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Abstract

We address the problem of likelihood based inference for correlated diffusion processes using
Markov chain Monte Carlo (MCMC) techniques. Such a task presents two interesting problems.
First, the construction of the MCMC scheme should ensure that the correlation coefficients are
updated subject to the positive definite constraints of the diffusion matrix. Second, a diffusion
may only be observed at a finite set of points and the marginal likelihood for the parameters
based on these observations is generally not available. We overcome the first issue by using
the Cholesky factorisation on the diffusion matrix. To deal with the likelihood unavailability, we
generalise the data augmentation framework of Roberts and Stramer (2001 Biometrika 88(3):603-
621) to d—dimensional correlated diffusions including multivariate stochastic volatility models.
Our methodology is illustrated through simulation based experiments and with daily EUR /USD,
GBP/USD rates together with their implied volatilities.
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1 Introduction

Diffusion processes provide a natural model for phenomena evolving continuously in time. One of
their appealing features is that they are defined in terms of the instantaneous mean and variance
of the process. Specifically, a diffusion z; obeys the dynamics of the following stochastic differential

equation (SDE)

dry = p(t, zy, 0)dt + o (t, x¢, 0)dwy, (1)

driven by standard Brownian motion w;. The functions u(.) and o(.) are termed as the drift and
the volatility of the diffusion respectively. Throughout this paper we suppress the dependence on ¢
to simplify the notation, but the methodology is also applicable to time inhomogeneous diffusions.
The diffusion process z; is well defined if (1) has a unique weak solution, which translates into some
regularity conditions (locally Lipschitz with a linear growth bound) on u(.) and o(.); see chapter 5 of
Rogers and Williams (1994) for more details.

We address the problem of modelling several diffusions, denoted by xt{i}, i =1,...,d. Each

diffusion z{"' may have a drift {}(.) and volatility o{i}(.) of general, yet known, form. We also

allow for correlations, corr(dmt{i}, dxfj }):pij = pji, © # j, on the instantaneous increments. The use
of cross-correlations is quite common when modelling multivariate time series, as they may capture
effects caused by common factors of the underlying stochastic processes. In this paper we illustrate
our methodology through two examples of correlated diffusions. The first example targets interest
rates and bond pricing. Such time series often exhibit strong inter-dependencies; for instance, interest
rates may correspond to similar bonds but with different expiry dates, thus giving rise to correlations
among them. In Section 5 we examine a multivariate version of the Cox et al. (1985) model (CIR),
often used for such data. The second example considers currency pairs which are known to be
correlated, possibly due to the common currencies they may represent. Section 6 contains an analysis
on EUR/USD and GBP/USD data, based on multivariate versions of stochastic volatility diffusions,
such as the model of Heston (1993). In both examples, the inclusion of correlations in the model is

essential for two reasons. First, they may affect the parameter estimates of the individual diffusions,

as well as their precision. Second, they reflect characteristics of the market which may be useful in
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the bond/option pricing procedure.
We proceed by combining the diffusions zti} together into X; = (zil}, e ,x;{d})’ (with " denoting
transposition), so that X; is a d—dimensional vector for each time t. The diffusion matrix of Xy, A,

denotes its instantaneous covariance and takes the following form:

dI2 e e (el ()
P AT O N LC [C L L [SRETS o
pdlo{l}(.)o{d}(.) pd20{2}(.)0{d}(.) . O'{d}(.)2

The diffusion process X; is defined through the following multi-dimensional SDE
dX; = M(Xy,0)dt + X(Xy, 0)dWr, (3)

where W; is a d—dimensional Brownian motion with independent components, with vector valued
drift M : [0,+00) x Sx x © — R¢ with [M(.)]; = p}(.), and matrix valued volatility (also termed
as dispersion matrix) 3(-) : [0, +00) x Sx x © — R4 where Sx and © denotes the domain of the
diffusion X; and the parameter vector 6 respectively. The dispersion matrix ¥ is a square root of the
instantaneous covariance matrix A = X', To ensure a unique weak solution for X;, we require a
unique weak solution for each :r:,;{i} and the matrix A to be positive definite for all ¢, X, 6.

Each diffusion :1:?} may be observed, with or without error, at a finite set of points, or may be
entirely unobserved. The diffusion will be termed as directly observed in cases with exact obser-
vations on all xfi}, and partially observed otherwise. For ease of exposition, the methodology of
this paper is initially presented for directly observed diffusions, and adaptations to partial obser-
vation regimes, as in multivariate stochastic volatility models, are provided when necessary. Sim-
ilarly, we consider observations of the entire vector of X; at each time, although this assumption
can easily be relaxed. We denote the times of observations by ¢, k = 1,...,n, and the data with
Y = {Y;C =Xy, = (a:ikl}, e ,mfj})’, k=1,..., n} Our aim is to draw likelihood based inference for
the parameter vector 6 given these observations.

The task of inference on diffusions observed discretely in time is generally not trivial and has

received a remarkable attention in the recent literature; see Sgrensen (2004) for a recent review.
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The main problem is that the likelihood is generally not available except for a few cases. This has
stimulated various techniques based on likelihood approximations. Approximations may be analytical
(ATt-Sahalia, 2005), or simulation based; see Pedersen (1995) or a refinement of this technique Durham
and Gallant (2002). They usually approximate the likelihood in a way so that the discretisation error
can become arbitrarily small, although the methodology developed in Beskos et al. (2006a) succeeds
exact inference in the sense that it allows only for Monte Carlo error.

