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Abstract. Diffusion driven models for physiological processes provide stochastic
extensions to existing models formulated via systems of ordinary differential equa-
tions. The system noise is modelled explicitly and disentangled from measurement
error. Thus, the additional flexibility leads to parsimonious models and offers a nat-
ural prediction framework. We present a general inference framework through data
augmentation, which encompasses inherent features of the problem such as mea-
surement error and variability across individuals. The methodology is illustrated
on simulated data.
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1 Introduction

The use of ordinary differential equations (ODEs) provides a natural mod-
elling framework for a number of continuous time phenomena across several
scientific disciplines. In this paper we focus our attention to pharmacoki-
netic/pharmacodynamic (PK/PD) models; see for example Racine-Poon and
Wakefield (1998) and more general physiological processes, as in Huang et al.
(2006). Under such formulations, the fitted model may be interpreted as a
system of ODEs driven by the estimated parameter vector, whereas an error
parameter is often employed to capture the deviations from the observations.
However, as these deviations stem from multiple sources, such as measure-
ment error, inherent system noise and structural mis-specifications, highly
complex systems are often required to achieve a satisfactory fit. Models of
this kind may not always be stable and the estimation of their parameters
is often difficult, particularly when a likelihood-based approach is adopted.
Furthermore, it is not straightforward to carry out prediction tasks in the
absence of dynamic noise.
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This paper explores stochastic versions of the above mentioned models
to address these issues. The use of stochastic differential equations (SDEs)
preserves the mean behavior of the model and naturally disentangles system
noise from observation error. It also introduces a natural probability frame-
work which may be used for model assessment and development. In other
words, diffusion-driven models are expected to provide greater flexibility and
lead to more parsimonious and stable model formulations. They also offer a
natural prediction framework which allows for assessment of the uncertainty
around the forecasts.

The task of likelihood-based inference on diffusion processes is particularly
challenging and has received a remarkable amount of attention in the recent
literature; Most available methodologies, see for example Beskos et al. (2006)
and Ait-Sahalia (2007), take advantage of the Markov property and approach
the likelihood through the transition density. However, under the observation
regimes of the applications considered in this paper, the observed process is
not Markov. More specifically, the observations may exist only for some of the
diffusion components, are amenable to measurement error, may be irregularly
spaced, and refer to functionals of the diffusion. Data augmentation schemes
for diffusion processes in the spirit of Roberts and Stramer (2001), henceforth
denoted as RS, may potentially cover all of these cases. Nevertheless, as noted
in RS, likelihood reparametrisation is essential to avoid degenerate Markov
chain Monte Carlo (MCMC) algorithms.

The outline of the paper is the following. In Section 2 we present a stan-
dard PK/PD model and a general diffusion extension of it. Section 3 provides
an appropriate reparametrisation of the likelihood which is essential for an ir-
reducible MCMC scheme, which is implemented on a simulated data example
in Section 4. Section 5 concludes with some relevant discussion.

2 Stochastic Physiological Models

Consider a first order absorption elimination PK/PD model which could be
represented by the graph of Figure 1, where the drug is administered to the
patient (compartment A), absorbed to the compartment X with rate Ka, and
eliminated with rate Ke. The available (noisy) observations are longitudinal
drug concentrations (amount of drug relative to volume V) and correspond
to the compartment X. The corresponding system of ODEs may be written
as

dAt = −KaAtdt, A0 = Dose,

dXt =
(

KaAt

V
−KeXt

)
dt,

or else
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Fig. 1. Graphical compartmental representation of the a first order absorption
elimination PK/PD model.

dXt =
(

Dose Ka exp(−Kat)
V

−KeXt

)
dt. (1)

An SDE extension of (1) is the following

dXt =
(

Dose Ka exp(−Ka t)
V

−KeXt

)
dt + σXγ

t dBt, (2)

where Bt is a standard Brownian motion. The volatility of the diffusion above
(σXγ

t ) reflects the system noise. It contains a scale parameter σ and the
parameter γ which determines the distribution Xt. For instance if γ = 0 the
transition density of X is known to be Gaussian, whereas for γ = 0.5 it is a
non-central X 2 distribution (Cox et al., 1985). Alternative SDE formulations
with additional Brownian motion components are also possible.

