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Chapter 1

Introduction

1.1 Diffusion models

The basis of a diffusion process is the celebrated Brownian motion. More than a cen-

tury ago, Albert Einstein published his first paper on Brownian motion (Einstein, 1905).

Nevertheless, he was not the first one to touch on this subject. In around 1827, the

Scottish scientist Robert Brown observed the random behavior of pollen particles sus-

pended in water. Naturally, this phenomenon came to be known after his name. Several

years later (yet before Einstein) and in a completely different context, a young French

mathematician, Louis Bachelier, defended a thesis at the Sorbonne in Paris, France, on a

probabilistic model of the French bourse (Bachelier, 1900). Although his aim was to give

a statistical description of financial transactions on the Paris stock market and he was

obviously unaware of Brown’s work, he ended up using the same process. The phrase with

which he ended his thesis was ‘the bourse, without knowing it, follows the laws of prob-

ability’ is still a guiding principle in modern quantitative finance. None of these famous

scientists however, did succeed to show that the model existed as a rigorous stochastic

process; this was done later by Wiener (1923) who used ideas of Borel and Lebesgue from

measure theory. As a result of that, Brownian motion is also now called Wiener process.

A diffusion process can be thought of as continuous time model for a continuous

process, the noise of which is determined by Brownian motion. Such a model is formulated

under a differential equation and therefore the construction of a ‘stochastic integral’ was
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needed. This was invented several years later by the Japanese mathematician Ito. From

1942 to 1946, K. Ito published a sequence of papers (Stroock and Varadhan, 1987) defining

a diffusion process X through a ‘stochastic differential equation’:

dXt = µ(t,Xt) + σ(t,Xt)dBt.

Here µ(t,Xt) is the instantaneous mean increment, σ(t,Xt)σ(t,Xt)
′ is its variance and B

is a Brownian motion (Wiener process).

The intuitive definition of a diffusion process makes it appealing in many types of

applications across a wide range of fields. In Finance, despite the fact that Bachelier’s

work was forgotten for half a century, it was rediscovered in the 60’s (in part indepen-

dently) when the statistician L. J. Savage showed it to the (eventual) Nobel Prize-winning

economist Paul Samuelson. Samuelson modified it and proposed geometric Brownian mo-

tion as a model for stock prices. Interestingly enough, the role of probability in finance

has since then only increased. Quite sophisticated tools of stochastic differential calculus

are routinely used in pricing, hedging and risk assessment of financial products. How-

ever, diffusion processes find applications in other fields. Some examples include Biology

(McAdams and Arkin, 1997), Genetics (Kimura and Ohta, 1971), Chemistry (Gillespie,

1976), Physics (Obuhov, 1959) etc.

The development of statistical inference for diffusion processes is thus of high practical

importance. Moreover it is quite a challenging task from a mathematical perspective,

since we can only finitely observe these infinite dimensional objects. In this thesis, we

pursue likelihood based inference, which remains an open problem as we elaborate in this

chapter. We adopt a Bayesian framework, utilizing Markov chain Monte Carlo (MCMC)

techniques.
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1.2 Preliminaries

In this section we provide some definitions that are essential for the upcoming material.

Undoubtedly, this is an incomplete introduction geared towards the needs of this thesis.

For a thorough and complete introduction with all the relevant details, the reader is

referred to Oksendal (2000), Rogers and Williams (1994), Karatzas and Shreve (1991)

and Kloeden and Platen (1995).

1.2.1 Brownian Motion

Definition

Consider the following general continuous time model for the continuous stochastic pro-

cess Xt:

dXt

dt
= µ(t,Xt) + σ(t,Xt) × ‘noise’

The noise may be represented by another stochastic process Wt:

dXt

dt
= µ(t,Xt) + σ(t,Xt) ×Wt

Some desirable properties for the noise process Wt are:

1. If t1 6= t2, then Wt1 , Wt2 independent.

2. {Wt} is stationary.

3. E(Wt) = 0

However, no stochastic process with continuous paths satisfies the first two properties.

We thus set t0 < t1 < · · · < tk and consider a discrete time version of our model. Let

3



Xtk+1
−Xtk = µ(t,Xt)(tk+1 − tk) + σ(t,Xt)Wt(tk+1 − tk), or

Xtk+1
−Xtk = µ(t,Xt)(tk+1 − tk) + σ(t,Xt)(Btk+1

−Btk)

It turns out that the only process that has zero mean, stationary and independent incre-

ments is Brownian motion (Knight, 1981).

A random variable Bt is called standard Brownian motion if it satisfies the following

properties:

1. B0 = 0

2. Bt is a continuous function of t.

3. B has independent, normally distributed increments: Let Y1 = Bt1 − Bt0 , Y2 =

Bt2 −Bt1 , . . . , Yk = Btk −Btk−1
. Then

• Y1, . . . , Yk are independent

• Yk ∼ N(0, tk − tk−1)

Brownian bridge

Let {Bt, t ≥ 0} denote a Brownian motion (B0 = 0). Loosely speaking a Brownian

bridge (between times 0 and 1) from 0 to a fixed real number b is the Brownian motion

B conditioned to be b at time 1. Note that the conditioning on a zero probability event

is not straightforward. Under a rigorous definition, a Brownian bridge is a continuous

time Gaussian process {Xt, 0 ≤ t ≤ 1} such that:

E(Xt) = bt, cov(Xt, Xs) = min(s, t) − st, s, t ∈ [0, 1]

4



Alternatively we may define a Brownian bridge through either of the two following equa-

tions:

Xt = Bt + t(b−B1), 0 ≤ t ≤ 1,

dXt =
b−Xt

1 − t
dt+ dBt, 0 ≤ t < 1, X1 = b.

Note that the transformation from X to B is not 1 − 1. This is only true for another

equivalent definition which we give in the Section 1.2.2.

1.2.2 Diffusion processes

Stochastic Differential Equations

A multidimensional diffusion is defined as the solution to the following vector stochastic

differential equation (SDE):

dXt = µ(t,Xt, θ)dt+ σ(t,Xt, θ)dBt, 0 ≤ t ≤ T, (1.1)

where Bt = (B
{1}
t , . . . , B

{d}
t )′ denotes a d−dimensional Brownian motion. The functions

µ : [0,+∞) × SX × Θ → ℜd with [µ(·)]i = µ{i}(·) and σ(·) : [0,+∞) × SX × Θ → ℜd×d

with [σ(·)]{ij} = σ{ij}(·) correspond to the SDE’s drift and dispersion matrix respectively

(SX denotes the domain of the diffusion X). In coordinate form the above SDE writes:

dX
{i}
t = µ{i}(t,Xt, θ)dt+

∑

j

σ{ij}(t,Xt, θ)dB
{j}
t , i = 1, . . . , d, j = 1, . . . , d.

A less rigorous, yet more intuitive and easier to interpret, definition of Xt is the

following: Suppose that Xt is a continuous Markov process and assign the following

probability model to it:

5



Xt+δ = Xt + δµ(t,Xt, θ) + σ(t,Xt, θ)ǫ,

ǫ ∼ N(0, δId),

where (Id is the d−dimensional identity matrix and ′ denotes the matrix transpose). If

we take the limit as δ → 0 we get the same process of (1.1). Hence we can interpret

µ(.) (drift) and Σ(.) = σ(.)σ(.)′ (volatility) as the mean and covariance matrix of the

instantaneous increments of Xt.

For the purposes of this thesis, we require the existence of a weakly unique (in law)

solution. This is ensured if (but not only if) the following assumptions hold (Rogers and

Williams, 1994, vol 2; page 170):

1. Σ(·) := σ(·)σ(·)′ is continuous

2. Σ(x) is positive definite for each x (In other words |σ(x)| 6= 0 for each x).

3. There exists K> 0 such that |[Σ]ij(x)| ≤ K(1 + |x|2) and |µ{i}(x)| ≤ K(1 + |x|) for

all i, j and x.

Diffusion transformations - Ito’s lemma

Let X be a d-dimensional diffusion as in Section 1.2.2:

dXt = µ(t,Xt, θ)dt+ σ(t,Xt, θ)dBt, or, in coordinate form,

dX
{i}
t = µ{i}(t,Xt, θ)dt+

∑

j

σ{ij}(t,Xt, θ)dB
{j}
t

Suppose that we are interested in a transformation Ut = h(t,Xt, θ) = (h1(.), . . . , hp(.))
′,

where h(.) is a C2 map from Rd into Rp. Using Ito’s lemma we can get the following

formula for the SDE of U :

6



dU
{k}
t =

∂hk(t,Xt, θ)

∂t
dt+

d
∑

i=1

∂hk(t,Xt, θ)

∂X
{i}
t

dX
{i}
t +

d
∑

i,j=1

∂2hk(t,Xt, θ)

∂X
{i}
t ∂X

{j}
t

dX
{i}
t dX

{j}
t ,

where dB
{i}
t dB

{j}
t = δijdt, dB

{i}
t dt = dtdB

{i}
t = 0 and k = 1, . . . , p.

Time change of a diffusion

As before let X be a diffusion satisfying the following general SDE:

dXt = µ(t,Xt, θ)dt+ σ(t,Xt, θ)dBt, 0 ≤ t ≤ T.

Now consider a positive function c(t, θ,Xt) to R and define:

η(t) =

∫ t

0

c(s, θ,Xs)ds

We say that η(t) is a (random) time change process with time change rate c(t, θ,Xt).

Certainly η(.) is an invertible function. The diffusion X on the changed time, denote by

Ut = Xη−1(t,θ,Xt) has the following SDE:

dUt =
µ(Ut, θ)

c(t, θ,Xt)
dt+

σ(Yt, θ)
√

c(t, θ,Xt)
dBt, 0 ≤ t ≤ η(T ).

Example: We may define a Brownian bridge as a 1 − 1 transformation of a Brownian

motion using time change. More specifically a Brownian bridge Xt, from 0 to 0 and

between times 0 and 1 can be defined as:

Xt = (1 − t)B t

1−t

7



where Bt is a standard Brownian motion. This definition is equivalent with those of

Section 1.2.1.

Quadratic variation

The quadratic covariation between two diffusions [Xi(t), Xj(t)] is given by the limit (in

probability) of cross-products of increments of the processes Xi(t), Xj(t):

[Xi(t), Xj(t)] = lim
n→∞

n−1
∑

k=0

[Xi(t
n
k+1) −Xi(t

n
k)][Xj(t

n
k+1) −Xj(t

n
k)], a.s.

where the partition {tk+1
n} is getting finer as n→ ∞. Hence the diffusion (volatility)

matrix σ(.) can is determined from the quadratic covariation process Q of the path Xt.

More specifically we have:

lim
n→∞

n−1
∑

k=0

(Xtn
k+1

−Xtn
k
)(Xtn

k+1
−Xtn

k
)′ =

∫ T

0

σ(Xt, θ)σ(Xt, θ)
′dt, a.s. (1.2)

1.2.3 Bayesian Inference using Markov chain Monte Carlo

Similarly to frequentist statistical inference, Bayesian inference requires a sampling model

that produces the likelihood. The likelihood is provided by the probability model for the

data and contains certain parameters which represent the unknown quantities of the

problem. The main conceptual difference between frequentist and Bayesian frameworks

regards the model parameters. In the Bayesian context these are described with the (po-

tentially multi-dimensional) random variable θ and are indistinguishable from the data

Y . Additionally, the Bayesian approach will place a prior distribution on the model

parameters. The likelihood and the prior are then combined using Bayes’ theorem to

compute the posterior distribution. The posterior distribution is the conditional distri-

bution of the unknown quantities given the observed data and is the object on which all

Bayesian inference is based. The frequentist and Bayesian approaches, despite arising
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from different principles do not necessarily give completely dissimilar answers. In fact,

they can be connected in a decision-theoretic framework through preposterior evaluations

(Rubin, 1984). In this thesis we will adopt the Bayesian paradigm which, while theo-

retically simple and more intuitive than the frequentist approach, requires evaluation of

complex integrals even in fairly elementary problems.

The use of Bayesian methods in applied problems has exploded during the 1990s. The

availability of fast computing machines was combined with a group of iterative simulation

methods known as Markov chain Monte Carlo (MCMC) algorithms that greatly aided

the use of realistically complex Bayesian models. The idea behind MCMC is to produce

approximate samples from the posterior distribution of interest, by generating a Markov

chain which has the posterior as its limiting distribution. This revolutionary approach to

Monte Carlo was originated in the particle Physics literature in Metropolis et al. (1953).

It was then generalised by Hastings (1970) to a more statistical setting. However, it was

Gelfand and Smith (1990) that introduced MCMC methods to mainstream statistics and

since then, the use of Bayesian methods for applied statistical modelling has increased

rapidly. Relevant reviews can be found in Smith and Roberts (1993), Brooks (1998)

and Dellaportas and Roberts (2003), whereas comprehensive accounts of MCMC-related

issues are provided in Gilks et al. (1996). In an introductory technical level, Congdon

(2001) describes the analysis of a wide range of statistical models using BUGS, freely

available software for Bayesian Inference using MCMC, see Spiegelhalter et al. (1996).

Many of these models, including generalised linear mixed models, can only be approxi-

mately analysed using classical statistical methodology. Conversely, it is straightforward

to analyse models of this complexity using routine examples of BUGS.

1.3 Statistical inference for Diffusion processes

In this thesis we address the problem of performing statistical inference for the parameters

of the diffusion processes. We proceed making the assumption that both the drift and the

volatility functions have known functional forms. In other words we focus on parametric

inference. Non parametric techniques are also available. For example Aı̈t-Sahalia (1996a),
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Florens-Zmirou (1993), Jacod (2000) use kernel based methods whereas Genon-Catalot

et al. (1992), and Hoffmann (1999) use wavelets.

In theory diffusion process have continuous time paths, but in practice they can

only be observed at finite number of times 0 = t0 < t1 < · · · < tn = T . We reserve

Y = {Yk = Xtk , k = 0, 1, . . . , n} to denote the relevant observations of the diffusion.

We adopt a Bayesian framework, treating the parameters as random variables and ex-

pressing our uncertainty about them, before and after the observation of the diffusion,

through suitable probability distributions. Our objective is the posterior distribution

of the parameters which is obtained by combining the prior and the likelihood through

Bayes theorem. As the posterior is almost always intractable, we aim in drawing samples

from it utilizing MCMC techniques. In this section we provide some general information

regarding the likelihood for diffusions and how it can be used for inference purposes in

cases of observations with high frequency (sufficiently ‘fine’ data).

1.3.1 Likelihood for Diffusions

Dominating measure

Consider the probability of the observations (which are assumed to be random variables):

Pθ(Y ∈ A) =

∫

A

L(Y, θ)dx.

In the expression above L(Y, θ) provides the likelihood for the parameter vector θ. The

integration is done with respect to the Lebesgue measure which in this in case is the

likelihood’s dominating or reference measure. Lebesgue is not the only option for a

reference measure. In fact, for any positive function h(x) we can define the measure H

by:

H(A) =

∫

A

h(x)dx,
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and use this instead:

Pθ(X ∈ A) =

∫

A

L(x, θ)

h(x)
h(x)dx =

∫

A

L(x, θ)

h(x)
dH.

The new likelihood function L∗(x, θ) will now be:

L∗(x, θ) =
L(x, θ)

h(x)
.

Note that both L∗(x, θ) and L(x, θ) are equivalent for estimation purposes. For example,

they are maximized at the same value of θ.

Denote the probability measure of the random variable Y by Pθ. An alternative way

to see the likelihood L∗ is as the Radon-Nikodym derivative between the measures Pθ

and H. We write:

dPθ
dH

= L∗(x, θ),
dPθ

dLeb(x)
= L(x, θ).

It is crucial that the dominating measure is independent of θ. It is this assumption

that enables us to use L∗(x, θ) in the same way as L(x, θ) to perform inference for the

parameter vector θ.

Likelihood using the Girsanov theorem

Consider the following d−dimensional diffusion

dXt = µ(Xt, θ)dt+ dBt, 0 ≤ t ≤ T ≤ ∞.

Denote by P the probability measure of X and with W that of the driftless version of

X, meaning just Brownian motion. Assume that X has a unique weak solution and that

it satisfies the Novikov condition
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EP

[

exp

(

1

2

∫ T

0

µ(Xt, θ)
′µ(Xt, θ)dt

)]

<∞.

Then, according to the Girsanov theorem, P is absolutely continuous with respect to W

with Radon-Nikodym derivative provided by the Cameron Martin Girsanov formula:

dP

dW
= G(Xt, θ) = exp

{∫ T

0

µ(Xt, θ)
′dXt −

1

2

∫ T

0

µ(Xt, θ)
′µ(Xt, θ)dt

}

The quantityG(Xt, θ) may be seen as a likelihood for θ since its reference measure (Wiener

measure) does not depend on any parameters. However, it contains Ito and diffusion path

integrals which generally do not have an analytic solution.

Likelihood using transition density

Alternatively we may use the marginal density of the, finite dimensional, observations

Y . Diffusions satisfy the Markov property, therefore we can express the likelihood as the

product:

L(Y, θ) = p(Y0)
n
∏

i=1

p(Yk|Yk−1; θ).

But as before, the transition density is generally not available in closed form except

for some specific cases like diffusion with linear drift and constant volatility (Ornstein-

Uhlenbeck process), Geometric Brownian motion etc.

1.3.2 Inference assuming ‘thin’ data

We now return to the general version of the d− dimensional diffusion X:

dXt = µ(Xt, θ)dt+ σ(Xt, θ)dBt, 0 ≤ t ≤ T.
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Throughout this thesis we suppress the notation and write θ in both drift and volatility,

although the parameters in these functions are different. The problem of likelihood

based inference is simplified substantially under the assumption that the observation

times {tk, k = 0, 1, . . . , n} provide a ‘sufficiently fine’ partition of the diffusion path of

X. Girsanov theorem now provides the Radon-Nikodym derivative with respect to the

law of the local martingale:

dMt = σ(Xt, θ)dBt, 0 ≤ t ≤ T.

More specifically we have the following quantity for the likelihood:

dP

dW
= G(Xt, θ) = exp

{∫ T

0

[

Σ−1µ(Xt, θ)
]′
dXt −

1

2

∫ T

0

µ(Xt, θ)
′Σ−1µ(Xt, θ)dt

}

(1.3)

where Σ = σ(Xt, θ)σ(Xt, θ)
′. The sufficiently fine observed path of X provides a solution

to two problems. First, the reference measure of the likelihood depends on the volatility

parameters. But these may be determined (rather than estimated) from the quadratic

covariation process. For example consider a scalar diffusion X with constant volatility σ.

Then using (1.2) we get the following relation with the quadratic variation process QX

QX =
n−1
∑

k=0

(Xtk+1
−Xtk)

2 ≈
∫ T

0

σ2dt = Tσ2,

which gives us σ. Given the volatility parameters, the likelihood from (1.3) is well defined

and we can use it to perform inference for the drift parameters. The second problem that

we face is the evaluation of the Ito and path integrals. Again, the sufficiently fine observed

path Y allows for accurate numerical evaluations:

G(Xt, θ) ≈ exp

{

n−1
∑

k=0

[

Σ−1
θ (Yk)µθ(Yk)

]′
∆Yk −

1

2

n−1
∑

k=0

µθ(Yk)
′Σ−1

θ (Yk)µθ(Yk)∆tk

}

, (1.4)
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where ∆Yk = Yk+1 − Yk and ∆tk = tk+1 − tk.

Alternatively, we may approximate the transition density using the Euler-Maruyama

(Euler) approximation. Under this scheme we have

Yk + 1|Yk ∼ N {Yk + µθ(Yk)∆tk, Σθ(Yk)∆tk} (1.5)

The Euler approximation essentially assumes constant drift and volatility function over

each time interval between tk and tk+1, which is the same assumption made in the ap-

proximation of (1.4). See Kloeden and Platen (1995) for more details on its convergence

properties and similar approximating schemes. In fact, one can check that the likelihood

from (1.4) equals that of (1.5) divided by an euler scheme under the driftless version M .

For more details on likelihood based inference for diffusions with sufficiently fine obser-

vations see Prakasa Rao (1999) and Polson and Roberts (1994) for a Bayesian approach.

