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Defining and Testing Diagnostic Equivalence Using a Bayesian Hierarchical Model  

 

1. Introduction  

 

1.1 Overview: the question of equivalence in biomedical research  

In biomedical research, the assessment of equivalence addresses the question of whether 

two (or more) quantities are close enough to be considered essentially the same for 

clinical or health policy decision making. The problem of equivalence appears in several 

fields. In clinical trials the question of interest is whether a new therapy is as effective as 

a standard therapy (Blackwelder 1982). In pharmacology the question is one of 

bioequivalence between two drug formulations (FDA 2001, Selwyn et al 1981, Anderson 

and Hauck 1990, Schall and Luus 1993). Usually these are compared in terms of their 

bioavailabilities, which are measured through the drug concentration in the blood by one 

or more pharmacokinetic variable, such as area under concentration vs time curve and the 

maximum concentration. In diagnostic medicine, technology advancements often raise 

the question of whether a new diagnostic test has equivalent diagnostic performance to 

that of a standard diagnostic modality (Obuchowski 2001). An important aspect of the 

assessment of equivalence in the diagnostic setting is the variability in the diagnostic 

performance among test interpreters. A similar issue may also be important in the 

therapeutic setting, if variability in the effectiveness of the therapy is present among 

health care providers (e.g. hospitals or surgeons).     
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1.2 Statistical formulations of equivalence 

The statistical formulation of the problem begins by making precise the notion of 

“essentially the same” As we will see below; this task is not always straightforward. 

Statistical equivalence between two population parameters 1A  and 2A , is generally 

assessed by selecting a contrast statement between 1A  and 2A , denoted by d (e.g. 

Euclidean distance), and fixing a maximum acceptable difference δ , within which the 

parameters will be considered as equivalent. In the frequentist framework, a test for 

equivalence may take the form:  

 

0H : ),( 21 AAd >δ  vs 1H : ),( 21 AAd  ≤δ   (1) 
  

Note that since only the probability of type I error is controlled, and therefore the null 

hypothesis can only be disproved, the alternative hypothesis should contain the statement 

that the experimenter would hope to prove, which is in our case equivalence of 

21  and AA (Blackwelder 1981). 

In the Bayesian framework, the joint posterior distribution of ),( 21 AA  can be used to 

calculate the posterior probability of the equivalence range (Selwyn et al 1981). If this 

probability is sufficiently high, it would be sensible to infer equivalence. In other words 

we reject nonequivalence if and only if: 

 
Pr ( ),( 21 AAd ≤ δ | Y ) ≥ 1 - α   (2) 

 

where Y represents the data. Note that under both frameworks the choice of δ  plays a 

crucial role.   
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In practice definitions (1) and (2) cover only some of the types of equivalence that are of 

interest. Consider for example the comparison of the accuracy of diagnostic tests 

interpreted by a specially trained radiologist (reader). In such cases, a sensible 

comparison between two tests should take into account the inherent variability in the 

diagnostic performance of the readers. As a direct application of the above formulations 

(1 or 2) one may compare the mean performance, over the population of readers, for 

example using a simple t-test. However, such an approach provides only a partial answer 

to the question. Even if the two means were identical, the variability across readers might 

be significantly different between the two tests, leading to substantially different 

outcomes from the use of the two tests.  

 

1.3 Assessment of Bioequivalence 

A similar problem to diagnostic equivalence has been addressed extensively in 

pharmacology studies of bioequivalence. A common setting in such studies involves 

situations in which two drug formulations are compared in terms of their bioavailabilities 

in a set of subjects   Anderson and Hauck (1990) and Schall and Luus (1993) introduced 

the notions of population and individual bioequivalence. Population bioequivalence 

refers to the population of subjects and essentially compares the distributions of the 

bioavailabilities of drug formulations across subjects. Individual bioequivalence operates 

at a different level of aggregation and compares the formulations within subjects. Clearly, 

population bioequivalence does not necessarily imply individual bioequivalence.  
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The criteria proposed for assessing these types of bioequivalence can be classified into (i) 

moment-based and (ii) probability-based. To discuss the moment-based criteria, consider 

the following mixed effects model:  

ijY = iµ  + iju + ije  

Here i denotes the formulation (T: formulation being tested and R: reference formulation)  

j denotes  the subject (j=1,...J, the total number of subjects), and Y denotes the 

measurement on the j-th subject under the i-th formulation. The vectors 

),( RjTj uu correspond to the subject’s random effect and are assumed to be mutually 

independent and normally distributed according to a bivariate normal distribution with 

mean 0, variances 2
Biσ  and correlation ρ. The variables ije ’s correspond to the random 

error within subjects and are assumed to be jointly independent and normally distributed 

with mean 0 and variance 2
Wiσ . The model also assumes that iju  and ije  are independent 

given a subject j. In the discussion below we denote 2
iσ :=var( ijY ) = 2

Biσ + 2
Wiσ  and 

2
Dσ :=var( RjTj uu − ).  

The moment-based criteria require a study design where one of the formulations -the 

reference formulation- is tested on two different occasions in each subject, resulting in 

two independent observations RjY  and RjY ′  for each j. This is done in order to establish a 

benchmark for the discrepancy that may occur even when the two formulations are the 

same.  

Schall and Luus (1993) proposed to assess population bioequivalence using a criterion 

based on the between subject differences: 
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E( RkTj YY − ) 2 - E( RkRj YY ′− ) 2 ≤ 2
1δ  for all j ≠ k   or   ( RT µµ − ) 2 + 22

RT σσ − ≤ 2
1δ  (3) 

   

They also proposed to assess individual bioequivalence on the basis of the within subject 

differences:  

 
E( RjTj YY − ) 2 - E( RjRj YY ′− ) 2 ≤ 2

2δ     or     ( µ T - µ R ) 2 + 222
WRWTD σσσ −+ ≤ 2

2δ  (4) 

 

The quantities in (3), (4) were estimated by replacing the corresponding parameters with 

their estimates obtained from the mixed model using the method of Restricted Maximum 

Likelihood (REML). To complete the assessment of equivalence one should calculate 

confidence intervals for the estimates of the relevant quantities. Initially the use of 

bootstrap was proposed to calculate these estimates but more recently some other 

approximation methods were proposed (Hyslop et al 2000, FDA 2001). An alternative 

approach by McNally et al (2003) was based on the use of generalized p-values instead of 

confidence intervals. 

