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Inference in Infinite Superpositions of
Non-Gaussian Ornstein–Uhlenbeck Processes
Using Bayesian Nonparametic Methods
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ABSTRACT
This paper describes a Bayesian nonparametric approach to volatility
estimation. Volatility is assumed to follow a superposition of an infi-
nite number of Ornstein–Uhlenbeck processes driven by a compound
Poisson process with a parametric or nonparametric jump size distri-
bution. This model allows a wide range of possible dependencies and
marginal distributions for volatility. The properties of the model and
prior specification are discussed, and a Markov chain Monte Carlo al-
gorithm for inference is described. The model is fitted to daily returns
of four indices: the Standard and Poors 500, the NASDAQ 100, the
FTSE 100, and the Nikkei 225. (JEL: C11, C14, C22)

KEYWORDS: Dirichlet process, Stochastic volatility, Stock indices,
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This paper is concerned with the modeling of financial data such as stock prices
or stock indices with stochastic volatility models. Initially, it is assumed that the

price process y(t) is defined by the stochastic differential equation (SDE)

dy(t) = (µ + βσ2(t))dt + σ2(t)dB(t) (1)

where B(t) is a Brownian motion, σ2(t) is a stochastic process representing the
instantaneous volatility, µ is the riskless rate of returns, and β is a risk premium.
Many specifications for the volatility process in continuous time have been dis-

cussed in the literature. This paper will concentrate on the class of non-Gaussian
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2 Journal of Financial Econometrics

Ornstein–Uhlenbeck processes (Barndorff-Nielsen and Shephard 2001) which will
be referred to simply as OU processes and are defined by the SDE

dσ2(t) = −λ σ2(t) + dz(λt)

where z is a non-Gaussian Lévy process and λ > 0 is a decay parameter. This de-

fines a volatility process which is mean reverting, evolves by jumps which are
discounted exponentially at rate λ, and has an exponential autocorrelation func-
tion ρ(t) = exp{−λt}. If the underlying process z(·) is interpreted as the arrival of

information to the market, then the model assumes that the effect of a piece of in-
formation on volatility is discounted exponentially over time. An attractive aspect
of these processes is the wide range of possible marginal distributions for σ2(t)
which can be defined by the choice of the Lévy measure for z(·).

In practice, observations of returns ri = y(i∆) − y((i − 1)∆) are made for

some time period ∆ > 0 and σ2(t) is, usually, chosen to follow some paramet-
ric family. Inference must be made about λ and the parameters of the distribu-
tion of σ2(t). Barndorff-Nielsen and Shephard (2001, 2002) discuss fitting these

models using realized volatility. More recent work in this direction is reviewed
by Woerner (2007). Inference using characteristic functions is discussed by Val-
divieso, Shoutens, and Tuerlinckx (2009) and Taufer, Leonenko, and Bee (2009).

Bayesian inference using Markov chain Monte Carlo (MCMC) methods have
been developed by Roberts, Papaspiliopoulos, and Dellaportas (2004), Griffin and
Steel (2006), Gander and Stephens (2007a,b), and Frühwirth-Schnatter and Sögner

(2009). Mostly, in the Bayesian literature, a Gamma distribution is assumed for
σ2(t) which implies that z is a compound Poisson process. This allows exact in-
ference to be made using MCMC methods. For general marginal distributions of

σ2(t), z(·) will often be an infinite activity Lévy process for a chosen marginal
distribution and z(·) can only be simulated using a truncation method (Cont and
Tankov 2003). MCMC for general marginal distributions are discussed by Gander

and Stephens (2007b). There has been no work on nonparametric inference, where
we do not assume a parametric form for the marginal distribution of σ2(t), for

these models with returns data. However, work in this direction is described by
Jongbloed, Van Der Meulen, and Van Der Vaart (2005) who develop a nonpara-
metric method of estimating λ and the Lévy density of z using a cumulant-based

method applied to data drawn directly from the OU process. One aim of this paper
is to develop Bayesian nonparametric approaches to the estimation of the distri-
bution of σ2(t) when only the returns are observed.

