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Abstract

We address the problem of likelihood based inference for correlated diffusion processes using

Markov chain Monte Carlo (MCMC) techniques. Such a task presents two interesting problems.

First, the construction of the MCMC scheme should ensure that the correlation coefficients are

updated subject to the positive definite constraints of the diffusion matrix. Second, a diffusion

may only be observed at a finite set of points and the marginal likelihood for the parameters

based on these observations is generally not available. We overcome the first issue by using

the Cholesky factorisation on the diffusion matrix. To deal with the likelihood unavailability, we

generalise the data augmentation framework of Roberts and Stramer (2001 Biometrika 88(3):603-

621) to d−dimensional correlated diffusions including multivariate stochastic volatility models.

Our methodology is illustrated through simulation based experiments and with daily EUR /USD,

GBP/USD rates together with their implied volatilities.
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1 Introduction

Diffusion processes provide a natural model for phenomena evolving continuously in time. One of

their appealing features is that they are defined in terms of the instantaneous mean and variance

of the process. Specifically, a diffusion xt obeys the dynamics of the following stochastic differential

equation (SDE)

dxt = µ(t, xt, θ)dt + σ(t, xt, θ)dwt, (1)

driven by standard Brownian motion wt. The functions µ(.) and σ(.) are termed as the drift and

the volatility of the diffusion respectively. Throughout this paper we suppress the dependence on t

to simplify the notation, but the methodology is also applicable to time inhomogeneous diffusions.

The diffusion process xt is well defined if (1) has a unique weak solution, which translates into some

regularity conditions (locally Lipschitz with a linear growth bound) on µ(.) and σ(.); see chapter 5 of

Rogers and Williams (1994) for more details.

We address the problem of modelling several diffusions, denoted by x
{i}
t , i = 1, . . . , d. Each

diffusion x
{i}
t may have a drift µ{i}(.) and volatility σ{i}(.) of general, yet known, form. We also

allow for correlations, corr(dx
{i}
t , dx

{j}
t )=ρij = ρji, i 6= j, on the instantaneous increments. The use

of cross-correlations is quite common when modelling multivariate time series, as they may capture

effects caused by common factors of the underlying stochastic processes. In this paper we illustrate

our methodology through two examples of correlated diffusions. The first example targets interest

rates and bond pricing. Such time series often exhibit strong inter-dependencies; for instance, interest

rates may correspond to similar bonds but with different expiry dates, thus giving rise to correlations

among them. In Section 5 we examine a multivariate version of the Cox et al. (1985) model (CIR),

often used for such data. The second example considers currency pairs which are known to be

correlated, possibly due to the common currencies they may represent. Section 6 contains an analysis

on EUR/USD and GBP/USD data, based on multivariate versions of stochastic volatility diffusions,

such as the model of Heston (1993). In both examples, the inclusion of correlations in the model is

essential for two reasons. First, they may affect the parameter estimates of the individual diffusions,

as well as their precision. Second, they reflect characteristics of the market which may be useful in
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the bond/option pricing procedure.

We proceed by combining the diffusions x
{i}
t together into Xt = (x

{1}
t , . . . , x

{d}
t )′ (with ′ denoting

transposition), so that Xt is a d−dimensional vector for each time t. The diffusion matrix of Xt, A,

denotes its instantaneous covariance and takes the following form:

A :=

























σ{1}(.)2 ρ12σ
{1}(.)σ{2}(.) . . . ρ1dσ

{1}(.)σ{d}(.)

ρ12σ
{1}(.)σ{2}(.) σ{2}(.)2 . . . ρ2dσ

{2}(.)σ{d}(.)

...
...

. . .
...

ρd1σ
{1}(.)σ{d}(.) ρd2σ

{2}(.)σ{d}(.) . . . σ{d}(.)2

























(2)

The diffusion process Xt is defined through the following multi-dimensional SDE

dXt = M(Xt, θ)dt + Σ(Xt, θ)dWt, (3)

where Wt is a d−dimensional Brownian motion with independent components, with vector valued

drift M : [0,+∞) × SX × Θ → ℜd with [M(.)]i = µ{i}(.), and matrix valued volatility (also termed

as dispersion matrix) Σ(·) : [0,+∞) × SX × Θ → ℜd×d, where SX and Θ denotes the domain of the

diffusion Xt and the parameter vector θ respectively. The dispersion matrix Σ is a square root of the

instantaneous covariance matrix A = ΣΣ′. To ensure a unique weak solution for Xt, we require a

unique weak solution for each x
{i}
t and the matrix A to be positive definite for all t,Xt, θ.

Each diffusion x
{i}
t may be observed, with or without error, at a finite set of points, or may be

entirely unobserved. The diffusion will be termed as directly observed in cases with exact obser-

vations on all x
{i}
t , and partially observed otherwise. For ease of exposition, the methodology of

this paper is initially presented for directly observed diffusions, and adaptations to partial obser-

vation regimes, as in multivariate stochastic volatility models, are provided when necessary. Sim-

ilarly, we consider observations of the entire vector of Xt at each time, although this assumption

can easily be relaxed. We denote the times of observations by tk, k = 1, . . . , n, and the data with

Y =
{

Yk = Xtk
= (x

{1}
tk

, . . . , x
{d}
tk

)′, k = 1, . . . , n
}

. Our aim is to draw likelihood based inference for

the parameter vector θ given these observations.

The task of inference on diffusions observed discretely in time is generally not trivial and has

received a remarkable attention in the recent literature; see Sørensen (2004) for a recent review.
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The main problem is that the likelihood is generally not available except for a few cases. This has

stimulated various techniques based on likelihood approximations. Approximations may be analytical

(Aı̈t-Sahalia, 2005), or simulation based; see Pedersen (1995) or a refinement of this technique Durham

and Gallant (2002). They usually approximate the likelihood in a way so that the discretisation error

can become arbitrarily small, although the methodology developed in Beskos et al. (2006a) succeeds

exact inference in the sense that it allows only for Monte Carlo error.