Despite the fact that it has been widely used and adopted in a modified version by FDA 

guidance (FDA 2001), concerns remain about the Schall and Luus approach. In 

particular, the quantities in (3), (4) are not easy to interpret quantitatively, because they 

involve sums of squared mean differences and variance terms. Hence the task of picking 

a sensible δ  is not straightforward.  

Wellek (2000b) proposed a different criterion for population bioequivalence, using an 

intersection-union test. This criterion requires the following two inequalities to be 

satisfied simultaneously.  

 
( µ T - µ R ) 2 / ( 22

WRWT σσ + ) ≤ 2
1δ   (5a) 
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and 

22 / RT σσ  ≤ 21 δ+  (5b) 

 

Note that (5a) involves a standardized version of the difference in the two means and 

provides a basis for the choice of 1δ . However, it is more difficult to develop a rationale 

for specifying an appropriate value 2δ .   

As noted above, probability-based criteria are used in another family of approaches to the 

assessment of bioequivalence. These criteria are based on the probability of equivalence 

and are considered to be easier to interpret. In particular, Schall (1995) proposed the 

criteria: 

 
Pr ( | RkTj YY − | ≤ 1δ ) – Pr ( | RkRj YY ′− | ≤ 1δ ) ≥ 1∆   ( j ≠ k) 

 
Pr ( | RjTj YY − | ≤ 2δ ) – Pr ( | RjRj YY ′− | ≤ 2δ ) ≥ 2∆   

(6) 

 

for population and individual bioequivalence respectively. The notation in (6) is the same 

as above and the parameters 1∆ , 2∆ <0 determine the range for population and individual 

bioequivalence respectively.  One may choose Rσγδ 21 =  and WRσγδ 22 =  where Rσ  

is the standard deviation of RkRj YY ′−  (j ≠ k), WRσ  is the standard deviation of RjRj YY ′− , 

and γ  is a positive constant. Then, under the assumption of normality for the ijY ’s, the 

second probability term in the above differences is a constant given γ  and the first can be 

written as: 















+

−+−
Φ−














+

−+
Φ

2222

22

TR

RTR

TR

RTR

σσ
µµσγ

σσ
µµσγ

 



 10

for population bioequivalence and as  : 















++

−+−
Φ−














++

−+
Φ

222222

22

DWTWR

RTWR

DWTWR

RTWR

σσσ
µµσγ

σσσ
µµσγ

  

for individual bioequivalence.  

The quantities in (6) can be estimated as in (3)-(4) by replacing the corresponding 

parameters with their estimates obtained from the mixed effect model as before.   

A non-parametric probability-based criterion for individual bioequivalence was 

introduced by Anderson and Hauck (1990) and did not presuppose the replicate design. 

The criterion was based on Pr (1-δ ≤ RjTj mm / ≤ 1+δ ), the probability that a randomly 

selected subject will have equivalent mean bioavailabilities with each formulation (here 

ijm  denotes the mean bioavailability of the formulation i on the subject j). The use of 

ratios was adopted because the observed bioavailabilities ( ijY ’s) were modeled in the log 

scale. The probability was estimated by replacing ijm  with ijY , or, in other words, by 

taking the sample proportion of subjects with equivalent responses. Because of its 

straightforward interpretation, this criterion has become quite popular in practice. 

However since it is based on a non-parametric model it has limited power.   

Wellek (2000a) used a parametric Bayesian model to estimate a probability similar to the 

one proposed by Anderson and Hauck.  Let jZ :=( jj YY 21 loglog − ) and assume that jZ ~ 

N(ζ , 2σ ) ( j=1,…,J). Wellek approximated the probability Pr [ 1)1( −+ δ ≤ exp ( jZ ) ≤ 

δ+1 ], using the posterior distribution of (ζ ,σ ) and numerical integration. If we assign 

the usual reference prior on (ζ ,σ ), i.e. π(ζ ,σ ) )0(1 >∝ − σσ I  (Box and Tiao 1972) , 

the posterior is: 
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( ) )1( 1 ))(( )|,( 1
2 σσσζσσζπ sJgsJJJZ J −−Ζ−Φ





= −  

where Z is the sample mean and 2/121 ])()1[( ∑ −−= −
j j ZZJs , Φ  is the density of a 

standard normal distribution and 1−Jg  is the density of a chi-square distribution with J-1 

degrees of freedom. 

In Chapter 3 of this thesis we introduce a Bayesian hierarchical model that allows 

separate means for each jZ . The model serves as the basis for deriving several metrics 

with meaningful interpretation. Moreover it allows us to consider criteria based directly 

on the subject –specific means ijm  rather than ijY .  

 

1.4 Equivalence for Diagnostic tests  

In the diagnostic setting, studies of equivalence address the question of whether two 

diagnostic tests are equally effective in terms of their diagnostic performance. A common 

situation involves a new test that has some practical advantages over a standard test (eg. 

is less expensive, easier to be implemented etc), thus raising the question whether it 

would be safe to replace the standard with the new test.  

In this thesis we assume that complete test results and reference information (gold 

standard) are available, and hence measures of diagnostic performance can be estimated 

for each test. Among the several available measures of diagnostic performance we focus 

on the area under the Receiver Operating Characteristic (ROC) curve, denoted by A. We 

note however that formulation of the problem and the methods for assessing equivalence 

discussed below apply in general to univariate summaries of the ROC curve (e.g. partial 

areas) or other univariate measures of diagnostic performance. We also comment on how 
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these approaches can be adapted to handle the case of multivariate measures of diagnostic 

performance (e.g. pairs of sensitivity/specificity). 