But what if the observations are not so close to each other? The quadratic variation

estimates are then biased and the likelihood approximations may become unacceptably

poor. Moreover, how can we tell if this assumption is a realistic one? As we saw in Section

1.2.2 the notion of a diffusion’s time is strongly related with its volatility parameters which

we want to estimate. In the remainder of this thesis we no longer use this assumption

and we deal with the problem in its absence.

1.4 Review on likelihood based inference for diffu-

sions

As we already mentioned, the likelihood of a diffusion process is generally not available.

This has stimulated the development of various interesting inference techniques for their

parameters. Here we review the main likelihood-based methods, alternative approaches

use indirect inference (Gouriéroux et al., 1993), estimating functions (Bibby and Sorensen,

1995) and the efficient method of moments (Gallant and Tauchen, 1996); see also Gallant
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and Long (1997). We classify the likelihood based methods into 3 categories according

to whether they use i) approximation of the transition density (Section 1.4.1), ii) Data

augmentation through Bayesian MCMC techniques (Section 1.4.2) or iii) Sequential -

online framework (Section 1.4.4). We focus on the ideas behind these techniques, rather

than the technical details. For illustration purposes we refer to scalar diffusions of the

general form

dXt = µ(Xt, θ)dt+ σ(Xt, θ)dWt,

and provide some relevant discussion about generalizations to the multivariate case. As

always we assume a finite number of observations at times {tk, k = 0, 1, . . . , n} denoted by

Y = {Yk = Xtk , k = 0, 1, . . . , n}. Multidimensional diffusions with unobserved paths are

also termed partially observed diffusions. The following transformation to unit volatility

is crucial in almost all cases:

Ut = h(Xt, θ), h(u, u0, θ) =

∫ u

u0

1

σ(z, θ)
dz, u, u0 ∈ R (1.6)

Indeed, we get from Ito’s lemma that U solves the SDE:

dUt =

{

µ(h−1(Ut, θ), θ)

σ(h−1(Ut, θ), θ)
− 1

2

∂σ(h−1(Ut, θ), θ)

∂h−1(Ut, θ)

}

dt+ dWt (1.7)

where h−1(.) denotes the inverse of h(.).

1.4.1 Inference using approximations of the transition density

The methodologies of this section aim in estimating the likelihood through the product

of the transition densities:

L(Y, θ|Y0) =
n
∏

i=1

p(Yk|Yk−1; θ,∆), ∆ = tk − tk−1
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Under such an approach, the likelihood is split into the smaller bits and it suffices to focus

on p(Yk|Yk−1; θ,∆). Nevertheless, this complicates multivariate extensions, especially

to partially observed diffusions where the observed diffusion component is no longer

Markovian and the transition density depends on the entire history of the latent diffusion

path. We present three different approximations, one of which provides a closed form

analytical expression and the remaining two are based on Monte Carlo schemes.

A closed form analytical approximation

Aı̈t-Sahalia (2002) develops an explicit deterministic estimate of p(Yk|Yk−1; θ,∆) using

a Gram-Charlier series approximation (Kendall and Stuart, 1977, chapter 8), in other

words advocating a Hermite series expansion around the standard Gaussian density. To

ensure convergence and improve the behavior of the estimate, the diffusion path should be

transformed appropriately to obtain a transition density which is closer to the standard

Gaussian (the first term of Gram-Charlier series). For this reason Äıt-Sahalia (2002)

employs two transformations of the diffusion X. First, he aims for a diffusion with unit

volatility which can be achieved using (1.6) to get U , and then he sets:

Zt =
h(Xt, θ) − h(Xtk−1

)√
tk − tk−1

, tk−1 ≤ t ≤ tk, Xt = ν(Zt, θ)

The data are not actually transformed, this would not be possible under this framework

as the transformation depends on θ, this is just part of the approximation procedure.

Using standard change of variables arguments we get that

p(Xtk |Xtk−1
; θ,∆) =

p(Ztk |Ztk−1
= 0; θ,∆)

σ(ν(Ztk , θ), θ)
√

∆
(1.8)

Now consider the truncated after J terms Hermite series expansion pJ(Ztk |Ztk−1
= 0; θ,∆)

of p(Ztk |Ztk−1
= 0; θ,∆) around the standard Gaussian density. One can plug it into

(1.8) and obtain the following estimate of p(Xtk |Xtk−1
; θ,∆):
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pI(Xtk |Xtk−1
; θ,∆) =

pJ(Ztk |Ztk−1
= 0; θ,∆)

σ(ν(Ztk , θ), θ)
√

∆

The Hermite series coefficients cannot be computed but they can be approximated

analytically in terms of the diffusion infinitesimal generator (reference). This results into

very complex expressions for the likelihood, yet explicit and with appealing properties.

Aı̈t-Sahalia (2002) proves that pI(.) converges to the true density p(.) uniformly in Yk and

θ. Furthermore as J tends to infinity the resulting estimator is asymptotically equivalent

to the Maximum Likelihood estimator (MLE) (Ait-Sahalia (2002), theorems 1 and 2).

Also, his numerical experiments, reveal very good approximations even with J = 1 or 2.

Aı̈t-Sahalia (2005) provides an extension for multidimensional diffusions. In this case

the transformation h(.) (to a diffusion with the identity matrix of dimension d) does not a

always exist. When it does, one can proceed in a similar manner. If such a transformation

is not available, an expansion in powers of tk − tk−1 may be used. Its coefficients may

be determined using Kolmogorov’s backward and forward equations and in terms of a

Taylor expansion in (Yk − Yk−1). This may require a considerable amount effort to limit

the approximation error in cases of very volatile models or sparse datasets.

Extensions to multidimensional diffusions with unobserved paths are not straightfor-

ward due to the lack of Markov property for the observed process. Regarding finan-

cial applications, Aı̈t-Sahalia and Kimmel (2005) extend the methodology to stochastic

volatility models where the volatility of an asset price is identified through additional

data resources, namely option prices on this asset. see Section 3.7.3 for more.

Simulated likelihood

Pedersen (1995) and Santa Clara (1995), see also Brandt and Santa Clara (2001), intro-

duced a Monte Carlo estimate of p(Yk|Yk−1; θ,∆). The main idea is to introduce a finite

number of imputed points X1, . . . , Xm, at times {tj = tk−1 + j∆
m+1

, j = 1, . . . ,m} (with

tj− tj−1 = ∆/(m+1) = δ), so that the resulting partition is sufficiently fine for the Euler

approximation to be satisfactory. Then we can write (with X0 = Yk−1)
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p(Yk|Yk−1; θ,∆) =

∫

Rm

{

m
∏

j=1

p(Xj|Xj−1 = xj−1; θ, δ)

}

p(Yk|Xm = xm; θ, δ)dx1 . . . dxm(1.9)

= E [p(Yk|Xm = xm; θ, δ)]

If we attempt to approximate the densities over the shorter intervals of length δ using

Euler, denote by pE(Yk|Xm = xm; θ, δ), we get the following estimate:

pm(Yk|Yk−1; θ,∆) = E
[

pE(Yk|Xm = xm; θ, δ)
]

The expectation may be computed using Monte Carlo integration over independent real-

izations of Xm. Pedersen (1995) shows convergence in probability to the true likelihood

for all θ under some boundedness conditions. To ensure the smoothness of the mapping

θ → pm(Yk|Yk−1; θ,∆), the same random elements, e.g. gaussian seeds, should be used

for all θ. This, together with some further conditions, lead to weak convergence to the

MLE.

This initial formulation to the problem has proven to perform poorly in practice:

The Monte Carlo error of the estimate is increasing in the number of imputed points m.

Durham and Gallant (2002) provide a substantial refinement using importance sampling.

More specifically they estimate the likelihood through (U0 = Yk−1):

pm(Yk|Yk−1; θ,∆) = E





{

∏m
j=1 p

E(Uj|Uj−1; θ, δ)
}

pE(Yk|Um; θ, δ)

q(U1, . . . , Um)



 ,

where U1, . . . , Um are sample from some appropriate distribution q. Their choice of den-

sities q, in contrast with the initial formulation, do take into account the ending point

Yk (diffusion bridges densities) and thus provides a vast improvement in limiting the

Monte Carlo error. Under this importance sampling scheme the variance does not in-

crease with m. Moreover, Durham and Gallant (2002) propose approximation schemes,

more sophisticated than the Euler, to reduce the error due to time discretisation.
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Equipped with the enhancements provided by Durham and Gallant (2002), this frame-

work provides an alternative numerical option for likelihood based inference. Extension

to multidimensional diffusions are straightforward but they come at an increasing compu-

tational cost, especially for high dimensional parameter vectors θ. Durham and Gallant

(2002) also consider cases of partially observed diffusions using additional sequential

Monte Carlo techniques, see Section 1.4.4 for more.

The Exact Algorithm: Eliminating the error due to time discretisation

Beskos et al. (2006b) introduced a novel Monte Carlo mechanism that achieves exact

inference in the sense that the estimates of the transition density contain only Monte

Carlo error. As in Aı̈t-Sahalia (2002), the transformation (1.6) to a unit volatility diffusion

U is necessary. The change of variables yields the following expression of the transition

density

p(Xtk |Xtk−1
; θ,∆) =

p(Utk |Utk−1
= 0; θ,∆)

σ(h−1(Utk , θ), θ)
,

and p(Utk |Utk−1
= 0; θ,∆) becomes the estimation target. Beskos et al. (2006b) offer 3

different estimation techniques: the bridge method (Beskos et al., 2005), the acceptance

method and the Poisson estimator. The latter two are based on the following lemma,

also found in Dacunha-Castelle and Florens-Zmirou (1986):

p(Utk |Utk−1
; θ,∆) = E

[

exp

{

A(Utk , θ) −A(Utk−1
, θ) −

∫

1

2
B(Us, θ)ds

}]

×N∆(Utk−Utk−1
)

(1.10)

where (µU(.) denotes the drift of U as given by (1.7))

A(x, θ) =

∫ x

µU(s, θ)ds,

B(x, θ) = µ2
U(x, θ) +

∂µU(x, θ)

∂x
,
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and N∆(.) denotes a normal distribution with mean 0 and variance ∆. The expectation

is taken with respect to a Brownian bridge with endpoints Utk−1
, Utk and is intractable.

The acceptance method and the Poisson estimator however, provide unbiased Monte

Carlo estimates using the exact simulation framework developed in Beskos and Roberts

(2005) and Beskos et al. (2005). As shown in Beskos et al. (2006b) it is also possible

to construct Monte Carlo EM (Dempster et al., 1977) or MCMC schemes based on the

likelihood estimates.

Apart from eliminating the bias due to the time discretisation of the diffusion path,

this methodology has the appealing feature of optimal, and in a sense sufficient, impu-

tation of random elements which results in computationally efficient algorithms. The

exact simulation algorithms impose some restrictions, mainly on the functional form of

µU(.), which are relaxed with the further developments of Beskos et al. (2006a) and the

framework covers almost all scalar diffusions. Extensions to multidimensional diffusions

are possible when the transformation (1.6) exists. Papaspiliopoulos et al. (2006) consider

partially observed diffusions under a sequential framework but the problem of inference

for the parameter vector θ is not addressed.

1.4.2 Bayesian MCMC techniques using data augmentation

Adhering to the Bayesian framework, we first assign a prior on the parameter vector

p(θ). Then, given the observations Y , we are interested in the posterior p(θ|Y ) on which

the Bayesian inference is based. This is not straightforward however, as the likelihood is

generally intractable. To overcome this issue we may introduce a finite number of latent

intermediate points between observations, so that the augmented partition allows for

good likelihood approximations as in Section 1.3.2. This can be implemented through a

data augmentation scheme Tanner and Wong (1987) where the imputed points, or some

transformations of them, are treated as additional parameters. The methodology can

be thought of as an adaptation of the simulated likelihood approach of Section 1.4.1 to

the Bayesian MCMC context. In what follows, we provide the details for almost all the

relevant MCMC schemes with or without transformations on the imputed points. For
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ease of illustration we restrict to scalar diffusions and a pair of successive observations

Yk−1 = Xtk−1
, Yk = Xtk with tk − tk−1 = ∆, when there is no loss of generality.

Initial data augmentation schemes

As in Section 1.4.1, we can introduce a finite number of imputed points X1, . . . , Xm

between Yk−1 and Yk, at times {tj = tk−1 + j∆
m+1

, j = 1, . . . ,m}. The likelihood can then

be approximated using the Euler-Maruyama scheme (see Section 1.5). Denote the full

likelihood approximation by pm(Y,X, θ). The number m should be chosen to be large

enough do that pm(Y,X, θ) is an accurate approximation of the true likelihood. Given a

fixed value of m, we may proceed using a Gibbs sampling scheme with elements θ and

Xj, j = 1, . . . ,m. Based on some initial values θ0 and X0
j , the algorithm updates from

θi, X i
j to θi+1, X i+1

j by alternating between the following steps:

1. Update to θi+1 using a Gibbs or a Metropolis - Hastings step on p(θ|Y,X).

2. For each pair of Yk−1, Yk, update to X i+1
j for all j, using a Gibbs

or a Metropolis - Hastings step on p(Xj|Y, θ).

The MCMC theory ensures that for i→ ∞, the draws θi, X i
j are dependent samples from

the true posterior p(θ,Xj|Y ) and inference may be based on the marginal θi trajectory. In

practice m may be chosen by repeating the algorithm over increasing number of imputed

points, until a convergence on the likelihood and parameter estimates is reached.

This summarizes the framework of the data augmentation schemes of Jones (1999) -

see also Jones (2003), Eraker (2001) and Elerian et al. (2001). Each of these methodologies

use different strategies to carry out steps 1 and 2. The updates of θ are model-dependent

under all frameworks. For the latent pointsXj Jones (1999) and Eraker (2001) use a cyclic

Metropolis - Hastings algorithm that updates each point conditional on its neighboring

ones. To improve the mixing of the chain, Elerian et al. (2001) split the augmented

diffusion path into blocks of random size and update each one in turn with a Metropolis

Hastings algorithm.
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The need for reparametrisation

In their simulation based experiment, Elerian et al. (2001) note an increase in the mixing

of the chain as the number of imputed points increases which is confirmed by the theoret-

ical results of Roberts and Stramer (2001). More specifically Roberts and Stramer (2001)

note that as m→ ∞, the augmented diffusion path contains an infinite amount of infor-

mation for the parameters in the volatility σ(Xt, θ) as these are determined exactly from

the quadratic variation process (see Section 1.2). It is well known however, see Meng and

van Dyk (1997) and Meng and van Dyk (1998), that the convergence of data augmen-

tation schemes is problematic when the Fisher’s information matrix in the augmented

dataset strongly exceeds that in the observed data. In MCMC terms this translates into

increasing autocorrelation in the parameter draws and reducibility for m → ∞. This is

not an MCMC specific issue, the same concerns exist into its deterministic analogue, the

EM algorithm (Roberts and Sahu, 1999).

Under a measure theoretic probability framework, Roberts and Stramer (2001) note

that the likelihood provided by Girsanov’s theorem has reference measure that depend

on parameters. To correct for that they use reparametrisation, see for instance Pa-

paspiliopoulos et al. (2003), through a 2−step transformation to a diffusion for which the

likelihood (as given by Girsanov theorem) is written with respect to a reference measure

that does not depend on any parameters. The first step of this transformation is no other

than the diffusion U given by (1.6) which is also used in the methodologies of Aı̈t-Sahalia

(2002) and Beskos et al. (2006b). The second step is applied to each interval between the

transformed observations h(Yk−1, θ) and h(Yk, θ) (at times tk−1 and tk respectively):

Zt = Ut −
(tk − t)h(Yk−1, θ)(tk−1) + (t− tk−1)h(Yk, θ)

tk − tk−1

, tk−1 < t < tk

The transformed diffusion Z, conditioned on the observations Yk−1 and Yk, is absolutely

continuous with respect to a Brownian bridge which equals to 0 at times tk−1 and tk.

Note that the likelihood, given by Girsanov formula, contains intractable stochastic and

path integrals which can be evaluated numerically using the augmented path.
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Based on this reparametrisation, Roberts and Stramer (2001) apply a data augmenta-

tion scheme with Z and θ as the elements of the Gibbs sampler. Note that the inference

is now based on Z rather than X but if required, the inverse of this transformation may

provide samples from the posterior of X. The updates of θ given Z are model dependent

and may be implemented with random walk metropolis, or in some cases Gibbs steps.

For the updates of Z, Roberts and Stramer (2001) split the path into blocks containing

the segments between successive observations and update each one in turn. This step is

implemented with an independence sampler proposing Brownian or Ornstein-Uhlenbeck

bridges. Despite the fact that they consider only scalar diffusions, the methodology can be

extended to multidimensional and partially observed models. In fact this is the research

topic of this thesis.

Data augmentation for partially observed diffusions

Partially observed diffusion models are of particular interest as they are being used exten-

sively in almost every application involving diffusions. In finance for example, stochastic

volatility models play central role in various applications; see for instance Ghysels et al.

(1996) and Shephard (2005). Such models can be seen as 2-dimensional diffusions which

obey the dynamics of an SDE like the following:





dXt

dαt



 =





µx(Xt, αt, θ)

µα(αt, θ)



 dt+





σx(αt, θ) 0

0 σα(αt, θ)









dBt

dWt



 , (1.11)

where B and W are standard Brownian motions, that can potentially be correlated, and

the process αt is not observed at all. Eraker (2001) and Jones (1999) consider such models

but the reducibility issue raised by Roberts and Stramer (2001) is not addressed. On the

other hand, as proved in Aı̈t-Sahalia (2005), the transformation (1.6) does not exist for

stochastic volatility models. Chib et al. (2005) provide a solution for the case where

µx(.) ≡ µx(αt, θ). They note that the density of X|α is tractable given the path of α and

there is no need to impute points of C. The reparametrisation problem is thus reduced to

23



the diffusion α only. Taking advantage of the fact that α is an unconditioned diffusion,

they introduce a novel reparametrisation using the driving Brownian motion of α, W .

Their relevant MCMC scheme is based on W , θ, however α is sampled as a mechanism

for updating W . This is possible because given the parameters of α and an appropriate

time discretisation W is deterministic 1 − 1 function of α.

1.4.3 Sequential techniques for partially observed diffusions

The likelihood for stochastic volatility, and generally partially observed diffusion models,

may be approximated in a sequential manner, in other words as we observe the data. In

this thesis we only consider inference problems for fixed datasets (off-line inference). How-

ever, online techniques may prove useful for off-line problems where likelihood inference is

not straightforward, e.g. partially observed diffusions. Given the initial points X0, α0 and

further i observations of X at times t1, . . . , ti, all of them denoted by Fi = (Y0, . . . , Yi, α0),

we want to approximate p(Yi+1|Fi). If we knew the distribution of αi|Fi we could use

p(Yi+1|Fi) =

∫

p(Yi+1|Yi, x)dPαi|Fi
(x)

This distribution can be calculated recursively by propagating forward that of αi−1|Fi−1

in the following way

p(αi−1|Fi) =
p(Yi|Fi, αi−1)p(αi−1|Fi−1)

p(Yi|Fi−1)

p(αi|Fi) =

∫

p(αi|Yi, x)dPαi−1|Fi(x)

This is the main idea of the particle filter, or else sequential Monte Carlo, algorithm

which provides online estimates of the likelihood through an appropriate importance

sampler; see for instance Pitt and Shephard (1999) and the references therein.

By adapting these ideas to the diffusion framework, Durham and Gallant (2002) ex-

tend their framework to cover stochastic volatility models. Their applications reveal no
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particular efficiency issue. Nevertheless, it is well known that unless appropriate resam-

pling techniques are applied, the variance of the importance weights can only increase in

time, thus leading to degeneracy (Doucet et al., 2001).

On the other hand the use of resampling results in a poor approximation to the

sequence of distributions pθ(α0, . . . , αi|Y0, . . . , Yi), the particle filter may only provide a

satisfactory approximation to the sequence pθ(αi−L+1, . . . , αi|Y0, . . . , Yi), for a fixed lag

L > 0; see for instance Andrieu et al. (2005) and Del Moral (2004). In practice the

parameter space is only explored at the initialization of the algorithm and after a few

iterations the marginal likelihood of the parameter is approximated by a single delta

Dirac function. To deal with this problem several authors, for instance Gordon et al.

