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Abstract

This paper presents a Markov chain Monte Carlo algorithm for a class of multivari-

ate diffusion models with unobserved paths. This class is of high practical interest as

it includes most diffusion driven stochastic volatility models. The algorithm is based

on a data augmentation scheme where the paths are treated as missing data. However,

unless these paths are transformed so that the dominating measure is independent of any

parameters, the algorithm becomes reducible. The methodology developed in Roberts

and Stramer (2001 Biometrika 88(3):603-621) circumvents the problem for scalar diffu-

sions. We extend this framework to the class of models of this paper by introducing an

appropriate reparametrisation of the likelihood that can be used to construct an irre-

ducible data augmentation scheme. Practical implementation issues are considered and

the methodology is applied to simulated data from the Heston model.

Keywords: Data augmentation; Markov chain Monte Carlo; Stochastic volatility; Hes-

ton model.

1 Introduction

Diffusion processes constitute a natural and useful tool for modelling phenomena evolving

continuously in time. They find applications in many different fields including finance, biol-

ogy, physics, engineering etc. A diffusion process Vt is defined through a stochastic differential

equation (SDE):

dVt = µ(Vt, θ)dt + σ(Vt, θ)dBt, V0 = v0, 0 ≤ t ≤ T, Vt ∈ ℜd (1)

where Bt is a standard Brownian motion. The drift µ and volatility σ of the diffusion should

satisfy some regularity conditions (locally Lipschitz with a growth bound) to ensure that
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the SDE will have a weakly unique solution; see chapter 4 of Kloeden and Platen (1995).

Throughout this paper we assume that their functional form is known and we focus on the

problem of parametric inference.

In practice we can only observe a discrete skeleton of the diffusion V . Depending on what

kind of data we observe, we can further classify the diffusion models into two categories. The

first category includes models where we have observations on every coordinate of the vector

V . In the second category, the process is divided into two components, say X and α, and

we only observe points of X. In this paper we focus on a subclass of the second category,

henceforth denoted by C, considering multivariate diffusions with unobserved paths that

satisfy the following SDE ( 0 ≤ t ≤ T ):





dXt

dαt



 =





µx(αt, θ)

µα(αt, θ)



 dt +





σx(αt, θ) 0

0 σα(αt, θ)









dBt

dWt



 , (2)

where B and W denote standard Brownian motions that can potentially be correlated.

The class C includes many interesting diffusions. For instance it contains most diffusion

driven stochastic volatility models which are particularly useful in financial applications;

see for instance Ghysels et al. (1996) and Shephard (2005). Famous examples of stochastic

volatility models in C are the models introduced in Heston (1993), Stein and Stein (1991)

and Hull and White (1987)∗. Section 4 provides an example based on the model of Heston

(1993).

A crucial difference between the models of these two categories is the availability of the

Markov property. Suppose that we observe V (or X accordingly) at times {tk, 0 ≤ tk ≤

T, k = 0, 1, . . . , n} and let Y = {Yk = Vtk}. In the first category we can write the likelihood

using the transition density of the diffusion (conditional on the initial point Y0):

pθ(Y ) =
n
∏

k=1

pθ(Yk|Yk−1). (3)

However, this is not always true for the models of the second category and consequently for

the diffusions in C. In both cases the likelihood is not generally available in closed form and

the problem of inference is quite complicated. As a result of this, the literature contains

various methodologies that may or not be based on the likelihood; see Sørensen (2004) for

an extensive review. Likelihood based approaches are either analytical (Aı̈t-Sahalia (2002),

Aı̈t-Sahalia (2005)), or they use simulations (Pedersen (1995), Durham and Gallant (2002)).

∗It is easier to see this if we use S = exp(X) instead of X
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They usually approximate the likelihood in a way so that the discretisation error can be-

come arbitrarily small, although the methodology developed in Beskos et al. (2006) succeeds

exact inference in the sense that it allows only for Monte Carlo error. Unfortunately, all

of the above rely on the Markov property and therefore become hard to generalize to the

non-Markovian case.