Many authors have noted that the form of autocorrelation defined by the OU
process is unsuitable for financial data such as stock prices or stock indices. The
autocorrelation function of squared daily returns often decays quickly over a few

days but decays very slowly at longer lags. This suggests either long memory in
volatility or long-range dependence similar to long memory which could not be
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GRIFFIN | Infinite Superpositions of Non-Gaussian OU Processes 3

captured by a function that decays exponentially. Gander and Stephens (2007a) de-
scribe alterations to the form of the volatility equation that include jumps but lead

to more general dependence, including long memory. Alternatively, more gen-
eral dependence can be modeled using a superposition of OU processes which
expresses the volatility process as

σ2(t) =
K

∑
i=1

σ2
i (t) (2)

where σ2
1 (t), σ2

2 (t), . . . , σ2
K(t) are mutually independent and σ2

i (t) is an OU pro-
cess with parameter λi and Lévy process zi. The superposition allows fairly flex-
ible dependence structures for the volatility, even for relatively small values of

K. For example, Griffin and Steel (2006) show that a superposition of two pro-
cesses fits fairly well for the returns of the Standard and Poors 500 index and de-

scribe a method for approximating posterior probabilities of K (using a method
of Newton and Raftery 1994). The superposition can be viewed as a multifactor
model (LeBaron 2001, Alizadeh, Brandt, and Diebold 2002, Chernov et al. 2003,

Molina, Han, and Fouque 2008) which represents the volatility process as a sum
of a small number of component processes with simple dynamics. Each compo-
nent can be interpreted according to its strength of dependence over time. For

example, there may be a slowly varying component which represents the effect
of long-run macroinformation and a second more-fast-moving process which rep-
resents the effect of short-run information. Under certain conditions, the sum in

Equation (2) can be extended to an integral. The probabilistic background is de-
veloped by Barndorff-Nielsen (2001) and Barndorff-Nielsen and Leonenko (2005),
and an MCMC method for Bayesian inference is discussed by Griffin and Steel

(2010). Unlike the superposition in Equation (2), these continuous superpositions
can be constructed so that σ2(t) has long memory.

In general, it is difficult to find a suitable value of K in Equation (2). A similar

problem arises in mixture modeling where a density is represented as a weighted
sum of component distributions (such as normal distributions). It is often difficult

to choose the number of component distributions. Recently, there has been inter-
est in using Bayesian nonparametric methods (such as Dirichlet process mixtures)
which avoid choosing a specific number of component distributions by assuming

an infinite number of components of which only a finite number have nonneglible
weight. These nonparametric models behave in a similar way to mixture models
with a finite number of components but inference (using MCMC methods) is often

simpler. A variation on this nonparametric approach will be used in this paper to
avoid the problem of choosing K in Equation (2). A review of Bayesian nonpara-
metric methods is given by Müller and Quintana (2004).

The model for the price process in Equation (1) allows for stochastic volatility
but does not include other important features such as a leverage effect (which is

 by guest on January 18, 2011
jfec.oxfordjournals.org

D
ow

nloaded from
 

http://jfec.oxfordjournals.org/


4 Journal of Financial Econometrics

the negative correlation of the returns process and the volatility process) or jumps
in returns. These can be accommodated using the following SDE

dy(t) =
{

µ + βσ2(t) + ρ(z(t) − z̄(t)) + J(t)
}

dt + σ2(t)dB(t) (3)

where z̄t = E[z(t)] and J(t) is a compound Poisson process with intensity λJ

and jumps N(0, σ2
J ). Here, ρ is a measure of the leverage effect (as described by

Barndorff-Nielsen and Shephard 2001). The parameter ρ measures the effect of
a jump in volatility on the mean of the returns (negative ρ would imply nega-

tive correlation between return and volatility processes). This is different to stan-
dard modeling of leverage which negatively correlated the return process with
the volatility process (rather than the jumps of the volatility process as here). If

we interpret the jumps of the volatility process as arrivals of information and ρ

is negative, then this model implies that the arrival of bad news leads to higher
volatility and, on average, a negative return. The J(t) process represents jumps in

returns as introduced by Eraker, Johannes, and Polson (2003).
The contribution of this paper is the development of Bayesian methods for a

general OU-type model where the sum in Equation (2) is infinite and the marginal

distribution of σ2(t) is either known or unknown. This defines a flexible model
with a wide range of possible dependencies and marginal distributions of returns.
This is unlike previous Bayesian nonparametric work in volatility estimation that

has concentrated on the distribution of returns conditional on a parametric model
for volatility (Jensen and Maheu 2010, Kalli, Walker, and Damien 2009).