(1993) substitute the degenerate likelihood with a Kernel approximation density.

Golightly and Wilkinson (2005) use this idea to construct data augmentation schemes

for general diffusion models. They overcome the reducibility issue of Section 1.4.2 by

jointly updating the volatility parameters and the diffusion paths through a Metropolis

algorithm. In practice this can be implemented only in a sequential manner as the

acceptance rate of joint Metropolis updates in a fixed dataset, for time up to T , is

decreasing in T . The methodology of Golightly and Wilkinson (2005) is appealing even

for off-line problems of inference because of its complete generality. The kernel based

techniques however transform the fixed parameter θ into a slowly time varying one, whose

dynamics is related to the width of the kernel. Furthermore, the choice of the kernel width

and its effect is not always clear.

An alternative online estimation procedure on partially observed diffusions is intro-

duced in Poyadjis (2006). This technique aims in maximum likelihood estimates which

are obtained with the use of gradient methods based on pθ(αi−L+1, . . . , αi|Y0, . . . , Yi).

1.4.4 Concluding remarks

The problem of inference on diffusion models is quite challenging and has stimulated

a massive amount of research. For scalar diffusions in particular, there exist several
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options for estimating the likelihood and the parameters of the diffusion given a finite

number of observations. The exact algorithm of Beskos et al. (2006b) gives unbiased

likelihood estimates whereas the remaining approaches can only reduce the bias due to

time discretisation by imputing more intermediate points (Simulated likelihood and data

augmentation methods) or using higher order approximations (Aı̈t-Sahalia, 2002). On

the other hand the analytical likelihood approximations of Aı̈t-Sahalia (2002) provide the

only option without Monte Carlo error.

Contrary to scalar diffusion models, the options for inference on multidimensional

cases are limited. Assuming perfect observation of the diffusion, in other words data in

all of its coordinates, the exact algorithm cannot be applied when the transformation

of (1.6) is not available and the analytical approximations of Aı̈t-Sahalia (2005) require

additional Taylor expansions. Things are further complicated in the partially observed

case, i.e. stochastic volatility models. The methods of Durham and Gallant (2002) and

Beskos et al. (2006b) can only be used in a sequential context which complicates the task

of inference, and the Ait-Sahalia framework is only applicable in some cases (Aı̈t-Sahalia

and Kimmel, 2005). Data augmentation schemes provide a natural alternative option

but they require appropriate reparametrisations, as in Roberts and Stramer (2001), Chib

et al. (2005), which are not always available.

1.5 Our contribution

In this thesis we focus on multidimensional diffusions using data augmentation - MCMC

schemes. Our work can be seen as an extension to the framework of Roberts and Stramer

(2001). In Chapter 2 we deal with cases of discretely observed diffusions (perfect observa-

tion) and develop appropriate MCMC techniques for inference purposes. The remaining

two chapters focus on partially observed diffusions and in particular stochastic volatility

models. We divide the stochastic volatility models into two categories, according to their

application field in finance: Chapter 3 deals with models applied to equity prices whereas

Chapter 4 examines interest rates. Chapters 2 and 3 use reparametrisations which may

be viewed as natural extensions to the transformations of Roberts and Stramer (2001)
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unlike the time change techniques of Chapter 4 which provide a quite different frame-

work from both theoretical and MCMC implementation point of view. Conclusions are

provided at the end of each chapter.
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Chapter 2

Bayesian Inference for Discretely

Observed Multidimensional

Diffusions

2.1 Introduction - Notation

This chapter addresses the problem of modelling several continuous processes, say d, as a

multidimensional diffusion. We denote each one of these processes by X
{i}
t , i = 1, . . . , d

and combine them together into Xt = (X
{1}
t , . . . , X

{d}
t )′ so that Xt is a d−dimensional

vector for each time t. The multidimensional diffusion is defined as the solution to the

following vector stochastic differential equation (SDE) with as in Section 1.2.2.1:

dXt = µ(t,Xt, θ)dt+ σ(t,Xt, θ)dBt, 0 ≤ t ≤ T, (2.1)

The drift and volatility functions should satisfy some fairly general conditions to ensure

that (1.1) has unique weak solution. See Section 1.2.2.1 for more details.

In practice we can only observe Xt at a finite set of points. In this chapter we will deal

with the case where we have observations in all the coordinate processes X
{1}
t , . . . , X

{d}
t

or, in other words, the multidimensional diffusion is discretely (fully) observed. For il-
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lustration purposes we further assume1 that the diffusion is regularly observed (equal

times between observations) and that the entire vector Xt is observed at each time.

We denote the times of observations by tk, k = 1, . . . , n, and the data with Y =
{

Yk = Xtk = (X
{1}
tk
, . . . , X

{d}
tk

)′, k = 1, . . . , n
}

.

Our goal is to perform Bayesian inference for the drift and volatility parameters

θ using the information provided by the observations Y . Given an appropriate prior

distribution on θ, we aim in sampling from the posterior utilizing MCMC techniques

which are presented and illustrated in the remainder of this chapter.

The chapter is organized as follows: Section 2.2 introduces data augmentation as a

natural framework to deal with the problem and Section 2.3 highlights potential reducibil-

ity issues which are illustrated through a simple example. In Section 2.4 we introduce

appropriate transformations for an irreducible data augmentation scheme, the details of

which are presented in Section 2.5. A discussion on some potential extensions is included

in Section 2.6, whereas Sections 2.7 and 2.8 contain applications on simulated and real

data respectively. Finally Section 2.9 concludes with some relevant discussion.

2.2 Data augmentation

The problem of likelihood based inference for diffusion parameters is particularly chal-

lenging. Except for some few cases (for instance diffusions with constant volatility and

linear drift), it is impossible to solve the SDE analytically. Consequently the likelihood

is not available in closed form, posing (setting) a great barrier to the inference problem.

Given sufficiently fine data, we can override the problem by the following two step

procedure: (i) identify the volatility parameters using the quadratic covariation process

and (ii) use suitable approximations for the likelihood for the drift parameters like the

Euler scheme. However, when the data are not available on a fine enough scale, the

estimates of the quadratic covariation process are strongly biased and the approximations

1These assumptions can easily be relaxed even within the framework of this chapter.

30



of the likelihood can become unacceptably poor. Actually Florens-Zmirou (1989) shows

inconsistency.

A natural way to proceed is via data augmentation, a methodology introduced by

Tanner and Wong (1987) and used in the context of diffusions by Roberts and Stramer

(2001), Elerian et al. (2001), Eraker (2001), Jones (1999), Jones (2003), Chib et al.

(2005), Golightly and Wilkinson (2005) etc. As already mentioned, the main idea is

that the likelihood can always be well approximated given the entire path of X or a

sufficiently fine partition of it. The unobserved paths of X are treated as missing data

and a finite number of points, large enough to make the approximation error arbitrarily

small, is imputed. Hence we introduce m latent intermediate points between each pair

of successive observation Yk and Yk+1. To simplify things we assume these points to be

equidistant and we denote their distance by δ = 1/(m + 1). The augmented dataset

between these successive points takes the following form:

Y
{1}
k X

{1}
tk+δ X

{1}
tk+2δ . . . Y

{1}
k+1

Y
{2}
k X

{2}
tk+δ X

{2}
tk+2δ . . . Y

{2}
k+1

...
...

Y
{d}
k X

{d}
tk+δ X

{d}
tk+2δ . . . Y

{d}
k+1

Similarly to the previous implementations of this scheme, the algorithm contains the

following steps:

1. Initialize the parameter vector θ and the latent paths in an

appropriate way (i.e. drawing from the prior distribution).

2. Update the paths given the current set of parameters θ.

3. Update θ conditional on the augmented path.
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As noted in Roberts and Stramer (2001) however, there exists a strong dependence

between the imputed sample paths and the volatility coefficients. In fact the algorithm

becomes reducible as the number of imputed points increases. Similar issues arise for

multidimensional diffusions. We provide the details in the next section.

2.3 Reducibility issues

We first demonstrate the problem using a rather simple example, which is nevertheless

sufficient to expose the problem caused by the quadratic variation of the diffusion. Then,

in Section 2.3.2, we adopt a more rigorous measure theoretic probability point of view,

writing down the likelihood using Girsanov’s theorem. We thus see the problem from a

different angle, as in Roberts and Stramer (2001), which serves as a search-guide for ap-

propriate reparametrisations that resolve the reducibility issue. These reparametrisations

are introduced in Section 2.4.

2.3.1 A toy example

Let’s consider the following, 2-dimensional diffusion:

dXt = σdBt, 0 ≤ t ≤ 1,

where Bt is a 2-dimensional standard Brownian motion. Let X
{1}
0 = X

{2}
0 = 0, X

{1}
1 = y1

and X
{2}
1 = y2 and assign a non-informative prior for σ2

p(σ2) ∝ (σ2)−1.

We are after the posterior distribution of σ2

p(σ2|Y ), Y =





y1

y2



 .
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One may notice that under this simple diffusion, the marginal likelihood is available:

Y ∼ N



(





0

0



 ,





σ2 0

0 σ2









and therefore the posterior of σ2 is the Inverse-Gamma distribution:

σ2|Y ∼ IG

(

1,
y2

1 + y2
2

2

)

.

However suppose now for illustration, that the full likelihood is unavailable and we

use the augmentation scheme which imputes m equidistant points Xδ, X2δ, . . . , Xmδ

(δ = 1/(m + 1)) on both dimensions. Assuming that m is large enough to allow for a

good approximation (which is in fact the exact transition density) of the likelihood we

may use the Euler scheme:

Xkδ|X(k−1)δ ∼ N
(

Xk−1, δσ
2I2
)

, k = 1, . . . ,m+ 1,

where I2 is the identity matrix. We can now examine the full conditional distribution for

σ2 given the augmented path of X:

p(σ2|X) ∝ (σ2)−(m+1)−1 exp

(

(m+ 1)(Q1 +Q2)

2δσ2

)

,

where Q1, Q2 are the two scalar quadratic variation processes:

Q1 =
m+1
∑

k=1

(

X
{1}
kδ −X

{1}
(k−1)δ

)2

Q2 =
m+1
∑

k=1

(

X
{2}
kδ −X

{2}
(k−1)δ

)2

33



It is not difficult to recognize the kernel of an Inverse-Gamma distribution as before, but

now with the parameters:

σ2|X ∼ IG

(

m+ 1,
(m+ 1)(Q1 +Q2)

2

)

Taking the limit as m→ +∞ we see that the mean of this σ2|X becomes

lim
m→+∞

E(σ2| Y, Xmis) =
E(Q1 +Q2)

2
= σ2

as we would expect. Surprisingly enough though, the corresponding limit for the variance

goes to 0. This implies that there is infinite amount of information (in the limit) on

the imputed paths that force the volatility σ2 to remain at its current value; the full

conditional posterior is just a point mass.

This behavior appears only in the limit though. In practice we observe the following

picture: Figure 2.1 displays autocorrelation plots of the posterior draws of σ2, obtained

from a data augmentation scheme with m imputed points and σ2. The experiment

was repeated for different values of m (1, 50, 100 and 1000) and the difference in the

corresponding autocorrelations is substantial and steadily increasing. This is a major

drawback as we would like to be able to impute as many points may be required to

practically eliminate the discretisation error.

2.3.2 Measure theoretic probability framework

In this section, we examine the problem from a different point of view. Let us consider the

general case of (1.1). Without loss of generality, we can assume that we observe only one

point Y (apart from the initial one) as before (X
{1}
0 = X

{2}
0 = 0, X

{1}
1 = y1 andX

{2}
1 = y2).

Using the Markov property we can get the likelihood for more observations by simply

adding more product terms. In other words the path Xt, 1 ≤ t ≤ 2 is independent from

Xt, 0 ≤ t ≤ 1 given X1 and so on. Denote the probability law of X by Pθ and that of its

driftless version
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Figure 2.1: Autocorrelation plots of posterior draws of σ2 for different values of imputed
points between observations (m) for the scalar diffusion toy example.
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dMt = σ(Xt, θ)dBt

by Qθ. Under some fairly general conditions (see introduction), Girsanov’s formula pro-

vides the Radon-Nikodym derivative of Pθ with respect to Qθ ( Σ(.) = σ(.)σ(.)′):

dPθ
dQθ

= G(X,µ, σ) = exp

{∫ T

0

[

Σ(Xs, θ)
−1µ(Xs, θ)

]′
dXs

− 1

2

∫ T

0

µ(Xs, θ)
′Σ(Xs, θ)

−1µ(Xs, θ)ds

}

.

The integrals in the expression above have no analytic solution in general. Nevertheless,

given an augmented path they can be evaluated numerically. The approximation error

may become arbitrarily small by simply increasing the number of imputed points m.

Now assume for a moment that under Qθ the marginal density of Y with respect to

the Lebesgue measure (Lebd(Y )) is known, denote by fM(Y ; θ). For example if σ(.) = σ

we have:

Y ∼ N (0,Σ)

Clearly this is not always the case. However this assumption can be relaxed for the

diffusions belonging to the framework developed in Section 2.4, where we provide the

relevant details. With fM(Y ; θ) known we can factorise the dominating measure Qθ in

the following way

Qθ = Q
y
θ ⊗ Lebd(Y ) × fM(Y ; θ).

We can now write:
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dPθ
Q
y
θ ⊗ Lebd(Y ) × fM(Y ; θ)

(Xmis, Y ) = G(X,µ, σ),

or else

dPθ
Q
y
θ ⊗ Lebd(Y )

(Xmis, Y ) = G(X,µ, σ) × fM(Y ; θ),

The expression above may be regarded as the likelihood for the paths of the diffusion

between observations (Xmis) and the parameters θ. Nonetheless, a part of the likelihood’s

reference measure, in particular Q
y
θ , depends on parameters as it reflects the distribution

of a diffusion, conditioned on the event (X1 = Y ), with volatility given by σ(Xt, θ).

One can also notice that since the volatility parameters are identified by the quadratic

covariation process, the measure Qθ is just a point mass. Consequently, the measures Qθ

are mutually singular (having different support) and therefore so are Pθ. Thus, inference

for both Xmis, µ, σ is not possible.

In the remainder of this chapter, and of this dissertation in general, we aim in finding

appropriate reparametrisations, that correct this problem.

2.4 Transformation of the diffusion path

2.4.1 Reparametrisation

Girsanov’s formula provides us the the Radon-Nikodym derivative with respect to a

diffusion with zero drift and the same volatility as X. Hence, we look for a transformation

of the diffusion path Ut = h(Xt, θ) = [h1(Xt, θ), . . . , hd(Xt, θ)]
′ so that the volatility

matrix of the transformed diffusion does not contain parameters2 or equivalently is the

identity matrix. Using Ito’s lemma, we obtain that h(Xt, θ) should satisfy the following

vector differential equation

2being in a Bayesian framework we treat the parameters as random variables
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dUr = g(t,X, θ)dt+
∑

i

{

∂hr

∂X
{i}
t

(Xt, θ)
∑

j

σ{ij}(Xt, θ)dB
{j}
t )

}

,

for some function g(.) and i, j, r ∈ {1, . . . , d}. So we are looking for a function that will

satisfy:

∑

i

{

∂hr

∂X
{i}
t

(Xt, θ)
∑

j

σ{ij}(Xt, θ)dB
{j}
t

}

= dB
{r}
t , ∀r ∈ {1, . . . , d},

or equivalently

∇h Σ (∇h)′ = Id. (2.2)

Furthermore, the transformation inherits the Ito’s lemma assumptions and has to be

invertible. The SDE of the r-th coordinate of the transformed diffusion U will be given

by:

dU
{r}
t =

d
∑

i=1

∂hr(Xt, θ)

∂X{i}
dXi, r = 1, . . . , d,

which because of (2.2) becomes:

dU
{r}
t =

d
∑

i=1

∂hr(Xt, θ)

∂X{i}
µ{i}(Xt, θ)dt+ dB

{r}
t = µ

{r}
U (Xt, θ)dt+ dB

{r}
t , r = 1, . . . , d.

Using Girsanov’s theorem as before, we may now re-attempt to write down the likelihood:

dPθ
Qh(y,θ) ⊗ Lebd(h(Y ))

(

Umis, h(Y, θ)
)

= G(U, µU , Id)fM(Y ; θ),

or equivalently
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dPθ
Qh(y,θ) ⊗ Lebd(Y )

(

Umis, h(Y, θ)
)

= G(U, µU , Id) × n(h(Y ); Id)|J(Y, θ)|−1,

where J (Y, θ) is the inverse of the Jacobian of the transformation h(Xt, θ) and n(h(Y ); Id)

is the normal density obtained under standard Wiener measure. This allows us to relax

the assumption made in Section 2.3.2, that fM(Y ; θ) is known. Nevertheless, we have

imposed the restriction of the existence of such a transformation h(.). We provide a

comprehensive discussion on that in the next section.

Now let’s have a look at the new reference measure Qh(y,θ). It reflects the law of d

independent Brownian bridges conditioned by the observations h(Y, θ). Therefore it still

depends on parameters. For this reason we introduce a second transformation. This

transformation ‘centers’ the bridge, to start and finish at 0 in a way so that it will still

have unit volatility. We define it below for the more general case of tk−1 ≤ t ≤ tk,

(Y
{1}
k−1, . . . , Y

{d}
k−1) = (X

{1}
tk−1

, . . . , X
{d}
tk−1

) and (Y
{1}
k , . . . , Y

{d}
k ) = (X

{1}
tk
, . . . , X

{d}
tk

):

Z{i}(s) = U{i}(s) −
(tk − s)h(Y

{i}
tk−1

, θ)(tk−1) + (s− tk−1)h(Y
{i}
tk
, θ)

tk − tk−1

, tk−1 < s < tk, ∀i, k.
(2.3)

Let U = η(Z) be the inverse of this transformation:

U{i}(s) = Z{i}(s) +
(tk − s)h(Y

{i}
tk−1

, θ)(tk−1) + (s− tk−1)h(Y
{i}
tk
, θ)

tk − tk−1

, tk−1 < s < tk, ∀i, k

The SDE for Z then becomes (again from Ito’s lemma):

dZt = µUt
(η(Zt), θ)dt+ dBt

We can now write the likelihood as:
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dPθ
Q0) ⊗ Lebd(Y )

(

Zmis, h(Y, θ)
)

= G(η(Zt), µU , Id) × n(h(Y ); Id)J
−1(Y, θ).

The relevant dominating measure now reflects the distribution of d independent Brow-

nian bridges that start and finish at 0.

A MCMC scheme based on the likelihood above is irreducible. The information con-

tained in the quadratic covariation process does not affect the algorithm because all of

the parameters have been moved to the drift function. Note also that as a result of

these transformations, inference will now be based on Z, rather than X. However, since

the transformations are invertible, it is straightforward to invert the MCMC output and

obtain samples of X.

Figure 2.2 shows a graphical representation of the transformations on a coordinate of

the process. The initial path is the one at the top. After applying the first transformation

its volatility becomes equal to 1. Finally, the second transformation ‘centers’ the path so

that it starts and finishes at 0.

2.4.2 Which diffusions can we handle?

The reparametrisations introduced in Section 2.4.1 do not cover all the diffusions de-

fined by (1.1). The restrictions are imposed from the first transformation that stems

from the solution of the system of partial differential equations of (2.2). Consequently

the methodology of this chapter does not apply to diffusions for which this system is

inconsistent.

Most known univariate diffusions have a solution as studied in Roberts and Stramer

(2001). For multivariate diffusions the crucial aspect is the form of their volatility function

σ(Xt, θ). Suppose that a diffusion has constant volatility σ(Xt, θ) = σ and general drift

µ(Xt, θ). Consider a transformation of the form Ut = h(Xt) = αXt, with α, σ being a

d× d matrices. Using Ito’s formula we get
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Figure 2.2: Graphical representation of the transformations of X to U and Z for scalar
diffusions.
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dU
{r}
t =

d
∑

i=1

∂hr(Xt, θ)

∂X{i}
dX{i}, r = 1, . . . , d.

or

dUt = αµ(Xt, θ) + ασdBt.

It is not difficult to see that the transformation with α = σ−1 (Ut = h(Xt) = σ−1Xt) will

lead us to unit volatility.