A natural way to proceed is via data augmentation, a methodology introduced by Tan-

ner and Wong (1987). The idea is based on the fact that the likelihood can always be well

approximated given the entire path of V or a sufficiently fine partition of it. Therefore, the

unobserved paths of V are treated as missing data and a finite number of points, large enough

to make the approximation error arbitrarily small, is imputed. Elerian et al. (2001), Eraker

(2001) and Jones (2003) use Markov chain Monte Carlo (MCMC) approaches and approxi-

mate the posterior through the Euler-Maruyama approximation of the transition density (3).

As noted in Roberts and Stramer (2001) however, there exists a strong dependence between

the imputed sample paths and the volatility coefficients. In fact the algorithm becomes re-

ducible as the number of imputed points increases.

Roberts and Stramer (2001) tackle the problem for scalar diffusions by a reparametri-

sation on the paths of V and Kalogeropoulos et al. (2007a) offer an extension for some

multivariate diffusions. As explained in section 2.1 however, this framework does not cover

the models in C. This paper focuses on this class and we introduce a novel reparametrisation

of the likelihood that may serve as the basis for data augmentation schemes. Alternative

approaches to this problem can be found in Chib et al. (2005) and Golightly and Wilkinson

(2005).

The paper is organized as follows. Next section elaborates on the need for a reparametri-

sation and provides a likelihood that may serve as the basis for inference purposes. Section 3

presents the details of a data augmentation scheme that can handle models in C. In section 4,

the methodology is applied to simulated data. We highlight the necessity of the reparametri-

sation in a simple stochastic volatility model and we perform a simulation study based on

the model of Heston (1993) to illustrate the proposed methodology. Finally we conclude in

section 5 with some relevant discussion.
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2 Reparametrisation

2.1 The need for a reparametrisation

Without loss of generality we will consider a slightly simpler version of (1), i.e. a scalar

diffusion with constant volatility:

dVt = µ(Vt, θ)dt + σdBt, V0 = y0, 0 ≤ t ≤ T (4)

In practice we have observations of V at a finite set of times and we want to draw

inferences for θ and σ based on them. Under the hypothetical scenario that the entire path

V is observed, we can identify σ through the quadratic variation process:

Tσ2 =

∫ T

0
(dVt)

2 a.s. (5)

We can then see the likelihood for θ as the Radon-Nikodym derivative of the law of V

with respect to that of a Brownian motion with volatility σ2. This is provided by Girsanov’s

formula (see for instance chapter 8 of Oksendal (2000)), yet in most cases a closed form solu-

tion is not available. Given observations on a sufficiently fine scale we can use approximations

but such data are not available by definition for diffusions with unobserved paths.

An alternative option is to apply a data augmentation scheme and make inferences for

θ, σ and the unobserved diffusion paths. Nevertheless, as the number of imputed points

increases, the posterior density of σ2 conditional on V is just a point mass, so that (5) is

satisfied (Roberts and Stramer, 2001). Hence, any data augmentation scheme based on the

diffusion V will result in a reducible MCMC algorithm; the sample paths of V will force σ to

remain at its current value and never converge. Another way to see the problem is to note that

the measures {Wσ, σ ∈ R} are mutually singular and therefore so are {Pσ, σ ∈ R}. Section

4.1 demonstrates this problem using simulated data from a simple stochastic volatility model.

Note that imputation of arbitrarily many points is vital for limiting the approximation error.

The problem may be resolved if we apply a transformation on V , so that the algorithm

based on the transformed diffusion is no longer reducible. In the spirit of Papaspiliopoulos

et al. (2003), this can be seen as a non-centering reparametrisation. Next subsection contains

the relevant details and introduces a suitable reparametrisation for the diffusions in class C.

2.2 A suitable likelihood parametrisation

Roberts and Stramer (2001) proposed a reparametrisation of the likelihood for general scalar
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diffusions that breaks down the dependence between the sample paths and the volatility

coefficients. They note that the likelihood is initially written with respect to a dominating

measure that depends on parameters and they introduce a two-step transformation under

which the dominating measure is parameter-free. The first step of this transformation,

denoted by h(Vt, θ), is given by the solution to the following differential equation:

∂h(Vt, θ)

∂Vt
= {σ(Vt, θ)}

−1 (6)

As noted in Kalogeropoulos et al. (2007a), in more than one dimensions the above extends

to the following system of partial differential equations (PDEs):

∇h(Vt, θ) σ(Vt, θ) [∇h(Vt, θ) σ(Vt, θ)}]
′ = Id,

where Id denotes the identity matrix of dimension d and A′ is the transpose of a matrix

A. It is not guaranteed that the above system of PDEs will have a solution. In fact, as

proved in Aı̈t-Sahalia (2005), the system is inconsistent for stochastic volatility models and

therefore such a transformation does not exist for diffusions in C. Hence we take a slightly

different route.

