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ABSTRACT

This paper presents a Markov chain Monte Carlo algorithm
suitable for a class of partially observed non-linear diffusions.
This class is of high practical interest; it includes for instance
stochastic volatility models. We use data augmentation, treat-
ing the unobserved paths as missing data. However, unless
these paths are transformed, the algorithm becomes reducible.
We circumvent the problem by introducing appropriate reparametri-
sations of the likelihood that can be used to construct irre-
ducible data augmentation schemes.

1. INTRODUCTION

Diffusion processes constitute a natural and useful tool for
modelling phenomena evolving continuously in time. They
find applications in many different fields including finance,
biology, physics, engineering etc. In this paper we focus
on diffusions defined through stochastic differential equations
(SDEs) of the following form:

dXt = µx(Xt, αt, θ)dt + σx(αt, θ)dBt,X0 = x, 0 ≤ t ≤ T
(1)

dαt = µα(αt, θ)dt + σα(αt, θ)dWt

where B and W are independent Brownian motions. The
drift (µx, µα) and the volatility diag(σx, σα) of the diffu-
sion should satisfy some regularity conditions (locally Lip-
schitz with a growth bound) to ensure that the SDE will have
a weakly unique solution; see chapter 4 of [1]. Throughout
this paper we will allow them to have a general but known
functional form, covering cases of non linear models. Our
task is to draw inferences for the parameter vector θ based on
observations only on X at a discrete set of times t1, . . . , tn,
denoted by Y = {Yk = Xtk

, k = 1, . . . , n}.
For non-linear diffusions, the likelihood is not available in

closed form. As a result of this, the literature contains various
methodologies that may or not be based on the likelihood; see
[2] for an extensive review. Likelihood based approaches are
either analytical ([3], [4]), or they use simulations ([5], [6]).
They usually approximate the likelihood in a way so that the
discretisation error can become arbitrarily small, although the
methodology developed in [7] succeeds exact inference in the
sense that it allows only for Monte Carlo error. Unfortunately,

all of the above rely on the Markov property and therefore
become hard to generalise to the non-Markovian case.

We proceed using Markov Chain Monte Carlo methods
(MCMC) and in particular data augmentation. Next section
provides the relevant details and highlights potential reducibil-
ity issues of the chain. Appropriate reparametrisations are in-
troduced in section 3 that may be used to construct irreducible
and efficient MCMC schemes. Section 4 provides some de-
tails on their implementation, section 5 presents two relevant
examples and finally section 6 concludes.

2. DATA AUGMENTATION - REDUCIBILITY

A natural way to proceed is via data augmentation, a method-
ology introduced by [8]. The idea is based on the fact that
the likelihood can always be well approximated given the en-
tire path of the diffusion or a sufficiently fine partition of it.
Therefore given θ, the unobserved paths of X (paths between
observations) and of α (entire path) are treated as missing data
and a finite number of points, large enough to make the ap-
proximation error arbitrarily small, is imputed. Then θ is up-
dated conditional on the augmented path.

As noted in [9] however, there exists a strong dependence
between the imputed paths and the volatility coefficients. In
fact the algorithm becomes reducible as the number of im-
puted points increases. [9] tackle the problem for scalar dif-
fusions by a reparametrisation on the paths of V and [10] offer
an extension for some multivariate diffusions but their frame-
work does not cover the models in (1). This paper focuses
on this class and introduces novel reparametrisations of the
likelihood that may serve as the basis for data augmentation
schemes. Alternative approaches to this problem can be found
in [11] and [12].

3. REPARAMETRISATION

[9] noted that the irreducibility is caused by the fact that the
likelihood, provided by Girsanov’s formula (see for instance
chapter 8 of [13]) is written with respect to a dominating mea-
sure that depends on θ. The problem may be solved if we
transform the diffusion appropriately.

We will consider the SDE’s α and X|α separately. Note
that if µx(Xt, αt, θ) ≡ µx(αt, θ), the density of Y given α is
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known and given by:

pθ(Y |α) =
n∏

k=1

pθ (Yk |Yk−1, {αt : tk−1 ≤ t ≤ tk}) .

where

pθ (Yk |Yk−1, {αt : tk−1 ≤ t ≤ tk}) ∼ N(µk, σ2
k)

with

µk = Yk−1 +
∫ tk

tk−1

µx(αs, θ)ds,

σ2
k =

∫ tk

tk−1

σx(αs, θ)2ds.