The paper is organized as follows: Section 1 reviews properties of OU pro-

cesses and superpositions of OU processes, Section 2 discusses prior specification
for a general OU-type model, Section 3 describes an MCMC algorithm to make

inference in these models, Section 4 describes applications of the method to four
stock indices (Standard & Poors 500, NASDAQ 100, FTSE 100, and Nikkei 225),
and Section 5 is a discussion.

1 OU PROCESSES

The use of OU processes to model volatility was first discussed by Barndorff-
Nielsen and Shephard (2001). It is assumed that the instantaneous volatility σ2(t)
is defined by the SDE

dσ2(t) = −λσ2(t) + dz(λt)
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GRIFFIN | Infinite Superpositions of Non-Gaussian OU Processes 5

where z is a non-Gaussian (pure jump) Lévy process, which is called the back-
ground driving Lévy process (BDLP). The solution of the SDE is

σ2(t) = exp{−λt}σ2(0) +
∫ t

0
exp{−λ(t − s)}dz(λs). (4)

It follows that σ2(t) is strictly stationary and evolves through jumps which decay
exponentially. The range of possible marginal distributions is large since an OU

process of the form (4) can be constructed for any self-decomposable distribution.
If the BDLP is a compound Poisson process with jump intensity ν and jump distri-
bution FJ , the OU process can be represented in terms of a marked point process,

σ2(t) =
∞

∑
i=1

I(τi < t) exp{−λ(t − τi)}Ji (5)

where τ1, τ2, τ3, . . . are the points of a Poisson process with intensity λν and

J1, J2, J3, . . . are marks for which Ji
i.i.d.
∼ FJ . For example, an OU process with a

Gamma marginal distribution with shape parameter ν and mean ν/γ is given by
choosing FJ to be an exponential distribution with mean 1/γ.

The marginal distribution of σ2(t) can be related to the BDLP z(t) in the fol-

lowing ways. Let z have Lévy density w and u be the Lévy density of σ2(t) then

w(x) = −u(x) − xu′(x).

This is a useful tool for modeling since it allows the BDLP to be found for a cho-
sen marginal distribution of σ2(t). Similarly, u can be derived from w using the

following result due to Barndorff-Nielsen and Shephard (2001).

Lemma 1. (BNS) Let z be a Lévy process with positive increments and cumulant

function

log(E[exp{−θz(1)}]) = −
∫ ∞

0+
(1 − exp{−θx})W(dx)

and assume that

∫ ∞

1
log(x)W(dx) < ∞.
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6 Journal of Financial Econometrics

Suppose moreover, for simplicity, that the Lévy measure W has a differentiable density w

and define the function u on R
+ by

u(x) =
∫ ∞

1
w(τx)dτ.

Then u is the Lévy density of a random variable x of the form

x =
∫ ∞

0
exp{−s}dz(s)

and the specification

x(t) =
∫ t

−∞
exp{−λ(t − s)}dz(s)

determines a stationary process {x(t)}t∈R with z as its BDLP.

The cumulants of the two processes are also linked. Let the cumulant-
generating function of σ2(t) be κ′(θ) = log(E[exp{−θ σ2(t)}]) and the cumulant-

generating function of z(1) be κ(θ) = log(E[exp{−θz(1)}]). Barndorff-Nielsen
(2001) shows that

κ′(θ) =
∫ ∞

0
κ(θ exp{−s})ds.

and

κ(θ) = θ
κ′(θ)

dθ
.

It follows that the m-th cumulant of z, κm, is related to the m-th cumulant of σ2(t),
κ′m, be the equation κm = mκ′m.