Consider a diffusion in C and denote the observations of the process X at times tk, k =

1 . . . , n by Y , Y = {Xtk , 0 ≤ tk ≤ T} = {Yk, k = 1, . . . , n}. For simplicity we assume that

the diffusion in (2) is two-dimensional (we discuss about extensions to higher dimensions in

the next subsection):

dXt = µx(αt, θ)dt + ρσx(αt, θ)dWt +
√

1 − ρ2σx(αt, θ)dBt

dαt = µα(αt, θ)dt + σα(αt, θ)dWt

where B and W are independent Brownian motions. The parameter ρ is the correlation

between the instantaneous increments of X and α and reflects what is termed as leverage

effect in the stochastic volatility literature. Let Pθ(X, α) denote the law of (X, α)′. Clearly

we can write:

Pθ(X, α) = Pθ(α) Pθ(X|α),

where Pθ(α) and Pθ(X|α) denote the laws of α and X given α respectively. Note that

given the path of the unobserved process and its parameters, α and W become deterministic
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functions of time. Looking again at the SDE of X we note that Pθ(X|α) depends only on

the observations Y the density of which is

pθ(Y |α) =

n
∏

k=1

pθ (Yk |Yk−1, {αt : tk−1 ≤ t ≤ tk}) .

where

pθ (Yk |Yk−1, {αt : tk−1 ≤ t ≤ tk}) ∼ N

(

µk, (1 − ρ2)

∫ tk

tk−1

σx(αs, θ)
2ds

)

with

µk = Yk−1 +

∫ tk

tk−1

µx(αs, θ)ds + ρ

∫ tk

tk−1

σx(αs, θ)dWs.

Denote by Qθ(α) the distribution of the driftless version of α. Combining all of the above,

we can attempt to write down the likelihood as

dPθ

dQθ
(X, α) = pθ(Y |α)

dPθ(α)

dQθ(α)
(7)

The dominating measure Qθ(α) in the parametrisation of (7) corresponds to a diffusion

with volatility σα(αt, θ) and therefore clearly depends on θ. For this reason we are going to

introduce a transformation βt = h(αt, θ) that originates from a differential equation, similar

to (6):

∂h(αt, θ)

∂αt
= {σα(αt, θ)}

−1

Applying Ito’s lemma we note that the transformed process βt has unit volatility and

drift:

µβ(β, θ) =
µα

[

h−1(β, θ), θ
]

σα [h−1(β, θ), θ]
−

1

2

∂σα

[

h−1(β, θ), θ
]

∂h−1(β, θ)
.

Given the initial point of β (β0 = h(α0, θ)), Girsanov’s formula now provides the Radon-

Nikodym derivative between the law of β and that of a Brownian motion starting at β0. This

is still problematic however, as this law depends on parameters (β0 is a function of θ). For

this reason we introduce a second transformation:

γt = βt − β0, βt = η(γt)

The process γt will have unit volatility and drift µγ(γ, θ) = µβ(η(γ), θ). Now we can

use Girsanov’s formula for the Radon-Nikodym derivative between the law of γ, denoted by

Pθ(γ), and that of a standard Brownian motion starting at 0 (W):
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dPθ(γ)

dW
= G(γ, θ) = exp

(∫ T

0
µγ(γs, θ)dγs −

1

2

∫ T

0
µ2

γ(γs, θ)ds

)

.