For another example consider diffusions with σ(Xt, θ) of the form:

















σ11(X
{1}
t , θ) 0 . . . 0

0 σ22(X
{2}
t , θ) . . . 0

...
...

...

0 0 . . . σdd(X
{d}
t , θ)

















The coordinate processes {X{1}
t , . . . , X

{d}
t } are not necessarily independent as they may

related through the drift function. For such diffusion the system of (2.2) breaks into

d ordinary differential equations and the problem becomes equivalent with that of the

scalar diffusions case.

In other words the class of diffusions we can deal with, is the class of reducible diffu-

sions introduced in Aı̈t-Sahalia (2005) in the context of a multivariate extension to the

framework developed in Aı̈t-Sahalia (2002). Interestingly enough, the proposed analytical

approximations of Aı̈t-Sahalia (2005) have better properties for the class of reducible dif-

fusions. Aı̈t-Sahalia (2005) also offers a sufficient condition for reducibility (Aı̈t-Sahalia,

2005, proposition 1): A diffusion X is reducible if σ(X, θ) satisfies

∂ [σ−1(X, θ)]ij
∂X{k}

=
∂ [σ−1(X, θ)]ik

∂X{j}
, (2.4)
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for each (i, j, k) = 1, . . . , d such that k > j.

2.4.3 Stochastic volatility models

Stochastic volatility models are quite famous models with a broad range of applications

in finance. Their diffusion driven version can be seen as a 2−dimensional diffusion with

a dispersion matrix of the following form:





σ11(X
{2}
t , θ) 0

0 σ11(X
{2}
t , θ)



 , (2.5)

which does not satisfy (2.4). The Ait-Sahalia condition is satisfied however, if σ(Xt, θ)

has the form:





a(X
{1}
t , θ) a(X

{1}
t , θ)b(X

{2}
t , θ)

0 c(X
{2}
t , θ)



 .

For example if we set a(X
{1}
t , θ) = σ11, b(X

{2}
t , θ) = σ12exp(X

{2}
t ) and c(X

{2}
t , θ) = σ22

we obtain the following transformation:

h1

(

X
{2}
t , X

{2}
t

)

=
X

{1}
t

σ11

− σ12exp(X
{2}
t )

σ11σ22

h2

(

X
{2}
t

)

=
X

{2}
t

σ22

In the Chapters 2 and 3 of this dissertation, we focus on the usual, and easier to

interpret, class of stochastic volatility models of (2.5). For these models a separate

framework has been developed and alternative data augmentation irreducible MCMC

schemes are available.
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2.5 Markov chain Monte Carlo implementation

Using the likelihood of the previous section it is now possible to construct an irreducible

data augmentation MCMC scheme. The algorithm can be described as a Gibbs sampling

scheme which may be divided into 3 parts: the updates of the paths, the parameters of

the volatility function and those of the drift. The updates for the drift parameters are

rather straightforward as they can be carried out using standard random walk Metropolis

techniques (see Section 1.4.2). We present the details for each of the other two parts in

the following sections.

2.5.1 Updating the imputed paths

We proceed using an independence sampler. In other words we will propose from a

proposal distribution and the proposed paths will be either accepted or rejected according

to an appropriate probability that will ensure the convergence of the chain to the target

posterior distribution. Suppose that the augmented path is divided into n × d diffusion

bridges connecting the - say n - observed points (apart from the initial one). Under the

Gibbs sampling framework we can further break the path into n×d parts, one per bridge,

and update each one of them in turn. Using the results from the previous sections we see

that:

dPθ
dQ0

(Zmis|Y ) = G(η(Zt), µU , Id)
fM(Y ;σ)

fX(Y ;σ)
∝ G(η(Zt), µU , Id), (2.6)

where fX(Y ;σ) is the density of Y with respect to the Lebesgue measure under Pθ.

One simple choice for a proposal is the reference measure Q0; in other words we may

propose Brownian bridges. Using (2.6), we end up with the following algorithm:

• Step 1: Propose a Brownian bridge from tk−1 to tk.

• Step 2: Substitute into i-th dimension and form Z∗
t .
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• Step 3: Accept or reject with probability:

min

{

1,
G(η(Z∗

t ), µU , Id)

G(η(Zt), µU , Id)

}

.

• Repeat for all k = 1, . . . n and i = 1, . . . , d.

Updating the entire path at once will probably result in extremely low acceptance

rates as the discrepancy between the proposed and current path would be substantial.

By splitting into blocks, we correct for that increasing the acceptance rate; see Elerian

(1999) for more details. On the other hand, Elerian also notes that smaller blocks result

in slower convergence and mixing. Appropriate tuning is thus required to optimise this

MCMC efficiency trade-off. An alternative way of increasing the acceptance is by a

proposal distribution which is closer to the target Pθ. Suppose that we propose from

another distribution of diffusion bridges with drift λ denoted by L0. We can now write

using 2.6:

dPθ
dL0

(Zmis|Y ) =
dPθ/dQ

0

dL0/dQ0
(Zmis|Y ) ∝ G(η(Zt), µU , Id)

G(η(Zt), λ, Id)
(2.7)

Based on (2.7) above, the corresponding algorithm will consist of the following steps:

• Step 1: Propose a Brownian bridge from tk−1 to tk.

• Step 2: Substitute into i-th dimension and form Z∗
t .

• Step 3: Accept or reject with probability:

min

{

1,
G(η(Z∗

t ), µU , Id)G(η(Zt), λ, Id)

G(η(Z∗
t ), λ, Id)G(η(Zt), µU , Id)

}

.

• Repeat for all k = 1, . . . n and i = 1, . . . , d.

A suitable choice for L0 is a linear diffusion bridge, chosen so that λ{i} approximates µ
{i}
U .

A natural choice for λ, proposed by Ozaki (1992) is:
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λ(Lt) = µU(h(Yk−1)) +
∂µU(h(Yk−1))

∂Ut
(Lt − h(Yk−1))

Setting g = −2∂µU

∂Ut
(h(Yk−1)) and b = µU(h(Yk−1)) + 0.5gh(Yk−1), the SDE for the linear

diffusion bridge Lt for tk−1 ≤ t ≤ tk (and with Ltk−1 = h(Yk−1)) is:

dλ(Lt) = dBt+

{

b− gLt
2

− g1/2egt/2
g1/2egt/2Lt − 2begt/2/g1/2 + (2b/g − h(Yk))e

gtk/2g1/2

egtk − egt

}

See Ozaki (1992) and Roberts and Stramer (2001) for more details. Note that such a

bridge will start and finish at the corresponding values of h(Y ), therefore the transforma-

tion (2.3) should also be used. Alternatively one may work with Ut instead of Zt keeping

in mind that Zt is the component of the Gibbs sampling scheme.

In the adverse case where the path has been split into n × d bridges and still both

proposals give low acceptance rates, one may further split the path using overlapping

bridges. See Section 3.4 for more details.

2.5.2 Updating the volatility parameters

In this section we assume that σ(Xt, θ) is a constant d×d matrix with σ{ij}(.) = σij. The

matrix Σ = σ × σ′ is a covariance matrix and therefore can be treated using standard

relevant MCMC techniques; see for instance Daniels and Kass (1999), Pinheiro and Bates

(1996).

Note however that the full conditional of Σ will generally not be available. In this case

the options for updating Σ are limited. A random walk on the space of positive definite

matrices with an Inverse Wishart distribution is not the optimal choice, especially for high

dimensions. Such a proposal provides only one tuning parameter (the degrees of freedom)

and its flexibility is therefore limited. Similarly, the performance of an independence

proposal is again questionable. Alternatively, we may attempt to update each one of its
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components separately using a random walk. Such an approach will have no implications

imposed by the multi-dimensionality. However it is not clear how the positive definiteness

restrictions may be imposed under such a scheme.

We propose to update the matrix σ componentwise. Before proceeding any further

let’s recall one of the initial assumptions made in the introduction, that concerns the

1− 1 correspondence of σ and Σ. Note that the likelihood contains only Σ and therefore

such an assumption is necessary to ensure the identifiability of the components of σ. We

adopt the Cholesky factorisation. In other words we assume a triangular σ of the form

σ =

















σ11 0 0 . . . 0

σ21 σ22 0 . . . 0
...

...
...

...

σd1 σd2 σd3 . . . σdd

















,

with positive diagonal elements. Now note that:

• The entire space of symmetric positive definite matrices is covered since we are

using the Cholesky decomposition.

• The matrix Σ will always be strictly positive definite since the diagonal entries of

σ are positive and therefore |σ| > 0.

It is now safe to adopt random walk metropolis schemes for each one of the components

of σ. Alternative factorisations are possible; see for instance Daniels and Kass (1999) and

Pinheiro and Bates (1996) for more details.

2.6 Extensions

2.6.1 Change-points in volatility

The restrictions imposed by the system of partial differential equations of (2.2) may limit

the flexibility in modelling diffusions with time varying volatilities. A solution to this is
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given with the methodology developed in Chapters 2 and 3. Nevertheless, the following

extension on the methodology of this chapter may prove particularly useful. Consider the

following category of diffusions on 0 ≤ t ≤ T with general drift (as long as it ensures a

weakly unique solution to the SDE) µ(Xt, θ) and volatility σ(Xt, θ) of the following form:

σ(Xt, θ) = σc(Xt, θ), tc−1 ≤ t ≤ tc, c = 1, . . . , l, t0 = 0

where the collections of {tc} is subset of times with observations {tk, 1, . . . , n} and σc(.)

belongs to a reducible diffusion (i.e. the system of (2.2) has a solution) for all c. Since the

volatility σ(Xt, θ) is not continuous, the existence of a unique solution on the entire SDE

is not guaranteed and the Girsanov’s theorem is not applicable. Nonetheless, σ(Xt, θ) is

continuous in the intervals [tk−1, tk] and therefore the likelihood is well defined in each

one of them. If we use the Markov property we can then define the likelihood of the

entire path by simply multiplying the likelihoods obtained from the separate bits.

Furthermore, the likelihood is not actually defined based on X but on Z. Note that

Ut = hc(Xt, θ), tc−1 ≤ t ≤ tc, c = 1, . . . , l, t0 = 0

where hc(Xt, θ) is the transformation that solves the system (2.2) for a diffusion with

volatility σc(Xt, θ). Note also that Ut is now a discontinuous process as hc(Yk, θ) is not

generally equal to hc+1(Yk, θ). Nevertheless, the likelihood will again be well defined,

apart from the fact that it is written with respect to a parameter dependent dominating

measure as before. The second transformation Zt will be defined in exactly the same way

after a careful choice of the appropriate transformed data points hc(Yk−1, θ) and hc(Yk, θ).

Note that Zt is now a continuous process with continuous (unit) volatility and therefore

there is absolutely no concern whatsoever on the validity of the likelihood. These are

illustrated on Figure 2.3 where sample paths from all Xt, Ut and Zt are plotted.

In our discussion so far, both the location of the changepoints {tc, c = 1, . . . , l} and

their number were assumed to be known and fixed. However, under an appropriate
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Figure 2.3: Graphical representation of the transformations of X to U and Z bottom in
the case of changepoints in the volatility.
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reversible jump MCMC methodology, introduced in Green (1995), they may be included

in the model as parameters. In the context of diffusions a reversible jump was used in

Dellaportas et al. (2006), but this issue was not addressed nor was the model choice for

multivariate diffusions in general. The methodology of this chapter sets the basis for such

an extension.

2.6.2 Multivariate NLCAR models

A particularly interesting class of continuous time processes with a wide range of ap-

plications contains the non linear continuous time autoregressive models, denoted by

NLCAR(p). They were introduced in Tsai and Chan (2000) and include among oth-

ers the continuous time linear autoregressive models CAR(p) and the continuous time

threshold models CTAR(p) introduced by Brockwell (1994). They are defined by the

following SDE:

dX0(t) = X1(t)dt

dX1(t) = X2(t)dt
...

dXp−2(t) = Xp−1(t)dt

dXp−1(t) = µ(X(t), θ)dt+ σdBt

(2.8)

where X(t) = (X0, X1, . . . , Xp−1)
′. In words, we assume that the p − 1th derivative

follows a diffusion with drift g(.) and volatility σ; an NLCAR(1) is an ordinary diffusion

process. The drift µ(.) has to satisfy growth conditions in order for the equation above to

have a solution; see Brockwell (1994). Note that under a fine discretisation and given the

initial point, if either of X0, X1, . . . , Xp−1 is available, the remaining ones can be obtained

deterministically from it using numerical integration or differentiation.

In practice we only observe a discrete skeleton of X0 and nothing on Xp−1. The same

principles apply though: If we augment the path the path of Xp−1 at a sufficiently thin

scale, the effect of its quadratic variation process will cause again the same reducibility
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issues. Roberts and Stramer (2004) proposed a 2-step reparametrisation in the spirit of

Roberts and Stramer (2001).

The results of this chapter may be used for a multivariate extension of NLCAR(p)

models. To define multivariate NLCAR(p) assume a univariate NLCAR(p) on each di-

mension. Now X(t) =
(

xij, i = 1, . . . , d, j = 0, 1, . . . , p− 1
)

and the process of the p−1th

derivatives can be written as in (2.8) but now σ is a d × d constant matrix. Following

the same steps as in Brockwell (1994), with an application of the multivariate version of

Girsanov’s theorem, we require the drift to satisfy the same growth conditions to ensure

the existence of a unique weak solution.

Now assume that X0(0) = 0 and X0(1) = y, both d−dimensional vectors. Denoting

by PΘ the law of X and with Qσ that of its driftless version, which we denote by M , we

can write (again Σ = σσ′):

dPΘ

dQσ

= G(X, µ, σ) = exp

{∫ T

0

[

Σ−1µ(X(s), θ)
]′
dXp−1(s)

− 1

2

∫ T

0

µ(X(s), θ)′Σ−1µ(X(s), θ)ds

}

.

If we factorise the dominating measure in the same as in Section 2.3.2 we get the likeli-

hood:

dPΘ

Q
y
σ ⊗ Lebd(Y )

(Xmis, Y ) = G(X, µ, σ) × fM(y; θ),

where fM(y; θ) is the density of y under the dominating measure with respect to the

Lebesgue measure. This would be the density of a Gaussian process, the mean and

variance of which, would depend on the order p and Σ.

To remove the dependence of Qy
σ on σ we introduce the first transformation on Xp−1

(and therefore on the entire X) to be Up−1 = h(Xp−1) = σ−1Xp−1, so that the volatility
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of Up−1 is the identity matrix. The second transformation, applied on U0 and therefore

on the entire U , is:

Z0(t) = U0(t) − EQσ
(Z0(t)|Z0tk = σ−1Yk),

where the expectation is taken with respect to Qσ which represents a Gaussian process so

it is relatively easy to compute. For p = 1 this transformation becomes the transformation

of 2.4.1. It is easy to check that the likelihood in terms of Z will have a reference measure

that does not depend on σ or any other parameters.

Therefore it is possible to compute suitable MCMC scheme. Using the techniques of

this chapter the multi-dimensionality should not introduce any additional problems as

we can break down all of the MCMC components into small blocks.

2.7 Simulations

We simulated 500, 001 observations from the following non-linear model using a high

frequency approximating Euler scheme of step 0.001.

dX(t) =





−θ1(X
{1}
t )3

−θ2(X
{2}
t )3



 dt+





σ11 0

σ21 σ22



 dB(t).

We only recorded one point every 1000, resulting thus in a dataset with 500 observations

(excluding the initial point). Denote the data by Y = {Yk = Xtk , tk = 0, 1, 2, . . . , 500}.
The parameters were set to with θ1 = 0.8, θ1 = 0.6, σ11 = 0.5, σ21 = 0.2 and σ22 = 0.3.

Solving the vector differential equation of (2.2), we get the first transformed diffusion

Ut from Ut = h(Xt) = σ−1Xt. The second transformation Zt is defined from (2.3). The

density fM(Y ;σ) is given by (Σ = σσ′):
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(|Σ|)−n/2 exp

{

−
500
∑

k=1

[Yk − Yk−1]
′ Σ−1 [Yk − Yk−1]

2(tk − tk−1)

}

We put improper flat priors on all the parameters, restricting θ1, θ2, σ11 and σ22 to be

positive. This was done to ensure first the non-explosivity of X (θ1 and θ2), and second

Identifiability - 1-1 correspondence of σ and Σ (σ11 and σ22). We then implemented

the data augmentation scheme introduced in this chapter. A separate MCMC of 10,000

iterations was run for 3 different values of imputed points m = 20, 40, 50. The path

proposals were Brownian bridges and since the acceptance rate was high (87.2 %), no

other proposal was considered.

In Figure 2.4 at the bottom right, we see density plots of the log-likelihood for the 3

different values of m. Convergence of the likelihood may be used as an overall diagnostic

check that the discretisation is sufficiently fine. The idea is that if two partitions give

roughly the same likelihood approximation then the discretisation error is arguably suf-

ficiently small. In our case the density plots of m = 40 and m = 50 are almost identical

whereas that of m = 20 seems substantially different. One may reasonably argue that a

discretisation corresponding to an m = 40 is enough. Otherwise we may just increase m

at small computational cost.

Figure 2.5 contains autocorrelation plots for the posterior draws of all parameters. The

picture we get is completely different than that of Figure 2.1. There is no sign of any

increase of the autocorrelation for any of the parameters. Moreover, there is nothing to

raise suspicion on the convergence of the chain.

Finally, Table 2.1 contains information on the posterior samples of the parameters for

m = 50. The estimates seem to be in good agreement with the true values the data were

simulated from. However, this is not the case regarding the quadratic variation estimates

which are biased downwards. It seems that the imputation of the 50 intermediate points

between each pair of successive observations has successfully restored the inadequacy of

our sparse dataset.
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Figure 2.4: Kernel densities of the posterior draws of all the parameters for different
values of imputed points m = 20, 40, 50.

Parameter True value Post. mean Post. SD Post 2.5% Post median Post 97.5%
θ1 0.8 0.872 0.091 0.703 0.873 1.060
θ2 0.6 0.654 0.074 0.515 0.651 0.809
σ11 0.5 0.495 0.019 0.460 0.496 0.536
σ21 0.2 0.200 0.016 0.170 0.200 0.232
σ22 0.3 0.307 0.011 0.286 0.307 0.330

Table 2.1: Summaries of the posterior draws for the simulation example.
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Figure 2.5: Autocorrelation plots for the posterior draws of all the parameters for different
values of imputed points m = 20, 40, 50.
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2.8 Real data example

In this section we illustrate our methodology on the European interest rates dataset of

Corzo and Schwartz (2000). The data contain one-month interbank middle (between bid

and ask) rate for the Spanish market and one-month deposits for the ECU interest rate.

Weekly data from September 1990 to December 1997 (382 observations) were used. The

data are plotted in Figure 2.6.

The primary aim of the analysis was to study the interest rate process and investigate

the convergence, if any, of the Spanish interest rate to the European one. Thus, a natural

diffusion model for the Spanish interest rate X{s} is the following:

dX
{s}
t = b1 + b2(X

{e}
t −X

{s}
t )dt+ σ11dBt

where X{e} is the European rate to which we assign the following linear drift model:

dX
{e}
t = (b3 + b4X

{e}
t )dt+ ρσ22dBt +

√

1 − ρ2σ22dWt.

The equation above implies that the interest rate increments may be correlated and their

correlation is denoted by ρ. The presence of b1 in the drift allows for a potential (minor)

individual divergence of the Spanish rate whereas the parameter b2 reflects the persistence

of the convergence.

In a similar spirit with the analysis of Corzo and Schwartz (2000), we split the data

in the middle (end of April 1994), and model the parameters separately, for two reasons:

• To account for the fact that the volatility is obviously higher in the first period for

both rates.

• To examine if there were any changes in the behavior of the two processes between

these two periods.
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Figure 2.6: Kernel densities of the posterior draws of all the parameters for different
values of imputed points m = 20, 40, 50
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Hence, our model for the Spanish rate becomes

dX
{s}
t = b1 +D1Zt + (b2 +D2Zt)(X

{e}
t −X

{s}
t )dt+ (σ11 +D3Zt)dBt,

where Zt equals 0 for the period up to April 1994, and 0 afterwards. Regarding the

European rate, our preliminary analysis revealed that the parameters b3 and b4 were not

significant. For simplicity and parsimony reasons we set them to 0:

dX
{e}
t = (ρ+D4Zt)(σ22 +D5Zt)dBt +

√

1 − (ρ+D4Zt)2(σ22 +D5Zt)dWt.