Another feature of such processes is their hierarchical structure due to
the inherent differences across the different individuals. Typically, these are
incorporated into the model through random effects on the model parame-
ters. Let Xit denote a diffusion corresponding to individual i and Pθi

(Xit)
denote its distribution. As this distribution is not available in closed form, a
data augmentation scheme may be employed to impute intermediate points
that may be used for accurate likelihood approximations through Girsanov
formula. These points are drawn from the conditional diffusion distribution
on xij ,Pθi

(Xit|xij). The parameters of Xit, denoted by θi, may or may not be
subject specific. Let xij to be the true diffusion points of Xit corresponding
to the noisy observations yij at times tij . A possible model, with Gaussian
random effects on Ke and Gaussian additive measurement error, is shown
below
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yij ∼ N (xij , τ
2) (3)

xij ∼ Pθi(Xit), θi = (Kei,Ka, V, σ, γ) (4)
Xit|xij ∼ Pθi(Xit|xij) (5)

Kei ∼ N (µk, σ2
k) (6)

The choice of Bayesian inference through data augmentation provides a
general framework which is also a natural choice for handling hierarchical
models. Alternative methodologies for such models were given by Overgaard
et al. (2005), Tornøe et al. (2005) through an algorithm based on an extended
Kalman filter, and by Donnet and Samson (2006) through a stochastic EM
algorithm. Both of these approaches were restricted to models of Gaussian
system noise (γ = 0).

3 Likelihood Reparametrisation

In order to evaluate the likelihood we need to draw intermediate paths of
X between xij from Pθi(Xit|xij). However, as the level of augmentation in-
creases, the paths of Xit tend to have perfect correlation with the volatility
parameters σ and γ. We proceed by applying the RS reparametrisation for
each Xit, via the following 2-step transformation

1. Uit = σ−1(1− γ)−1X1−γ
it , if γ 6= 1, or

Uit = σ−1 log(Xit), if γ = 1.
2. Zs = {(s− tij−1)xij + (tij − s)xij−1} (tij − tij−1)−1, ∀i, j.

Under the RS framework, the likelihood parametrised in terms of xij , Zit|xij ,
and parameters, leads to MCMC algorithms that do not degenerate as the
level of augmentation increases.

The above reparametrisation may be viewed as an extension to the RS ap-
proach to examples of diffusions observed with error, cast in terms of the spe-
cific PK/PD context. The additional feature compared to alternative method-
ologies for diffusions with unobserved paths, such as the stochastic volatility
formulations in Chib et al (2005) and Kalogeropoulos (2007), is the extra
conditioning on the latent diffusion observations xij . Their presence ensures
that the proposed diffusion paths are always close to the observations yij and
results in substantially higher acceptance rates.

4 Application to simulated data

We simulated data from the model in (3), (4), (5), (6), with fixed gamma
of 0.5, by using a high frequency Euler approximation scheme. The number
of individuals and of observations per individual was 20 corresponding to a
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realistic sample size. A single drug dose was assumed and each individual was
observed up to a time horizon of 4 hours. To complete the model formulation,
improper flat priors were assigned to the hyperparameters Ka,V ,µk,σk,σ,γ,
and the diffusion paths of Xt were constrained to be strictly positive.

The parameters xij where updated with single site random walk metropo-
lis steps. For the updates of the diffusion paths between xij , an independence
sampler was used with Brownian bridge proposals. The acceptance rates were
quite high, roughly 80%, to consider alternative proposals. The parameters
V −1, µk, σk, and τ2 where updated with Gibbs steps, whereas for Ka and σ
random walk Metropolis steps were used.

The level of augmentation is controlled by the number of imputed points
between successive latent diffusion observations xij , denoted by m. There
was no sign of increasing MCMC inefficiency in m in the relative autocorre-
lation plots of the volatility parameter σ. The convergence of the likelihood
approximation was assessed through density plots of the log-likelihood which
become virtually indistinguishable for an m of 80 and higher. Table 1 contains
posterior summaries of the parameters. They appear to be in good agreement
with the values the data where simulated from.

Parameter True Value Posterior mean Posterior SD Posterior median

Ka 1.0 0.996 0.038 0.996
V 1.4 1.340 0.047 1.339
µk 0.9 0.975 0.070 0.975
σk 0.3 0.265 0.057 0.259
σ 0.7 0.750 0.062 0.748
τ 1.0 1.057 0.085 0.057

Table 1. Summaries of the posterior draws for m = 80.

5 Discussion

The use of diffusion driven models in PK/PD applications and physiologi-
cal processes provide stochastic extensions to existing formulations based on
deterministic ODE systems, that are expected to be beneficial for inference
and prediction purposes. In this paper we offer a data augmentation scheme
that deals naturally with missing data, imbalanced designs, measurement
error and heterogeneity across individuals. Our methodology may be used
to sample from the posterior of the diffusion points, parameters and func-
tionals thereof such as the area under the concentration vs time curve used
extensively in bioequivalence studies.

Future steps include the higher dimensional SDE extension with more
than one Brownian components on compartments that are indirectly ob-
served, rather than observed with error. Another outstanding issue is the
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joint estimation of σ and γ in the MCMC scheme, which will provide an im-
plicit model averaging integrating out distributional assumptions on the sys-
tem noise. Additional computational tools, such as the Metropolis adjusted
Langevin algorithm, adaptive strategies, more sophisticated path proposals,
are available in our disposal to construct more efficient and easy to implement
MCMC algorithms.
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