We are finally in a position to write down the likelihood with respect to a parameter-free

dominating measure:

dPθ

dQθ
(X, γ) = pθ(Y |γ)

dPθ(γ)

dW
= pθ(Y |γ) π(α0) G(γ, θ) (8)

where pθ(Y |γ) = pθ(Y |α) = pθ

{

Y |η ◦ h−1(γ, θ)
}

and π(α0) has to be specified as part of the

model. If available, the stationary distribution of α is a natural choice. Using this likelihood

we can construct an irreducible data augmentation scheme that can be used for inference

purposes. Given a sufficiently fine partition of the path of γ, the Ito and path integrals in

the likelihood may be calculated numerically. The relevant discretisation error may become

arbitrarily small as we impute more points. More details on this scheme and its practical

implementation are provided in the next section.

2.3 Multifactor and Multivariate Stochastic Volatility Models

In the previous subsection for illustration processes we made the assumption that both

processes X and α are one-dimensional. This assumption is not necessary; we can still

use such a parametrisation of the likelihood in models where either or both Xt and α are

vector processes. Famous examples of such models are that of multivariate and multifactor

stochastic volatility used for example in Duffie and Kan (1996) and Chernov et al. (2003).

We should keep in mind however, that this likelihood parametrisation requires the existence

of a transformation of α, h(α, θ), to a diffusion with identity volatility matrix. Therefore it

is only applicable to models with such σα(α, θ), so that the system of PDEs:

∇h(αt, θ) σα(αt, θ) [∇h(αt, θ) σα(αt, θ)]
′ = Id

has a solution. The methodology contains most cases of practical interest in multifactor and

multivariate stochastic volatility. For example it contains models with a constant volatility

matrix for α or with conditionally independent volatilities (α = (α1, . . . αd)
′, σα(α, θ) ≡

diag {f(αi, θ)}, i = 1, . . . , d). Extensions to more general models are possible by diagonaliz-

ing σα(.)
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3 Data augmentation scheme

This section presents a MCMC algorithm that can be used to sample from the posterior

densities of the parameter vector θ and the unobserved paths of γ. The model is formulated

in continuous time but in practice we impute the values of γ at a finite set of times. Denote

by m the number of imputed points between any two observations. We have to choose a large

enough m so that the error due to the discretisation of γt is sufficiently small. Roberts and

Stramer (2001) use the stability of the likelihood estimate as a diagnostic for the fine-ness of

the discretisation. The idea is that if the likelihood estimates for two different numbers of

m are approximately the same, the discretisations are likely to be sufficiently fine.

Updating θ is relatively straightforward as we can get the relevant conditional posterior

densities using the likelihood defined in (8). The parameter vector can be divided into two

components θ = (θ1, θ2), depending on the part of likelihood they appear. θ1 contains the

parameter involved in the µx and σx as well as ρ and α0. θ2 contains the parameters in µα(.)

and σα(.). Let π(θi), i = 1, 2 denote the corresponding priors. The conditional posterior

densities π(θi|Y ) will then be:

π(θ1|Y ) ∝ pθ(Y |γ)π(θ1)

π(θ2|Y ) ∝ pθ(Y |γ)G(γ, θ)π(θ3)

For some models it may be possible to identify the conditional posterior densities above and

apply Gibbs steps. Otherwise ordinary random walk Metropolis updates may be used.

In the remainder of this section we will focus on the updates of the diffusion paths of

γ, a clearly more complicated task. We proceed using an independence sampler, proposing

for instance from Brownian motion. Updating the entire path could lead to extremely low

acceptance rates as the discrepancy between the proposed and current path is substantial.

A way to circumvent this problem is to split the process into blocks and update each one

in turn using diffusion bridges (i.e. diffusions conditioned to finish at a particular point).

By doing so, we increase the acceptance rate of the moves since the discrepancy between

the proposed and current moves is significantly lower. For more details see Elerian (1999).

On the other hand, Elerian also notes that smaller blocks result in slower convergence and

therefore some tuning is required to get the optimal results.

While it is rather clear that the path of γ should be divided into blocks, it is not straight-

forward how this should be done. Suppose that we observe Y at times tk, as in section 2.2,
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and that we split the path of γ into n blocks {bk = γs, tk−1 ≤ s ≤ tk, k = 1, 2, . . . , n}.