We shall adopt a Bayesian approach using Markov chain Monte Carlo (MCMC) method. Since

diffusions are not completely observed, it is natural to use data augmentation (Tanner and Wong,

1987), treating the segments of diffusion sample path (or a suitably fine approximation to this) as

missing data. Initial MCMC schemes of this type were introduced by Jones (1999), Eraker (2001)

and Elerian et al. (2001). However, as noted in the simulation based experiment of Elerian et al.

(2001), and established theoretically by Roberts and Stramer (2001), the algorithms introduced in

these initial implementations of MCMC in this context degenerate as the number of imputed points

increases. The problem may be overcome for scalar diffusions with the reparametrisation of Roberts

and Stramer (2001). An alternative reparametrisation is provided by Golightly and Wilkinson (2007),

see also Golightly and Wilkinson (2006) for a sequential approach, which can in principle be applied

in principle to any diffusion.

However, the adaptation of such MCMC scheme to multivariate diffusions introduces additional

issues. The task of updating the covariance matrix A is generally not trivial, as its full conditional

posterior is most of the times intractable, and the use of Metropolis steps is inevitable. It is therefore

crucial, especially for high-dimensional diffusions, to update the covariance matrix componentwise as

the discrepancy between proposed and current moves is increasing in d. This introduces the problem

of preserving the positive definite structure of the diffusion matrix A. Note that drawing samples

from the posterior of covariance matrices, which may not necessarily be diffusion matrices, is a general

MCMC issue and usually requires appropriate matrix decompositions; see for example Pinheiro and

Bates (1996) and Daniels and Kass (1999).

The contribution of this paper is two-fold. First, we introduce a natural and general framework

for sampling diffusion matrices in a MCMC environment. This framework is based on the Cholesky
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factorisation of A and enables us to define Σ explicitly. The MCMC algorithm may then be appropri-

ately designed to provide samples from the posterior of Σ, which can be transformed to A at any time

through the Cholesky decomposition. This framework may be coupled with any of the previously

mentioned likelihood approximation techniques, such as those of Beskos et al. (2006a) or Aı̈t-Sahalia

(2005), to perform Bayesian inference for the parameters of the multi-dimensional diffusion. Second,

we offer a full and stand alone MCMC scheme which combines the Cholesky decomposition with the

reparametrised data augmentation approach of Roberts and Stramer (2001). This scheme may be

used for parameter estimation of several multivariate diffusion models including stochastic volatility.

The use of data augmentation is justified by its convenient property to be applicable at both directly

and partially observed diffusions.

The paper is organised as follows: Section 2 describes the structure of a data augmentation scheme

and highlights potential problems regarding the irreducibility of the MCMC algorithm. These prob-

lems may be tackled with the reparametrisation of this paper which requires the Cholesky factorisation

of the diffusion matrix, presented in Section 3. Specific MCMC implementation details are given in

Section 4 and the methodology of this paper is illustrated through simulated data in Section 5, and on

daily EUR/USD, GBP/USD currency pairs in Section 6. Finally, we summarise in Section 7 adding

some discussion and links to some other relevant work.

2 Data augmentation and degeneracy issues

2.1 The problem in practice

Data augmentation scheme bypasses the problem of simulating directly from the posterior π(θ|Y ),

which is typically unavailable for discretely observed data. The idea is to introduce a latent variable

X that simplifies the likelihood L(Y ;X , θ). We use the following two steps:

1. Simulate X conditional on Y and θ.

2. Simulate θ from the augmented conditional posterior which is proportional to

L(Y ;X , θ)π(θ).
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Our problem can easily be adapted to this setting. Y represents the observations of the price

process Xt, and X contains discrete skeletons of the diffusion paths between Y . Thus, X and Y

constitute the augmented dataset Xiδ, i = 0, . . . , T/δ, which is a fine partition of the multivariate

diffusion Xt with δ controlling the amount of augmentation. Based on this partition the likelihood

can be approximated, for example via the Euler-Maruyama approximation

LE(Y ;X , θ) =

T/δ
∏

i=1

p(Xiδ|X(i−1)δ),

Xiδ|X(i−1)δ ∼ N
(

X(i−1)δ + δM(X(i−1)δ, θ), δA(X(i−1)δ, θ)
)

, (4)

which is known to converge to the true likelihood L(Y ;X , θ) for small δ (Pedersen, 1995).

Another property of diffusions relates A(Xt, θ) with the quadratic variation process. Specifically

it is well-known that

lim
δ→0

T/δ
∑

i=1

(

Xiδ − X(i−1)δ

) (

Xiδ − X(i−1)δ

)′
=

∫ T

0

A(Xs, θ)ds a.s. (5)

The solution of the equation above determines the diffusion matrix parameters exactly. Hence, there

exists perfect correlation between these parameters and X as δ → 0. Thus for the theoretical algorithm

which imputes the entire X path, the MCMC algorithm is reducible. In practice this means that

as the proportion of imputed data points increases mixing problems for the MCMC chain become

progressively worse This phenomenon was first noted in Roberts and Stramer (2001) and Elerian

et al. (2001). As would be expected, the EM algorithm suffers from the same problem.

2.2 Measure theoretic probability viewpoint

In this section, we explore the problem from a different angle, through a slightly more rigorous look at

the likelihood. Let Xt be a diffusion that satisfies (3) and assume X0 = Y0 and X1 = Y1, Y = (Y1, Y2).

Denote the probability law of X by Pθ and that of its driftless version,

dMt = σ(Xt, θ)dWt,

by Qθ. To write down the likelihood, we can use the Cameron-Martin-Girsanov formula which

provides the Radon-Nikodym derivative of Pθ with respect to Qθ:
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dPθ

dQθ
= G(X,M,A) = exp

{

∫ T

0

[

A(Xs, θ)
−1M(Xs, θ)

]′
dXs

− 1

2

∫ T

0

M(Xs, θ)
′A(Xs, θ)

−1M(Xs, θ)ds

}

.

Note that the expression above contains stochastic and path integrals for which an analytic solution

is generally not available. However, given a sufficiently fine partition of the diffusion path, they can

be evaluated numerically providing an approximation of the likelihood which is equivalent to (4).