The problem of equivalence of diagnostic tests has only recently received attention in the 

literature, notably in a paper by Obuchowski (2001) (see also Zhou et al (2002) and 

Alonzo et al (2002). Using ideas from the bioequivalence literature, Obuchowski defined 

population and individual diagnostic equivalence. Population equivalence was defined as 

in the Schall and Luus approach (3). Let ijkÂ  denote the estimated area under the curve 

for reader j with test i on reading occasion k. Then the diagnostic population equivalence 

criterion is: 

 

Pγ =E( kjjk AA '12
ˆˆ − ) 2 - E( ''11

ˆˆ
kjjk AA − ) 2 ≤ 2

P∆  (7) 

 

Here kjjk AA '12
ˆˆ −  and ''11

ˆˆ
kjjk AA −  correspond to the between subject differences involved 

in (3) and the expectation is taken over the relevant reader and patient populations. Note 

that the estimates of the areas are correlated even when they refer to different readers 

(since they are obtained from the same set of patients) and therefore the expression in (7) 

does not simplify to the corresponding quantity in (3). An unbiased estimate of Pγ , for 

k=2, is given by: 

Pγ̂  = −
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Obuchowski used a nonparametric model to obtain estimates for the areas and their 

covariances (see also Obuchowski 1997), but other models can also be adopted. 
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Individual reader equivalence was defined at the patient level, representing a type of 

agreement between the two tests. The area under ROC curve cannot be defined at the 

patient level so another measure ijkcΠ̂  was used, which refers to the interpretation done 

by reader j with test i on reading occasion k on a particular case c. The criterion for 

individual diagnostic equivalence was: 

Iγ = Pr [ 2
''11 )ˆˆ( ckjjkc Π−Π ≤ 2

Iλ ]- Pr [ 2
'12 )ˆˆ( kcjjkc Π−Π ≤ 2

Iλ ] ≤ 2
I∆  

where Iλ  is the upper bound on the acceptable difference between the tests’ results for a 

case. The quantity Iγ  can be estimated by averaging the appropriate indicator functions. 

For confidence intervals of Pγ and Iγ  the use of bootstrap was proposed as in the 

bioequivalence case.  

As in the case of the Schall and Luus criteria, criterion (7) combines means and variances 

into one expression. As a result, the subject matter interpretation of 2
p∆  is not 

straightforward. Obuchowski’s notion of individual reader equivalence is defined within 

patient and does not have a clear interpretation in terms of diagnostic performance. 

However, such a notion may be useful in deciding whether the use of the two tests may 

lead to similar decisions in specific patients. In this thesis, we consider the reader as the 

unit of analysis and define individual equivalence as equivalence for individual readers.  

 

1.5 Summary  

In the next chapter we describe a framework for defining population and individual 

diagnostic equivalence. In our formulation, population and individual refer to readers.  

We begin with a description of the problem and highlight some of its crucial 
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characteristics, distinguishing diagnostic population equivalence from individual (reader) 

equivalence. We introduce metrics for assessing these types of equivalence and discuss 

the rationale of these metrics. In Chapter 3 we present a 3-level Bayesian hierarchical 

model that can be used to estimate these metrics and discuss model fitting and estimation 

procedures. We also examine the sensitivity of the findings to the choice of prior 

distributions. This chapter ends with a description of the possible experimental designs 

for equivalence studies. In chapter 4 we apply our proposed method to the analysis of 

data from a study of a Computer Aided Diagnostic (CAD) algorithm for mammography. 

The chapter also presents results of a simulation study conducted to explore frequentist 

properties of the model proposed in chapter 3. The final chapter is devoted to a discussion 

of possible extensions of the Bayesian approach and other issues related to the 

assessment of test equivalence.     

 

2. Framework for defining equivalence for diagnostic test  

2.1 Technology assessment considerations 

We will consider two kinds of equivalence of diagnostic tests, defined at the population 

and individual reader level. The rationale for that is that the two tests may be considered 

as equivalent as used by a population of readers but may not be equivalent for every 

particular reader or even for most of them. Therefore we make the assumption that for 

each test there exists a population mean of a test performance measure, but readers have 

their own means. Although we use the area under the ROC curve as the main example of 

a test performance measure, the framework proposed in this thesis applies more generally 
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to univariate measures of performance, such as the partial area under ROC curve, 

sensitivity, specificity, etc. We discuss multivariate measures in Chapter 5.  

An ordinary comparison of the population means may not yield an adequate criterion for 

population equivalence. For instance, consider the following hypothetical scenario: 

Suppose that the distributions of the ROC areas for the population of readers of two tests 

are both normal with common mean (.75) and different variances (say with standard 

deviations .02 and .06) as shown in Figure 1. Are these tests equivalent? 

 

Figure 1: Scenario of normal distributions across readers with identical means (0.75) and 
different standard errors (test 1: .02, test 2: .06) 

0.5 0.6 0.7 0.8 0.9 1.0

0
5

10
15

20
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Test 2
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If the focus is only on the means, the two tests would be equivalent. However, an 

argument could be made that test 1 is better, because the proportion of readers with low 

accuracy (say ROC area below .7) is smaller than the corresponding proportion for test 2. 

Hence test 1 appears to be safer to adopt. An argument could also be made that test 2 is 

better because the proportion of readers with high accuracies (say above 0.8) is larger 

than the corresponding proportion for test 1. Neither argument is wrong. However, the 

fact that both arguments have merit serves to underline the point that the definition of 

equivalence must be made on the basis of a specific clinical or health policy objective. 

 

2.2 Criteria for equivalence 

Using the notation from Chapter 1, we will reserve the index i for tests (i= 1,2) and the 

index j for readers. Let µ i denote the mean for the test i over the population of readers of 

the test, and A ij  the true area under the ROC curve mean for reader j with test i. 

Assessment of population equivalence refers to the comparison of the distributions of the 

areas of two tests across the population of readers. In order to compare these 

distributions, we need to define the characteristics of the distribution to be compared and 

metrics for measuring their dissimilarity. The characteristics of the distribution may be a 

set of simple parameters of the distribution (e.g. the mean and the variance) or a function 

of these parameters (e.g. the interquartile range). However each of these characteristics 

should be chosen to represent a quantity that is interpretable in the given clinical or health 

policy context. As we discussed earlier, it is also important to use measures of 

dissimilarity that have a subject matter interpretation. For instance there exist several 

measures of distance between two distributions, such as the Hellinger or the Kullback-



 17

Leibler distance. Although such metrics have a mathematical interpretation, their clinical 

or health policy interpretation is not clear. For example the Kullback-Leibler distance 

between two normal distributions N( 2
11,σµ ), N( 2

22 ,σµ ) is equal to: 

2
2

2
21

2
1

2

1

2

)(
log2/1

σ
µµσ

σ
σ −++








+−  

This quantity does not have a clear subject matter interpretation and,  as a consequence, it 

is not straightforward to determine what a maximum acceptable difference for 

equivalence δ  should be.  