But under this formulation the endpoints of the blocks are not updated at all leading to a

reducible MCMC chain; an alternative blocking scheme is needed. The blocking strategy

adopted in this paper, uses block updating of overlapping segments. This scheme has been

also used in Roberts and Stramer (2004) in a slightly different context. Under this procedure,

we update γs for ti ≤ s ≤ ti+c for i = 0, 1, . . . , n − c, where c is an integer smaller than n.

It is our experience that high values of c improve the mixing of the algorithm as long as

the acceptance rate of the blocks is not too small. We use an independence sampler with a

Brownian bridge as the proposal distribution. The MCMC algorithm becomes:

1. Set i = 0.

2. Propose a Brownian bridge starting at γ(ti) and finishing at γ(ti+c). Denote it by γ∗

s ,

ti ≤ s ≤ ti+c.

3. Accept γ∗

s with probability:

min

(

1,
G(γ∗

s , θ)πθ(Xs|γ
∗

s )

G(γs, θ)πθ(Xs|γs)

)

4. Set i = i + 1 (until i ≤ n − c). Note that for i = n − c the proposal should be just

Brownian motion rather than a Brownian bridge.

An alternative blocking strategy uses random sized blocks. More specifically at each

iteration the path is randomly split into blocks and the paths between the endpoints are

updated, whereas the endpoints remain unchanged until the next iteration. See Elerian’s

thesis for more details. This scheme was adopted in Chib et al. (2005) and found to perform

well.

4 Simulations

The simulations performed in this section aim to demonstrate two aspects of the problem.

First, we highlight the necessity of the reparametrisation introduced in section 2. This is

done in section 4.1 by exposing the problem in the case of a very simple stochastic volatility

model. In section 4.2 we present the proposed methodology using simulated data from the

Heston model.
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4.1 Data augmentation without reparametrisation

We simulated data from the following stochastic volatility model of C:





dXt

dαt



 =





exp(αt/2)dBt

σdWt



 , X0 = α0 = 0, σ > 0, 0 ≤ t ≤ 100.

where B and W are independent Brownian motions. Note that in this case µx ≡ µα ≡ 0.

Therefore, unless we apply a reparametrisation, Girsanov’s formula is not useful. Alterna-

tively we may use the Euler-Maruyama approximation; see chapter 9 of Kloeden and Platen

(1995). Suppose that we observe X at times {tk = k, k = 0, 1, . . . , n}, n = 100 and that

we impute the corresponding values for α. Furthermore we impute m values of α between

every pair of successive times with observations. For simplicity we assume that the imputed

points are equidistant and denote the time interval between them by δ = (m + 1)−1. Let

Vt = (Xt, αt)
′ and Σ = diag{exp(αt), σ

2}. Under the Euler-Maruyama approximation and

given V0 we get:

π(Y, σ2, Vt) =

n(m+1)+1
∏

t=1

π(Vt|Vt−1, σ
2), π(Vt|Vt−1, σ

2) ∼ N (Vt−1, δΣt−1) ,

If we assign π(σ2) ∝ σ−2 as the prior for σ2 and assume that α0 is known, we get that its

conditional posterior density is an Inverse-Gamma distribution with parameters:

a =
n(m + 1)

2
, b =

(m + 1)
∑n(m+1)+1

t=1 (αt − αt−1)
2

2

We ran a MCMC chain for 100,000 iterations for different numbers of imputed points (m =

1, 10, 40, 100), updating the paths as described in section 3 and using the Gibbs step for

the updates σ2. We used the overlapping blocks scheme for the updates of the paths. The

length of the block was chosen as c = 5 to improve autocorrelation for the posterior draws

of σ2 and the acceptance rate of the blocks was approximately 78%. Figure 1b shows the

autocorrellation of the posterior draws of σ2 for each value of m. Clearly, the autocorrelation

increases dramatically leading to an increasingly slower chain. An alternative way to see this

is to note that the variance of the conditional posterior for σ2 goes to 0 as we increase m.