Now assume for a moment that under Qθ the marginal density of Y with respect to d−dimensional

Lebesgue measure Lebd(Y ), is known and denote by fM(Y ; θ). The dominating measure Qθ can be

factorised in the following way

Qθ = QY
θ × Lebd(Y ) × fM(Y ; θ), (6)

where QY
θ is the measure Qθ conditioned on the observations Y . We can now write

dPθ

QY
θ × Lebd(Y )

(Xmis, Y ) = G(X,M,A) × fM(Y ; θ). (7)

The expression in (7) provides the likelihood for the latent diffusion paths Xmis and the parameters

θ. However, this likelihood is not valid because its reference measure, Q
y
θ , depends on parameters.

Furthermore, since the volatility parameters are identified by the quadratic covariation process, the

measure Qθ is just a point mass. Consequently, the measures Qθ are mutually singular and therefore

so are Pθ. Hence, inference for both Xmis, θ is not possible using a common σ−finite dominating

measure. In the next section, we specify an appropriate transformation of the diffusion that allows

a likelihood specification with respect to a parameter-free dominating measure. This transformation

may be viewed as a generalisation of the one in Roberts and Stramer (2001). The transformed

diffusion has unit volatility, thus the problems induced by the quadratic variation property of (5) are

implicitly addressed.
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3 Likelihood specification

3.1 A Cholesky factorisation of the diffusion matrix

Consider the multi-dimensional SDE of (3) with the diffusion matrix A of (2). The d×d matrices A and

Σ are linked through A = ΣΣ′, therefore Σ is not unique. However, it is crucial to define Σ explicitly

and establish a 1-1 mapping with A, as each one of these two matrices may be more convenient for

different reasons. The likelihood, defined either through the Euler-Maruyama approximation in (4) or

through Cameron-Martin-Girsanov’s formula in (7), is expressed in terms of A, which is also the main

target of inference. On the other hand A is a positive definite matrix, whereas the only assumption

made on Σ requires its full rank. Hence it is generally more convenient to work with Σ in the context

of a MCMC algorithm. Moreover, as mentioned in the previous section, the generalisation of the

Roberts and Stramer (2001) reparametrisation involves a transformation to unit volatility which will

naturally be based on Σ.

In this paper, we define Σ using the Cholesky decomposition of A. Let Sx(Xt, θ) = diag{σ{i}(Xt, θ)}.

The diffusion matrix may then be factorised in the following way

A(Xt, θ) = Sx(Xt, θ) R Sx(Xt, θ),

where R is the correlation matrix. One may define Σ as the product of Sx with the Cholesky

decomposition of R, say C. But the elements of C will not have the general Cholesky structure, since

R has the additional property of being a correlation matrix. To eliminate such problems we write

each σi(Xt, θ) as

σ{i}(Xt, θ) = cif
{i}(Xt, θ), ∀i, (8)

for some positive constants ci. This imposes no restrictions as we can always set f{i}(Xt, θ) =

σ{i}(Xt, θ)/ci, see Section 3.4 for such an example. Now, based on Fx(Xt, θ) = diag{f{i}(Xt, θ)}, we

can use (8) to obtain an alternative decomposition of A,

A(Xt, θ) = Fx(Xt, θ) V Fx(Xt, θ),
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where V is a general symmetric positive definite matrix with

Vij =















c2
i , i = j

ρijcicj , i 6= j.

(9)

The Cholesky decomposition of V , denoted by C (V = CC ′), may now be used. The dispersion

matrix Σ(Xt, θ) is defined as

Σ(Xt, θ) = Fx(Xt, θ) C. (10)

In coordinate form, Σ may be written as

[Σ(Xt, θ)]ij =















[C]ijfi(Xt, θ), j ≤ i

0, j > i.

The only restriction on the constants Cij requires compatibility with the Cholesky decomposition,

which translates on positive diagonal entries Cii. As we mention in 4.2, this is particularly convenient

in a MCMC environment and specifically for componentwise updates of Σ(Xt, θ) parameters. The

Cholesky decomposition establishes the 1-1 mapping between Σ and A and ensures that the entire

space of diffusion matrices as A is covered.

3.2 Transformation to unit volatility

In Section 2, the need for a reparametrisation was highlighted in order to avoid degenerate MCMC

algorithms. Roberts and Stramer (2001) provide a solution to the problem for scalar diffusions,

which involves a transformation to unit volatility. However, in more than one dimensions such a

transformation does not always exist, as noted Aı̈t-Sahalia (2005). When such a transformation is

available the diffusion is said to be reducible, a term introduced by Aı̈t-Sahalia (2005) who also

provides a necessary and sufficient condition for reducibility: diffusions with non-singular Σ(Xt, θ)

are reducible if and only if

∂[Σ(Xt, θ)
−1]ij

∂x
{k}
t

=
∂[Σ(Xt, θ)

−1]ik

∂x
{j}
t

, ∀ i, j, k ∈ {1, . . . , d}, with j < k (11)

Not all SDEs with diffusion matrix A as in (2) or dispersion matrix Σ as in (10) are reducible. In

this section, we restrict our attention to diffusions with

σ{i}(Xt, θ) ≡ σ{i}(x
{i}
t , θ), (12)
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for which we prove the reducibility. This is established by the following proposition:

Proposition 3.1 Let X be a d-dimensional diffusion which obeys the following SDE:

dXt = M(t,Xt, θ)dt + Σ(t,Xt, θ)dWt.

Furthermore, assume that

Σ(Xt, θ) = Fx(Xt, θ) C,

where Fx(Xt, θ) = diag{f{i}(x
{i}
t , θ)} and C is a lower triangular matrix with positive diagonal ele-

ments. The diffusion X can then be transformed to one with identity diffusion matrix. In other words

X is reducible.

Proof: See Appendix.