We shall adopt a Bayesian approach using Markov chain Monte Carlo (MCMC) method. Since
diffusions are not completely observed, it is natural to use data augmentation (Tanner and Wong,
1987), treating the segments of diffusion sample path (or a suitably fine approximation to this) as
missing data. Initial MCMC schemes of this type were introduced by Jones (1999), Eraker (2001)
and Elerian et al. (2001). However, as noted in the simulation based experiment of Elerian et al.
(2001), and established theoretically by Roberts and Stramer (2001), the algorithms introduced in
these initial implementations of MCMC in this context degenerate as the number of imputed points
increases. The problem may be overcome for scalar diffusions with the reparametrisation of Roberts
and Stramer (2001). An alternative reparametrisation is provided by Golightly and Wilkinson (2007),
see also Golightly and Wilkinson (2006) for a sequential approach, which can in principle be applied
in principle to any diffusion.

However, the adaptation of such MCMC scheme to multivariate diffusions introduces additional
issues. The task of updating the covariance matrix A is generally not trivial, as its full conditional
posterior is most of the times intractable, and the use of Metropolis steps is inevitable. It is therefore
crucial, especially for high-dimensional diffusions, to update the covariance matrix componentwise as
the discrepancy between proposed and current moves is increasing in d. This introduces the problem
of preserving the positive definite structure of the diffusion matrix A. Note that drawing samples
from the posterior of covariance matrices, which may not necessarily be diffusion matrices, is a general
MCMC issue and usually requires appropriate matrix decompositions; see for example Pinheiro and
Bates (1996) and Daniels and Kass (1999).

The contribution of this paper is two-fold. First, we introduce a natural and general framework

for sampling diffusion matrices in a MCMC environment. This framework is based on the Cholesky



factorisation of A and enables us to define ¥ explicitly. The MCMC algorithm may then be appropri-
ately designed to provide samples from the posterior of ¥, which can be transformed to A at any time
through the Cholesky decomposition. This framework may be coupled with any of the previously
mentioned likelihood approximation techniques, such as those of Beskos et al. (2006a) or Ait-Sahalia
(2005), to perform Bayesian inference for the parameters of the multi-dimensional diffusion. Second,
we offer a full and stand alone MCMC scheme which combines the Cholesky decomposition with the
reparametrised data augmentation approach of Roberts and Stramer (2001). This scheme may be
used for parameter estimation of several multivariate diffusion models including stochastic volatility.
The use of data augmentation is justified by its convenient property to be applicable at both directly
and partially observed diffusions.

The paper is organised as follows: Section 2 describes the structure of a data augmentation scheme
and highlights potential problems regarding the irreducibility of the MCMC algorithm. These prob-
lems may be tackled with the reparametrisation of this paper which requires the Cholesky factorisation
of the diffusion matrix, presented in Section 3. Specific MCMC implementation details are given in
Section 4 and the methodology of this paper is illustrated through simulated data in Section 5, and on
daily EUR/USD, GBP/USD currency pairs in Section 6. Finally, we summarise in Section 7 adding

some discussion and links to some other relevant work.

2 Data augmentation and degeneracy issues

2.1 The problem in practice

Data augmentation scheme bypasses the problem of simulating directly from the posterior 7(6|Y),
which is typically unavailable for discretely observed data. The idea is to introduce a latent variable

X that simplifies the likelihood £(Y; X', 0). We use the following two steps:

1. Simulate X conditional on Y and #.

2. Simulate 6 from the augmented conditional posterior which is proportional to

L(Y;X,0)r(0).



Our problem can easily be adapted to this setting. Y represents the observations of the price
process X;, and X contains discrete skeletons of the diffusion paths between Y. Thus, X and Y
constitute the augmented dataset X;s5, ¢ = 0,...,7'/0, which is a fine partition of the multivariate
diffusion X; with § controlling the amount of augmentation. Based on this partition the likelihood

can be approximated, for example via the Euler-Maruyama approximation

T/6
LE(Y; X,0) = H p(Xis| X(i-1)s),
i=1

Xis| X (i—1)s ~ N (X(i—1)s + OM(X(i-1)5,0), 6A(X(;-1)5,0)) , (4)

which is known to converge to the true likelihood £(Y'; X, 0) for small § (Pedersen, 1995).
Another property of diffusions relates A(X¢,#) with the quadratic variation process. Specifically

it is well-known that

T/6 T
lim Y (Xis — X(i1ys) (Xis — X_1ys) = / A(X,,0)ds a.s. (5)
0

60—
The solution of the equation above determines the diffusion matrix parameters exactly. Hence, there
exists perfect correlation between these parameters and X as & — 0. Thus for the theoretical algorithm
which imputes the entire X path, the MCMC algorithm is reducible. In practice this means that
as the proportion of imputed data points increases mixing problems for the MCMC chain become

progressively worse This phenomenon was first noted in Roberts and Stramer (2001) and Elerian

et al. (2001). As would be expected, the EM algorithm suffers from the same problem.

2.2 Measure theoretic probability viewpoint

In this section, we explore the problem from a different angle, through a slightly more rigorous look at
the likelihood. Let X; be a diffusion that satisfies (3) and assume Xy = Yy and X; = Y3, Y = (Y1, Ya).

Denote the probability law of X by Py and that of its driftless version,

th = O'(Xt, 9)th,

by Qp. To write down the likelihood, we can use the Cameron-Martin-Girsanov formula which

provides the Radon-Nikodym derivative of Py with respect to Qp:



@ _ O TP
oL = GOXLMA) exp{ /0 [A(X.,0)" " M(X,,0)] dX,

- ;/OT M(XS,0)’A(XS,6)‘1M(XS,9)ds}.