The criteria proposed in this thesis can be formulated in the following way: Let 21,ee  be 

the characteristics of the distributions for tests 1,2 and assume that they take values in the 

sets 21 , EE  respectively. Also let d{ 21,ee } be the measure of dissimilarity and δ  the 

maximum acceptable dissimilarity between 1e  and 2e . The basis of our criteria for 

equivalence assessment will be the probability of similarity, defined on 21 EE × : 

Pr ( d{ 21,ee }≤ δ ) .  

This quantity is easy to interpret in a particular subject matter setting, as long as 21,ee  and 

d have quantitative interpretations. Equivalence could then be assessed using a Bayesian 

framework, as in (2) above.   

The choice of the characteristics of the distributions to be compared should be based on 

the particular health policy or clinical question that led to the considerations of 

equivalence. Choosing only the mean or the median of the distribution will be appropriate 

for situations in which the variability across readers is of secondary importance. We 

denote the probability of similar means by: 

1P := Pr ( d ),( 21 µµ  ≤ δ ) 
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As mentioned earlier however, the variability across readers is often substantial. A 

comparison that takes such variability into account may be based on some low or high 

percentiles of these distributions. The corresponding probability would then be defined 

as: 

qP2 := Pr ( d ),( 21 qq  ≤ δ ) 

Here iq  represents an appropriately chosen percentile of the distribution for test i. For 

instance, if the focus is on the potential for low performance, we may compare a low 

percentile of these distributions - say the 0.2 percentile –. Population equivalence may 

then be defined to hold if these percentiles are similar with sufficiently high probability. 

If the focus is on potential high performance, we may choose to compare the distributions 

on the basis of a high percentile, say the 0.8 percentile.  

A more global assessment of population equivalence can be defined using more than one 

percentile, some low and some high. For example, if 8.02.0 , ii qq  denote the 0.2 and 0.8 

percentile of the distribution for test i, equivalence can be defined via the probability: 

Pr [{d ),( 2.0
2

2.0
1 qq ≤ 1δ } I  {d ),( 8.0

2
8.0

1 qq  ≤ 2δ }]   

We will denote the above probability by 2,1
2

qqP .   

Ideally, measures of dissimilarity d should have a subject matter interpretation and should 

also be simple enough to allow for an easy specification of values of δ . Two appealing 

choices, that have been already used, are the Euclidean distance and measures of the form 

d{ 21,ee }:= | 21 /1 ee− |, which will result in a metric of the type Pr(1 - δ  ≤ 21 / ee ≤ 1 + 

δ ).  Once a choice of d is made, the assessment of equivalence will be based on whether 

the corresponding probability of similarity is sufficiently high.  
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Individual reader equivalence compares the tests for each specific reader. This is a stricter 

type of equivalence because it goes beyond the comparison of the marginal distributions 

and requires similarities in the conditional (reader-specific) distributions as well. 

Formally, individual reader equivalence can be defined in matter similar to Anderson and 

Hauck approach, by computing: 

1I : =Pr ( },{ 21 jj AAd  ≤ δ )  

Under the Bayesian framework, the probability above is determined by the joint posterior 

distribution of the ijA ’s. According to this criterion the tests will be considered 

individually equivalent if they are ‘similarly’ accurate in a sufficiently high proportion of 

readers. 

An alternative way to define individual reader equivalence is by fixing a low percentile of 

the probabilities of ‘similar’ areas across readers. Let jp = Pr ( },{ 21 jj AAd  ≤ δ ) for a 

given j. Given the Bayesian context, consider the distribution of jp  in the population of 

readers. Then define: 

kI 2 : k-th percentile of the distribution of  jp ’s 

For k=0.2, kI 2  measures the minimum probability of similar areas that will be achieved 

by 80% of the readers. If this probability is sufficiently high, the tests will be considered 

individually equivalent.  

In order to assess population and individual reader diagnostic equivalence, estimates of 

the quantities defined above should be obtained. This can be done easily under an 

appropriate multiple reader study design by fitting a suitable Bayesian model and using 
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the posterior distributions of the parameters involved. In the next chapter we present such 

a model and a study design. 

  

3. Assessing equivalence with a Bayesian hierarchical model  

 

In this section we discuss the assessment of equivalence using data that follow a 

hierarchical model. The specific metric is the area under the ROC curve for a population 

of readers. As noted above, the approach is applicable more generally, with appropriate 

modifications of the components of the hierarchical model.  

 

3.1 Model specification  

Assume for the purposes of this discussion that a fully crossed design was used to collect 

degree of suspicion data and estimate ROC curves for J readers in I=2 test modalities. Let  

ijY  be the estimate of the area under the ROC curve for the reader j (j = 1, ..., J) in the 

test i (i = 1, 2). Also let the ijA ’s be the corresponding true areas. Since each reader 

interprets the same set of patients the data are correlated. Therefore in Level I of the 

model, we assume that, conditional on the hyperparameters, each pair of estimates ( jY1 , 

jY2 ) is distributed according to a bivariate normal distribution with its own mean ( jA1 , 

jA2 ) and covariance matrix jΣ  (See Gatsonis and Wang, in preparation). The covariance 

matrix jΣ  represents variability due to sampling error and can be approximated as a 

function of the mean areas and some additional quantities including the number of 

diseased and non-diseased cases (Obuchowski 1997, DeLong et al 1988, Hanley and 
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McNeil, 1983). For reasons of model parsimony, in this analysis we consider jΣ  to be 

known and equal to its estimated value. We discuss some possible implications of this 

choice in Chapter 5. Details of how to obtain these estimates are presented in the 

Appendix.  