The next proposition provides explicitly a transformation to unit volatility. It may be viewed as an

alternative proof of proposition 3.1

Proposition 3.2 Consider the setting and the diffusion Xt of proposition 3.1. Suppose that there

exist g{i}(xt{i}, θ) for i = 1, . . . , d with continuous second derivatives, so that

∂g{i}(x
{i}
t , θ)

∂x
{i}
t

=
1

f{i}(x
{i}
t , θ)

, j = 1, . . . , d,

and let Gx(Xt, θ) =
(

g{1}x
{1}
t , θ), . . . , g{d}(x

{d}
t , θ)

)′

. Consider the transformation

H(Xt, θ) =
(

h{1}(Xt, θ), . . . , h
{d}(Xt, θ)

)′

= C−1Gx(Xt, θ). (13)

The diffusion Ut = H(Xt, θ) has then unit volatility.

Proof: See Appendix.

The transformation of (13) may be used to specify the likelihood under an appropriate reparametri-

sation which will ensure a non - decreasing efficiency, of the data augmentation MCMC scheme, in the

level of augmentation. Notice that the transformation of (13) to unit volatility is not unique. This is

not necessary for our methodology, in fact we only require its invertibility which is ensured as long as

each gi(xt{i}, θ) is itself invertible. We present this reparametrisation in the Section 3.3, whereas in

3.4 we show how to relax the assumption of (12) to handle multivariate stochastic volatility models.
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3.3 Reparametrised likelihood

Consider the diffusion that satisfies the SDE of (3) where the drift M(.) and Σ satisfy the appropriate

conditions so that Xt has a unique weak solution and Ito’s lemma can be applied. Furthermore,

assume that

Σ(Xt, θ) = Fx(Xt, θ) C,

where Fx(Xt, θ) = diag{f{i}(x
{i}
t , θ)} and C is a lower triangular matrix with positive diagonal ele-

ments. For ease of illustration let the entire vector of Xt be observed at each time and denote the times

of observations by tk, k = 0, . . . , n, and the data with Y =
{

Yk = Xtk
= (x

{1}
tk

, . . . , x
{d}
tk

)′, k = 1, . . . , n
}

.

We will define the likelihood for a pair of successive observations, (Yk−1, Yk). Due to the Markov

property of diffusions, the full likelihood is just given by the product of all pairs of consecutive obser-

vations. Without applying a reparametrisation, the likelihood can be defined through (7). However,

as discussed in 2, this likelihood is problematic because it is written with respect to a dominating

measure that depends on parameters. The aim of the reparametrisation is to obtain a likelihood with

a parameter-free dominating measure.

The first step of the reparametrisation requires a transformation Ut = H(Xt, θ) =
(

u{1}, . . . , u{d}
)′

,

so that the diffusion matrix of Ut is the d−dimensional identity matrix. As established by proposition

3.1, such a transformation does exist and can be obtained explicitly by (13). The SDE of the r−th

coordinate of the transformed diffusion U will be given by:

du
{r}
t = µ

{r}
U (Ut, θ)dt + dw

{r}
t , r = 1, . . . , d,

with

µ
{r}
U (Ut, θ) =

d
∑

i=1

∂hr(Xt, θ)

∂x{i}
µ{i}(Xt, θ) +

d
∑

i=1

∂2hr(Xt, θ)

∂(x{i})2
[Σ(Xt, θ)]

2
ii,

where Xt may replaced with H−1(Ut, θ) so that the SDE is expressed in terms of Ut. If we use the

Cameron-Martin-Girsanov formula in a similar manner as in Section 2.2, we can write the likelihood

as

dPθ

WY H × Lebd(Y H)

(

Umis, Y
)

= G(U, µU , Id)fM(Y ; θ),

or equivalently

dPθ

WY H × Lebd(Y )

(

Umis, Y
)

= G(U, µU , Id) ×N
(

Y H
k − Y H

k−1, Id

)

|J(Y, θ)|,
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where WY H

is just Wiener measure conditioned on the transformed observations Y H=H(Y, θ),

N (Y, V ) denotes the Gaussian density of Y under 0 mean and covariance V, and J(Y, θ) is the

Jacobian term from the transformation H(Y, θ). The dominating measure of the likelihood, WY H

, re-

flects the distribution of d independent Brownian bridges with Y H as endpoints and therefore depends

on parameters. For this reason we introduce a second transformation

z{i}(s) = u{i}(s) −
(tk − s)H(y

{i}
k−1, θ)(tk−1) + (s − tk−1)h(y

{i}
k , θ)

tk − tk−1
, tk−1 < s < tk, (14)

for all i ∈ {1, . . . , d}, which centers the bridge to start and finish at 0 and preserves the unit volatility.

Let Z =
(

z{1}, . . . , z{d}
)′

and the function U = η(Z) to be the inverse of 14. The SDE for Z becomes

dz
{i}
t = µ

{i}
Ut

(η(Zt), θ)dt + dw
{i}
t , ∀ i ∈ {1, . . . , d}

The likelihood may now be written as

dPθ

W0) × Lebd(Y )

(

Zmis, h(Y, θ)
)

= G(η(Zt),MU , Id) ×N
(

Y H
k − Y H

k−1, Id

)

|J(Y, θ)|, (15)

where

MU =
(

µ
{1}
Ut

(η(Zt), θ), . . . , µ
{d}
Ut

(η(Zt), θ)
)′

.

The dominating measure of the likelihood provided by 15 does not depend on any parameters, being

the product of d independent Brownian bridges that start and finish at 0. The likelihood of (15)

may be used to construct an irreducible MCMC scheme which will not degenerate as we increase the

amount of augmentation. The stochastic and path integrals involved cannot be solved analytically

but they can be evaluated numerically given a sufficiently fine partition of the diffusion path. Note

also that, as a result of these transformations, inference will now be based on Zt rather than Xt.

However, the posterior draws of Zt may be inverted to provide samples from the posterior of Xt.