Note that the expression above contains stochastic and path integrals for which an analytic solution
is generally not available. However, given a sufficiently fine partition of the diffusion path, they can
be evaluated numerically providing an approximation of the likelihood which is equivalent to (4).
Now assume for a moment that under Qg the marginal density of Y with respect to d—dimensional
Lebesgue measure Leby(Y), is known and denote by fa((Y;60). The dominating measure Qg can be

factorised in the following way
Qo = Q) x Leba(Y) x fa(Y;0), (6)

where Qz./ is the measure Qg conditioned on the observations Y. We can now write

dPy

@ < L) 7Y) = G M) X (Y6, @

The expression in (7) provides the likelihood for the latent diffusion paths X% and the parameters
6. However, this likelihood is not valid because its reference measure, Qf, depends on parameters.
Furthermore, since the volatility parameters are identified by the quadratic covariation process, the
measure Qp is just a point mass. Consequently, the measures Qy are mutually singular and therefore
so are Py. Hence, inference for both X™* 6 is not possible using a common o—finite dominating
measure. In the next section, we specify an appropriate transformation of the diffusion that allows
a likelihood specification with respect to a parameter-free dominating measure. This transformation
may be viewed as a generalisation of the one in Roberts and Stramer (2001). The transformed
diffusion has unit volatility, thus the problems induced by the quadratic variation property of (5) are

implicitly addressed.



3 Likelihood specification

3.1 A Cholesky factorisation of the diffusion matrix

Consider the multi-dimensional SDE of (3) with the diffusion matrix A of (2). The dxd matrices A and
Y are linked through A = X%, therefore X is not unique. However, it is crucial to define X explicitly
and establish a 1-1 mapping with A, as each one of these two matrices may be more convenient for
different reasons. The likelihood, defined either through the Euler-Maruyama approximation in (4) or
through Cameron-Martin-Girsanov’s formula in (7), is expressed in terms of A, which is also the main
target of inference. On the other hand A is a positive definite matrix, whereas the only assumption
made on X requires its full rank. Hence it is generally more convenient to work with ¥ in the context
of a MCMC algorithm. Moreover, as mentioned in the previous section, the generalisation of the
Roberts and Stramer (2001) reparametrisation involves a transformation to unit volatility which will
naturally be based on X.
In this paper, we define ¥ using the Cholesky decomposition of A. Let S, (X;,0) = diag{c"(Xy,0)}.

The diffusion matrix may then be factorised in the following way
A(Xt70) = SL(Xtve) R Sl‘(Xta 9)7

where R is the correlation matrix. One may define ¥ as the product of S, with the Cholesky
decomposition of R, say C. But the elements of C will not have the general Cholesky structure, since
R has the additional property of being a correlation matrix. To eliminate such problems we write
each 0;(X;,0) as

J{i}(Xta 0) - cif{i}(Xtve)a VZ, (8)

for some positive constants ¢;. This imposes no restrictions as we can always set f{} (X:,0) =
ol (X,,0)/ci, see Section 3.4 for such an example. Now, based on F, (X, 0) = diag{ 1} (X;,0)}, we

can use (8) to obtain an alternative decomposition of A,

A(Xt,ﬁ) - Fz(Xt,Q)VFI(Xt,G),



where V is a general symmetric positive definite matrix with

7 Z = .7
Vij = (9)
pPijCiCi, 1 F J.
The Cholesky decomposition of V', denoted by C' (V = CC”), may now be used. The dispersion
matrix X (X4, 0) is defined as

(X, 0) = F.(X4,0) C. (10)
In coordinate form, 3 may be written as

[E(Xh 0)]13 =
0, 7>
The only restriction on the constants Cj; requires compatibility with the Cholesky decomposition,
which translates on positive diagonal entries Cj;. As we mention in 4.2, this is particularly convenient
in a MCMC environment and specifically for componentwise updates of (X, 6) parameters. The

Cholesky decomposition establishes the 1-1 mapping between 3 and A and ensures that the entire

space of diffusion matrices as A is covered.

3.2 Transformation to unit volatility

In Section 2, the need for a reparametrisation was highlighted in order to avoid degenerate MCMC
algorithms. Roberts and Stramer (2001) provide a solution to the problem for scalar diffusions,
which involves a transformation to unit volatility. However, in more than one dimensions such a
transformation does not always exist, as noted Ait-Sahalia (2005). When such a transformation is
available the diffusion is said to be reducible, a term introduced by Ait-Sahalia (2005) who also
provides a necessary and sufficient condition for reducibility: diffusions with non-singular (X, #)
are reducible if and only if

(X, )Yy OB(Xy,0) e . o
= - Vi, g, kedl,...,d}, with j <k 11
5‘:vt{k} 8x§3} { } (1)

Not all SDEs with diffusion matrix A as in (2) or dispersion matrix ¥ as in (10) are reducible. In

this section, we restrict our attention to diffusions with

a{i}(Xt,G) = a{i}(a:;{i},G), (12)
9



for which we prove the reducibility. This is established by the following proposition:
Proposition 3.1 Let X be a d-dimensional diffusion which obeys the following SDE:
dXy = M(t, Xy, 0)dt + X(t, Xy, 0)dWs.