In the Level II of the model we use a logit transformation of the ijA ’s and, conditionally 

on hyperparameters, we assume again a bivariate normal distribution for the pairs  

(logit( jA1 ), logit( jA2 )) with mean ( 21, µµ ), the population mean, and covariance matrix 

B. Here B represents the variability between readers. 

To complete model specification, priors on the parameters 21, µµ  and B should be 

assigned (Level III). Since all the realistic values for areas lie between 0.5 and 1, we 

assigned uniform priors in that region for each logit )(1
iµ− . To construct a prior for B, we 

used a hierarchical prior on the correlations, as discussed in Barnard and McCullogh 

(2001) and Daniels and Kass (1999). This prior has advantages in small samples over the 

Wishart and enables us to model the variances and the correlations separately, which is 

very convenient since we have different types of information for these parameters. The 

prior is set as follows: Consider the decomposition B=diag(S) × R × diag(S), where S is a 

vector with the standard deviations and R is the correlation matrix. For the elements of S 

we used log-logistic priors with means jc , equal to the harmonic means of the variances 

of the transformed areas across readers for each test. These covariance matrices can be 

obtained using Delta method. (Du Mouchel 1994). For the prior on the correlation 

coefficient ρ , we put a U(0,1) on the correlation coefficient ruling out the possibility of 

negative correlation.  
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The model can be summarized as follows:  

Level I  
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iσ ~ log-logistic( ic , 1),  

ic  : harmonic mean of the diagonal entries in the covariance matrices of the transformed 

areas for each reader  

ρ ~ U(0,1) 

 

A Markov Chain Monte Carlo algorithm for this model was written in BUGS. The 

convergence of the chain needs to be monitored carefully, because the correlations in B 

are probably going to be high. Alternatively a Metropolis step within Gibbs may be used 

for B (Daniels and Kass 1999).  
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3.2 Assessing equivalence using the model  

Estimates of the various equivalence criteria can be obtained using the samples from the 

posterior of the ijA 's. Denote by ijka  the k-th draw of the parameter ijA  (k=1,…,n). Then 

1P  can be approximated by the formula: 
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where I(ּ) is an indicator function. In order to approximate qP2 and qhqlP  ,
2 , we should 

calculate samples from the relevant percentiles. Let ikik qhql  and be the relevant low and 

high percentiles of the distribution across readers for test i, obtained from the draw ijka .  
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To approximate mI 2 , we may calculate the probabilities of similar accuracies jp  for each 

reader, by averaging over all draws for each j: 
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Then mI 2  can be obtained by taking the m-th percentile of the jp ’s. 

For estimating 1I  we should average over the draws and the readers j: 
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Equivalently we calculate the average of the probabilities jp over j.  

 

3.3 Sensitivity to distributional assumptions  

The normality assumption in Level I of the model is based on the asymptotic distribution 

of the estimates ijY ’s and holds quite generally. Concerns about this assumption may 

arise when the sample size of normal and abnormal cases are small and when the values 

of the true areas are close to 1. The normality assumption at Level II is similar to the 

assumption made in the mixed models discussed in section 1. This assumption needs 

closer scrutiny because it is an important determinant of the posterior estimates of 

individual reader performance measures. The normality assumption may be difficult to 

validate on the basis of empirical information, unless the equivalence study involves a 

large number of readers. Of course, when the sample size of cases is large, the variance at 

Level I will be small and the shrinkage of Level I parameters will be relatively small for 

most reasonable choices of the Level II distribution. However, this is often not the case in 

practice. A heavier tailed multivariate t distribution with few degrees of freedom would 

be a more “robust” choice for the Level II prior. In section 4.1 we perform a sensitivity 

analysis to this particular distributional assumption.  

 

3.4 Study design considerations 

Because of the conditional independence assumption made in Level I, the hierarchical 

model described above is suitable for the analysis of data from designs in which the 

readers interpret different sets of patients. This situation is common in data from two of 
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the most likely sources of information for equivalence studies, multi-center trials and 

meta-analyses of published studies 

The hierarchical model described in this chapter can also be used to analyze data from a 

typical multi-reader study where each reader interprets both tests, performed on the same 

set of cases (patients) and the set of cases is the same for each reader.  

There are three separate types of correlation that may be induced by this study design 

(Obuchowski 1995, Toledano and Gatsonis 1996): (i) because scans of the common set of 

cases are read by the same reader for both tests,  (ii) because scans on the set of cases are 

read by different readers for the same test, and (iii) because scans on the common set of 

cases are read by different readers for different tests. These correlations can be estimated 

directly from the primary scan interpretation data. The first appears explicitly in jΣ̂ . The 

other two are included only implicitly in our model by the marginal correlations induced 

by the hierarchical model. 

We note that the formulations of equivalence considered in this thesis apply to studies in 

which each scan is interpreted by each reader on only one occasion. Designs of this type 

are commonly used in diagnostic and screening test evaluation. .  

 

4. Applications 

4.1 Example: Transfer of Intelligence Technologies to Breast Imaging study 

We illustrate the use of the proposed model in the Transfer of Intelligence technologies to 

Breast Imaging study. In this study 10 radiologists interpreted a set of mammograms on 

900 women in two settings, (i) mammogram alone and (ii) mammogram with a computer 

aided diagnostic tool (CAD). Reference information about the disease status of the 
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participants was based on pathology data for those with a biopsy and on follow-up for 

those who did not have a biopsy. 5 of the radiologists were specialized in mammography 

and the other 5 were general radiologists. The data (Table 4.1), consist of estimates of the 

ROC areas for each reader and the estimates of the covariance matrices ( jΣ̂ ) obtained 

from the Binormal model (Metz 1978). 

 The t-test statistics and confidence intervals for the difference of the average areas were 

computed using the mixed model approach of Obuchowski (1995), which accounts for 

the various correlations described in section 3.4. This test suggests that the difference in 

the two means is not significant. However, as mentioned before, this may not be an 

adequate criterion to infer equivalence without further consideration of the variability 

across readers in a more elaborate analysis. 