3.4 Multivariate stochastic volatility models

In the previous subsection we assumed a diffusion with SDE that satisfies (12) so that the trans-

formation of (13) is directly applicable. However, there exist interesting diffusion models outside of

this class with a broad range of applications. One famous example of such models is provided by

stochastic volatility; see for example Ghysels et al. (1996). Most diffusion driven stochastic volatility
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models, including those of Hull and White (1987), Stein and Stein (1991) and Heston (1993), belong

to the following general class of 2−dimensional SDEs









dxt

dvt









=









µx(vt, θ)

µv(vt, θ)









dt +









σx(vt, θ) 0

0 σv(vt, θ)

















dbt

dwt









, (16)

where bt and wt are correlated standard Brownian motions, xt usually denotes the log price, whose

volatility is provided by another diffusion vt.

Diffusions that satisfy SDEs as in (16) cannot generally be transformed to unit volatility (Aı̈t-

Sahalia, 2005), as the reparametrisation of 3.3 requires. Nevertheless, it is still possible to construct

an irreducible data augmentation scheme to estimate their parameters. As noted in Chib et al. (2005)

the conditional likelihood of xt, given vt, is available in closed form and therefore only the paths of vt

need to be imputed to approximate the likelihood. Consequently, as shown in Kalogeropoulos (2007),

it suffices to transform vt itself to unit volatility.

This idea may be coupled with the Cholesky factorisation to handle multivariate stochastic volatil-

ity models. We illustrate this for the case of a bivariate Heston model. The scalar Heston model can

be written as

dxt =

(

µx − 1

2
v2

t

)

dt +
√

vtdbt,

dvt = κ (µv − vt) dt + σ
√

vtdwt.

where bt and wt are correlated. We can re-write the top equation, by setting c =
√

µv, to

dxt =

(

µx − 1

2
v2

t

)

dt + c

√

vt

µv
dBt.

Based on the formulation above, a bivariate Heston model may be written as a 4−dimensional diffusion

Xt =
(

v
{1}
t , v

{2}
t , x

{1}
t , x

{2}
t

)′

, with x
{1}
t , x

{2}
t denoting the log-prices, and v

{1}
t , v

{2}
t their volatilities.

The diffusion matrix now has the general form of (2) all of the components of Xt may be correlated.

Since (8) holds for each component of Xt, we can define the dispersion matrix of Xt as in (10)
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























dv
{1}
t

dv
{2}
t

dx
{1}
t

dx
{2}
t

























=

























κ1

(

µ1 − v
{1}
t

)

κ2

(

µ2 − v
{2}
t

)

µ3 − 1
2 (v

{1}
t )2

µ4 − 1
2 (v

{2}
t )2

























dt + Fx(Xt, θ) C dBt, (17)

where now Bt is a 4−dimensional Brownian motion with independent components,

Fx(Xt, θ) = diag







√

v
{1}
t ,

√

v
{2}
t ,

√

v
{1}
t

µ1
,

√

v
{2}
t

µ2







,

and C is the lower triangular Cholesky matrix whose entries Cij may be seen as a 1-1 transformation

of parameter vector containing the correlations ρij , and also σ1, σ2,
√

µ1 and
√

µ2.

Regarding the likelihood, consider again a pair of successive observations, Yk−1, Yk with Yk =

(y
{3}
k , y

{4}
k ), for x

{1}
t , x

{2}
t . Conditional on v

{1}
t , v

{2}
t , and therefore also on their corresponding Brow-

nian components b
{1}
t , b

{2}
t , the likelihood for Yk is a bi-variate Gaussian with mean









y
{3}
k−1 +

∫ tk

tk−1

(

µ3 − 1
2 (v

{1}
s )2

)

ds + C31

∫ tk

tk−1

√

v
{1}
s

µ1

db
{1}
s + C32

∫ tk

tk−1

√

v
{1}
s

µ1

db
{2}
s

y
{4}
k−1 +

∫ tk

tk−1

(

µ4 − 1
2 (v

{2}
s )2

)

ds + C41

∫ tk

tk−1

√

v
{2}
s

µ2

db
{1}
s + C42

∫ tk

tk−1

√

v
{2}
s

µ2

db
{2}
s









,

and covariance matrix








∫ tk

tk−1

C2
33

v{1}
s

µ2

3

ds
∫ tk

tk−1

C33C43

√
v
{1}
s v

{2}
s

µ3µ4

ds

∫ tk

tk−1

C33C43

√
v
{1}
s v

{2}
s

µ3µ4

ds
∫ tk

tk−1

(C2
43 + C2

44)
v{2}

s

µ2

4

ds









.

The integrals above cannot be computed analytically, but the augmented path of v
{1}
t , v

{2}
t enables

accurate numerical approximations of them.

The remaining part of the likelihood may be obtained through the reparametrisation recipe of

Section 3.3, modified according to the observation regime of the volatility. In some cases the volatil-

ity may be entirely unobserved, leading to a partially observed diffusion. Nevertheless alternative

formulations are available, where information from option prices is used to construct exact or noisy

volatility observations; see for example Aı̈t-Sahalia and Kimmel (2005), Chernov and Ghysels (2000)

and Kalogeropoulos et al. (2007). In the presence of exact observations the transformations of (13)

and (14) may be used. Note that transformation to unit volatility refers to the 2-dimensional diffusion

(v
{1}
t , v

{2}
t )′, rather than the entire Xt. For the bivariate Heston model it takes the following form

Ut = H(Xt,D) = D−1Gx(Xt),
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where

Gx(Xt) =

(

2

√

x
{1}
t , 2

√

x
{2}
t

)′

,

and D is a block of C containing the Cij entries with i, j = {1, 2}. If the observations are noisy or

they do not exist at all, the transformation of (14) may be replaced with

Z{i}(s) = U{i}(s) − U0, 0 < s < tn,

and the N
(

Y H
k − Y H

k−1, Id

)

|J(Y, θ)| part of the likelihood should be replaced with the relative noise

density or removed accordingly.

The above likelihood specification can be applied to all multivariate stochastic volatility models

that satisfy the SDE of 16. For more complex models, the framework of Golightly and Wilkinson

(2007) or time change transformations of Kalogeropoulos et al. (2007) may be combined with the

Cholesky factorisation.