The autocorrelation function of σ2(t) is given by

Corr(σ2(t), σ2(t + s)) = exp{−λs}

which does not depend on the Lévy density of z (and so the marginal distribution
of σ2(t)) but does depend on λ. Its form is not suitable for asset return or stock

indices (Barndorff-Nielsen and Shephard 2001) since the autocorrelation tends to
have a rapid initial decay followed by a slower decay at longer lags, which has
been confirmed by many subsequent applications (Gander and Stephens 2007a,b,

Frühwirth-Schnatter and Sögner 2009). A more flexible dependence structure can
be created using superpositions of OU processes, which were first studied by
Barndorff-Nielsen (2001). In general, we can write

σ2(t) =
K

∑
i=1

σ2
i (t) (6)
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GRIFFIN | Infinite Superpositions of Non-Gaussian OU Processes 7

where σ2
1 (t), σ2

2 (t), . . . σ2
K(t) are mutually independent and σ2

i (t) is an OU process
with decay parameter λi and BDLP zi(t). If zi(t) has the Lévy density νiη(·) for all

i, then it follows that the autocorrelation function has the form

ρ(s) = Corr(σ2(t), σ2(t + s)) =
K

∑
i=1

νi

∑
K
i=1 νi

exp{−λis}.

This is a flexible form and can represent a wide range of autocorrelation functions,

even for small values of K.

2 A BAYESIAN NONPARAMETRIC MODEL

In this section, a Bayesian nonparametric model for volatility is constructed. This
allows dependence to be modeled nonparametrically by specifying the superpo-
sition of an infinite number of OU processes and the marginal distribution to be

modeled through the BDLP of each process. Attention will be restricted to OU
processes driven by a compound Poisson process. All algorithms for Bayesian in-
ference in this class of models use truncation methods to approximate the actual

BDLP by a compound Poisson process. Therefore, it seems sensible to construct
models with compound Poisson processes as the BDLP. It is well known that any
Lévy process can be constructed as the limit of a compound Poisson process. This

leads to the following definition:

Definition 1. Let ν = (ν1, ν2, ν3, . . . ) be an infinite sequence of nonnegative num-

bers for which 0 < ∑
∞
i=1 νi < ∞, λ = (λ1, λ2, λ3, . . . ) be an infinite sequence of pos-

itive numbers and FJ be a distribution with support on R
+. Suppose that

σ2(t) =
∞

∑
i=1

σ2
i (t)

where σ2
i (t) is an OU process whose BDLP has Lévy density νiλiFJ . Then σ2(t)

follows an Inf-Sup OU with masses ν, decays λ, and shot distribution FJ . This is
written Inf-Sup OU(ν, λ, FJ).

The existence of σ2(t) is guaranteed by Theorem 3.1 of Barndorff-Nielsen
(2001). The definition implies that the Lévy density of each BDLP has finite in-
tegral, but this result extends to the more general case where the Lévy density of

each BDLP is νiλiη(x) and η(x) is the Lévy density of a BDLP for some OU pro-
cess (which possibly has an infinite integral). The parameter νi controls the aver-
age contribution of the i-th component, and λi controls the dependence of the i-th

component in the superposition. It is convenient to think of (ν1, λ1), (ν2, λ2), . . . in
terms of the random measure Gλ = ∑

∞
i=1 νiδλi

and the random probability mea-
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sure Fλ = Gλ/Gλ([0, ∞]) defined through normalization. Then Fλ can be inter-
preted as a mixing measure over the decays for the components of σ2(t) and the

autocorrelation function is

ρ(s) =
∞

∑
i=1

wi exp{−λis} =
∫

exp{−λs}dFλ(λ).

where wi =
νi

∑
∞
j=1 νj

. The discrete superposition in Equation (2) arises from taking

νi = 0 for i > K and FJ to be a parametric distribution. Lemma 1 shows that the
marginal distribution of σ2(t) has Lévy density

u(x) = IJ(x)
∞

∑
i=1

νi = IJ(x)Gλ([0, ∞]) (7)

where IJ(x) =
∫ ∞

1 FJ(τx)dτ. The choice of a compound Poisson process for z sim-
plifies the calculation of the cumulant-generating function

κ(θ) = −
∫ ∞

0+
(1 − exp{−θx})W(dx)

= −
∞

∑
i=1

νi

∫ ∞

0+
(1 − exp{−θx})FJ(dx)

=
∞

∑
i=1

νi(exp{κJ(θ)} − 1)

where κJ(θ) is the cumulant-generating function of FJ . This implies that the

cumulant-generating function of σ2(t), κ′(θ), is

κ′(θ) =
∫ ∞

0
κ(θ exp{−s})ds =

∞

∑
i=1

νi

∫ ∞

0
(exp{κJ(θ exp{−s})} − 1)ds.