 

 Reader Plain S.E CAD S.E. Correlation 
#1 0.8406 0.0232 0.8176 0.0257 0.4998 
#3 0.8808 0.0154 0.8953 0.0151 0.6111 
#4 0.9040 0.0137 0.8955 0.0147 0.6870 
#7 0.8706 0.0161 0.8805 0.0157 0.6052 

Radiologists 
specialized  
in 
Mammography 

#8 0.8402 0.0177 0.8553 0.0166 0.6538 
#2 0.7826 0.0209 0.7654 0.0220 0.5802 
#5 0.7663 0.0252 0.8304 0.0193 0.4667 
#6 0.8683 0.0160 0.8831 0.0146 0.6197 
#9 0.8354 0.0184 0.8513 0.0178 0.5570 

General 
Radiologists 

#10 0.8527 0.0186 0.8346 0.0209 0.5321 
 Plain CAD t-value P-value 95 % C.I. Overall Average 

 0.8442 0.8509 -0.5286 0.6099 [-0.022  0.036] 
 
Table 4.1: Areas under fitted ROC curves, t-test, p-value and 95% confidence interval 
for the difference in average areas   
   

We used 3 variants of the hierarchical model resulting from different distributional 

assumptions in Level II – a bivariate normal and two bivariate t distributions with 5 and 1 
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degrees of freedom. Since a bivariate t with 1 degree of freedom has no moments (is 

similar to a bivariate Cauchy distribution), the iµ ’s and B were just location and scale 

parameters in that case. After a large burn-in sample of 10,000 iterations, and the 

appropriate check for convergence, 10,000 samples were drawn from the posterior 

distribution of the parameters in each model. We used a thinned sample by 5 and thus 

estimated the quantities of interest using 2,000 nearly independent draws. 

The estimates of the probabilities that correspond to population equivalence assessment 

are shown in table 4.2. We chose a low percentile of 0.2 and a high of 0.8 and for the 

probability 8.0,2.0
2P  and used the same value of δ  for each percentile.  

Tables 4.2a and 4.2b summarize the results for population equivalence. To assess 

population equivalence we should first define the contrast metric d, the minimum 

practical difference δ and the probability 1- a . As noted above, these choices need to be 

made on the basis of subject matter considerations. Once the choices are made, 

equivalence assessment is relatively straightforward.  

For example, suppose that we choose the Euclidean distance contrast and we set δ =0.05 

and 1- a =0.95. Then the estimates of the probabilities presented in table 4.2a will suggest 

population equivalence, since the means, the low and the high percentiles of the 

distributions of the areas across readers are “similar” with sufficiently high probability. 

However for δ =0.03 the probability that the low percentiles are similar is smaller and 

2.0
2P or 8.0,2.0

2P less suggestive of population equivalence. The probability estimates do not 

change appreciably when heavier tailed distributions are used in Level II and, in any case 

they remain above 90%. 
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Bivariate Normal Bivariate t with 5 d.f. Bivariate t with 1 d.f.  
δ =0.05 δ =0.03 δ =0.05 δ =0.03 δ =0.05 δ =0.03 

1P  1 1 1 1 1 1 
2.0

2P  0.9995 0.9465 0.9990 0.9400 0.9975 0.9055 
8.0

2P  1 1 1 0.9985 1 0.9990 
8.02.0

2
−P  0.9995 0.9465 0.9990 0.9385 0.9975 0.9045 

Table 4.2a: Metrics related to population equivalence with d( 21,ee ) = | 21 ee − |     
 
 
 

Bivariate Normal Bivariate t with 5 d.f. Bivariate t with 1 d.f.  
δ =0.1 δ =0.05 δ =0.1 δ =0.05 δ =0.1 δ =0.05 

1P  1 1 1 1 1 1 
2.0

2P  1 0.9955 1 0.9940 1 0.9875 
8.0

2P  1 1 1 1 1 1 
8.0,2.0

2P  1 0.9955 1 0.9940 1 0.9875 

Table 4.2b: Metrics related to population equivalence with d( 21,ee ) =| 21 /1 ee− |         
 

Estimates of the metrics that correspond to individual reader equivalence are shown in 

Table 4.3. The values of the estimated probabilities are quite high, indicating that 

individual equivalence would be inferred for many reasonable choices of δ  and a .  

 

Bivariate Normal Bivariate t with 5 d.f. Bivariate t with 1 d.f.  
 δ =0.05 δ =0.03 δ =0.05 δ =0.03 δ =0.05 δ =0.03 

1I  0.9750 0.8921 0.9753 0.8991 0.9688 0.8905 
2.0

2I  0.9892 0.8938 0.9912 0.9038 0.9855 0.8828 

Table 4.3a: Metrics related to individual reader equivalence with d( 21,ee ) = | 21 ee − | 
 
 

Bivariate Normal Bivariate t with 5 d.f. Bivariate t with 1 d.f.  
 δ =0.1 δ =0.05 δ =0.1 δ =0.05 δ =0.1 δ =0.05 

1I  0.9990 0.9554 0.9979 0.9572 0.9964 0.9473 
2.0

2I  1 0.9605 0.9998 0.9658 0.9995 0.9513 

Table 4.3b: Metrics related to individual reader equivalence with d( 21,ee ) =| 21 /1 ee− |   
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Here 1- a  has a slightly different interpretation and it may be sensible to set it at a lower 

value. The inference seems to be robust to the choice of the Level II prior in every case.  

One explanation for this similarity in the results between population and individual 

equivalence may be the high correlations in the estimates of the ROC areas, which tend to 

make the pairs move “together” and therefore the differences within pairs, are not 

affected by the choice of the Level II distribution.    

 

4.2 Simulations   

We used simulations to investigate the behavior of the model and the metrics proposed in 

section 3. Datasets analogous to the Transfer of Intelligence to Breast Imaging study were 

generated under two different scenarios and analyzed each one of them. These scenarios 

contained different choices for the distributions of the accuracies for each test across 

readers, which are shown in Figure 2. The first scenario assumed that the areas of both 

tests (in the logit scale) had normal distributions across readers with identical means and 

different variances. The second scenario assumed again normal distributions for the areas 

(in the logit scale), but one test had larger mean and larger variance than the other. In 

both scenarios the areas exhibited high correlation in order to correspond to the study 

designs described in section 3.4. We included a small number of readers (10) in these 

study designs, as this is usually the case.  For every scenario we generated 100 datasets 

and at each one of them we used a Gibbs sampler to draw from the posterior and analyze 

the data. In order to ensure convergence in all datasets we applied a large burn-in period 

of 10,000 iterations. After that we proceeded as in the analysis of example 4.1, drawing 

10,000 samples and thinning the sample by 5. To assess population equivalence we used 
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the Euclidean based metrics with δ =0.05, the ratio-based with δ =0.08 and we examined 

two possibilities for a (.05 and 0.1). The percentiles that we chose were again to be 0.2 

and 0.8 and for the probability: 8.0,2.0
2P  the same δ  was used for each percentile. For 

individual reader equivalence we used the same d’s and δ ’s, a ’s of 0.2 and 0.1 and the 

0.2 percentile for 2.0
qI .  