We used the reparametrisations of Section 2.6.1 with one changepoint at the end of

April 1994. We put improper flat priors on all the parameters imposing the necessary

restrictions as in Section 2.5.2. Figure 2.7 depicts the autocorrelation plots for all the

parameters for m = 10, 20 imputed points. There is no sign of increase in the autocorre-

lation with m and overall the efficiency of the chain is satisfactory.

From Figure 2.8 we can verify the fact that the discretisation error was reasonably con-

trolled as it is really hard to distinguish the log-likelihood density of m = 10 from that

of m = 20.

Note that this was achieved with much fewer imputed points than the simulation example.

This is due to the fact that the deviation of the transformed diffusion paths from the

reference measure was not substantial. This is also reflected in the acceptance rate of

the Brownian bridge proposals which was extremely high (98%). Table 2.2 provides a

summary of the MCMC output. We see that under our model, almost all the D−s are

different from 0 with probabilities greater than 0.95 (0.912 for D4), implying smaller

variances and higher correlation for the second subperiod. Assuming that our model fits

the data well, we may argue that the speed of convergence was higher during the first

58



0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag − sigma11

Au
to

co
rre

la
tio

n m=10
m=20

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag − D3
Au

to
co

rre
la

tio
n m=10

m=20

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag − sigma21

Au
to

co
rre

la
tio

n m=10
m=20

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag − D4

Au
to

co
rre

la
tio

n m=10
m=20

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag − sigma22

Au
to

co
rre

la
tio

n m=10
m=20

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag − D5

Au
to

co
rre

la
tio

n m=10
m=20

Figure 2.7: Kernel densities of the posterior draws of all the parameters for different
values of imputed points m = 20, 40, 50. Spanish-European rates dataset.
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Parameter Post. mean Post. SD Post 2.5% Post median Post 97.5%
θ1 0.280 0.108 0.073 0.276 0.497
θ2 0.093 0.030 0.035 0.091 0.155
D1 -0.262 0.107 -0.480 -0.258 -0.042
D2 -0.080 0.030 -0.147 -0.080 -0.023
σ1 0.537 0.030 0.480 0.536 0.599
σ2 0.271 0.014 0.244 0.270 0.300
ρ 0.075 0.052 -0.029 0.077 0.176
D3 -0.408 0.034 -0.473 -0.407 -0.342
D4 0.142 0.072 -0.003 0.141 0.282
D5 -0.125 0.016 -0.157 -0.125 -0.094

Table 2.2: Summaries of the posterior draws for the real data example. Spanish-European
rates dataset.

subperiod September 1990 - April 1994. There exists a difference between 0.48 and 0.042

with probability greater than 0.95.

2.9 Concluding remarks

Multivariate diffusion models are of particular interest as they allow us to study beyond

the individual characteristics of the univariate processes and explore potential interactions

between them. In this chapter we provide a tool for Bayesian inference based on obser-

vations at a finite number of points, that covers a broad class of them. The methodology

is a natural extension to the data augmentation framework developed in Roberts and

Stramer (2001) and it includes likelihood approximations that may become arbitrarily

small by simply increasing the augmentation.

The reparametrisation introduced in this chapter extends beyond the MCMC case

and apply to any data augmentation scheme applied to a fixed dataset. As noted in

Beskos et al. (2006b), this transformation is an essential to a multivariate extension to

their framework and is also necessary for the convergence of an EM algorithm. In the

MCMC context, the only way to avoid it is through the sequential techniques of Golightly

and Wilkinson (2005) which contain the general online parameter estimation drawbacks.
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The class of multivariate diffusions does not include some interesting cases like stochas-

tic volatility models which are examined in the next two chapters. Nevertheless, it in-

cludes many interesting models in which the observed process may not necessarily be

Markovian, like the multivariate NLCAR models.
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Chapter 3

Bayesian Inference for a Large Class

of Stochastic Volatility Models

3.1 Introduction

Volatility plays a prominent role in financial markets. Its importance is first noted in

the early option pricing literature on the seminal work of Black and Scholes (1973) and

Merton (1995). Under these formulations the equity prices followed a geometric Brownian

motion implying a constant instantaneous relative volatility which drives option pricing

through the famous Black-Scholes formula among practitioners. Despite the fact that

today’s evidence from almost all financial time series does not support this assumption,

Black-Scholes remains the most widely used formula. Alternative formulations by Derman

and Kani (1994), Dupire (1994) and Rubinstein (1995) consider state (price) dependent,

time varying volatility. Although these models perform well in some cases, empirical

studies (Dumas et al., 1998) show that they fail to explain the joint behavior of stocks

and option prices.

Stochastic volatility models, such as Hull and White (1987), Stein and Stein (1991)

and Heston (1993), where the volatility is a separate diffusion process, undoubtedly offer

an improvement in that respect. Such models achieve to encompass some the empirical

features of the data, as provided by both stocks and option prices. Although the problem

was initially stated in a diffusion processes framework, the vast majority of the early
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stochastic volatility literature is set in discrete time. These models focus on the skeleton

of the process without worrying too much about its evolution over the intervals between

the discrete points. See for instance Ghysels et al. (1996), Jacquier et al. (1994), Kim

et al. (1998), Pitt and Shephard (1999) and their references therein. Continuous time

stochastic volatility models aim in more realistic representation of the market. Also,

unlike discrete time models, they can be fit on irregularly spaced, non-synchronized and

multiple scale datasets which often appear in high frequency finance.

In this and the following chapter we consider all the diffusion driven stochastic volatil-

ity models that can be summarized or transformed to the following SDE:





dXt

dαt



 =





µx(Xt, αt, θ)

µα(αt, θ)



 dt+





σx(αt, θ) 0

0 σα(αt, θ)









dBt

dWt



 , (3.1)

where X denotes the observed equity (stock) price, the volatility of which is driven by

the latent diffusion α. To our knowledge, the SDE above contains almost all the models

of the relevant literature and thus forms a very interesting family.

We divide the models of (3.1) into two categories. In the first category we assume

that the drift of the observed process is independent of its paths. This covers the famous

models of Hull and White (1987), Stein and Stein (1991) and Heston (1993)1, and is the

main focus of this chapter. In the next chapter we extend to the more general case by

enhancing our machinery using time change transformations.

This chapter is organized as follows: Section 3.2 summarizes the methodologies avail-

able for likelihood based inference on stochastic volatility models. We approach the

problem using data augmentation. Again appropriate reparametrisation and MCMC

implementation techniques are essential. They are presented in Sections 3.3 and 3.4.

Section 3.5 notes some possible extensions and Section 3.6 illustrates these on two sim-

ulation based examples. Then, in Section 3.7, we explore the relationship with option

1It is easier to see this if we use S = exp(X) instead of X
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pricing and we extend the framework to include cases where the latent diffusion α may

be inferred from additional data (i.e. option prices). 3.8 provide a real data application

on the Standard and Poor 500 - VIX data and finally Section 3.9 concludes with some

potential extensions.

3.2 Inference for stochastic volatility models

Assume that the process we study can be divided into two components, say X and α,

where we can only observe a discrete skeleton of the diffusion X. In this chapter, we

focus on a subclass of the models included in (3.1), henceforth denoted by C, considering

multivariate diffusions with unobserved paths that satisfy the following SDE ( 0 ≤ t ≤ T ):





dXt

dαt



 =





µx(αt, θ)

µα(αt, θ)



 dt+





σx(αt, θ) 0

0 σα(αt, θ)









dBt

dWt



 , (3.2)

where B and W denote standard Brownian motions that may or may not be correlated.

As already mentioned, the class C includes many famous and widely used diffusion driven

stochastic volatility models which are particularly useful in financial applications. Section

3.6.2 provides a simulation example based on the model of Heston (1993), henceforth

referred to as Heston model, and Section 3.8 an analysis of the S&P 500 - VIX data. A

crucial aspect of stochastic volatility models is the lack of the Markov property for the

observed diffusion2. In other words the volatility of a future stock price depends on the

entire evolution of α rather than just the current value of X. Suppose that we observe

X at times {tk, 0 ≤ tk ≤ T, k = 0, 1, . . . , n} and let Y = {Yk = Xtk}. For scalar

diffusions, or for the diffusions considered in Chapter 2, we can write the likelihood using

the transition density of the diffusion (conditional on the initial point Y0):

pθ(Y ) =
n
∏

k=1

pθ(Yk|Yk−1). (3.3)

2The 2-dimensional diffusion still has it though
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However, this is not always true for stochastic volatility models and consequently for the

diffusions in C. This complicates things even further, making inference for stochastic

volatility models particularly challenging.

Likelihood approaches can be either analytical (Aı̈t-Sahalia (2002), Aı̈t-Sahalia (2005)),

or simulation based (Pedersen (1995), Durham and Gallant (2002)). They usually ap-

proximate the likelihood in a way so that the discretisation error may become arbitrarily

small, although the methodology developed in Beskos et al. (2006b) succeeds exact in-

ference in the sense that it allows only for Monte Carlo error. Nevertheless, all of these

methods rely on the Markov property and therefore become hard to generalize to stochas-

tic volatility models. For Beskos et al. (2006b) and Durham and Gallant (2002) this can

be done by adopting a sequential framework, whereas such an extension is possible under

the Aı̈t-Sahalia (2005) framework only when the volatility can be inferred from other

financial instruments, i.e. options. See Sections 3.7, 3.8 and Äıt-Sahalia and Kimmel

(2005) for more details.

Consequently, data augmentation schemes are extremely useful for stochastic volatility

models in particular, providing one of the few options for inference. By imputing both

the latent paths of α and the paths between observations on X, they provide a likelihood

approximation that can become arbitrarily precise. As before, a finite number of points

is imputed that should be large enough to limit the error due to discretisation. Given the

augmented path, it is then straightforward to get the likelihood using appropriate Euler

schemes for the transition density; see for instance Elerian et al. (2001), Eraker (2001)

and Jones (2003).

3.3 Reparametrisation

3.3.1 The need for a reparametrisation

A reparametrisation is necessary for the same reasons stated in the Section 2.4.1. Under a

data augmentation scheme we will impute some ‘missing’ points and then we will update
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the parameters θ conditional on the augmented diffusion paths. Nevertheless, as the

number of imputed points increases, the conditional posterior density of the volatility

parameters becomes a point mass, at the value indicated by the quadratic variation

process of the augmented path. Hence, any data augmentation scheme of this kind, will

result in a reducible MCMC algorithm in the limit: As the number of imputed points

gets larger, the sample paths will increasingly ‘force’ the parameters to remain at their

current value causing serious implications to the convergence and mixing of the chain.

This is particularly inconvenient as the imputation of arbitrarily many points is vital for

limiting the approximation error.

The problem may be resolved if we apply a transformation so that the algorithm

based on the transformed diffusion is no longer reducible. In the spirit of Papaspiliopou-

los et al. (2003), this can be seen as a non-centering reparametrisation. As already

mentioned, Roberts and Stramer (2001) tackle the problem for scalar diffusions by a

reparametrisation on the paths of V and in the Chapter 2 we introduced an extension for

some multivariate diffusions. To apply this reparametrisation, we seek a transformation

of the diffusion (X,α)′ to one with unit volatility matrix. This requires the solution of

the system 2.2. However, using the condition (2.4), we note that such a transformation

does not exist. In other words the framework of Chapter 2, does not cover the models

in C. This chapter focuses on this class and introduces a novel reparametrisation of the

likelihood that may serve as the basis for irreducible data augmentation schemes.

3.3.2 A suitable likelihood parametrisation

As before, unless we apply a suitable transformation, the likelihood using Girsanov theo-

rem is written with respect to a dominating measure that depends on parameters θ. Con-

sider a diffusion in C and denote the observations of the processX at times tk, k = 1 . . . , n

by Y , Y = {Xtk , 0 ≤ tk ≤ T} = {Yk, k = 1, . . . , n}. For simplicity we assume that the

diffusion in (3.2) is two-dimensional (we discuss about extensions to higher dimensions

in the next section). Note that it can also be written as:
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dXt = µx(αt, θ)dt+ ρσx(αt, θ)dWt +
√

1 − ρ2σx(αt, θ)dBt

dαt = µα(αt, θ)dt+ σα(αt, θ)dWt

where B and W are independent Brownian motions. The parameter ρ is the correlation

between the instantaneous increments of X and α and reflects what is termed as leverage

effect in the stochastic volatility literature. Let Pθ(X,α) denote the law of (X,α)′. Clearly

we can write:

Pθ(X,α) = Pθ(α) Pθ(X|α),

where Pθ(α) and Pθ(X|α) denote the laws of α andX given α respectively. Note that given

the path of the unobserved process and its parameters, α and W become deterministic

functions of time. Looking again at the SDE for X we note that Pθ(X|α) depends only

on the observations Y the density of which is

pθ(Y |α) =
n
∏

k=1

pθ (Yk |Yk−1, {αt : tk−1 ≤ t ≤ tk}) . (3.4)

where

pθ (Yk |Yk−1, {αt : tk−1 ≤ t ≤ tk}) ∼ N

(

µk, (1 − ρ2)

∫ tk

tk−1

σx(αs, θ)
2ds

)

with

µk = Yk−1 +

∫ tk

tk−1

µx(αs, θ)ds+ ρ

∫ tk

tk−1

σx(αs, θ)dWs.

Denote by Qθ(α) the distribution of the driftless version of α. Combining all of the

above, we can attempt to write down the likelihood as
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dPθ
dQθ

(X,α) = pθ(Y |α)
dPθ(α)

dQθ(α)
(3.5)

.

The dominating measure Qθ(α) in the parametrisation of (3.5) corresponds to a diffusion

with volatility σα(αt, θ) and therefore clearly depends on θ. For this reason we introduce

a transformation βt = h(αt, θ) similar to (1.7):

∂h(αt, θ)

∂αt
= {σα(αt, θ)}−1

Applying Ito’s lemma we note that the transformed process βt has unit volatility and

drift

µβ(β, θ) =
µα [h−1(β, θ), θ]

σα [h−1(β, θ), θ]
− 1

2

∂σα [h−1(β, θ), θ]

∂h−1(β, θ)
.

Given the initial point of β (β0 = h(α0, θ)), Girsanov’s formula now provides the

Radon-Nikodym derivative between the law of β and that of a Brownian motion starting

at β0. This is still problematic however, as this law depends on parameters (β0 is a

function of θ). For this reason we introduce a second transformation:

γt = βt − β0, βt = η(γt)

The process γt will have unit volatility and drift µγ(γ, θ) = µβ(η(γ), θ). Now we can use

Girsanov’s formula for the Radon-Nikodym derivative between the law of γ, denoted by

Pθ(γ), and that of a standard Brownian motion starting at 0 (W):

dPθ(γ)

dW
= G(γ, θ) = exp

(∫ T

0

µγ(γs, θ)dγs −
1

2

∫ T

0

µ2
γ(γs, θ)ds

)

.

We are finally in a position to write down the likelihood with respect to a parameter-free

dominating measure:
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dPθ
dQθ

(X, γ) = pθ(Y |γ) dPθ(γ)
dW

= pθ(Y |γ) p(α0) G(γ, θ) (3.6)

where pθ(Y |γ) = pθ(Y |α) = pθ {Y |η ◦ h−1(γ, θ)} and p(α0) has to be specified as part of

the model. If available, the stationary distribution of α is a natural choice. Using this

likelihood we can construct an irreducible data augmentation scheme that can be used for

inference purposes. Given a sufficiently fine partition of the path of γ, the Ito and path

integrals in the likelihood may be calculated numerically. More details on this scheme

and its practical implementation are provided in the next section.

3.4 Data augmentation scheme

This section presents a MCMC algorithm that can be used to sample from the poste-

rior densities of the parameter vector θ and the unobserved paths of γ. The model is

formulated in continuous time but in practice we impute the values of γ at a finite set

of times. Denote by m the number of imputed points between any two observations.

We have to choose a large enough m so that the error due to the discretisation of γt is

sufficiently small. Roberts and Stramer (2001) use the stability of the likelihood estimate

as a diagnostic for the fine-ness of the discretisation. The idea is that if the likelihood

estimates for two different numbers of m are approximately the same, the discretisations

are likely to be sufficiently fine.

Updating θ is relatively straightforward as we can get the relevant conditional poste-

rior densities using the likelihood defined in (3.6). The parameter vector can be divided

into two components θ = (θ1, θ2), depending on the part of likelihood they appear. θ1

contains the parameter involved in the µx and σx as well as ρ and α0. θ2 contains the

parameters in µα(.) and σα(.). Let p(θi), i = 1, 2 denote the corresponding priors. The

conditional posterior densities p(θi|Y ) will then be:

p(θ1|Y ) ∝ pθ(Y |γ)p(θ1)
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p(θ2|Y ) ∝ pθ(Y |γ)G(γ, θ)p(θ3)

.

For some models it may be possible to identify the conditional posterior densities above

and apply Gibbs steps (see appendix). Otherwise ordinary random walk Metropolis

updates may be used.

In the remainder of this section we will focus on the updates of the diffusion paths

of γ, a clearly more complicated task. We proceed using an independence sampler,

proposing for instance from Brownian motion. As in the case of the previous chapter, the

updating of the entire path could lead to extremely low acceptance rates due to the great

discrepancy between the proposed and current path. A way to circumvent this problem

is to split the process into blocks and update each one of them in turn, by proposing

diffusion bridges.

While it is rather clear that the path of γ should be divided into blocks, it is not

straightforward how this should be done. Suppose that we observe Y at times tk, as in

Section 3.3.2, and that we split the path of γ into n blocks {bk = γs, tk−1 ≤ s ≤ tk, k =

1, 2, . . . , n}. But under this formulation the endpoints of the blocks are not updated at

all leading to a reducible MCMC chain; an alternative blocking scheme is needed.

The blocking strategy adopted in this paper, uses block updating of overlapping seg-

ments. This scheme has been also used in Roberts and Stramer (2004) in a slightly differ-

ent context. Under this procedure, we update γs for ti ≤ s ≤ ti+c for i = 0, 1, . . . , n− c,

where c is an integer smaller than n. It is our experience that high values of c improve

the mixing of the algorithm as long as the acceptance rate of the blocks is not too small.

We use an independence sampler with a Brownian bridge as the proposal distribution.

The MCMC algorithm becomes:

1. Set i = 0.

2. Propose a Brownian bridge starting at γ(ti) and finishing at γ(ti+c).

Denote it by γ∗s, ti ≤ s ≤ ti+c.
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3. Accept γ∗s with probability:

min

(

1,
G(γ∗s , θ)pθ(Xs|γ∗s )
G(γs, θ)pθ(Xs|γs)

)

4. Set i = i+ 1 (until i ≤ n− c). Note that for i = n− c the proposal

should be just Brownian motion rather than a Brownian bridge.

An alternative blocking strategy uses random sized blocks. More specifically, at each

iteration the path is randomly split into blocks and the paths between the endpoints are

updated, whereas the endpoints remain unchanged until the next iteration. See Elerian

(1999) for more details. This scheme was adopted in Chib et al. (2005) and found to

perform well.

3.5 Extensions

3.5.1 Multifactor and Multivariate Stochastic Volatility Models

So far, for illustration processes, we made the assumption that both processes X and α

are one-dimensional. This assumption is not necessary; we can still use such a likelihood

parametrisation in models where either or both Xt and α are vector processes. Famous

examples of such models are that of multivariate and multifactor stochastic volatility

used for example in Duffie and Kan (1996) and Chernov et al. (2003).

We should keep in mind however, that this likelihood parametrisation requires the

existence of a transformation of α, h(α, θ), to a diffusion with identity volatility matrix.

Therefore it is only applicable to models with such σα(α, θ), so that the diffusion α is

reducible or in other words if the following system of PDEs:

∇h(αt, θ) σα(αt, θ) [∇h(αt, θ) σα(αt, θ)]′ = Id
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has a solution. The methodology contains most cases of practical interest in mul-

tifactor and multivariate stochastic volatility. For example it contains models with

a constant volatility matrix for α or with conditionally independent volatilities (α =

(α1, . . . αd)
′, σα(α, θ) ≡ diag {f(αi, θ)}, i = 1, . . . , d). Extensions to more general models

are possible by diagonalising σα(.)