More straightforwardly, the cumulant of σ2(t) can be expressed as κ′m = κm/m

and so

κ′1 = κJ,1 = µJ (8)

and

κ′2 =
1

2

(

κJ,2 + κ2
J,1

)

=
1

2
(σ2

J + µ2
J ) (9)

where µJ and σ2
J are the mean and variance of the shot distribution FJ , respectively.
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GRIFFIN | Infinite Superpositions of Non-Gaussian OU Processes 9

This model has a BDLP which is a compound Poisson process and so the
process can be expressed in terms of a marked Poisson process, to generalize

Equation (5),

σ2(t) =
∞

∑
i=1

∞

∑
j=1

I(τij < t)Jij exp{−λi(t − τij)} (10)

where τi1, τi2, τi3, . . . follow a Poisson process with intensity νiλi and Jij
i.i.d.
∼ FJ .

The model is very general. Bayesian analysis of this model involves placing a

prior on ν and λ and either FJ in the nonparametric case or the parameters of FJ

in the parametric case. For example, if FJ follows an exponential distribution with
mean 1/γ, then the marginal distribution of σ2(t) will be Gamma-distributed with

shape ∑
∞
i=1 νi and mean ∑

∞
i=1 νi/γ.

2.1 Prior for ν and λ

The prior for ν and λ is given by assuming that ν is the jumps of a Gamma process
which has the Lévy density

φ(ν) = Mν−1 exp{−ν}

where M > 0 and λ1, λ2, λ3, . . . are i.i.d. from the distribution Hλ. It follows that Fλ

follows a Dirichlet process (Ferguson 1973) with total mass Mλ Hλ. The weight of
the i-th component, wi =

νi

∑
∞
j=1 νj

, measures the contribution of the i-th component

of the superposition to the overall process. Although there are an infinite number
of components, only a finite number will provide a nonneglible contribution to the
superposition. Standard properties of the Dirichlet process imply that the number

of such components is controlled by Mλ. Smaller values of Mλ are associated with
a smaller number of nonnegligible components and a less even spread of weights.
As Mλ becomes larger, Fλ will increasingly resemble the distribution Hλ. The pa-

rameter Mλ can be chosen to control the distribution of the number of nonneglible
weights or a prior distribution could be chosen for Mλ and its value inferred from

data.
The approach assumes that there are an infinite number of components in the

superposition which avoids the need to choose a value of K in a finite superpo-

sition. It is potentially more realistic if we assume that there will be many com-
ponents which give a small contribution to the volatility. The MCMC methods,
in particular the key result in Equation (12), developed for inference in this pa-

per could be extended to the case where the prior distribution for ν is the jumps
of a subordinator for which the Lévy density

∫ ∞

0 φ(x)dx = ∞. Then, Fλ follows
a normalized random measure with independent increments (James, Lijoi, and

Prünster 2009). This defines a much wider class of priors for ν such as the gen-
eralized gamma process (Brix 1999), whose normalized version is the normalized
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generalized gamma process (Lijoi, Mena, and Prünster 2007). Our aim is density
estimation of Fλ, and it has been found in more standard density estimation that a

Dirichlet process with an unknown Mλ is sufficiently flexible.

2.2 Prior for FJ

The distribution FJ is given a finite Pólya tree prior (Hanson 2006). Pólya tree
priors were introduced by Ferguson (1974) and later revived by Lavine (1992,

1994) and Maudlin, Sudderth, and Williams (1992). Unlike other nonparamet-
ric priors, it is possible to place probability mass 1 on absolutely continuous
distributions with a Pólya tree. The prior is defined by an infinite sequence of

partitions of the support of the distribution. Lavine (1992) defines the sequence
to be a dyadic partition and uses a centering distribution HJ to define the end
points of the partition. Let ej(k) = ǫ1 . . . ǫj be the j-fold binary representation of

k − 1 then B(ej(k)) = (H−1
J ((k − 1)2−j), H−1

J (k2−j)) for k = 1, 2, . . . , 2j. These sets,

B(ej(1)), B(ej(2)), . . . , B(ej(2
j)), divide the support of HJ for every level j and

B(ǫ1 . . . ǫj) = B(ǫ1 . . . ǫj0) ∪ B(ǫ1 . . . ǫj1). Therefore, the j-th level is formed by di-

viding each element of the partition at the (j − 1)-th level into two parts with
equal probability under HJ . A random distribution is constructed by allowing

pej(k)0
= p(X ∈ B(ej(k)0)|X ∈ B(ej(k))) which is the probability that the random

variable is in one of the children given that it’s in a parent and pej(k)1
= 1 − pej(k)1

.