Furthermore, assume that

E(Xtae) = FJL(Xtyg) C7

where Fp(Xy,0) = diag{f{i}(xt{i}, 0} and Cis a lower triangular matriz with positive diagonal ele-
ments. The diffusion X can then be transformed to one with identity diffusion matriz. In other words

X is reducible.
Proof: See Appendix.

The next proposition provides explicitly a transformation to unit volatility. It may be viewed as an

alternative proof of proposition 3.1

Proposition 3.2 Consider the setting and the diffusion X; of proposition 3.1. Suppose that there

exist g1 (x,{i},0) fori=1,...,d with continuous second derivatives, so that
axi:l} f{l}(xi:l}79)’ ge ey )

{1} @ gy)'
and let G(X:,0) = (g{l}:ct ,0), ..., gt (x) ,9)) . Consider the transformation
I
H(X,,0) = (h{l}(Xt,G), o 7h{d}(Xt,9)> = 071G, (X,,0). (13)
The diffusion Uy = H(X4,0) has then unit volatility.

Proof: See Appendix.

The transformation of (13) may be used to specify the likelihood under an appropriate reparametri-
sation which will ensure a non - decreasing efficiency, of the data augmentation MCMC scheme, in the
level of augmentation. Notice that the transformation of (13) to unit volatility is not unique. This is
not necessary for our methodology, in fact we only require its invertibility which is ensured as long as
each g;(z{i},0) is itself invertible. We present this reparametrisation in the Section 3.3, whereas in

3.4 we show how to relax the assumption of (12) to handle multivariate stochastic volatility models.
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3.3 Reparametrised likelihood

Consider the diffusion that satisfies the SDE of (3) where the drift M (.) and ¥ satisfy the appropriate
conditions so that X; has a unique weak solution and Ito’s lemma can be applied. Furthermore,
assume that

E(Xt,ﬁ) - Fx(Xt,G) C,

where F,(Xy,0) = diag{f{" (xfi}, 0)} and C is a lower triangular matrix with positive diagonal ele-
ments. For ease of illustration let the entire vector of X; be observed at each time and denote the times
of observations by tx, k =0,...,n, and the data with Y = {Yk =X = (azg}, e ,x;{j})’, k=1,... ,n}.
We will define the likelihood for a pair of successive observations, (Yx_1,Y:). Due to the Markov
property of diffusions, the full likelihood is just given by the product of all pairs of consecutive obser-
vations. Without applying a reparametrisation, the likelihood can be defined through (7). However,
as discussed in 2, this likelihood is problematic because it is written with respect to a dominating
measure that depends on parameters. The aim of the reparametrisation is to obtain a likelihood with
a parameter-free dominating measure.

The first step of the reparametrisation requires a transformation Uy = H (X, 0) = (u{l}, . ,u{d})/,
so that the diffusion matrix of U, is the d—dimensional identity matrix. As established by proposition

3.1, such a transformation does exist and can be obtained explicitly by (13). The SDE of the r—th

coordinate of the transformed diffusion U will be given by:
dufr} = u({f}(Ut, 0)dt + dw,;{r}, r=1,...,d,

with
d

d
{T‘} - ahr(Xt, 9) {,L} azhr(Xt, 0) 2
i 00) = 32 S5 000) + 3 S B O

where X; may replaced with H~1(Uy,6) so that the SDE is expressed in terms of U;. If we use the
Cameron-Martin-Girsanov formula in a similar manner as in Section 2.2, we can write the likelihood

as

dPg

WYT X Lebg(YH) (o™=,Y) GU,pu, La) fm(Y50),

or equivalently

dPy

WY X Leba(Y) (U™Y) = G(U,pu, La) x N (V' =Y, 1a) | (Y, 0)],
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where WY is just Wiener measure conditioned on the transformed observations YH#=H(Y,#),
N(Y,V) denotes the Gaussian density of ¥ under 0 mean and covariance V, and J(Y,0) is the
Jacobian term from the transformation H (Y, #). The dominating measure of the likelihood, WYH, re-
flects the distribution of d independent Brownian bridges with Y as endpoints and therefore depends

on parameters. For this reason we introduce a second transformation

{i} {i}
) . tr —s)H L) (te—1) + (s —tp_1)h(y,. ', 0
£10(s) = ult ) - Do OB PO B0 oo g
k — lk—1

forall i € {1,...,d}, which centers the bridge to start and finish at 0 and preserves the unit volatility.

Let Z = (z{l}, ceey z{d})/and the function U = n(Z) to be the inverse of 14. The SDE for Z becomes
=t = p$ (20),0)dt + dw?, Vie {1,...,d}

The likelihood may now be written as

dPg

O x Leby(¥) (2™, 1(Y,0)) = G(Z), My, 1) x N (VE =Y, 1) |J(Y,0)],  (15)

where
My = (w2 0(20,6),.. il (0(20).0))

The dominating measure of the likelihood provided by 15 does not depend on any parameters, being
the product of d independent Brownian bridges that start and finish at 0. The likelihood of (15)
may be used to construct an irreducible MCMC scheme which will not degenerate as we increase the
amount of augmentation. The stochastic and path integrals involved cannot be solved analytically
but they can be evaluated numerically given a sufficiently fine partition of the diffusion path. Note
also that, as a result of these transformations, inference will now be based on Z; rather than Xj.

However, the posterior draws of Z; may be inverted to provide samples from the posterior of X;.