Hence in this case, there is no need to impute and conse-
quently no need to transform the paths of X .

3.1. Transforming the paths of α

Denote by Pθ(α) the distribution of α and by Qθ(α) that of
the driftless version of α. Given the initial point α0, Gir-
sanov’s formula provides the Radon-Nikodym derivative of
Pθ(α) with respect to Qθ(α). Clearly Qθ(α) depends on θ.
For this reason we introduce the following two-step transfor-
mation:

1. βt = h(αt, θ), where h(.) satisfies

∂h(Vt, θ)
∂Vt

= {σ(Vt, θ)}−1

2. γt = βt − β0 = βt − h(α0, θ), βt = η(γt)

By Ito’s lemma, the process γ will have unit volatility and
drift:

µγ(γ, θ) =
µα

[
h−1(βt, θ), θ

]
σα [h−1(βt, θ), θ]

− 1
2

∂σα

[
h−1(βt, θ), θ

]
∂h−1(βt, θ)

.

Now we can use Girsanov’s formula for the Radon-Nikodym
derivative with the distribution of Brownian motion as the ref-
erence measure:

dPθ(γ)
dW

= exp

(∫ T

0

µγ(γs, θ)dγs − 1
2

∫ T

0

µ2
γ(γs, θ)ds

)
.

See [14] for more details.

3.2. Transforming the paths of X

Given the path of α we can see σx(αt, θ) as a deterministic
function of time. Hence, for each path of X between succes-
sive observations (say between times tk and tk+1), we intro-
duce a new time scale

t′ = η(t, θ) =
∫ t

tk

σ2
x(αs, θ)ds

and we set Ut = Xη−1(t,θ). Using time change properties, we
get:

dUt =

{
µ
(
Ut, αη(t), θ

)
σ2

x(αη(t), θ)

}
dt + dWt, 0 ≤ t < η(tk+1).

Operating on the new time scale we can use Girsanov’s
formula to write the likelihood with respect to the distribution
of a Brownian bridge that finishes at time T = η(tk+1, θ).
To remove this dependency on θ we introduce a second time
change:

U(t) = ν(Z(t)) = (T−t)Z(
t

T (T − t)
)+(1− t

T
)yk+

t

T
yk+1,

where 0 ≤ t ≤ T . The SDE for Z is given by:

dZt =

{
µ
(
ν(Zt), αg(t), θ

)
σ2

x(αg(t), θ)
T

1 + tT

}
dt+dWt, 0 ≤ t < ∞,

where g(t) denotes the initial time scale.
The transformation above stretches the ending point of the

bridge to infinity, in a way so that it will still have unit volatil-
ity. As in the previous section, we ended up in a position
where we can use the distribution of a Brownian motion as
the reference measure. See [15] for more details.

4. MCMC IMPLEMENTATION

Based on the reparametrisations introduced in the previous
section we can write down a likelihood that can be used to
construct irreducible MCMC algorithms. The updates on pa-
rameters not involved in the time change are relatively straight-
forward and can be implemented using ordinary techniques.

To update parameters used to define the time change, we
propose a random walk metropolis step. Note that each pro-
posed value implies a different set of times of the path of X
which they will not be stored in our computer as it is im-
possible to store the full path. However, they can be drawn
retrospectively using standard Brownian bridges arguments.

To update Z, we can split the process into blocks, say the
paths between successive observations, and update each one
of them in turn. One may use an independence sampler with
Brownian motion as the proposal distribution (reference mea-
sure of the likelihood). The fact that the time scale is defined
up to +∞ poses no restrictions as under the discretisation of
the path we only need to simulate a finite number of points.

While it is rather clear that the path of γ should be divided
into blocks, it is not straightforward how this should be done.
Suppose that we observe Y at times tk, as in section 2.2, and
that we split the path of γ into n blocks {bk = γs, tk−1 ≤
s ≤ tk, k = 1, 2, . . . , n}. Note that under this formulation
the endpoints of the blocks are not updated at all leading to
a reducible MCMC chain; an alternative blocking scheme is
needed. Available strategies use overlapping [14], or random
sized blocks [11].
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5. EXAMPLES

The simulations performed in this section aim to demonstrate
two aspects of the problem. First, we highlight the necessity
of the reparametrisation introduced in section 3 by exposing
the problem in the case of a rather simple model of (1). Then
we check the validity of the MCMC scheme using a more
realistic stochastic volatility model.