0 1 2 3

0
1

2
3

4

Scenario 1

0 1 2 3

0
1

2
3

4

Scenario 2

 

Figure 2: Hypothetical marginal distributions of the areas across reader for test 1 (solid 
line) and test 2 (dashed line) under the two simulation scenarios. 
 

Scenario 1: In this setting one of the tests is more likely to have extreme (high or low) 

reader performance than the other The logits of the true areas ( ijA ’s) for each reader were 

drawn from a bivariate normal distribution with mean logit(0.83) and covariance matrix 
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with standard deviations .1 and .4, and correlation .6. The estimates of the areas for each 

reader ( ijY ’s) were generated by adding noise to the ijA ’s according to a bivariate normal 

distribution with mean 0 and covariance matrices similar to the jΣ ’s in the example. 

Tables 4.4a and 4.4b summarize the results of this set of simulations:  

 
Criteria with               

d( 21 ,ee ) =| 21 ee − |, δ =.05 
Criteria with                  

d( 21 ,ee ) =| 21 /1 ee− |, δ =.08 
 

=0.1 =0.05 =0.1 α =0.05 
Pr ({ 1P >1-α }) 1 1 1 1 

Pr ({ 2.0
2P >1-α }) 0.67 0.61 0.79 0.71 

Pr ({ 8.0
2P >1-α }) 0.65 0.55 0.89 0.83 

Pr ({ 8.0,2.0
2P >1-α }) 0.50 0.44 0.69 0.55 

Table 4.4a: Summary of simulations under scenario 1 for population equivalence. The 
entries show the proportion of times each criterion was larger than 1-α  
 
 

Criteria with               
d( 21 ,ee ) =| 21 ee − |, δ =.05 

Criteria with                  
d( 21 ,ee ) =| 21 /1 ee− |, δ =.08 

 

α =0.1 α =0.05 α =0.1 α =0.05 
Pr ({ 1I >1-α }) 0.16 0.08 0.38 0.23 

Pr ({ 2.0
2I >1-α }) 0.11 0.07 0.42 0.35 

Table 4.4b: Summary of simulations under scenario 1 for individual reader equivalence. 
The entries show the proportion of times each criterion was larger than 1-α  
 

As expected the metric 1P  suggests equivalence almost always, whereas the other metrics 

may suggest otherwise.  In this scenario, one may have expected lower values for the 

percentile-based probabilities than what was reported in the table. An explanation for this 

discrepancy may be that the number of readers (10) is small, making it difficult to 

estimate the percentiles with high precision. It is reassuring however that the estimates of 

1I  and 2.0
2I  are fairly low, making it very unlikely to conclude individual equivalence in 
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this case.  This is a situation where the tests may be equivalent in the population of 

readers but not in the individual reader level.  

Scenario 2: In this setting, one of the tests is generally better than the other. However 

reader performance with the “better” test is more variable. The logits of the true areas 

were drawn from a bivariate normal distribution with a different mean for each test 

(logit(0.80) and logit(0.87)) and a covariance matrix with standard deviations 0.1 and 0.4, 

and correlation 0.6. The estimates of the areas were generated in the same way as in the 

previous scenario. The results of the analysis are presented in Tables 4.5a and 4.5b. Most 

entries in Table 4.5 do not suggest equivalence, with the exception of 2.0
2P . The latter is 

not surprising because the 0.2 percentiles of the distributions of the two tests are in fact 

quite close, despite the fact that most other characteristics of the distributions are not.   

The assessment of equivalence may rest primarily on the 0.2 percentile criterion, for 

example, if the new test is considerably more expensive or invasive that the standard test. 

In such a situation a conservative strategy may suggest to stay with the current test, as 

long as the new does not improve the low end of the test performance.  

 
Criteria with                 

d( 21 ,ee ) =| 21 ee − |, δ =.05 
Criteria with                   

d( 21 ,ee ) =| 21 /1 ee− |, δ=.08 
 

α =0.1 α =0.05 α =0.1 α =0.05 
Pr ({ 1P >1-α }) 0.11 0.07 0.52 0.46 

Pr ({ 2.0
2P >1-α }) 0.45 0.37 0.74 0.67 

Pr ({ 8.0
2P >1-α }) 0 0.01 0.02 0 

Pr ({ 8.0,2.0
2P >1-α }) 0 0 0.02 0 

Table 4.5a: Summary of simulations under scenario 2 for population equivalence. The 
entries show the proportion of times each criterion was larger than 1-α  
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Criteria with                 
d( 21 ,ee ) =| 21 ee − |, δ=.05 

Criteria with                   
d( 21 ,ee ) =| 21 /1 ee− |, δ =.08 

 

α =0.1 α =0.05 α =0.1 α =0.05 
Pr ({ 1I >1-α }) 0 0 0 0 

Pr ({ 2.0
2I >1-α }) 0 0 0 0 

Table 4.5b: Summary of simulations under scenario 1 for individual reader equivalence. 
The entries show the proportion of times each metric was larger than 1-α  
 
 

5. Discussion  

In this thesis we presented population and individual formulations of equivalence of two 

diagnostic tests, as interpreted by a population of readers. We also discussed how the 

relevant quantities could be estimated from a Bayesian hierarchical model.  

We assumed paired designs for the tests under comparison because such designs are 

commonly used and because they provide better control of confounding. We also focused 

the development of criteria and models on studies in which each scan is interpreted once 

by a given reader. However, the equivalence criteria may be applied to other study 

designs and other statistical models as well. For instance, the population equivalence 

metrics can be applied to uncorrelated data resulting from studies in which each reader 

uses only each test on a separate group of cases. The approach can also be extended to 

studies in which scans are interpreted repeatedly by the same reader.   