3.4 Multivariate stochastic volatility models

In the previous subsection we assumed a diffusion with SDE that satisfies (12) so that the trans-
formation of (13) is directly applicable. However, there exist interesting diffusion models outside of
this class with a broad range of applications. One famous example of such models is provided by

stochastic volatility; see for example Ghysels et al. (1996). Most diffusion driven stochastic volatility
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models, including those of Hull and White (1987), Stein and Stein (1991) and Heston (1993), belong

to the following general class of 2—dimensional SDEs

dxy o (v, 0) oz (v, 0) 0 dby
= dt + , (16)
dvy 1y (v, 0) 0 oy (vg,0) dwy
where b; and w; are correlated standard Brownian motions, z; usually denotes the log price, whose
volatility is provided by another diffusion v;.

Diffusions that satisfy SDEs as in (16) cannot generally be transformed to unit volatility (Ait-
Sahalia, 2005), as the reparametrisation of 3.3 requires. Nevertheless, it is still possible to construct
an irreducible data augmentation scheme to estimate their parameters. As noted in Chib et al. (2005)
the conditional likelihood of x;, given vy, is available in closed form and therefore only the paths of vy
need to be imputed to approximate the likelihood. Consequently, as shown in Kalogeropoulos (2007),
it suffices to transform v, itself to unit volatility.

This idea may be coupled with the Cholesky factorisation to handle multivariate stochastic volatil-

ity models. We illustrate this for the case of a bivariate Heston model. The scalar Heston model can

be written as

1
de, = (uz - 21)3) dt + \/v;dby,
dve = K (py — vp) dt + oy/vedwy.

where b; and w; are correlated. We can re-write the top equation, by setting ¢ = /i, to

1 /
dmt = </”'1} — 21}?) dt +c %dBt

Based on the formulation above, a bivariate Heston model may be written as a 4—dimensional diffusion
I

Xy = (vfl}, v}I{Q},xt{l},x?g , with xt{l},x?} denoting the log-prices, and vfl},vf} their volatilities.

The diffusion matrix now has the general form of (2) all of the components of X; may be correlated.

Since (8) holds for each component of X;, we can define the dispersion matrix of X; as in (10)

13



dvg{l} K1 (ul — vg{l})
dvt{g} K2 ([LQ - vt{z})
= dt + F,(X:,0) C dBy, (17)
dai ps = 3(0iV)?
dl‘t{2} M4 — %(%{2})2

where now B; is a 4—dimensional Brownian motion with independent components,
[/ {2}
v v
F.(X:,0) = diag \/vt{l}, \/’U:LQ}, 775, yr ,
M1 2

and C is the lower triangular Cholesky matrix whose entries C;; may be seen as a 1-1 transformation
of parameter vector containing the correlations p;;, and also o1, o2, \/p1 and |/fi2.
Regarding the likelihood, consider again a pair of successive observations, Yi_1,Y; with Y, =
{3 {4} {1} {1 {2}

(v ye ), for oy ,x?}. Conditional on v, ™, v;”’, and therefore also on their corresponding Brow-

nian components bi{l}, b,;{z} , the likelihood for Y} is a bi-variate Gaussian with mean
3 t 1 t o1 ty o1 {2
o i (s = 32 ds ot O ity o fi1yemant?

X X iz} w12}
ot S (= 282 ds + Ca [ Rl o [\ el

and covariance matrix

te 2 ol tr o[
th1 03375 ds ftk,l C33Cy3~—o—ds

tr vl te 2 2 vl
J;fk—l 033043 3 g th—1 (043 + C44)Tids

;{1}, vf2} enables

The integrals above cannot be computed analytically, but the augmented path of v
accurate numerical approximations of them.

The remaining part of the likelihood may be obtained through the reparametrisation recipe of
Section 3.3, modified according to the observation regime of the volatility. In some cases the volatil-
ity may be entirely unobserved, leading to a partially observed diffusion. Nevertheless alternative
formulations are available, where information from option prices is used to construct exact or noisy
volatility observations; see for example Ait-Sahalia and Kimmel (2005), Chernov and Ghysels (2000)
and Kalogeropoulos et al. (2007). In the presence of exact observations the transformations of (13)
and (14) may be used. Note that transformation to unit volatility refers to the 2-dimensional diffusion
(vt{l}, vt{Q})’, rather than the entire X;. For the bivariate Heston model it takes the following form

Uy = H(X;, D) = D7'G.(Xy),
14



where
/
G (Xy) = <2\/x§1},2 x;{Q}) :
and D is a block of C containing the C;; entries with 4,j = {1,2}. If the observations are noisy or

they do not exist at all, the transformation of (14) may be replaced with
Z1(s) = Ul (s) = Uy, 0 < s < ty,

and the N/ (YkH -YH,, Id) |J(Y,0)| part of the likelihood should be replaced with the relative noise
density or removed accordingly.

The above likelihood specification can be applied to all multivariate stochastic volatility models
that satisfy the SDE of 16. For more complex models, the framework of Golightly and Wilkinson
(2007) or time change transformations of Kalogeropoulos et al. (2007) may be combined with the

Cholesky factorisation.

4 MCMC implementation

Based on the likelihood specifications of the previous section, it is now possible to construct an
irreducible data augmentation MCMC scheme. The algorithm may be divided into three parts: the
updates of the diffusion paths Z™  the parameters of the dispersion matrix ¥(Xy,#) and those of
the drift M(X;,0). Generally, the updates of the drift parameters may be executed using standard
random walk Metropolis techniques, although for some diffusion models the full conditionals may be
analytically tractable and Gibbs steps may be used instead. Hence, in the next two subsections we

provide some details regarding the updates of the diffusion paths and the volatility parameters.