Under the parametric distribution, HJ , this probability is always 1
2 due to the con-

struction of the partition and so this probability in the nonparametric model is
defined to be

pej(k)0
∼ Be(aj, aj)

where Be(a, b) represents a beta distribution with parameters a and b. Since the
mean of pej(k)0

= 1
2 , the nonparametric model is centered over the parametric

model in the sense that E[FJ(B)] = HJ(B). Then

p(B(ǫ1 . . . ǫj)) =
j

∏
k=1

pǫ1 ...ǫk
.

In practice, we choose a finite number of levels J for the tree and assume that f J

follows hJ within each set in the J-th partition so that

f J(x) = hJ(x)2J
2J

∑
i=1

πi I(x ∈ H−1
J ((i − 1)/2J), H−1

J (i/2J)) (11)

where πi = p(B(eJ(i))) is the probability that an observation falls into i-th element
of the partition at the J-th level.
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GRIFFIN | Infinite Superpositions of Non-Gaussian OU Processes 11

This defines a prior for FJ . We are also interested in the prior that is induced on
the marginal distribution of σ2(t). Clearly, EFJ

[log(1 + x)] is finite if EH [log(1 + x)]

is finite. Using Equation (7), the Lévy density of σ2(t) is given by

u(x) =
∞

∑
i=1

νi

M

∑
i=1

πi2
M 1

x
(exp{−γ max{x, ti−1} − exp{−γ max{x, ti})

which follows from

u(x) =
∫ ∞

1
w(τx)dτ

=
∞

∑
i=1

νi

∫ ∞

1
f J(τx)dτ

=
∞

∑
i=1

νi2
M

2M

∑
i=1

πi

∫ ∞

1
hJ(τx)I(τx ∈ H−1((i − 1)/2M), H−1(i/2M))dτ

=
∞

∑
i=1

νi2
M 1

x

2M

∑
i=1

πi

∫ ∞

x
hJ(z)I(z ∈ H−1

J ((i − 1)/2M), H−1
J (i/2M))dz

=
∞

∑
i=1

νi2
M 1

x

2M

∑
i=1

πi HJ(max{x, i/2M}) − HJ(max{x, (i − 1)/2M})

Equations (8) and (9) can be used to show that the mean of σ2(t) is

κ′J,1 = µJ =
α

γ
2J

2J

∑
i=1

πi

[

Γ(α + 1, γH−1
J (i/2J)) − Γ(α + 1, γH−1

J ((i − 1)/2J))
]

and the variance of σ2(t) is

κ′J,2 =
α(α + 1)

γ2
2J

2J

∑
i=1

πi

[

Γ(α + 2, γH−1
J (i/2J)) − Γ(α + 2, γH−1

J ((i − 1)/2J))
]

.

2.3 Further Specification of the Bayesian Model

The Bayesian model is fully specified by including priors for the parameters

and hyperparameters of the model. The parameters µ, β, ρ are given a N(0, 100I)
prior which can be considered uninformative for the usual values of these pa-
rameters. Several priors have been proposed for Mλ. The most popular choice is

Mλ ∼ Ga(a, b) (Escobar and West 1995) which will be used in this paper. The hy-
perparameter a = 1 and the mean a/b = 3 which give a prior mass on a reasonable
range of values. In parametric case when FJ is an exponential distribution with

mean 1/γ, then γ is given a vague prior Ga(0.001, 0.001) as in Griffin and Steel
(2010). Similarly, if FJ is given a Pólya tree prior, then the scale γ of the exponential
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centering distribution is given the same prior distribution. A poor choice of the
centering distribution Hλ (such as a vague prior) can lead to poor inference about

Fλ and so Hλ is given an informative choice. Previous analyses using a single OU
process suggest a value of λ around 0.01. The introduction of extra components in
a superposition usually has larger values of λ. The distribution Ga(0.4, 20) has a

mean of 0.08, and an upper 0.1% point of the distribution is 0.25. This puts mass
0.01 but also allows processes which much shorter-term behavior. The results pre-
sented in Section 5 were robust to reasonable changes in Hλ.