The problem can be resolved if we apply this paper’s proposed reparametrisation. Fol-

lowing the route of section 2.2, we set βt = αt/σ and γt = βt − β0 = βt and we get

dXt = exp(σβt/2)dBt,
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where β is a standard Brownian motion independent of B. Note that the part with Girsanov’s

formula drops out of the likelihood which now simplifies to:

π(Y, σ2, βt) = π(β0)

n
∏

k=1

π(Yk|Yk−1, σ
2, βt),

where

π(Yk|Yk−1, σ
2, βt) ∼ N

{

Yk−1,

∫ tk

tk−1

exp(σβs)ds

}

.

Figure 1a contains the corresponding autocorrelation plots of the posterior draws of σ2

taken from the reparametrised data augmentation scheme. Unlike the previous case (figure

1b) there is clearly no increase in the autocorrelation.

[Figure 1 about here.]

4.2 Reparametrised scheme applied to the Heston model

In this section we illustrate the proposed methodology to simulated data from the model of

Heston (1993). We also demonstrate the immunity of the algorithm developed in sections 2

and 3 to the increase of the number of imputed points m. If we take the log of the observed

process the Heston model can be written as:

dXt = µxdt +
{

(1 − ρ2)αt

}1/2
dBt + ρ αt

1/2dWt

dαt = κ(µ − αt)dt + σαt
1/2dWt

where Bt and Wt are independent Brownian motions and Corr(dXt, dαt) = ρdt as before.

In accordance to section 2.2 we apply the following 2-step transformation:

1. βt = h(αt) = 2αt
1/2/σ, βt > 0

2. γt = βt − 2α0
1/2/σ, βt = η(γt)

Then using Ito’s lemma we get (g := η ◦ h−1):

dXt = µxdt +
{

(1 − ρ2)g(γt)
}1/2

dBt + ρ g(γt)
1/2dWt

dγt =

{

2κµ − 0.5σ2

σ2η(γt)
− 0.5κη(γt)

}

dt + dWt
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We can now proceed by writing down the likelihood as in section 2.2 and implementing

a data augmentation scheme as in section 3. Using Brownian bridges as proposals for the

paths of γ is not the best choice given the constraint βt > 0. Alternatively we may choose to

update the paths of α instead, since they are linked with a deterministic function with the

paths of γ given σ. We may propose from the diffusion Z that satisfies the SDE:

dZt =
σ2

4
dt + σZt

1/2dBt

To simulate bridges from Z we can first simulate a Brownian bridge BBt with volatility
√

σ/2 and then set Z = 1
2σBBt

2. The parameter values used in the simulation are similar

to those obtained from the analysis of the closing prices of Standard and Poor’ 500 index in

Chib et al. (2005) and Aı̈t-Sahalia and Kimmel (2005).

We simulated 1008 data points (excluding the initial point) from the Heston model corre-

sponding to 1008 working days or 4 years of data. In accordance with the relevant literature,

we set the initial values to X0 = log(100) and α0 = µ = 0.9. As in the previous sec-

tion, we ran a MCMC chain for 80,000 iterations for different numbers of imputed points

(m = 20, 40, 80). We chose the value of c = 8 to achieve lower autocorrelation on the param-

eter posterior draws. The acceptance rate for the blocks was approximately 32%. Figure 2

shows the autocorrelation plot for the posterior draws of σ for different values of m. There

is no evidence of any increase whatsoever, even for m = 80. In figure 3, we see the posterior

densities of the log-likelihood and σ, again for different values of m. All the densities are

similar, providing strong evidence that the discretisation is sufficiently fine. Finally table 1

provides the posterior means and standard deviations of the parameters. We see that these

estimates are in good agreement with the values we simulated the data from.

[Table 1 about here.]

[Figure 2 about here.]

[Figure 3 about here.]

5 Discussion

The methodology developed in this paper allows for likelihood-based inference in a class of

multivariate diffusions with unobserved paths. This class includes diffusion driven stochastic

volatility models where the problem of inference is particularly difficult due to the lack of
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the Markov property. This is accomplished via a MCMC algorithm that is relatively simple

and fast to implement as illustrated in sections 3 and 4. Under the proposed framework it

is quite straightforward to limit the discretisation error by simply increasing the number of

imputed points. The reparametrised scheme of this paper achieves that leaving both the

autocorrelation of the posterior draws and the irreducibility of the chain, intact.

Alternative data augmentation schemes for the diffusions in C can be found in Chib et al.