4.1 Updating the imputed paths

There exist several options for carrying out this step and most of them are based on an independence
sampler. For discretely observed diffusions the augmented path may be divided into n x d diffusion
bridges connecting the observed points, and each one of them may be updated in turn. The full

conditional of Z™% may be written as

d _ .
d%‘I;:]QO(Zmzﬂy) — G(?’](Zt%MUyId)ff./:ti X G(U(Zt)yMU,Id)a (18)
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where fx(Y; A) is the density of Y with respect to the Lebesgue measure under Py. Note that this
expression will be slightly different for stochastic volatility models.

The dominating measure of the likelihood W, in other words a Brownian bridge, may be used
as the proposal distribution for the independence sampler. Based on (18), the algorithm will then

contain the following steps

e Step 1: Propose a Brownian bridge from ?;_; to .

e Step 2: Substitute into i-th dimension and form Z;.

e Step 3: Accept with probability:

min{l G(n(zt*)vMU;Id)}
" G(n(Z), My, 1) |

e Repeat for all k=1,...n and i=1,...,d.

The algorithm above takes advantage of the transformation to unit volatility and splits the path
into n x d independent, under the dominating measure, bridges. Alternative proposals are available
such as the diffusion bridges introduced in Durham and Gallant (2002) and Delyon and Hu (2007),
which can be adapted in a MCMC setting through the reparametrisation framework of Golightly and
Wilkinson (2007). Another option is to propose local moves of the paths in the spirit of Beskos et al.
(2006b). This approach may be viewed as a random walk metropolis in the space of diffusion bridges.
Note however that this technique requires bridges with unit volatility, and therefore it can only be
used for correlated diffusions through the reparametrisation framework of this paper.

Further increase in the acceptance rate may be achieved by choosing a proposal distribution which
is closer to the target Py, for example a linear diffusion bridge. Suppose that we propose from another

diffusion bridge distribution, denoted by L°, with drift L. We can now write:

Py
dILO

 dPy/dW°
= dLo/dWO

G(U(Zt)v My, Id)
G(U(Zt)7 La Id)

(Zmis‘y) (Zmis|y) o8 (19)

Based on (19), the corresponding algorithm, termed as method B in Roberts and Stramer (2001),

will consist of the following steps:

e Step 1: Propose a Brownian bridge from ?;_; to .
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e Step 2: Substitute into i-th dimension and form Z;.

e Step 3: Accept with probability:

min {1 Gn(Z), My, 1)G(n(Zy), L, L) }
, G(W(Z:)aLaId)G(ﬂ(Zt),MU,Id) '

e Repeat for all k=1,...n and i =1,...,d.

However, low acceptance rates may still occur, especially in sparse datasets. In such cases, each
bridge may be further split into smaller blocks and updating strategies based on overlapping or random
sized blocks may be advocated; see Kalogeropoulos (2007) and Chib et al. (2005) for more details.
These techniques may also be used in partially observed diffusions, for example in stochastic volatility
models, where some components of the diffusion may be observed with error or not be observed at

all.

4.2 Updating the volatility parameters

As mentioned earlier, the parameter updates of the diffusion matrix A(Xy, ) are not trivial. Their full
conditional posterior is generally not available in closed form, and Metropolis steps are inevitable. The
construction of such steps has to ensure that the covariance matrix structure of A(Xy,0) is preserved.
At the same time, it is desirable to achieve a reasonably high acceptance rate of the proposed moves
for a good mixing of the MCMC algorithm. While the former may be implemented by using an
appropriate distribution for symmetric positive definite matrices, such as the Wishart distribution, it
is extremely difficult to guarantee the latter, especially for high dimensional diffusions.

The Cholesky factorisation introduced in this paper may be of help in such cases. Specifically,
the step of updating the constants ¢;, and the correlations p;;, with ¢,7 € {1,...,d} and i < j, may
be replaced by componentwise updates of the Cholesky matrix C. In contrast with the correlations
pij, the restrictions implied by the symmetric and positive definite diffusion matrix A(X%,#) may be
enforced on the elements of C in a straightforward manner, as only the positivity of the diagonal
entries is required.

Hence, the updates of C;;’s may be implemented through standard random walk Metropolis steps.
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Note that (c;,pi;) and Cj; are linked through
SJ;(Xt, 9) R Sw(Xt, 9) = Fm(Xt, 9) V FI(XD 9) == A(Xt79), (20)

where R is the correlation matrix and V' is defined in (9). It is not hard to see that they are linked with
an 1-1 mapping which is the solution of the system in (20) with d(d + 1)/2 equations and unknowns.
Hence, the draws from the posterior of C' may be transformed back at any time, to obtain draws from

the posterior of (¢;,pij).

