΦ̄i.
(A.10)

Substituting (A.8) and (A.10) into (A.7) leads to

1

Det(B)Det(C)

∫
DΦ̄DΦ exp(−Φ̄CBΦ) = 1. (A.11)

With A = CB and after renaming the variables we finally get (A.6).
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Useful formulae

B.1 Orthonormalization

Here we explicitly show that the functions introdiced in Section 6.1 are orthonormal.

∫
dtdxdsΨ†

k,oddΨk′,even = 0,∫
dtdxdsΨ†

k,evenΨk′,0 = 0,∫
dtdxdsΨ†

k,oddΨk′,0 = 0,

(B.1)

∫
dtdxdsΨ†

k,0Ψk′,0 =
m0

8π2

∫
dx dt ds

1

cosh2(m0s)
e−i(Et+k1x)ei(E′t+k′1x)

=
1

4π2

∫
dx dte−i(E−E′)te−i(k1−k′1)

= δ(E − E ′)δ(k1 − k′1),

(B.2)
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∫
dtdxdsΨ†

k,oddΨk′,odd =
1

8π3

1

E − k1

∫
dx dt ds {[(k2 cos k2s−m0 tanhm0s sin k2s)

× (k′2 cos k′2s−m0 tanhm0s sin k′2s)

+ (−E + k1)(−E ′ + k′1) sin k2s sin k′2s]e
−i(E−E′)te−i(k1−k′1)}

=
4π2

8π3

1

E − k1

4
{
πk2k

′
2(δ(k2 − k′2) + δ(k2 + k′2)

+ π(−E + k1)
2(δ(k2 − k′2)− δ(k2 + k′2))

+

∫
ds
[
−m0 tanhm0s

d

ds
(sin k2s sin k′2s)

+ m2
0 tanh2m0s sin k2s sin k′2s

]}
δ(E − E ′)δ(k1 − k′1)

=
1

2π

1

E − k1

{2π(E2 − Ek1)(δ(k2 − k′2)− δ(k2 + k′2))

− 2m0 tanhm0s sin k2s sin k′2s|∞0 }δ(E − E ′)δ(k1 − k′1)

= δ(E − E ′)δ(k1 − k′1)δ(k2 − k′2),

(B.3)

∫
dtdxdsΨ†

k,evenΨk′,even =
1

8π3

1

E − k1

∫
dx dt ds{[(k2 sin k2 +m0 tanhm0s cos k2s)

× (k′2 sin k′2s+m0 tanhm0s cos k′2s)

+ (−E + k1)(−E + k1) cos k2s cos k′2s]e
−i(E−E′)te−i(k1−k′1)}

=
4π

8π3

1

E − k1

{
πk2k

′
2(δ(k2 − k′2) + δ(k2 + k′2))

+ π(−E + k1)
2(δ(k2 − k′2)− δ(k2 + k′2))

+

∫
ds
[
−m0 tanhm0s

d

ds
(cos k2s cos k′2s)

+ m2
0 tanh2m0s cos k2s cos k′2s

]}
δ(E − E ′)δ(k1 − k′1)

=
1

2π

1

E − k1

{2π(E2 − Ek1)(δ(k2 − k′2)− δ(k2 + k′2))

− 2m0 tanhm0s cos k2s cos k′2s|∞0 }δ(E − E ′)δ(k1 − k′1)

= δ(E − E ′)δ(k1 − k′1)δ(k2 − k′2).

(B.4)



B.2 Identities 37

To evaluate the preceding integrals we have replaced when required the trigonometric
functions by equivalent functions that are well defined at infinity

cos(ks) → cosε(ks) = lim
ε→0

eiks + e−iks

2
e−|s|

ε
2 ,

sin(ks) → sinε(ks) = lim
ε→0

eiks − e−iks

2
e−|s|

ε
2 .

(B.5)

B.2 Identities

We collect some useful formulas which are needed in order to derive the results of section
6.2.

ξ± = ymx± 1

2
arctanh(y),

ξ+ − ξ− = arctanh(y).
(B.6)

The addition theorem for tanh reads

tanh(ξ+ − ξ−) =
tanh(ξ+)− tanh(ξ−)

1− tanh(ξ+) tanh(ξ−)
. (B.7)

(B.6) and (B.7) yield the formula

y(1− tanh(ξ+) tanh(ξ−)) = tanh(ξ+)− tanh(ξ−). (B.8)

Furthermore, the relation

tanh(ξ+)− tanh(ξ−) =
sinh(ξ+ − ξ−)

cosh(ξ+) cosh(ξ−)
(B.9)

together with

sinh(arctanh(y)) =
y√

1− y2
(B.10)

yields

tanh(ξ+)− tanh(ξ−) =
y√

1− y2

1

cosh(ξ+) cosh(ξ−)
(B.11)

Finally we evaluate the integral

I1 =

∫ ∞

−∞
dk

1

E(k)(k2 + y2m2)
, E(k) =

√
m2 + k2. (B.12)
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To do so we substitute k = m sinh(z/2) and get

I1 =

∫ ∞

−∞
dz

1

2m2(sinh2( z
2
) + y2)

=
1

m2

∫ ∞

−∞
dz

1

2y2 − 1 + cosh(z)

=
2

m2y
√

1− y2
arctan

(√
1− y2

y

)
=

2

m2y
√

1− y2
(π/2− arcsin(y)).

(B.13)
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