4 MCMC implementation

Based on the likelihood specifications of the previous section, it is now possible to construct an

irreducible data augmentation MCMC scheme. The algorithm may be divided into three parts: the

updates of the diffusion paths Zmis, the parameters of the dispersion matrix Σ(Xt, θ) and those of

the drift M(Xt, θ). Generally, the updates of the drift parameters may be executed using standard

random walk Metropolis techniques, although for some diffusion models the full conditionals may be

analytically tractable and Gibbs steps may be used instead. Hence, in the next two subsections we

provide some details regarding the updates of the diffusion paths and the volatility parameters.

4.1 Updating the imputed paths

There exist several options for carrying out this step and most of them are based on an independence

sampler. For discretely observed diffusions the augmented path may be divided into n × d diffusion

bridges connecting the observed points, and each one of them may be updated in turn. The full

conditional of Zmis may be written as

dPθ

dW0
(Zmis|Y ) = G(η(Zt),MU , Id)

fM(Y ;A)

fX (Y ;A)
∝ G(η(Zt),MU , Id), (18)
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where fX (Y ;A) is the density of Y with respect to the Lebesgue measure under Pθ. Note that this

expression will be slightly different for stochastic volatility models.

The dominating measure of the likelihood W0, in other words a Brownian bridge, may be used

as the proposal distribution for the independence sampler. Based on (18), the algorithm will then

contain the following steps

• Step 1: Propose a Brownian bridge from tk−1 to tk.

• Step 2: Substitute into i-th dimension and form Z∗
t .

• Step 3: Accept with probability:

min

{

1,
G(η(Z∗

t ),MU , Id)

G(η(Zt),MU , Id)

}

.

• Repeat for all k = 1, . . . n and i = 1, . . . , d.

The algorithm above takes advantage of the transformation to unit volatility and splits the path

into n × d independent, under the dominating measure, bridges. Alternative proposals are available

such as the diffusion bridges introduced in Durham and Gallant (2002) and Delyon and Hu (2007),

which can be adapted in a MCMC setting through the reparametrisation framework of Golightly and

Wilkinson (2007). Another option is to propose local moves of the paths in the spirit of Beskos et al.

(2006b). This approach may be viewed as a random walk metropolis in the space of diffusion bridges.

Note however that this technique requires bridges with unit volatility, and therefore it can only be

used for correlated diffusions through the reparametrisation framework of this paper.

Further increase in the acceptance rate may be achieved by choosing a proposal distribution which

is closer to the target Pθ, for example a linear diffusion bridge. Suppose that we propose from another

diffusion bridge distribution, denoted by L0, with drift L. We can now write:

dPθ

dL0
(Zmis|Y ) =

dPθ/dW0

dL0/dW0
(Zmis|Y ) ∝ G(η(Zt),MU , Id)

G(η(Zt), L, Id)
(19)

Based on (19), the corresponding algorithm, termed as method B in Roberts and Stramer (2001),

will consist of the following steps:

• Step 1: Propose a Brownian bridge from tk−1 to tk.
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• Step 2: Substitute into i-th dimension and form Z∗
t .

• Step 3: Accept with probability:

min

{

1,
G(η(Z∗

t ),MU , Id)G(η(Zt), L, Id)

G(η(Z∗
t ), L, Id)G(η(Zt),MU , Id)

}

.

• Repeat for all k = 1, . . . n and i = 1, . . . , d.

However, low acceptance rates may still occur, especially in sparse datasets. In such cases, each

bridge may be further split into smaller blocks and updating strategies based on overlapping or random

sized blocks may be advocated; see Kalogeropoulos (2007) and Chib et al. (2005) for more details.

These techniques may also be used in partially observed diffusions, for example in stochastic volatility

models, where some components of the diffusion may be observed with error or not be observed at

all.

4.2 Updating the volatility parameters

As mentioned earlier, the parameter updates of the diffusion matrix A(Xt, θ) are not trivial. Their full

conditional posterior is generally not available in closed form, and Metropolis steps are inevitable. The

construction of such steps has to ensure that the covariance matrix structure of A(Xt, θ) is preserved.

At the same time, it is desirable to achieve a reasonably high acceptance rate of the proposed moves

for a good mixing of the MCMC algorithm. While the former may be implemented by using an

appropriate distribution for symmetric positive definite matrices, such as the Wishart distribution, it

is extremely difficult to guarantee the latter, especially for high dimensional diffusions.

The Cholesky factorisation introduced in this paper may be of help in such cases. Specifically,

the step of updating the constants ci, and the correlations ρij , with i, j ∈ {1, . . . , d} and i < j, may

be replaced by componentwise updates of the Cholesky matrix C. In contrast with the correlations

ρij , the restrictions implied by the symmetric and positive definite diffusion matrix A(Xt, θ) may be

enforced on the elements of C in a straightforward manner, as only the positivity of the diagonal

entries is required.

Hence, the updates of Cij ’s may be implemented through standard random walk Metropolis steps.
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Note that (ci,ρij) and Cij are linked through

Sx(Xt, θ) R Sx(Xt, θ) = Fx(Xt, θ) V Fx(Xt, θ) = A(Xt, θ), (20)

where R is the correlation matrix and V is defined in (9). It is not hard to see that they are linked with

an 1-1 mapping which is the solution of the system in (20) with d(d + 1)/2 equations and unknowns.

Hence, the draws from the posterior of C may be transformed back at any time, to obtain draws from

the posterior of (ci,ρij).

5 Simulation based experiments

In this section we illustrate and test our data augmentation scheme on a 3−dimensional CIR model.

In other words, we consider a 3−dimensional diffusion Xt = (x
{1}
t , x

{2}
t , x

{3}
t )′ with linear drift for

each component κi(µi−x
{i}
t ), the CIR formulation of the volatility, σi

√

x
{i}
t , and correlations between

all the components, ρij , i = 1, 2, 3, j < i. This model may be useful for the analysis of interest rates

time series, where the cross-correlations may be substantial. Notice that our framework allows for

more general drift and volatility formulations but the main focus of this simulation experiment lies

mainly in the correlations ρij . The dispersion matrix of the multi-dimensional diffusion Xt may be

defined as in (10), with

Fx(Xt, θ) = diag

{
√

x
{1}
t ,

√

x
{2}
t ,

√

x
{3}
t

}

,

and C being the lower triangular matrix from the Cholesky decomposition, whose entries Cij , substi-

tute the parameters σi and ρij . The likelihood reparametrisation requires a transformation to unit

volatility which is given by

Ut = H(Xt, C) = C−1Gx(Xt),

with

Gx(Xt) =

(

2

√

x
{1}
t , 2

√

x
{2}
t , 2

√

x
{3}
t

)′

.