5 Simulation based experiments

In this section we illustrate and test our data augmentation scheme on a 3—dimensional CIR model.

l’gl} {2}, zi?’})/

In other words, we consider a 3—dimensional diffusion X; = ( , Ty with linear drift for
each component r; (1; —x;{i}), the CIR formulation of the volatility, o; \/:1:;{72} , and correlations between
all the components, p;;, ¢ = 1,2,3, 7 < i. This model may be useful for the analysis of interest rates
time series, where the cross-correlations may be substantial. Notice that our framework allows for
more general drift and volatility formulations but the main focus of this simulation experiment lies

mainly in the correlations p;;. The dispersion matrix of the multi-dimensional diffusion X; may be

defined as in (10), with

F.(X¢,0) = diag {\/xfl}, \/ac;{?}, \/Jit{g}} )

and C being the lower triangular matrix from the Cholesky decomposition, whose entries C;;, substi-
tute the parameters o; and p;;. The likelihood reparametrisation requires a transformation to unit
volatility which is given by

Uy = H(X;,C) = CT G (Xy),

with

G.(Xy) = (2\/m§1},2\/x§2},2 xi?’}) )

The second transformation is that of (14), and the likelihood may be obtained from (15). To complete
the model formulation we assign non-informative priors: p(f) o« 6~! for the positive parameters

Ki, Wi, Cii and p(#) o< 1 for the rest (Cyj5,1 > j).
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We simulated 500 equidistant observations (apart from the initial point) at times {t;, = k, k =
0...,n} with ¢, = 500. Several MCMC runs, with different numbers of imputed points m={20, 40, 60, 80},
were examined. This was done to monitor the autocorrelation as well as the approximation error of
the likelihood in relation with the level of augmentation. The acceptance rate of the independence
sampler used for the path updates was 98.14%, raising no concerns regarding its performance. Figure
1 shows autocorrelation plots for the posterior draws of the C' matrix components. There is no sign of
any increase to raise suspicions against the irreducibility of the chain. Figure 2 depicts density plots
for some parameters as well as the log-likelihood which may be seen as an appropriate diagnostic plot
for the quality of the approximations. Densities for m = 60 and m = 80 look similar and therefore the
argument that their level of augmentation is sufficient appears to be plausible. The plots of Figure 2
and the results of Table 1, which contains summaries of the parameter posterior draws for m = 80,

are in good agreement with the true values of the parameters.
[Figure 1 about here.]
[Figure 2 about here.]

[Table 1 about here.]

6 Application: EUR/USD and GBP/USD exchange rates

The dataset consists of roughly two years of daily exchange EUR/USD and GBP/USD rates, specif-
ically from the 3rd of January 2005 to 22nd of December 2006. We denote these rates with re”/wsd
and 79%7/u54 and their logarithms with Y ¢%/usd and Y 90r/usd yespectively. Our dataset also contains
the corresponding month implied volatilities constructed from options made on the currency pairs.

The data are plotted in Figure 3.
[Figure 3 about here.]

We use the implied volatilities of the currency pairs to construct proxies for their actual volatilities,
denoted with IV eur/usd and [V 9%/usd For simplicity, these proxies are assumed to be exact observa-

tions of the volatilities. Alternative assumptions are possible, such as their adjustment (Ait-Sahalia
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and Kimmel, 2005), or a formulation with noisy observations. Table 2 provides several descriptive
statistics including the correlation matrix of the 4—dimensional time series containing the implied

volatilities and the log-exchange rates Y = (IV*””/“Sd, TV 9bp/usd yeur/usd ngp/“Sd).
[Table 2 about here.]

Note that some correlations appear to be substantial and should be taken into account in the analysis
of the data. Hence we fit the bivariate Heston model to the 4—dimensional time series Y using the
MCMC data augmentation scheme of this paper. Section 3.4 provides details on the reparametrised
likelihood for the data. For reasons of model parsimony, we only consider correlations between the
pairs (IVe“"/“Sd,Ingp/“Sd) and (Ye“’"/“Sd,ngp/“d), and set the remaining ones (p31,032,041,042)
to zero. This is in line with Table 2 and some preliminary analysis which considered all possible
correlations. Note that the parameters of C' that need to be updated are just C71, Co1, Cao and Cys,
as (33 and Cyy are redundant and the remaining entries are equal to zero like the corresponding
correlations. In other words, there exists a 1-1 mapping between the diffusion matrix elements
(01,02,p21,p43) and (C11,C21,022,Ca3). We complete the model by assigning non-informative priors
as in the previous section: p(#) oc =1 for the positive parameters (k1,k2,p1,42,C11,C22) and p(#) o< 1
for the rest (us,u4,Co1,C43).

As before, several MCMC runs with different numbers of imputed points m={10, 20, 40} were used.
The data, referring to business days, were assumed to be equidistant and the time was measured
in years. Again, the acceptance rate of the independence sampler used for the path updates was
particularly high 99.16%. The autocorrelation plots of draws from the posterior of the parameters

C11,C051,C5, and Cy3, in Figure 4, reveal no sign of any increase in the level of augmentation.
[Figure 4 about here.]

Regarding the approximation error due to the discretisation of the diffusion path, the density plots
from the posterior draws of some parameters and the log-likelihood, in Figure 5, provide convergence

evidence for the approximating sequence of the data augmentation scheme.

[Figure 5 about here.]
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Table 3 contains summaries of the parameter posterior draws, where both correlations appear to be
high. Note that the non-parametric estimates of Table 2 are based on the quadratic variation process
and are therefore amenable to bias due to the discretisation of the diffusion path. On the other
hand, the discretisation error of the model estimates may become arbitrary small. The posterior
mean or median values provide point estimates of the parameters which may be used for option
pricing purposes. Alternatively, the samples from their posterior of the parameters may be used in a
Bayesian option pricing framework. In any case, it may be useful to take into account the correlated

market structure of the log-exchange rate and their impled volatilities.

[Table 3 about here.]