Elaborations or simplifications of the basic hierarchical model can be considered to fit 

data arising from particular study designs or to incorporate additional sources of 

information. For example, the covariance matrices jΣ  could be treated as unknown 

parameters of the model instead of assuming them as known and equal to their estimates. 
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Such an elaboration of the model would make use of known approximations of the jΣ as 

functions of the true areas and other parameters (e.g. a and b in the Binormal model – see 

Appendix). The choice of considering the Level I matrices jΣ  as known is common in 

hierarchical model analysis, primarily because it results in considerable reduction of the 

number of the parameters in the model. Such parsimony is particularly important in 

modeling data from diagnostic test studies, because such data are often based on a limited 

number of readers and allow a relatively small number of degrees of freedom.  

The choice of the Level II distribution needs careful consideration. As noted earlier this 

distribution affects, to a large extent, the posterior estimates of individual reader 

performance measures. However, the evaluation of this assumption may be difficult 

because the sample size of readers will typically be limited. Normality of the reader 

effects is a common assumption in practice, both in the hierarchical model used in our 

analysis and in the mixed models used in other work on equivalence, as described in 

Chapter 1. One safeguard available to the analyst is to perform a sensitivity analysis 

using several Level II distributional assumptions. The alternatives to be considered may 

include unimodal symmetric distributions with heavier tails or non-symmetric 

distributions as well as multimodal distributions. However, an extended sensitivity 

analysis should be guided by the available information regarding the population of 

readers. It may also be reasonable to consider an analysis that is stratified by reader 

characteristics. For example in the example of section 4.1, 5 of the readers were general 

radiologists and 5 were specialized in mammography.  

The hierarchical model described in Chapter 3 can be modified easily to accommodate 

other measures of diagnostic performance, as long as the normality assumption in Level I 
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can be supported. We note that the normality assumption will be met asymptotically by 

most estimates of measures of diagnostic performance as well as by suitable 

transformations, such as logits. Hence, the hierarchical model can be used with the 

appropriate specification of the covariance matrix jΣ̂ . The form of this covariance matrix 

becomes simpler when the metric is sensitivity or specificity.  

The proposed approach can be extended to handle situations in which multivariate 

measures of diagnostic performance are used. An important special case arises when both 

the sensitivity and the specificity are considered simultaneously. Equivalence may then 

be assessed through the appropriate probability Pr ( d{ 21,ee }≤ δ )  as defined in section 

2.2. In this case, 1e and 2e  are vectors containing the elements of the distributions (across 

readers) of the sensitivities and specificities for each test.  

The general formulation of the equivalence criteria and they hierarchical model analysis 

proposed in this thesis can be applied beyond the diagnostic equivalence setting. Indeed, 

the approach can be used to define and assess equivalence in biomedical settings where 

patients are grouped and performance is measured for each grouping. For example, it 

may be of interest to assess equivalence in the effectiveness of two therapeutic 

procedures (e.g. two types of surgery), as performed in various hospitals. In that case 

population equivalence will compare the distributions of the response rates across 

hospitals and individual equivalence will be defined in the hospital level.   

It should also be noted that the approach discussed in this thesis may also be used to 

handle the assessment of non-inferiority.  In studies of non-inferiority the question of 

interest is whether one test (or therapy) is at least as good as the other, instead of whether 

the two tests are equivalent. The assessment of non-inferiority can proceed essentially as 
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the assessment of equivalence, after modifying the metrics by removing the absolute 

values from the d’s. For example, in order to test whether test 2 is non-inferior of test 1 in 

terms of their population means, we may estimate the value of the corresponding metric 

1P , which in this case will be equal to Pr( ),( 21 µµd ≤δ ).  

 

APPENDIX 

 
We will illustrate how to obtain estimates of jΣ ’s in the case where the ijY ’s are obtained 

from the binormal model with test results on an ordinal scale. Under that model assume 

that DX and NX refer to the underlying continuous test results of the diseased and non-

diseased patients respectively and that they are normally distributed with means Dµ , Nµ  

and variances 22 , ND σσ . Let α =( DND σµµ /)( −  and b= DN σσ / . Then the area under the 

ROC curve equals ∫ += ννφνα dbA )()( , and we can estimate it by Y= )]ˆ1/(ˆ[ 2ba +Φ , 

where ba ˆ,ˆ  are the MLE’s of α and b respectively. 

In our case there is a pair of correlated estimates since the observations are taken from the 

same reader and patients. Hence we have 2121
ˆ,ˆ,ˆ,ˆ bbaa  which as MLE’s are 

asymptotically normal with mean their rue value and variance the Fisher Information 

matrix. Using Delta method, we can approximate their variance jΣ  by the following 

formulae: 

)ˆ,ˆcov(2)ˆvar()ˆvar()var( 22
iiiiiiiii bagfbgafY ++=  (8) 
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)ˆ,ˆcov()ˆ,ˆcov()ˆ,ˆcov()ˆ,ˆcov(),cov( 121221212121212121 bagfbagfbbggaaffYY +++=  (9) 

 

where: 
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In order to compute an approximation we can use the observed information matrix 

evaluated at the MLE estimate, together with some estimates for the variances and 

covariances involved. Obuchowski and McClish (1997), approximated those estimates 

with Taylor expansion series: 
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where DN , NN  is the number of diseased and non-diseased patients respectively, R the 

ratio DN NN /  and ND rr ˆ,ˆ  are the sample correlation coefficients of the test results 

between the two tests in the diseased and non-diseased patients respectively. 
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An estimate of jΣ can be obtained by substituting the unknown terms with their estimates 

in (8) and (9). It is not difficult to show that if the observed information matrix is positive 

definite then jΣ̂  will also be positive definite.  

Finally, an estimate of jΣ  can be obtained without the assumption of the binormal 

model. For example if the ijY ’s represent non-parametric estimates (obtained from the 

Mann-Whitney statistic) we can again calculate jΣ̂  in a similar fashion (Delong et al).  
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