The second transformation is that of (14), and the likelihood may be obtained from (15). To complete

the model formulation we assign non-informative priors: p(θ) ∝ θ−1 for the positive parameters

κi, µi, Cii and p(θ) ∝ 1 for the rest (Cij , i > j).
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We simulated 500 equidistant observations (apart from the initial point) at times {tk = k, k =

0 . . . , n} with tn = 500. Several MCMC runs, with different numbers of imputed points m={20, 40, 60, 80},

were examined. This was done to monitor the autocorrelation as well as the approximation error of

the likelihood in relation with the level of augmentation. The acceptance rate of the independence

sampler used for the path updates was 98.14%, raising no concerns regarding its performance. Figure

1 shows autocorrelation plots for the posterior draws of the C matrix components. There is no sign of

any increase to raise suspicions against the irreducibility of the chain. Figure 2 depicts density plots

for some parameters as well as the log-likelihood which may be seen as an appropriate diagnostic plot

for the quality of the approximations. Densities for m = 60 and m = 80 look similar and therefore the

argument that their level of augmentation is sufficient appears to be plausible. The plots of Figure 2

and the results of Table 1, which contains summaries of the parameter posterior draws for m = 80,

are in good agreement with the true values of the parameters.

[Figure 1 about here.]

[Figure 2 about here.]

[Table 1 about here.]

6 Application: EUR/USD and GBP/USD exchange rates

The dataset consists of roughly two years of daily exchange EUR/USD and GBP/USD rates, specif-

ically from the 3rd of January 2005 to 22nd of December 2006. We denote these rates with reur/usd

and rgbp/usd and their logarithms with Y eur/usd and Y gbp/usd respectively. Our dataset also contains

the corresponding month implied volatilities constructed from options made on the currency pairs.

The data are plotted in Figure 3.

[Figure 3 about here.]

We use the implied volatilities of the currency pairs to construct proxies for their actual volatilities,

denoted with IV eur/usd and IV gbp/usd. For simplicity, these proxies are assumed to be exact observa-

tions of the volatilities. Alternative assumptions are possible, such as their adjustment (Aı̈t-Sahalia
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and Kimmel, 2005), or a formulation with noisy observations. Table 2 provides several descriptive

statistics including the correlation matrix of the 4−dimensional time series containing the implied

volatilities and the log-exchange rates Y =
(

IV eur/usd, IV gbp/usd, Y eur/usd, Y gbp/usd
)

.

[Table 2 about here.]

Note that some correlations appear to be substantial and should be taken into account in the analysis

of the data. Hence we fit the bivariate Heston model to the 4−dimensional time series Y using the

MCMC data augmentation scheme of this paper. Section 3.4 provides details on the reparametrised

likelihood for the data. For reasons of model parsimony, we only consider correlations between the

pairs
(

IV eur/usd, IV gbp/usd
)

and
(

Y eur/usd, Y gbp/usd
)

, and set the remaining ones (ρ31,ρ32,ρ41,ρ42)

to zero. This is in line with Table 2 and some preliminary analysis which considered all possible

correlations. Note that the parameters of C that need to be updated are just C11, C21, C22 and C43,

as C33 and C44 are redundant and the remaining entries are equal to zero like the corresponding

correlations. In other words, there exists a 1-1 mapping between the diffusion matrix elements

(σ1,σ2,ρ21,ρ43) and (C11,C21,C22,C43). We complete the model by assigning non-informative priors

as in the previous section: p(θ) ∝ θ−1 for the positive parameters (κ1,κ2,µ1,µ2,C11,C22) and p(θ) ∝ 1

for the rest (µ3,µ4,C21,C43).

As before, several MCMC runs with different numbers of imputed points m={10, 20, 40} were used.

The data, referring to business days, were assumed to be equidistant and the time was measured

in years. Again, the acceptance rate of the independence sampler used for the path updates was

particularly high 99.16%. The autocorrelation plots of draws from the posterior of the parameters

C11,C21,C22, and C43, in Figure 4, reveal no sign of any increase in the level of augmentation.

[Figure 4 about here.]

Regarding the approximation error due to the discretisation of the diffusion path, the density plots

from the posterior draws of some parameters and the log-likelihood, in Figure 5, provide convergence

evidence for the approximating sequence of the data augmentation scheme.

[Figure 5 about here.]
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Table 3 contains summaries of the parameter posterior draws, where both correlations appear to be

high. Note that the non-parametric estimates of Table 2 are based on the quadratic variation process

and are therefore amenable to bias due to the discretisation of the diffusion path. On the other

hand, the discretisation error of the model estimates may become arbitrary small. The posterior

mean or median values provide point estimates of the parameters which may be used for option

pricing purposes. Alternatively, the samples from their posterior of the parameters may be used in a

Bayesian option pricing framework. In any case, it may be useful to take into account the correlated

market structure of the log-exchange rate and their impled volatilities.

[Table 3 about here.]

7 Discussion

In this paper we introduced a parametrisation framework based on the Cholesky decomposition, for

handling correlations of multi-dimensional diffusions in a Bayesian MCMC setting. This framework

facilitates componentwise updates of the diffusion matrix, in a way so that its positive definite struc-

ture is preserved. It may therefore be of substantial value in high dimensional diffusion models.

The Cholesky factorisation was used in connection with data augmentation and therefore applies to

both directly and partially observed diffusions. In order to overcome degenerate MCMC algorithms,

the likelihood reparametrisation of Roberts and Stramer (2001) was generalised to several multi-

dimensional diffusions, including stochastic volatility models, thus providing a stand alone solution

to the problem. Being a data augmentation scheme, our MCMC algorithm is based on an approxi-

mation of the likelihood, whose error may become arbitrarily small by simply increasing the level of

augmentation.