Following Eraker, Johannes, and Polson (2003), the model for jumps in returns
is changed slightly since λJ is typically small so that the probability of observ-
ing more than one jump in any ∆ period is very small. This suggests an alterna-

tive model where the number of jumps in observation period j is mj and p(mj =

0) = 1 − κJ and p(Nj = 1) = κJ where κJ ≈ exp{−λJ∆}. The priors for σ2
J and κJ

are those suggested by Eraker, Johannes, and Polson (2003), σ2
J ∼ IG(5, 20) and

κJ ∼ Be(2, 40).

3 COMPUTATIONAL METHODS

The observed data are the returns over a period of length ∆, r1, r2, . . . , rT

where rt = log(y(t∆)) − log y((t − 1)∆). The model in Equation (3) implies that

r1, r2, . . . , rT are mutually independent with

rt ∼ N
(

µ∆ + βσ2
n + ρzn + mtηt, σ2

n

)

where σ2
n =

∫ n∆

(n−1)∆ σ2(t)dt, zn =∑
∞
i=1

∫

dz(λin∆)−
∫

dz(λi(n − 1)∆) − E[z(λi∆)],

ηt ∼ N(0, σ2
J ), mt = 1 with probability κJ and mt = 0 with probability 1 − κJ . Effi-

cient MCMC samplers for stochastic volatility models can be constructed by treat-
ing the volatilities σ2

1 , σ2
2 , . . . , σ2

T as missing data and including their values in a

Gibbs sampler. In these models, it is simpler to use the representation as marked
Poisson process in Equation (10). Then J and τ are treated as missing values.

The process is doubly infinite since there is an infinite number of Poisson pro-
cesses which will each contain an infinite number of points. If the BDLP is chosen
to lead to a particular marginal distribution for σ2

i (t), then the OU process can

be expressed in terms of σ2
i (0) and a finite number of jumps. The nonparametric

model is defined through its BDLP and so we will follow Gander and Stephens
(2007a) and Griffin and Steel (2010) by restricting the times τij to the region (B, T)
for all i where T = n∆ and B is chosen to avoid a large truncation error. This de-
fines an approximate process

σ̃2(t) =
∞

∑
i=1

Ni

∑
j=1

I(τij < t) exp{−λi(t − τij)}Jij
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GRIFFIN | Infinite Superpositions of Non-Gaussian OU Processes 13

where Ni is the number of points in a Poisson process on (B, T) with intensity νiλi

whose points are τi1, τi2, . . . , τiNi
.

This removes one infinite sum in the form of σ2(t), but there is still an infinite
number of Poisson processes which cannot all be updated in the Gibbs sampler.
However, a finite set of processes can be found which contains all Poisson pro-

cesses with one or more points in (B, T). Suppose that ν1 > ν2 > ν3 > . . . then
there is a D for which ∑

∞
i=D+1 Ni = 0 and ND > 0. Therefore, σ̃2

i (t) can be calcu-
lated exactly as

σ̃2
i (t) =

D

∑
i=1

Ni

∑
j=1

I(τij < t) exp{−λi(t − τij)}Jij.

The probability mass function of D, conditional on ν and λ, is

p(D = k) =

{

exp{−(T − B)∑
∞
i=1 νiλi} D = 0

(1 − exp{−(T − B)λDνD}) exp{−(T − B)∑
∞
i=D+1 λiνi} otherwise

and that the probability of N1, N2, . . . , ND, D is

D

∏
i=1

exp{−(T − B)νiλi}((T − B)νiλi)
Ni

Ni!
exp

{

−(T − B)
∞

∑
i=D+1

νiλi

}

where ND > 0. This probability involves the infinite sequence ν and λ and so can-
not be calculated. However, conditioning only on ν1, ν2, . . . , νD and λ1, λ2, . . . , λD

and integrating over νD+1, νD+2, . . . and λD+1, λD+2, . . . leads to the following ex-
pression for the probability of N1, N2, . . . , ND, D

D

∏
i=1

exp{−(T − B)νiλi}((T − B)νiλi)
Ni

Ni!
E

[

exp

{

−(T − B)
∞

∑
i=D+1

νiλi

}]

.