3.5.2 Applications beyond stochastic volatility

The methodology developed so far does not cover only stochastic volatility models. In

fact, it can be applied to general partially observed diffusion settings in a state space

framework. The likelihood can be specified in a similar manner with Section 3.3.2. One

starts with the marginal distribution of the latent path which is provided by Girsanov’s

formula. The likelihood can then be completed by some appropriate density, like (3.4),

for the observations conditional on any feature of the latent path.

One such example concerns diffusions observed with error. In this case, the density

for the observation y at time t could be for instance gaussian with the value of the latent

process (or some function of it) as the mean and some variance. Another example taken

from finance is when we observe functions of the rates or equity prices. Under a typical

scenario we have the bid and ask quotes but we are interested in a latent process that

lies between these two values and can be thought of as the ‘fair’ or ‘true’ price. Again

we can specify the likelihood assigning an appropriate distribution on some functional of

these quotes that may depend on any element of the latent path of the unobserved ‘true’

price.

On some other occasions, the distribution of the observations could be a Poisson

distribution, the rate of which could follow a diffusion process; see Kou et al. (2006) for

an interesting application in genetics. In the same context, partially observed diffusions

are also used in survival data analysis where they appear in the hazard function; see

Aalen and Gjessing (2001), Aalen and Gjessing (2004) and Sangalli and Roberts (2006).
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3.6 Simulations

The simulations performed in this section aim to demonstrate two aspects of the problem.

First, we highlight the necessity of the reparametrisation introduced in Section 3.3. This

is done by initially exposing the problem in the case of a very simple stochastic volatility

model. Then we present the proposed methodology using simulated data from the Heston

model.

3.6.1 Data augmentation without reparametrisation

We simulated data from the following stochastic volatility model of C:





dXt

dαt



 =





exp(αt/2)dBt

σdWt



 , X0 = α0 = 0, σ > 0, 0 ≤ t ≤ 100.

where B and W are independent Brownian motions.

Note that in this case µx ≡ µα ≡ 0. Therefore, unless we apply a reparametrisation,

Girsanov’s formula is not useful. Alternatively we may use the Euler approximation.

Suppose that we observeX at times {tk = k, k = 0, 1, . . . , n}, n = 100 and that we impute

the corresponding values for α. Furthermore we impute m values of α between every pair

of successive times with observations. For simplicity we assume that the imputed points

are equidistant and denote the time interval between them by δ = (m + 1)−1. Let

Vt = (Xt, αt)
′ and Σ = diag{exp(αt), σ

2}. Under the Euler approximation and given V0

we get:

p(Y, σ2, Vt) =

n(m+1)+1
∏

t=1

p(Vt|Vt−1, σ
2), p(Vt|Vt−1, σ

2) ∼ N (Vt−1, δΣt−1) .

If we assign p(σ2) ∝ σ−2 as the prior for σ2 and assume that α0 is known, we get that

its conditional posterior density is an Inverse-Gamma distribution with parameters:
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a =
n(m+ 1)

2
, b =

(m+ 1)
∑n(m+1)+1

t=1 (αt − αt−1)
2

2

.

We ran a MCMC chain for 100,000 iterations for different numbers of imputed points

(m = 1, 10, 40, 100), updating the paths as described in Section 3.4 and using the Gibbs

step for the updates σ2. We used the overlapping blocks scheme for the updates of the

paths. The length of the block was chosen as c = 5 to improve autocorrelation for the

posterior draws of σ2 and the acceptance rate of the blocks was approximately 78%.

Figure 3.1b shows the autocorrelation of the posterior draws of σ2 for each value of m.

Clearly, the autocorrelation increases dramatically leading to an increasingly slower chain.

An alternative way to see this is to note that the variance of the conditional posterior for

σ2 goes to 0 as we increase m.

The problem can be resolved if we apply this paper’s proposed reparametrisation.

Following the route of Section 3.3, we set βt = αt/σ and γt = βt− β0 = βt and we obtain

dXt = exp(σβt/2)dBt,

where β is a standard Brownian motion independent of B. Note that the part with

Girsanov’s formula drops out of the likelihood which now simplifies to:

p(Y, σ2, βt) = p(β0)
n
∏

k=1

p(Yk|Yk−1, σ
2, βt),

where

p(Yk|Yk−1, σ
2, βt) ∼ N

{

Yk−1,

∫ tk

tk−1

exp(σβs)ds

}

.

Figure 3.1a contains the corresponding autocorrelation plots of the posterior draws of

σ2 taken from the reparametrised data augmentation scheme. Unlike the previous case

(Figure 3.1b) there is clearly no increase in the autocorrelation.
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3.6.2 Reparametrised scheme applied to the Heston model

In this section we illustrate the proposed methodology to simulated data from the model

of Heston (1993). We also demonstrate the immunity of the algorithm developed in

Sections 3.3 and 3.4 to the increase of the number of imputed points m. If we take the

log of the observed process the Heston model can be written as:

dXt = µxdt+
{

(1 − ρ2)αt
}1/2

dBt + ρ αt
1/2dWt

dαt = κ(µ− αt)dt+ σαt
1/2dWt

where Bt and Wt are independent Brownian motions and Corr(dXt, dαt) = ρdt as before.

In line with Section 3.2.2 we apply the following 2-step transformation:

1. βt = h(αt) = 2αt
1/2/σ, βt > 0

2. γt = βt − 2α0
1/2/σ, βt = η(γt)

Then using Ito’s lemma we get (g := η ◦ h−1):

dXt = µxdt+
{

(1 − ρ2)g(γt)
}1/2

dBt + ρ g(γt)
1/2dWt

dγt =

{

2κµ− 0.5σ2

σ2η(γt)
− 0.5κη(γt)

}

dt+ dWt

We can now proceed by writing down the likelihood as in Section 3.3 and implementing a

data augmentation scheme as in Section 3.4. Using Brownian bridges as proposals for the

paths of γ is not the best choice given the constraint βt > 0. Alternatively we may choose

to update the paths of α instead, since they are linked with a deterministic function with

the paths of γ given σ. We may propose from the diffusion Z that satisfies the SDE:

dZt =
σ2

4
dt+ σZt

1/2dBt
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Figure 3.1: Autocorrelation plots of posterior draws of σ2 for different values of imputed
points between observations (m) for the simple stochastic volatility model. The draws in
(a) correspond to the reparametrised scheme scheme and in (b) to the scheme without
transformation.
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Parameter κ µ σ ρ µx
True value 0.1 0.9 0.2 -0.5 0

Posterior mean 0.0915 0.8712 0.2126 -0.479 0.0187
Posterior SD 0.0296 0.0863 0.0436 0.1134 0.0278

Table 3.1: Posterior means and standard deviations of the parameters versus their true
values for the Heston model.

To simulate bridges from Z we can first simulate a Brownian bridge BBt with volatility
√

σ/2 and then set Z = 1
2
σBBt

2. Regarding the updates of the parameter κ and µ, it

turns out that they are almost Gibbs steps. Hence, we can use ‘clever’ proposals which

are derived in the appendix.

The parameter values used in the simulation are similar to those obtained from the

analysis of the closing prices of Standard and Poor’ 500 index in Chib et al. (2005) and

Aı̈t-Sahalia and Kimmel (2005). We simulated 1008 data points (excluding the initial

point) from the Heston model corresponding to 1008 working days or 4 years of data.

In accordance with the relevant literature, we set the initial values to X0 = log(100)

and α0 = µ = 0.9. As before, we ran a MCMC chain for 80,000 iterations for different

numbers of imputed points (m = 20, 40, 80). We chose the value of c = 8 to achieve lower

autocorrelation on the parameter posterior draws. The acceptance rate for the blocks

was approximately 32%.

Figure 3.1 shows the autocorrelation plot for the posterior draws of σ for different

values of m. There is no evidence of any increase whatsoever, even for m = 80. In Figure

3.2, we see the posterior densities of the log-likelihood and σ, again for different values

of m. All the densities are similar, providing strong evidence that the discretisation is

sufficiently fine. Finally, Table 3.1 provides the posterior means and standard deviations

of the parameters. We see that these estimates are in good agreement with the values we

simulated the data from.
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3.7 Connection with option pricing

The relation between option pricing and statistical inference can go in both directions.

In some cases we need to estimate the parameters of the option pricing formula, for

example the volatility in the Black-Scholes formula. On the other hand we may use the

information contained in option prices to carry inference for the model parameters. In

this section we provide a brief description of the option pricing problem and we describe

how these ideas apply to our case.

3.7.1 Option pricing under stochastic volatility

Denote the log-price of an asset at time t by St. A European call/put option on the

asset gives the right and not the obligation, to buy/sell the asset at a specific time t+ h

(maturity) and at a specific price K (exercise or strike price). Assume that the dynamics

of the asset process are determined by the following stochastic volatility model.

dSt = St
{

µP
S(αt, θS, t)dt+ σS(αt, θS)dW

P
t

}

dαt = µP
α(αt, θα, t)dt+ σα(αt, θα)dB

P
t

where (W S,WU) are standard Brownian motions with correlation ρ. If we take Xt =

log(St) it is not difficult to check that the model belongs in the class C. The distribution

of S, denoted by P, is often called historical or physical measure. Under some fairly

general assumptions, there exists a family of equivalent martingale measures Q that can

be used for finding a price for the option in a way that eliminates the possibility of

arbitrage. Assuming a zero risk free rate, a fair price for the call option is just the the

following expectation (with respect to Q):

Ct = EQ
[

(St −K)+|Ft

]
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Every such measure is called a risk neutral measure or a pricing measure. The existence

of such measures is guaranteed if the Radon-Nikodym derivative of P with respect to Q

has finite variance or alternatively by some boundedness restrictions; see Harrison and

Krepps (1979) and Harrison and Krepps (1981) for more details. The dynamics of S

under Q would satisfy (again assuming zero risk free rate):

dSt = StσS(αt, θS)dW
Q
t

dαt = µQ
α(αt, θα)dt+ σα(αt, θα)dB

Q
t

.

If the volatility of the process is independent of α (and therefore only the first of the

equations above is relevant), then Q is unique and the option pricing problem reduces on

finding an appropriate value θS. Under such models the market is said to be complete.

In our case however, an entire family of risk neutral measures Q exists, each of which

may lead to completely different prices; stochastic volatility models usually represent an

incomplete market. The choice of Q is not trivial. Henderson et al. (2005) prove that

option prices with convex payoff structures are decreasing in the market price of volatility

risk. This is in line with results of Bergman et al. (1996), Romano and Touzi (1997),

Hobson (1993) and El Karoui et al. (1998) which show that the option price is increasing

in volatility.

An rational idea is to choose the Q which is ‘closer’ to P (and therefore to reality in

some sense). In an attempt to minimize the distance between the physical and pricing

measure, Henderson et al. (2005) examine the class of q−optimal measures Hq(P,Q),

where each q reflects a different measure distance:

Hq(P,Q) =







E
[

q
q−1

(

dQ
P

)q
]

, if q ∈ R{0, 1}
E
[

(−1)1+q
(

dQ
P

)q
log
(

dQ
P

)]

, if q ∈ {0, 1}

The situation remains obscure however, as Henderson et al. (2005) also prove that

option prices are decreasing in q. Nevertheless, things may be simplified if we assume
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deterministic µP
S(.) which corresponds to a deterministic Sharpe ratio (mean over standard

deviation) or equity risk premium and reflects an almost complete market. In this case all

the q− optimal measures collapse to the case of q = 0, the minimal martingale measure,

which also minimizes the reverse relative entropy; see Föllmer and Schweizer (1991) and

Schweizer (1999). Under this measure we have µQ
α(.) = µP

α(.).

3.7.2 Determining the option pricing parameters

Existing approaches for choosing the parameters of the pricing measure Q we may be

classified in two main categories. Under the first approach one ignores completely the

real world measure P and only defines Q. Then, calibration methods may be used for

the parameters, so that some sort of distance between model and observed option prices

is minimized. This procedure is widely used as most of the times achieves a very good

matching with of the option datasets. Nevertheless, the estimates may become unstable

and there exist overfitting concerns. Moreover, as confirmed by empirical studies (Dumas

et al., 1998), the joint stock - option prices implied from the model is not consistent

with the observed price process. To overcome this problem such models require periodic

recalibration. It is not straightforward to define the likelihood for the parameters and

therefore the results of this chapter are not relevant with this approach.

An alternative procedure is to use both historical and pricing measures P and Q as in

Aı̈t-Sahalia and Kimmel (2005) and Chernov and Ghysels (2000). The main challenge of

this approach is to define an appropriately link between them, which essentially translates

in connecting µP
α(.) and µQ

α(.) with an appropriate function, say g(.). Once this is done,

a way to go is by defining a likelihood based on P and then obtain estimates for the Q

parameters via the transformation g(.). This approach has the appealing feature that

it is possible to incorporate information from observed option prices, apart from the

information contained in the price process, in an attempt to match the characteristic of

both series (see next section for more details). On the other hand, the specification of the

link between the real world and risk neutral measure is not straightforward. The problem

is essentially the same as choosing Q as discussed in the previous section and very often
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the input of financial market experts is needed. In the application of Section 3.8, we

simplified things by adopting a model that corresponds to an almost complete market.

Doing so, a reasonable choice for Q is the unique, in this case, q− optimal measure or in

other words the minimal martingale measure with µQα (.) ≡ µPα (.).

The latter procedure fits very naturally with our framework. Having obtained samples

from the posterior of P parameters, we can just transform them to perform inference on

those of Q. Moreover, under the Bayesian setting it is straightforward to incorporate pa-

rameter, and potentially model (which may be viewed as another parameter), uncertainty

using their posterior distribution (Kass and Raftery, 1995). The problem can then be

included in a decision theoretic framework using appropriate utility functions for pricing

options.

3.7.3 Using option prices for inference purposes

Obtaining αt

So far, we addressed the problem of parameter estimation based on an unobserved volatil-

ity path. In financial applications however, apart from the equity prices, there exist large

datasets of option prices that have been made upon them. As we demonstrate in this

section, it is possible to infer all the corresponding points of the volatility path using these

data. Then we can either treat this points as proper observations or do some adjustment

as we discuss towards the end of this section.

Let us go back to the Black-Scholes model. Assuming that the process follows a

geometric Brownian motion, and given the value of the price at time t, we can provide a

‘fair’ price for any type of option with any maturity h and strike price K. Conversely, for

any option price (with a specific maturity, strike price and price value at time t, St), there

exists a unique positive number which would have given the specific option price had it

been the volatility in a Black-Scholes formula. This number is called (Black-Scholes)

implied volatility, is denoted by σimp(t, t+h) and is given by the solution of the following

equation (again assuming zero interest rate).

84



Ct = St
[

φ(d1) − e−xtφ(d2))
]

d1 =
xt

σimp(t, t+ h)
√
h

+
σimp(t, t+ h)

√
h

2

d2 = d1 − σimp(t, t+ h)
√
h

xt =
logSt
K

Black-Scholes implied volatility is particularly useful even when the model assumes

stochastic volatility σs(αt). For small maturities h, it can be interpreted as implied

average volatility (Ghysels et al., 1996):

σimp(t, t+ h) ≈ Et

[

1

h

∫ t+h

t

σs(αt)ds

]

Following these ideas it has become common practice in finance to construct volatility

proxies by averaging many implied volatilities which are as close as possible to be ‘at

the money’ and with short maturities. In Section 3.8 we analyze the volatility index

(VIX) of the S&P 500 index which is provided by Chicago Board of Exchange and is

constructed a similar algorithm, see Whaley (1993) and Whaley (2000) for more details.

Having obtained the volatility of S by σimpt , it is then straightforward to get α.

MCMC implementation

By setting Xt = log(St) and using Ito’s lemma, we obtain a model belonging to C. The

difference is that now we also have observations on α for each point of X. In other words,

we have an at least 2-dimensional discretely (fully) observed diffusion as in Chapter 2.

Nevertheless, we cannot apply the corresponding methodology because the diffusion is

not reducible as mentioned earlier. Therefore we proceed by writing the likelihood as in

this chapter, separating the bits of α and X given α. Regarding the marginal likelihood

for α, we need apply the reparametrisation of Roberts and Stramer (2001) for univariate

α, or its extension developed in Chapter 2 for the multivariate case, in order to construct
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an irreducible MCMC algorithm. Note that this assumption is applied only on α and

therefore we require only its reducibility (the joint diffusion is not reducible).

More specifically, βt is defined in the same way as before and for each pair of successive

observations, say times tk and tk+1, we set γ to be:

γt = βt −
(tk+1 − t)βtk + (t− tk)βtk+1

tk+1 − tk
(3.7)

Using Ito’s lemma we can obtain the SDE for γ and apply the relevant parametrisation of

Chapter 2. Doing so, we can then implement a similar MCMC scheme to that of Section

3.4. The only difference is in the updates of γ. Now there is no need to adopt neither a

random sized nor an overlapping blocks scheme. We can just update the bridges between

observations one by one using an independence sampler in a similar way as in Roberts

and Stramer (2001) or Chapter 2 accordingly. See Section 3.8 for an application based

on such an algorithm.

Adjusting the volatility proxy

Even though we use Black-Scholes implied volatility from options with short maturities,

the approximation error due to the false assumption of constant volatility may not be

negligible. The integrated volatility proxy of Aı̈t-Sahalia and Kimmel (2005) corrects for

the effect of mean reversion in volatility and in some cases provides an improvement.

Denote the integral of the variance of X by V (t, h), which is defined by

V (t, h) =
1

h

∫ t+h

t

σS(αs)ds

and denote by V imp(t, h) the corresponding quantity obtained by the Black-Scholes im-

plied volatility. To construct the volatility proxy we simply set V imp(t, h) = V (t, h),

which can be seen as a rough averaging. This can be corrected in the case of a linear drift

for σS(αt), of the form θ0 − θ1σS(αt), under the pricing measure Q. Also it provides an
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improvement for any other Q−drift that can be approximated better with a linear drift

rather than no drift at all. The expected value of V (t, h) is:

E [V (t, h)]) =
eθ1h − 1

θ1

[

σS(αt) +
θ0

θ1

]

− θ0

θ1

.

Now if we set E [V (t, h)]) = V imp(t, h), we get

σS(αt) =
hθ1V

imp(t, h) + θ0h

eθ1h − 1
− θ0

θ1

.

The parameters θ0, θ1 may be either estimated beforehand or incorporated in the MCMC

scheme given their link with the corresponding P ones.

Alternatively, or additionally, we can assume that the volatility proxy is just a noisy

observation of the true volatility. For instance we may assume that:

σimpS (αt) ∼ N
{

σS(αt), ω
2
}

for some suitable noise variance ω2. Such an approach may be implemented with a data

augmentation similar to that of Section 3.4. The likelihood will be slightly modified with

the addition of the noise density for each extra observation σimpS (αtk), k = 1, . . . , n.

3.8 Application: S&P 500 - VIX data

3.8.1 Data description

The dataset consists of the closing values of the S&P 500 index provided by CBOE. CBOE

also provides a a very accurate volatility proxy, VIX. This is computed from European

options with varying strike prices and maturity 30 calendar days. We used daily data
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from the 2nd of January 1990 to the 30th of September 2003. This dataset has been used

in many papers including Aı̈t-Sahalia and Kimmel (2005), Chib et al. (2005) and Roberts

and Stramer (2004). The data are plotted in Figure 3.4.

3.8.2 The models

We assigned the following model to the price S under the real world measure P .

dSt = StµSαtdt+ StαtdBt

This model reflects an almost complete market (Henderson et al., 2005). All the risk

neutral measures Q belonging to the family of q−optimal measures collapse to the minimal

martingale measure under which µQα (.) ≡ µPα (.). The choice of this measure can be

justified as the one which is ‘closest’ to P which represents the real world.