5.1. A toy example

Assume µx = µα = 0, σx = exp(αt/2) and σα = σ and
define Y as before (n = 500). Unless we apply a reparametri-
sation, Girsanov’s formula is not useful for writing down the
likelihood. Alternatively we may use the Euler-Maruyama
approximation; see chapter 9 of [1]. Under our scheme, we
impute the values of α that correspond to observations of X
and we further impute m values between every pair of succes-
sive times with observations. For simplicity we assume that
the imputed points are equidistant and denote the time inter-
val between them by δ = (m + 1)−1. Let Vt = (Xt, αt)′

and Σ = diag{exp(αt), σ2}. Under the Euler-Maruyama ap-
proximation and given V0 we get:

π(Y, σ2, Vt) =
n(m+1)+1∏

t=1

π(Vt|Vt−1, σ
2)

π(Vt|Vt−1, σ
2) ∼ N (Vt−1, δΣt−1)

If we assign π(σ2) ∝ σ−2 as the prior for σ2 and assume
that α0 = 0, we get that its conditional posterior density is an
Inverse-Gamma distribution with parameters:

a =
n(m + 1)

2
, b =

(m + 1)
∑n(m+1)+1

t=1 (αt − αt−1)2

2

We ran a MCMC chain for different numbers of imputed
points (m = 1, 10, 40, 100), updating the paths as described
in 4 and using the Gibbs step for the updates σ2. Figure 1b
shows the autocorrelation of the posterior draws of σ2 for
each value of m. Clearly, the autocorrelation increases dra-
matically leading to an increasingly slower chain. An alterna-
tive way to see this is to note that the variance of the condi-
tional posterior for σ2 goes to 0 as we increase m.

The problem can be resolved if we apply this paper’s pro-
posed reparametrisation. Following the route of 3.1, we set
βt = αt/σ and γt = βt − β0 = βt and we get

dXt = exp(σγt/2)dBt,

where β is a standard Brownian motion independent of B.
The likelihood then simplifies to:

π(Y, σ2, γt) =
n∏

k=1

π(Yk|Yk−1, σ
2, γt),
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Figure 1: Autocorrelation plots of posterior draws of σ2 for
different values of imputed points between observations (m)
for the simple stochastic volatility model. The draws in (a)
correspond to the reparametrised scheme scheme and in (b)
to the scheme without transformation.

where

π(Yk|Yk−1, σ
2, γt) ∼ N

{
Yk−1,

∫ tk

tk−1

exp(σγs)ds

}
.

Figure 1a contains the corresponding autocorrelation plots of
the posterior draws of σ2 taken from the reparametrised data
augmentation scheme. Unlike the previous case (figure 1b)
there is clearly no increase in the autocorrelation.

5.2. Stochastic volatility

Now consider an extended version of the previous model with
µx = λ(ν − Xt) and µα = κ(µ − αt). First we need to
introduce γ as before. This leads us to σx = exp(σγt/2).
However we also need to impute the paths of X (between
observations Y ) to get the likelihood for the parameters of
µx. For an irreducible chain we may use the time change
transformation of (3.2).

After implementing this MCMC scheme, we found no ev-
idence of increasing autocorrelation of the parameter poste-
rior draws getting similar pictures to figure 1a. Furthermore,
table 1 provides the posterior means and standard deviations
of the parameters. We see that these estimates are in good
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agreement with the values we simulated the data from.

Parameter True value Posterior mean Posterior SD
λ 0.2 0.1899 0.0305
ν 0.1 0.1196 0.2274
κ 0.1 0.1944 0.0737
µ -0.6 -0.6269 0.1554
σ 0.3 0.3131 0.1014

Table 1: Posterior means and standard deviations of the pa-
rameters versus their true values.

6. CONCLUSION

Inference on partially observed non-linear diffusions is a par-
ticularly difficult task as the likelihood is not available in closed
form. Things are further complicated by the fact that the
Markov property is no longer available. Data augmentation
schemes provide us with a convenient framework as they al-
low for good approximations of likelihood, where the error
may become arbitrarily small by simply increasing the num-
ber of imputed points. However, one has to be extra careful to
avoid reducibility issues. In this paper we provide appropri-
ate reparametrisations for most partially observed diffusions
including stochastic volatility models.
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