Nonetheless, the Cholesky factorisation of the diffusion matrix may be coupled with alternative,

to data augmentation, techniques for approximating the likelihood. The exact inference framework

of Beskos et al. (2006a) and the analytic likelihood expansions of Aı̈t-Sahalia (2005) provide such

examples with appealing properties: the former eliminates entirely the error due to the discretisation
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of the diffusion path, whereas the latter provides closed form expressions of the likelihood. On the

other hand, their generalisation to partially observed diffusion may present major difficulties.

Apart from the updates of the diffusion matrix parameters, our MCMC algorithm differs from

other data augmentation schemes, such as those of Chib et al. (2005) and Golightly and Wilkinson

(2007), in the proposal distribution of the independence sampler involved in the updates of the

diffusion paths. Under these schemes, the proposal may either be the multi-dimensional bridge of

the of Durham and Gallant (2002), or alternatively that of Delyon and Hu (2007), with the target

diffusion matrix. Current work investigates the behavior of all existing approaches in different settings

regarding the dimensionality of the diffusion, the amount of correlation, and the sparseness of the

data.
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A Proofs of propositions

Proof of proposition 3.1:

The proof is based on he reducibility condition of (11), for which we need the inverse of Σ(Xt, θ)

Σ(Xt, θ)
−1 = (Fx(Xt, θ) C)−1 = C−1 Fx(Xt, θ)

−1.

In coordinate form the above writes

[Σ(Xt, θ)
−1]ij = [C−1]ijf

{j}(x
{j}
t , θ)−1, ∀ i, j ∈ {1, . . . , d}.

Hence, it is not hard to see that the reducibility condition of Aı̈t-Sahalia (2005) holds because

∂[Σ(Xt, θ)
−1]ij

∂x
{k}
t

=
∂[Σ(Xt, θ)

−1]ik

∂x
{j}
t

= 0, ∀ i, j, k ∈ {1, . . . , d}, with j < k

Proof of proposition 3.2:

The diffusion matrix of Ut should be a d−dimensional identity matrix, therefore by Ito’s lemma we

get

∇H(Xt, θ) A (∇H(Xt, θ))
′ = Id (21)

Consider a transformation of the form

H(Xt, θ) = B Gx(Xt, θ),

where B is an arbitrary d × d matrix, independent of Xt.

We can write

∇H(Xt, θ) = B DG(Xt, θ),

where DG(Xt, θ) is a diagonal matrix with

[DG(Xt, θ)]ii = f{i}(x
{i}
t , θ)−1, i = 1, . . . , d.
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Indeed, the k−th row of ∇H(Xt, θ) equals

∇H(Xt, θ) = ∇





d
∑

j=1

Bkjg
{i}(xt{j}, θ)



 = (Bk1, . . . , Bkd) DG(Xt, θ).

If we substitute on (21), using also (10), we get

B DG(Xt, θ) Fx(Xt, θ) C C ′ Fx(Xt, θ) DG(Xt, θ) B′ = Id,

which since DG(Xt, θ) Fx(Xt, θ) = Fx(Xt, θ) DG(Xt, θ) = Id becomes

B C C ′ B′ = Id,

which is satisfied if we set B = C−1 .
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Figure 1: Autocorrelation plots for the posterior draws of the C matrix entries for different numbers
of imputed points (m = 20, 40, 60, 80). Simulated data.
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Figure 2: Kernel densities of the posterior draws for some parameters (µ1, σ2, ρ32) and the log-
likelihood, for different numbers of imputed points (m = 20, 40, 60, 80). Simulated data.
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Figure 3: Daily EUR/USD and GBP/USD rates (up) and their month implied volatilities (%) (down)
from 3rd of January 2005 to 22nd of December 2006.30
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Figure 4: Autocorrelation plots for the posterior draws of the C matrix entries for different numbers
of imputed points (m = 10, 20, 40). EUR/USD and GBP/USD exchange rates dataset.
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Parameter True Value Posterior mean Posterior SD Posterior median
κ1 0.2 0.174 0.025 0.174
κ2 0.15 0.123 0.031 0.121
κ3 0.22 0.223 0.030 0.224
µ1 2.5 2.578 0.167 2.571
µ2 3.0 2.986 0.366 2.951
µ3 2.0 1.908 0.094 1.905
σ1 0.45 0.434 0.016 0.434
σ2 0.35 0.372 0.012 0.372
σ3 0.4 0.401 0.014 0.402
ρ21 0.45 0.480 0.034 0.480
ρ31 0.35 0.318 0.041 0.319
ρ32 0.55 0.537 0.033 0.538

Table 1: Summaries of the posterior draws of the model parameters for m = 80. Simulated dataset.
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Mean St. Deviation Median

IV eur/usd× 100 0.693 0.076 0.708
IV gbp/usd× 100 0.704 0.078 0.696
reur/usd 1.2499 0.045 1.2578
rgbp/usd 1.8304 0.066 1.8375

Correlation Matrix

∆IV eur/usd 1
∆IV gbp/usd 0.5551 1
∆Y eur/usd 0.0148 0.0101 1
∆Y gbp/usd 0.0119 0.0075 0.8093 1

Table 2: Descriptive statistics for EUR/USD and GBP/USD exchange rates and their implied volatil-
ities.
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Parameter Posterior mean Posterior SD Posterior median
κ1 0.153 0.023 0.153
κ2 0.206 0.030 0.204

µ1 × 100 0.677 0.014 0.677
µ2 × 100 0.689 0.012 0.690

µ3 0.001 0.053 0.001
µ4 0.019 0.049 0.019

σ1× 100 0.343 0.010 0.343
σ2× 100 0.411 0.013 0.411

ρ21 0.567 0.028 0.567
ρ43 0.821 0.011 0.821

Table 3: Summaries of the posterior draws of the model parameters for m = 60. EUR/USD and
GBP/USD exchange rates dataset.
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