For the dynamics of the volatility process αt, we considered 3 different models:

1. The Heston model (Heston, 1993):

dαt = κ(µ− αt)dt+ σαt
1/2dWt

2. The diffusion GARCH model (Andersen et al., 2006):

dαt = κ(µ− αt)dt+ σαtdWt

3. A log-normal volatility model under which the log volatility follows an Ornstein

Uhlenbeck process:

d log(αt) = κ(µ− log(αt))dt+ σdWt
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Figure 3.4: Standard & Poor 500 values (up) and its volatility index (down).
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We also assumed a correlation ρ between the increments of the log-price Xt = log(St)

and the volatility α (or log(α) for the log-normal model), to capture the so called leverage

effect. With our current formulation the Brownian motions B and W are correlated.

alternatively if we use the following parametrisation for the SDE of X, they will be

independent.

dXt = (µSαt +
1

4
α2
t )dt+

√

1 − ρ2αtdBt + ραtdWt

In the appendix we provide the relevant transformations for these 3 models. Also as it

turns out, the updates of κ and µ are almost Gibbs steps, which means that we construct

efficient proposals for their updates. These are model specific and are also given in the

appendix.

3.8.3 Results

A data augmentation scheme, suitable for stochastic volatility models with a volatility

proxy, was applied for each model. The time was measured in calendar years, and we

assumed equidistant observation times even between weekends. Parameters were updated

either by random walk metropolis, or via ‘clever’ proposals as described in the appendix.

The proposals for the paths of the transformed diffusion γ were Brownian bridges and

the acceptance rate was particularly high in all cases (close to 95%). As before, differ-

ent numbers of imputed points were used to assess the likelihood convergence over the

resulting discretisations. Figure 3.5 plots kernel densities of posterior draws of the log

likelihood for m = 20, 40, 60 for each model. In all cases the densities plots look simi-

lar indicating that the partitions of the augmented paths were reasonably fine to allow

accurate likelihood approximations.

Next, we perform a check for increase in the autocorrelation of the posterior draws belong-

ing to the parameters of the 2− dimensional diffusion’s volatility, σ and ρ. As we can see
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Figure 3.5: Kernel density plots of the log-likelihood from the Heston (top), GARCH
(middle) and log OU (bottom) models for the SP500/VIX data.
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Heston model GARCH model log OU model
Parameter Post. mean Post. SD Post. mean Post. SD Post. mean Post. SD

κ 4.558 0.751 2.791 0.695 3.969 0.608
µ 0.066 0.009 0.057 0.012 -3.286 0.149
σ 0.473 0.006 2.103 0.027 2.100 0.026
ρ -0.766 0.007 -0.761 0.007 -0.761 0.007
µS 0.085 0.272 0.261 0.230 0.246 0.274

Table 3.2: Posterior means and standard deviations of parameters from the Heston,
GARCH and log OU models for the SP500/VIX data.

from Figure 3.6 there is no evidence to warrant any suspicion regarding the reducibility

in the limit of the chain.

The posterior samples of the model parameters are contained in Table 3.2 for the

Heston, GARCH and log OU model respectively. The mean µ, persistence of reversion

towards the mean kappa and the volatility σ of the volatility (or log-volatility in the log

OU model) take different values in each case reflecting the different model formulations.

The correlation of the instantaneous log returns and volatility increments ρ is around

−0.76 in all models, implying a strong leverage effect. Finally the parameter µS, which

as previously mentioned represents the Sharpe ratio, is around 0 in all models.

As argued earlier, a rational choice for a ‘fair’ pricing measure Q would be one with

zero drift for X3 and the P SDE for α. Hence, the parameter estimates of κ, µ, σ and ρ

may be used for option pricing purposes. Moreover, their posterior draws may be used

in a suitable way to incorporate the uncertainty associated with them.

3.9 Concluding remarks

The methodology developed in this chapter allows for likelihood-based inference for most

stochastic volatility models which are famous due to their massive use in finance. Gen-

erally it applies to a class of partially observed diffusions where the problem of inference

is particularly difficult due to the lack of the Markov property. This is accomplished

3Under the assumption of zero risk-free rate
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Figure 3.6: Autocorrelation plots of the posterior draws of σ (left) and ρ (right) of the
Heston (top), GARCH (middle) and log OU (bottom) models for the SP500/VIX data.
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via a MCMC algorithm that is relatively simple and fast to implement as illustrated

in Sections 3.3 and 3.4. Under the proposed framework it is quite straightforward to

limit the discretisation error by simply increasing the number of imputed points. The

reparametrised scheme of this paper achieves that leaving both the autocorrelation of the

posterior draws and the irreducibility of the chain, intact.

Furthermore, as discussed in Section 3.7 and illustrated in Section 3.8, the methodol-

ogy of this chapter fits very well with issues related with stochastic volatility models in

financial applications. It may be used for provide inputs to pricing formulae and at the

same time it is possible to use information contained in relevant option price through a

unified framework. The Bayesian setting can itself prove useful as it allows to incorporate

model and parameter uncertainty to the option pricing problem.

Alternative data augmentation schemes for the diffusions in C can be found in Chib

et al. (2005) and Golightly and Wilkinson (2005). Apart from the different blocking

strategy, the methodology in Chib et al. (2005) is based on a reparametrisation under

which the paths of the unobserved process are transformed to W rather than γ. This

scheme also contains Laplace approximation proposals for the updates of the parameters

of α. The work in Golightly and Wilkinson (2005) uses Bayesian sequential techniques

and joint updates of the diffusion paths and the parameters in the volatility functions.

As in most data augmentation schemes for diffusions, an independence sampler was

used for the block updates of the paths. A disadvantage of this method is that the accep-

tance rate of the sampler will be small for larger blocks and consequently the algorithm

will deteriorate. The use of smaller blocks is an option, but it may slow down the mixing

of the chain. A more sophisticated choice for the proposal of the sampler, for instance a

linear diffusion bridges, may improve the performance of the MCMC chain.

The class of diffusions considered in this chapter does not include cases, where the

drift and the volatility of the observed process depend on the process itself; for instance

stochastic volatility models for interest rates with mean reverting drift. The reason for

this is that the distribution of the observed process given the unobserved is no longer

available in closed form. The data augmentation scheme of chapter 4 handle such models
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using time change transformations of the observed process. An alternative option is

provided by Golightly and Wilkinson (2005), but in a sequential setting only.
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Chapter 4

Bayesian Inference for General

Stochastic Volatility Models Using

Time Change Transformations

4.1 Introduction

The class of diffusion driven stochastic volatility models studied in this thesis are de-

scribed or can be transformed to the following SDE:





dXt

dαt



 =





µx(Xt, αt, θ)

µα(αt, θ)



 dt+





σx(αt, θ) 0

0 σα(αt, θ)









dBt

dWt



 , (4.1)

where X is the observed process whose volatility is driven by the latent diffusion α and

B, W denote standard Brownian motions. In the previous chapter, we introduced appro-

priate likelihood reparametrisations which are essential in the construction of irreducible

MCMC schemes for stochastic volatility models. Nevertheless, all of these reparametrisa-

tions refer to diffusions with µx(Xt, αt, θ) ≡ µx(αt, θ). Although this class is rich enough

to include many of the stochastic volatility models used in practice, it does exclude some

interesting cases. In this section we introduce a methodology that does not require this
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assumption. Unlike the previous chapters, we use transformations that operate on the

time scale of the diffusion rather than its path.

Apart from the flexibility of an enriched modelling framework, an additional motiva-

tion originates from econometric and financial applications concerning the modelling of

the short term interest rate. The rate of interest over a short period of time is a funda-

mental economic and financial variable. Its behavior across time is strongly related with

goods, services and wealth constituting a crucial figure for the economy in general. Also,

as it affects the term structure directly, it has implications to the pricing of fixed income

securities and derivatives. The finance literature normally treats the short term interest

rate as a diffusion. For example under the famous (CIR) model of Cox et al. (1985), its

dynamics are described by the following SDE:

drt = κ(µ− rt)dt+ σrr
1/2
t dBt.

Chan, K. C. et al. (1992) consider a generalization of the CIR model by setting the

volatility as σrr
ψ
t , ψ > 0. The parameter ψ is often referred to as ‘elasticity of variance’.

Note that for ψ = 0 we get the Vasicek model (Vasicek, 1977). Aı̈t-Sahalia (1996b)

notes evidence against linearity and proposes an alternative polynomial drift specification.

However, this may be be attributed to the inadequacy of a scalar diffusion model and

therefore stochastic volatility is introduced: Andersen and Lund (1998), Gallant and

Tauchen (1998), Durham (2002), Eraker (2001) etc. Their proposed stochastic volatility

models can be summarized in the following SDE:

drt = µα(rt, αt, θ)dt+ σrr
ψ
t exp(αt/2)dBt,

dαt = µα(αt, θ)dt+ σα(αt, θ)dWt.

Estimation methods for these models usually include EMM, see for example Andersen and

Lund (1998),Gallant and Tauchen (1998); or sequential Monte Carlo techniques, Durham

and Gallant (2002), Golightly and Wilkinson (2005). For MCMC implementations see

also Eraker (2001), Jones (2003) and Golightly and Wilkinson (2005).
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Note that the models above fall belong to the diffusions with SDE as in (3.1) if we

apply the transformation:

Xt =







r1−ψ
t /σr(1 − ψ), if ψ 6= 1

log(rt)/σr, if ψ = 1

Consequently, the methodology of this chapter is applicable to all of these formulations;

see Section 4.5.3 for more details. The chapter is organized as follows: Section 4.2 summa-

rizes the available likelihood based estimation techniques for stochastic volatility models

and elaborates on the need for time change methodology. The time change reparametri-

sation is first demonstrated for univariate diffusions in Section 4.3 with some details on

its MCMC implementation being provided in Section 4.4. However, its main appeal is

its generalize-ability to stochastic volatility models of (3.1) and therefore Section 4.5 pro-

vides the details of its adaptation to them. Sections 4.6 and 4.7 contain two examples on

simulated and real data respectively and Section 4.8 concludes.

4.2 The need for a time change transformation

Let us consider the general class of stochastic volatility models of this chapter defined by

(3.1). In practice we observe X at a finite set of times and we want to draw inferences

for the parameter vector θ based on these observations. Unfortunately, under the model

above the observed process Xt is not Markovian in general. This rules out most of the

likelihood based inference techniques that rely on the Markov property of the observed

process; see Beskos et al. (2006b), Aı̈t-Sahalia (2002) and Aı̈t-Sahalia (2005), Pedersen

(1995), Brandt and Santa Clara (2001) etc. The options for likelihood based inference are

thus limited. Most of the remaining ones adopt a sequential framework which complicates

the task of parameter estimation; Durham and Gallant (2002), Golightly and Wilkinson

(2005).

Therefore, a data augmentation scheme becomes particularly valuable for stochas-

tic volatility, since it provides a satisfactory solution to the problem through a unified
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framework and does not rely on the Markov property. See Eraker (2001), Jones (1999)

and Jones (2003) for relevant implementations. However, as noted in this thesis and in

Roberts and Stramer (2001), any such scheme may result in a reducible MCMC algorithm

unless appropriate reparametrisation is applied. For some diffusion models it is possible

to tackle this problem using a 2-step transformation that enables us to write down the

likelihood with respect to a parameter-free dominating measure as was done in Roberts

and Stramer (2001) and Chapter 2 of this thesis. Nevertheless, such a transformation

does not exist for stochastic volatility models since the corresponding diffusion is not

reducible (Aı̈t-Sahalia, 2005).

In the previous chapter we made the assumption µx(Xt, αt, θ) ≡ µx(αt, θ), which is also

necessary to the methodology of Golightly and Wilkinson (2005). Under this assumption,

the marginal density of the observations given the volatility path is available in closed

form as stated in Section 3.3.2, equation 3.4. Therefore there is no need to impute the

paths of X and therefore no need to worry about reducibility issues associated with it;

the problem essentially reduces to the diffusion of α only. When this is not the case

however, the density if the marginal likelihood of the observations is generally no longer

available and augmentation of the paths of X is inevitable. This raises reducibility issues

for the parameters in σx(.).

As we present in this chapter, we can deal with such models using transformations

that do not apply directly to the diffusion itself, but to its time scale. For ease of

demonstration we introduce this reparametrisation for univariate diffusion first, and then

we provide the necessary extensions to deal with the general stochastic volatility case.

4.3 Time change transformations for scalar diffusions

First we will define the likelihood with the use of time change transformations in scalar

diffusion models with constant volatility. We will extend to stochastic volatility models

in the Section 4.5. Consider a diffusion X defined through the following SDE:
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dXt = µ(Xt, θ)dt+ σdWX
t , 0 < t < 1 σ > 0

Without loss of generality we assume that X0 = y0, X1 = y1. For more observations

we may split the process into pairs of successive observations and repeat the following

procedure for each one of them. We can then just multiply the likelihood bits using

Markov property.

In order to draw inferences for the parameters (θ, σ), one can treat the values of X for

(0 ≤ t ≤ 1) as missing values and adopt a data augmentation scheme. Girsanov’s theorem

provides the Radon-Nikodym derivative (and hence the likelihood for θ, σ) between the

law of X and that of the driftless diffusion M = σdW (t). Unfortunately the dominating

measure (that ofM) depends on σ and this leads to an irreducible MCMC scheme Roberts

and Stramer (2001).

As mentioned earlier, a two-step transformation that breaks down this dependence

is available Roberts and Stramer (2001), but since this approach does not generalize to

stochastic volatility models we will consider a time change transformation. Define a new

time scale η(t) to be:

η(t) =

∫ t

0

σ2ds = σ2t, (4.2)

and set a new diffusion U in the following way:

Ut =







Xη−1(t), 0 ≤ t ≤ σ2

Mη−1(t), t > σ2

.

The definition for t > σ2 is needed to ensure that U is well defined for different values

of σ2 > 0 which is essential in the context of a MCMC algorithm. Using standard time

change properties, see for example Oksendal (2000), the SDE for U writes:
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dUt =







1
σ2µ(Ut, θ)dt+ dWU

t 0 ≤ t ≤ σ2

dWU
t , t > σ2

,

where WU is another Brownian motion at the time scale of U . We can now use Girsanov’s

theorem as before. The law of U , denoted by P, is given through its Radon-Nikodym

derivative with respect to the law WU of the Brownian motion WU at the U−time:

dP

dQ
= G(U, θ, σ) = exp

{∫ +∞

0

µ(Us, θ)

σ2
dUs −

1

2

∫ +∞

0

µ(Us, θ)
2

σ4
ds

}

= exp

{

∫ σ2

0

µ(Us, θ)

σ2
dUs −

1

2

∫ σ2

0

µ(Us, θ)
2

σ4
ds

}

(4.3)

We now introduce an intuitive factorisation of WU as the density of y1 (under WU),

multiplied by the dominating measure of the U−path, conditioned on y1. More specifi-

cally, we set

WU = WU
y × Leb(y) × f(y;σ),

where WU
y is the conditional dominating measure, Leb(y) denotes Lebesgue measure and

f denotes the density of the observed data with respect to the Lebesgue measure under

the Wiener measure:

f(y1;σ) ≡ N(y0, σ
2)

Under this factorisation we can write down the likelihood with respect to WU
y × Leb(y):

dP(U) = G(U, θ, σ)f(y;σ)d
{

WU
y × Leb(y)

}

(4.4)
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Note that the dominating measure in the likelihood specification of (4.4), WU
y × Leb(y),

still depends on σ as it reflects a Brownian motion conditioned on the event Uσ2 = y1. For

this reason we introduce a second transformation which applies on both the diffusion’s

time and path:

U0
t = (σ2 − t)Zt/σ2(σ2−t), 0 ≤ t ≤ σ2, (4.5)

Ut = U0
t + (1 − t

σ2
)y0 +

t

σ2
y1

The 1 − 1 property of this transformation is crucial. We can write

1

σ2 − t
U0
t = Zt/σ2(σ2−t), 0 ≤ t ≤ σ2,

and get the inverse of this transformation:

Zt =
1 + σ2t

σ2
U0
σ4t/(1+σ2t), 0 ≤ t < +∞

Applying Ito’s formula and using time change properties we can also obtain the SDE of

Z based on another driving Brownian motion WZ operating at the Z−time

dZt =
µ (ν(Zt), θ)

1 + σ2t
dt+ dWZ

t , 0 ≤ t <∞, (4.6)

where ν(Zt) = Ut. This transformation essentially transforms to a diffusion that runs

from 0 to +∞ in a way so that it will still have unit volatility. Interestingly enough, the

conditioning event imposed by the observation y1 occurs at time infinity and therefore it

disappears. We can now write the likelihood as in (4.4) but using the SDE for Z, given

by (4.6), and the corresponding reference measure WZ
y :

dP(Z) = G(Z, θ, σ)f(y;σ)d
{

WZ
y × Leb(y)

}

(4.7)
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.

The Radon-Nikodym derivative between P(Z) and WZ will not go to infinity since it

is an 1−1 transformation of the Radon-Nikodym derivative between P(U) and WU given

by (4.3). The goal of the transformation is now achieved; it is not hard to see that the

dominating measure is independent of σ.

Nevertheless, the implementation of a data augmentation scheme based on this like-

lihood is far from straightforward. For instance, our transformed process Z runs from 0

to +∞ and its time scale depends on parameters that we want to estimate. We present

the details of a novel MCMC data augmentation scheme which is practical and efficient

in the next section.

4.4 MCMC implementation

The construction of an appropriate data augmentation algorithm is not trivial. We

present the details for three important features introduced by the time change trans-

formations: the three time scales, the updates of the imputed diffusion paths and the

time scale parameters. As before, it suffices to assume observations X0 = y0 and X1 = y1.

For more data we can just repeat the following procedure for each pair of successive ob-

servations.

4.4.1 Three time scales

We introduce m intermediate points of X at equidistant times between 0 and 1. More

specifically, we augment the path which now consists of m+2 points: X = {Xi/(m+1), i =

0, 1, . . . ,m+1}. Throughout this chapter we make the assumption that m is large enough

for accurate likelihood approximations and any error induced by the time discretisation

is negligible for the purposes of our analysis.

Given a value of the time scale parameter σ we can get the U−time points by applying

(4.2) to each one of the existing points. Note that it is only the times that change, the

values of the diffusion remain intact. Specifically, we set
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Uσ2i/(m+1) = Xi/(m+1), i = 0, 1, . . . ,m+ 1.

The points of Z will be multiplied by a time factor which corrects deviations from unit

volatility. The Z−time points may be obtained by

tZi =
σ2i/(m+ 1)

σ2(σ2 − σ2i/(m+ 1))
, i = 0, 1, . . . ,m.

Clearly this does not apply to the last point which occurs at time +∞. For this reason

it is more convenient to transform back to U or X to evaluate the likelihood. This is

possible as the transformations were all 1 − 1. However we should always keep in mind

that the component of the relevant Gibbs scheme is Z.

Figure 4.1 shows a graphical representation of X, U and Z plotted against their

corresponding time scales for σ =
√

2 and m = 7. Although X and U have the same

values, their volatilities are
√

2 and 1 respectively. The ending point of Z (which equals

0) does not appear on the graph as it occurs at time +∞.

4.4.2 Updating the paths of X

We may proceed as in the previous chapter using an independence sampler with the ref-

erence measure as a proposal. In our case WZ reflects a Brownian motion at the Z−time

which is fixed given the current values of the time-scale parameter(s). An appropriate

algorithm will contain the following steps.

• Step 1: Propose a Brownian motion on the Z−time, say Z∗. The value

at the endpoint (time +∞) is not needed.

• Step 2: Transform back to U∗, using (4.5).
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Figure 4.1: Plots of a sample path for X, U and Z against their corresponding times for
σ =

√
2 and m = 7. Z equals 0 at time +∞.
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• Step 3: Accept or reject with probability:

min

{

1,
G(U∗, θ, σ)

G(U∗, θ, σ)

}

.

4.4.3 Updating time scale parameters

The updates of time scale parameters, in our case σ are of particular interest. In al-

most all of the cases, the conditional posterior of σ is not available in closed form and

Metropolis steps are inevitable. However, the proposed values of these parameters will

imply different Z− time scales. In other words, for each potential proposed value for σ

there exist different set of Z− points needed for accurate approximations of the likelihood

and consequently the Metropolis accept-reject probability. In theory, this would pose no

issues if we could store an infinitely thin partition of Z, but of course this is not possible.