(2005) and Golightly and Wilkinson (2005). Apart from the different blocking strategy, the

methodology in Chib et al. (2005) is based on a reparametrisation under which the paths

of the unobserved process are transformed to W rather than γ. This scheme also contains

Laplace approximation proposals for the updates of the parameters of α. The work in

Golightly and Wilkinson (2005) uses bayesian sequential techniques and joint updates of the

diffusion paths and the parameters in the volatility functions.

As in most data augmentation schemes for diffusions, an independence sampler was used

for the block updates of the paths. A disadvantage of this method is that the acceptance rate

of the sampler will be small for larger blocks and consequently the algorithm will deteriorate.

The use of smaller blocks is an option, but it may slow down the mixing of the chain. A more

sophisticated choice for the proposal of the sampler, for instance a linear diffusion bridges,

may improve the performance of the MCMC chain.

The class of diffusions considered in this paper does not include cases, where the drift

and the volatility of the observed process depend on the process itself; for instance stochastic

volatility models for interest rates with mean reverting drift. The reason for this is that the

distribution of the observed process given the unobserved is no longer available in closed

form. The data augmentation scheme of Kalogeropoulos et al. (2007b) handle such models

using time change transformations of the observed process. An alternative option is provided

by Golightly and Wilkinson (2005).
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Papaspiliopoulos, O., Roberts, G., and Skôld (2003). Non-centered parametrisations for

hierarchical models and data augmentation. in J. M. Bernardo, M. J. Bayarri, J. O.

Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith & M. West, eds ’Bayesian Statistics

7’, Oxford University Press, pp. 307-326.

Pedersen, A. R. (1995). A new approach to maximum likelihood estimation for stochastic

differential equations based on discrete observations. Scand. J. Statist., 22(1):55–71.

Roberts, G. and Stramer, O. (2001). On inference for partial observed nonlinear diffusion

models using the metropolis-hastings algorithm. Biometrika, 88(3):603–621.

Roberts, G. and Stramer, O. (2004). On bayesian analysis of non-linear continuous time

autoregressive models. Submitted.

Shephard, N. (2005). Stochastic Volatility: Selected Readings. Oxford University Press.

Sørensen, H. (2004). Parametric inference for diffusion processes observed at discrete points

in time: a survey. International Statistical Review, 72(3):337–354.

15



Stein, E. M. and Stein, J. C. (1991). Stock proce distributions with stochastic volatility: an

analytic approach. Review of Financial Studies, 4(4):727–752.

Tanner, M. A. and Wong, W. H. (1987). The calculation of posterior distributions by data

augmentation. Journal of the American Statistical Association, 82(398):528–540.

16



List of Figures

1 Autocorrelation plots of posterior draws of σ2 for different values of imputed
points between observations (m) for the simple stochastic volatility model.
The draws in (a) correspond to the reparametrised scheme scheme and in (b)
to the scheme without transformation. . . . . . . . . . . . . . . . . . . . . . . 18

2 Autocorrelation plots of posterior draws of σ for different values of imputed
points between observations (m) for the Heston model. . . . . . . . . . . . . . 19

3 Posterior densities of (a) log-likelihood and (b) σ for different values of imputed
points between observations (m) for the Heston model. . . . . . . . . . . . . . 20

17



Lag

A
ut

oc
or

re
la

tio
n

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

m=1
m=10
m=40
m=100

Lag

A
ut

oc
or

re
la

tio
n

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

m=1
m=10
m=40
m=100

Figure 1: Autocorrelation plots of posterior draws of σ2 for different values of imputed points
between observations (m) for the simple stochastic volatility model. The draws in (a) corre-
spond to the reparametrised scheme scheme and in (b) to the scheme without transformation.
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Figure 2: Autocorrelation plots of posterior draws of σ for different values of imputed points
between observations (m) for the Heston model.
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Parameter κ µ σ ρ µx

True value 0.1 0.9 0.2 -0.5 0
Posterior mean 0.0915 0.8712 0.2126 -0.479 0.0187
Posterior SD 0.0296 0.0863 0.0436 0.1134 0.0278

Table 1: Posterior means and standard deviations of the parameters versus their true values.
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