7 Discussion

In this paper we introduced a parametrisation framework based on the Cholesky decomposition, for
handling correlations of multi-dimensional diffusions in a Bayesian MCMC setting. This framework
facilitates componentwise updates of the diffusion matrix, in a way so that its positive definite struc-
ture is preserved. It may therefore be of substantial value in high dimensional diffusion models.
The Cholesky factorisation was used in connection with data augmentation and therefore applies to
both directly and partially observed diffusions. In order to overcome degenerate MCMC algorithms,
the likelihood reparametrisation of Roberts and Stramer (2001) was generalised to several multi-
dimensional diffusions, including stochastic volatility models, thus providing a stand alone solution
to the problem. Being a data augmentation scheme, our MCMC algorithm is based on an approxi-
mation of the likelihood, whose error may become arbitrarily small by simply increasing the level of
augmentation.

Nonetheless, the Cholesky factorisation of the diffusion matrix may be coupled with alternative,
to data augmentation, techniques for approximating the likelihood. The exact inference framework
of Beskos et al. (2006a) and the analytic likelihood expansions of Ait-Sahalia (2005) provide such

examples with appealing properties: the former eliminates entirely the error due to the discretisation
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of the diffusion path, whereas the latter provides closed form expressions of the likelihood. On the
other hand, their generalisation to partially observed diffusion may present major difficulties.

Apart from the updates of the diffusion matrix parameters, our MCMC algorithm differs from
other data augmentation schemes, such as those of Chib et al. (2005) and Golightly and Wilkinson
(2007), in the proposal distribution of the independence sampler involved in the updates of the
diffusion paths. Under these schemes, the proposal may either be the multi-dimensional bridge of
the of Durham and Gallant (2002), or alternatively that of Delyon and Hu (2007), with the target
diffusion matrix. Current work investigates the behavior of all existing approaches in different settings
regarding the dimensionality of the diffusion, the amount of correlation, and the sparseness of the

data.
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A Proofs of propositions

Proof of proposition 3.1:

The proof is based on he reducibility condition of (11), for which we need the inverse of (X, 0)
Y(Xe,0) = (Fu(X,0) )t = C7 Fo(Xy,0)7

In coordinate form the above writes

(2(X0,0) iy = [0 f U o)t i j e {1,...,d}.
Hence, it is not hard to see that the reducibility condition of Alt-Sahalia (2005) holds because

a[E(Xtv 6)_1]ij _ a[E(Xtv 9)_1]
Bm;{k} a ax,}{j}

k—0,Vijke{l,...,d}, withj<k

Proof of proposition 3.2:

The diffusion matrix of U; should be a d—dimensional identity matrix, therefore by Ito’s lemma we

get

VH(X,0) A(VH(X,0)) = 14 (21)
Consider a transformation of the form
H(X:,0) = B G.(X4,0),

where B is an arbitrary d X d matrix, independent of X;.
We can write

VH(X:,0) = B Dg(Xy,0),

where Dg (X, 0) is a diagonal matrix with

[De(Xy,0)]i = ™ 0, i=1,....d
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Indeed, the k—th row of VH (X, 0) equals

d .

VH(X,0) =V | Y Brjg'(2e{j}.0) | = (Bir,. .., Bra) Da(Xe,0).
j=1
If we substitute on (21), using also (10), we get
B Dg(Xy,0) Fu(Xy,0) C C' Fr(Xy,0) Dg(Xy,0) B = I,
which since D (Xy,0) Fo(X¢,0) = Fo(Xy,0) Dg(X:,0) = 1; becomes
BCC' B = I,

which is satisfied if we set B =C~1 .
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Figure 1: Autocorrelation plots for the posterior draws of the C' matrix entries for different numbers
of imputed points (m = 20,40, 60, 80). Simulated data.
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likelihood, for different numbers of imputed points (m = 20,40, 60, 80). Simulated data.
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Parameter True Value Posterior mean Posterior SD  Posterior median

K1 0.2 0.174 0.025 0.174
Ko 0.15 0.123 0.031 0.121
K3 0.22 0.223 0.030 0.224
1 2.5 2.578 0.167 2.571
2 3.0 2.986 0.366 2.951
s 2.0 1.908 0.094 1.905
o1 0.45 0.434 0.016 0.434
o) 0.35 0.372 0.012 0.372
o3 0.4 0.401 0.014 0.402
P21 0.45 0.480 0.034 0.480
P31 0.35 0.318 0.041 0.319
P32 0.55 0.537 0.033 0.538

Table 1: Summaries of the posterior draws of the model parameters for m = 80. Simulated dataset.
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Mean  St. Deviation Median

Tveur/usdy 100 0.693 0.076 0.708

TVvabr/usdy 100 0.704 0.078 0.696

peur/usd 1.2499 0.045 1.2578

rgbp/usd 1.8304 0.066 1.8375
Correlation Matrix

ATV eur usd 1

AV 9bp/usd 0.5551 1

Ay eur/usd 0.0148 0.0101 1

AY 9bp/usd 0.0119 0.0075 0.8093 1

Table 2: Descriptive statistics for EUR/USD and GBP/USD exchange rates and their implied volatil-
ities.
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Parameter Posterior mean Posterior SD  Posterior median

K1 0.153 0.023 0.153
K2 0.206 0.030 0.204
p1 % 100 0.677 0.014 0.677
e x 100 0.689 0.012 0.690
3 0.001 0.053 0.001
[a 0.019 0.049 0.019
o1x 100 0.343 0.010 0.343
oax 100 0.411 0.013 0.411
P21 0.567 0.028 0.567
P43 0.821 0.011 0.821

Table 3: Summaries of the posterior draws of the model parameters for m = 60. EUR/USD and
GBP/USD exchange rates dataset.
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