Alternatively we may use retrospective sampling ideas; see Papaspiliopoulos and

Roberts (2005), Beskos and Roberts (2005) and ? for applications in different contexts.

Under the assumption of a sufficiently fine partition of Z, all the non-recorded intermedi-

ate points contribute nothing to the likelihood and they are irrelevant in that respect; the

set of recorded points is sufficient for likelihood approximation purposes. Therefore, they

can be drawn AFTER the proposal of the candidate value of the time scale parameter.

Since they contribute nothing to the likelihood, we may argue that their distribution is

given by the likelihood’s reference measure which reflects a Brownian motion. To ensure

compatibility with the recorded partition of Z, it suffices to condition on the two neigh-

boring points. This is easily done using standard Brownian bridge properties: Suppose

that we want to simulate the value of Z at time tb, and that two closest times of recorded

values are ta and tc, so that ta ≤ tb ≤ tc. Denote by Zta and Ztc the corresponding Z

values. Under the assumption that Z is distributed according to WU between ta and tc

we have:

Ztb| Zta , Ztc ∼ N

{

(tb − ta)Ztc + (tc − tb)Zta
tc − ta

,
(tb − ta)(tc − tb)

tc − ta

}

(4.8)
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The situation is pictured in Figure 4.2, where the black bullets represent the stored points

and the triangles the new points required for a proposed value of σ. The latter should be

drawn retrospectively given the former via (4.8).

To sum up, a suitable algorithm for the σ−updates will consist of the following steps:

• Step 1: Propose a candidate value for σ, say σ∗.

• Step 2: Repeat for each pair of successive points:

– Use (4.2) and (4.5) to get the new times associated with it.

– Draw the values of Z at the new times using (4.8).

– Transform back to U∗, using (4.5).

Form the entire path U∗ by appropriately joining its bits.

• Step 3: Accept or reject with probability:

min

{

1,
G(U∗, θ, σ∗)f(y;σ∗)

G(U∗, θ, σ)f(y;σ)

}

.

4.5 Time change for stochastic volatility models

4.5.1 Main category

Let’s return to the general class of stochastic volatility models of this chapter with SDE

given by (3.1). As before, we assume one observation apart from the initial point (X0 =

0, Xtk = y), as the generalization to more data is straightforward due to the Markov

property of the 2-dimensional diffusion. We may use the reparametrisations of Section

3.3.2 for α and obtain γ. Doing so, the likelihood for γ can be written with respect to a

Brownian motion distribution Wγ from 0 to tk.
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109



dP

dWγ
(γ) = G(γ, θ) (4.9)

Let αt = gγt = η ◦ h−1(γt, θ). Then, conditional on γ, the SDE of X becomes:

dXt = µx(Xt, g
γ
t , θ)dt+ σx(g

γ
t , θ)dBt, 0 ≤ t ≤ tk.

Note that the situation is similar to Section 4.3. We can introduce a new time scale

η(t, γ, θ) =

∫ t

0

σ2
x(g

γ
t , θ)ds,

T = η(tk, γ, θ),

and define U with the new time scale as before (M is a Brownian motion on the U−time

scale):

Ut =







Xη−1(t), 0 ≤ t ≤ T

Mη−1(t), t > T
(4.10)

The SDE for U now becomes:

dUt =

{

µx
(

Ut, γη−1(t,γ,θ), θ
)

σ2
x(γη−1(t,γ,θ), θ)

}

dt+ dWU
t , 0 ≤ t ≤ T.

As before, we obtain the Radon Nikodym derivative between the distribution of U with

respect to that of the Brownian motion WU ,

dP

dWU
= G(U, γ, θ)

,
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and WU = WU
y × Leb(y)× f(y, γ, θ) with WU

y being the Wiener measure conditioned

on the data, Leb(y) the Lebesgue measure and f denotes the density of the observed data

with respect to the Lebesgue measure under the Wiener measure:

f(y; γ, θ) ≡ N(y0, T )

The dominating measure WU
y reflects a Brownian motion conditioned to equal y at a

parameter depended time T = η(tk+1, γ, θ). To remove this dependency we introduce a

second time change as before:

U0
t = (T − t)Z t

T (T−t)
, 0 ≤ t ≤ T, (4.11)

Ut = U0
t + (1 − t

T
)y0 +

t

T
y1

The SDE for Z is now given by:

dZt =

{

µ
(

ν(Zt), γk(t,γ,θ), θ
)

σ2
x(γk(t,γ,θ), θ)

T

1 + tT

}

dt+ dWZ
t , 0 ≤ t <∞,

where k(t, γ, θ) denotes the initial time scale of X.

Conditional on γ, the likelihood can be written in a similar manner as in (4.7):

dP

d
{

WZ
y × Leb(y)

}(Z|γ) = G(Z, γ, θ)f(y; γ, θ)

The full likelihood is thus provided by multiplying with the bit for γ from (4.9)

dP

dW γ
(γ)

dP

d
{

WZ
y × Leb(y)

}(Z|γ) = G(γ, θ)G(Z, γ, θ)f(y; γ, θ) (4.12)

.
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Now we are in a position to construct a data augmentation scheme as in Section 4.4

with a suitable addition for the updates of γ. We propose an overlapping blocks scheme

as in Section 3.4. Note that the Z−time depends on γ and therefore its paths should be

treated as time scale parameters; see Section 4.4.3.

4.5.2 Incorporating leverage effect

So far, we made the assumption that the infinitesimal increments of X and γ are indepen-

dent, in other words we assumed no leverage effect. However this is not always the case;

the application of Section 3.8 provides such an example. This assumption can be relaxed

in the following way: In the presence of a leverage effect ρ the SDE of X conditional on

γ writes (W is the driving Brownian motion of γ):

dXt = µx(Xt, g
γ
t , θ)dt+ ρσx(g

γ
t , θ)dWt +

√

1 − ρ2σx(g
γ
t , θ)dBt, 0 ≤ t ≤ tk.

Note that given γ, the term ρσx(g
γ
t , θ)dWt is deterministic since W can be regarded as a

function of γ and its parameters θ. In that respect, it would be perfectly fine to treat it as

part of the drift of Xt. Nevertheless if we do so, the assumptions ensuring a weakly unique

solution to the SDE of X are violated. Therefore we define the following ‘intermediate’

infinitesimal transformation:

Xt = H(Ht, ρ, γ, θ) = Ht +

∫ t

0

ρσx(g
γ
s , θ)dWs

which lead us to the following SDE for H:

dHt = µx {H(Xt, ρ, γ, θ), g
γ
t , θ} dt+

√

1 − ρ2σx(g
γ
t , θ)dBt, 0 ≤ t ≤ tk.

We can now proceed as before, defining U and Z based on the SDE and the volatility of

H. For more details see the relevant example of Section 4.6.
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4.5.3 Other extensions

In this section we note two additional extensions which may prove particularly useful for

applications. First, we target stochastic volatility models where conditional on γ, the

SDE of X may be written as:

dXt = µx(Xt, g
γ
t , θ)dt+ σ1(g

γ
t , θ)σ2(Xt, θ)dBt, 0 ≤ t ≤ tk.

This class contains the formulations of Andersen and Lund (1998), Gallant and Tauchen

(1998), Durham (2002), Eraker (2001) etc. In order to be able to apply the time change

transformations of the Section 4.5.1, we should first transform X, so that it takes the form

of 3.1. A check on multivariate Ito’s lemma properties indicates that this is essentially

the same problem as transforming a diffusion with volatility σ2(Xt, θ) to one with unit

volatility; in other words, we can use the first transformation of Roberts and Stramer

(2001). Doing so, the parameters of σ2(Xt, θ) enter the likelihood in two ways: i) through

the f(y; γ, θ) which now should include the relevant Jacobian term and ii) through the

drift of Z which is centered at 0 based on the transformed observations. See Section 4.7

for an example.

The second extension refers to cases where the latent paths of α may be inferred

from additional data resources, i.e. implied volatility from option prices, one may use

the parametrisation of Section 3.7.3 for γ, and the relevant modification for its updates.

The remaining likelihood specification and MCMC implementation would be exactly the

same.

4.6 Simulation example

We simulated data from the following stochastic volatility model
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dXt = κx(µx −Xt)dt+ ρ exp(αt/2)dWt +
√

1 − ρ2 exp(αt/2)dBt,

dαt = κα(µα − αt)dt+ σdWt,

using a high frequency Euler approximating scheme with a step of 0.001 We simulated

500, 001 points and recorded one value of X for every 1000 forming a dataset of 500

observations of X (apart from the initial) and 0 ≤ t ≤ 500. The parameter values were

set to ρ = −0.5, σ = 0.4, κx = 0.2, µx = 0.1, κα = 0.3 and µα = −0.2

We now summarize the reparametrisations required to construct an irreducible data

augmentation scheme. First we transform α to γ in the following way:

1. βt = h(αt) = αt/σ 0 ≤ t ≤ 500

2. γt = βt − α0/σ αt = ν(γt, σ, α0)

Given γ, we apply the following transformations on X for each pair of consecutive times

tk−1 and tk (k = 1, 2, . . . , 500). First, we remove the term introduced due to the leverage

effect:

Ht = Xt −
∫ t

tk−1

ρ exp {ν(γs, σ, α0)/2} dWs, tk−1 ≤ t ≤ tk.

Then we set

η(t) =

∫ t

tk−1

(1 − ρ)2 exp {ν(γs, σ, α0} ds,

and we define U and Z exactly as in Section 4.5.1, but based on H rather on X. The

elements of the MCMC scheme are Z,γ, α0 and the parameters.

We set flat priors on all parameters, restricting κx, κα, σ to be positive and ρ between

−1 and 1. We ran MCMC algorithms with numbers of imputed points being 30 and
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Parameter True value Post. mean Post. SD Post 2.5% Post median Post 97.5%
κx 0.2 0.244 0.038 0.173 0.243 0.321
µx 0.1 0.313 0.174 -0.046 0.317 0.641
κα 0.3 0.304 0.148 0.110 0.277 0.672
µα -0.2 -0.268 0.107 -0.484 -0.267 -0.059
σ 0.4 0.406 0.130 0.202 0.390 0.705
ρ -0.5 0.477 0.138 -0.657 -0.491 -0.066

Table 4.1: Summaries of the posterior draws for the simulation example of Chapter 3 for
m = 50.

50. The length of the overlapping blocks was 2 and the relevant acceptance rate 75%

whereas the acceptance rate for X was 95%. Figure 4.3 shows autocorrelation plots for

the 2-dimensional diffusion’s (X,α)′ volatility parameters ρ and σ. There is no sign of

any increase to raise suspicions against the irreducibility of the chain. Figure 4.4 shows

density plots for all parameters and both values of m. These plots indicate a sufficiently

fine discretisation and a good agreement with true values of the parameters. The latter

is also confirmed by Table 4.1.

4.7 Example:US treasury

To illustrate the methodology of this Chapter we fit a stochastic volatility model to US

treasury bill rates. More specifically, the dataset consist of 1809 weekly observations

(Wednesday) of the 3−month US Treasury bill rate from the 5th of January 1962 up to

the 30th of August 1996. The data are plotted in Figure 4.5.

This is a standard dataset for interest rate applications; see for instance Andersen

and Lund (1998), Gallant and Tauchen (1998), Durham (2002), Durham and Gallant

(2002), Eraker (2001), Golightly and Wilkinson (2005). In all these papers the adopted

stochastic volatility models roughly had the following form:
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Figure 4.3: Autocorrelation plots for the posterior draws of ρ and σ for different numbers
of imputed points m = 30, 50. Simulation example of Chapter 3.

116



0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

0
2

4
6

8
10

m=30
m=50

−0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

m=30
m=50

0.0 0.5 1.0 1.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

m=30
m=50

−0.8 −0.6 −0.4 −0.2 0.0 0.2

0
1

2
3

4

m=30
m=50

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

m=30
m=50

−0.8 −0.6 −0.4 −0.2 0.0 0.2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

m=30
m=50

κx µx

κα µα

σ ρ

Figure 4.4: Kernel densities of the posterior draws of all the parameters for different
numbers of imputed points m = 30, 50. Simulation example of Chapter 3.
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Figure 4.5: Weekly 3−month US Treasury bill rate from the 5th of January 1962 up to
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drt = (θ0 − θ1rt)dt+ rψt exp(αt/2)dBt,

dαt = κ(µ− αt)dt+ σdWt, (4.13)

with independent Brownian motions B and W . In some cases the following equivalent

model was used:

drt = (θ0 − θ1rt)dt+ σrr
ψ
t exp(αt/2)dBt,

dαt = −καtdt+ σdWt, (4.14)

We just need to set σr = expµ to see that the models (4.13) and (4.14) are the same. The

reason for choosing (4.13) was that the MCMC draws of µ where much less autocorrelated

than the corresponding ones of σr. In line with Gallant and Tauchen (1998) and Golightly

and Wilkinson (2005) we also set ψ = 1. Eraker (2001), Durham (2002) and Durham

and Gallant (2002) assume general ‘elasticity of variance’ ψ but their estimates do not

indicate a significant deviation from 1. If we set Xt = log(rt), the volatility of Xt becomes

exp(αt/2). Hence we set the U−time, for two consecutive observation times tk−1 and tk,

as

η(t) =

∫ t

tk−1

exp(αt)ds,

and define U and Z accordingly. We also transform α to γ exactly as before:

1. βt = h(αt) = αt/σ

2. γt = βt − α0/σ αt = ν(γt, σ, α0)

We applied MCMC algorithms based on Z and γ to sample from the posterior of

the parameters θ0, θ1, κ, µ and σ. The time was measured in years setting the distance
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Parameter Post. mean Post. SD Post 2.5% Post median Post 97.5%
θ0 0.130 0.238 -0.347 0.132 0.589
θ1 0.013 0.057 -0.096 0.013 0.125
κ 2.403 0.620 1.319 2.360 3.745
µ -3.966 0.211 -4.384 -3.964 -3.547
σ 2.764 0.311 2.199 2.750 3.420

Table 4.2: Summaries of the posterior draws for the stochastic volatility model of Weekly
3−month US Treasury bill rates.

between successive Wednesdays to 5/252. We chose non-informative priors for all the

parameters, restricting κ and σ to be positive to ensure identifiability and eliminate the

possibility of explosion respectively. The algorithm was run for 50, 000 iterations and

for m equal to 10 and 20. To optimize the efficiency of the chain we set the length of

the overlapping blocks of γ to 10 which produced an acceptance rate of 51.9%. The

corresponding acceptance rate for Z was 98.6% .

The kernel density plots of the posterior parameters and likelihood (Figure 4.6)indicate

that a discretisation from an m of 10 or 20 provide reasonable approximations. The cor-

responding autocorrelation plots of Figure 4.7 do not show increasing autocorrelation in

m which would reveal reducibility (in the limit) issues. Finally summaries of the posterior

draws for all the parameters are provided in Table 4.2. The parameters κ, µ and σ are

different from 0 verifying the existence of stochastic volatility. However, this does not

seem to be the case for the existence of mean reversion of the rate (at least not under

this model), as θ0 and θ1 are not far from 0. The results are in line with those of Durham

(2002), Durham and Gallant (2002) and Golightly and Wilkinson (2005).

4.8 Concluding remarks

In this chapter we enriched the class of stochastic volatility models that can be handled

using MCMC schemes in fixed datasets. The generalization relaxed the assumption made

in the previous chapter that the drift of the observed process should be independent of it
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Figure 4.6: Kernel densities of the posterior draws of all the parameters and the log-
likelihood for different values of imputed pointsm = 10, 20. Example on Weekly 3−month
US Treasury bill rates.
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and incorporated many interesting stochastic volatility models used in interest rates ap-

plications. This was achieve with the introduction of a reparametrisation which operates

mainly on the time scale of the diffusion, rather than its path. In line with this innova-

tive transformation we also introduced a novel efficient MCMC scheme which found to

perform reasonably well and fast. Such a scheme introduces no additional approximation

error other than that included in methodologies based on a discretisation of the diffusion

path.

Overall, data augmentation schemes constitute a very useful tool for likelihood-based

inference on diffusion models. They may not have the appealing properties of complete

elimination of the time discretisation error (Beskos et al., 2006b), or the closed form

approximate likelihood expressions of Aı̈t-Sahalia (2002), Aı̈t-Sahalia (2005), but nev-

ertheless they give a satisfactory and general solution to the problem. In fact, their

main advantage is their unified general framework that covers discretely (fully) and par-

tially observed diffusions and in particular stochastic volatility models. Therefore, the

contribution of this thesis is of particular value in that respect.

There is still plenty room for improvement and extensions. The updates of the missing

paths are done through an independence sampler whose performance is not guaranteed in

all cases. The reparametrisations and sampling schemes introduced break the dependency

between parameters and latent paths to a significant degree but they do not eliminate

the problem; in some cases the posterior MCMC samples do exhibit considerable amount

of autocorrelation which has implications to the efficiency of the algorithm. Also the

framework is still not general enough to include jump diffusions and Levy processes.

Finally, the problem of model selection has not been fully addressed. Marginal likelihood

techniques as in Chib and Jeliazkov (2001) are available but they may become highly

impractical and inefficient as number of latent variables (imputed paths) is particularly

high. The development of a general reversible jump MCMC algorithm, in the spirit of

Dellaportas et al. (2006) would provide a vast improvement.
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Appendix

Reparametrisations

In order to apply the data augmentation scheme for the stochastic volatility models of

3.8, we need to apply suitable reparametrisations to the diffusions that correspond to the

volatility α. These are model specific and they are provided below. In all the models

the second transformation that leads to γ is defined in the same way as in (3.7) for two

consecutive times tk and tk+1. Hence, the SDE of γ will have unit volatility and drift

µγ(γt, θ) = µβ {η(γt, θ), θ)} ,

where η(.) just inverts (3.7), βt = η(γt, θ). Also the volatility of the SDE of β is always 1.

Therefore we only give the first transformation and the SDE of the transformed diffusion

β for each model. For the Heston model these are

βt =
2
√
αt
σ

,

dβt =

{

2κµ− 0.5σ2

σ2βt
− 0.5κβt

}

dt+ dWt.

For the GARCH diffusion model we have:
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βt =
log(αt)

σ
,

dβt =

{

κ(µ− eσβt)

σeσβt

− σ

4

}

dt+ dWt.

Finally, for the log-normal model we obtain:

βt =
log(αt)

σ
,

dβt =
κ(µ− σβt)

σ
dt+ dWt.

Proposals for the volatility drift parameters

The conditional likelihood for the drift parameters of the volatility consists of two parts.

The first is a Gaussian part which comes from the density of the observations on X.

These parameters enter in this density through the driving Brownian motion of γ (W ),

which may be seen as a function of them and γ. The second bit is comes from Girsanov’s

formula. Had it been just the Girsanov part, these updates would be Gibbs steps. This

is not the case here, nevertheless we can still use this full conditionals as proposals. The

Metropolis accept-reject probability will then be determined from the priors (in the case

of non-conjugate priors) and the first part of the likelihood only. We demonstrate how to

obtain these proposals for the case of κ in the Heston model only, as the same procedure

may be used for rest. Note that since only σ was involved in the transformation from

α to γ (and vice versa), we can transform back to α in a deterministic way as we are

operating conditional on σ and γ. We thus provide the proposal in α terms assuming an

improper prior p(κ) ∝ 1.

126



p(κ | X,α, µ, σ, ρ, µS) ∝ exp

{∫ T

0

κ(µ− αt)

σ2αt
dαt −

1

2

∫ T

0

κ2(µ− αt)
2

σ2αt
dt

}

= exp

{

−
(

κ

2σ2

∫ T

0

(µ− αt)
2

αt
dt− 2κ

2σ2

∫ T

0

µ− αt
αt

dt

)}

= exp

{

−κ
2 − 2I2/I1
2σ2/I1

}

∝ exp

{

−(κ− I2/I1)
2

2σ2/I1

}

where

I1 =

∫ T

0

(µ− αt)
2

αt
dt

I2 =

∫ T

0

µ− αt
αt

dt.

Since κ > 0 for non-explosion, the proposal density can be recognized as truncated

normal distribution kernel with mean I2/I1 and variance σ2/I1. The integrals I1, I2 may

be computed numerically given the augmented path of α.
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