The expectation is taken over the jumps smaller than νD which is a Lévy process
and can be calculated using the results of Regazzini, Guglielmi, and Di Nunno

(2002) and Regazzini, Lijoi, and Prünster (2003) who show that

E

[

exp

{

−(T − B)
∞

∑
i=D+1

νiλi

}]

= exp

{

−Mλ

∫ νD

0
(1 − ψHλ

((T − B)y))y−1 exp{−y} dy

}

(12)

where ψHλ
(y) is the moment-generating function of Hλ, which will often be

known. The integral is univariate and can be calculated using standard numeri-
cal integration techniques.
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The ordered sequence of jumps of a Gamma process ν can be simulated
using the representation described by Ferguson and Klass (1972). Let W+(x) =
∫ ∞

x y−1 exp{−x}dx and define W−1 to be the inverse of W+. Then

νi = W−1(ui)

where u1, u2, u3, . . . is a Poisson process with intensity M (this methods can be

simply extended to other completely random measures).

3.1 MCMC Algorithm

MCMC methods for OU process and superpositions of OU processes are discussed

by Roberts, Papaspiliopoulos, and Dellaportas (2004), Griffin and Steel (2006), and
Gander and Stephens (2007a,b). The main problem with inference is the diffi-
culty of updating the parameters λ and ν that appear in the Poisson process. Both

Roberts, Papaspiliopoulos, and Dellaportas (2004) and Griffin and Steel (2006) de-
scribe methods that jointly update the Poisson process with these parameters that
lead to better mixing algorithm than a Gibbs sampler without joint updates. The

model will be fitted using σ̃2
1 , σ̃2

2 , . . . , σ̃2
T rather than σ2

1 , σ2
2 , . . . , σ2

T . It is useful to
note that

p(r|J, τ, ν, λ, γ) =
T

∏
t=1

N
(

rt|µ∆ + βσ̃2
t + ρzt + mtηt, σ̃2

t

)

where σ̃2
n = σ̃⋆ 2(n∆) − σ̃⋆ 2((n − 1)∆) and

σ̃⋆ 2(n∆) =
D

∑
i=1

1

λi

Ni

∑
j=1

I(τij < n∆)Jij

(

1 − exp{−λi(n∆ − τij)}
)

.

If a Pólya tree prior is given to FJ , then the density is given by Equation (11)
and

µJ =
1

γ
2J

2J

∑
i=1

(exp{−γH−1
J ((i − 1)/2J)} − exp{−γH−1

J (i/2J)}).

A value from FJ can be simply simulated using the inversion method. The weights
in the Pólya tree can be initialized from their prior distribution so that p(ej(k)0) ∼

Be(Mj, Mj) for 1 ≤ k ≤ 2j−1 and 1 ≤ j ≤ J.

Updating J. The jump sizes {Jij}1≤i≤D,1≤j≤Ni
can be updated one by one us-

ing a Metropolis–Hastings random walk. Suppose that we update Jij, then a new
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GRIFFIN | Infinite Superpositions of Non-Gaussian OU Processes 15

value J′ij is proposed for which log J′ij = log Jij + ǫ where ǫ ∼ N(0, σ2
J ). The pro-

posed value is accepted with probability

min

{

1,
p(r|J′, τ, ν, λ, γ)J′ij f J(J′ij)

p(r|J, τ, ν, λ, γ)Jij f J(Jij)

}

The value of σ2
J is chosen so that the acceptance rate is between 0.2 and 0.3.

Updating τ. The jump times {τij}1≤i≤D,1≤j≤Ni
can be updated one by one using

a Metropolis–Hastings random walk. Suppose that we update τij, then a new value

τ′
ij is proposed by τ′

ij = τij + ǫ where ǫ ∼ N(0, σ2
τ). The proposed value is rejected

if τ′
ij < B or τ′

ij > T. Otherwise, the new jumps is accepted with probability

min

{

1,
p(r|J, τ′, ν, λ, γ)

p(r|J, τ, ν, λ, γ)

}

.

The value of σ2
τ is chosen so that the acceptance rate is between 0.2 and 0.3.

Updating N1, N2, . . . , ND. The value of Ni is updated using a reversible jump
Metropolis–Hastings step. A value i is chosen uniformly from the set {1, 2, . . . , D}
and a move Add or Delete is chosen at random with probability 1

2 . In the Add
move, a new jump with size Ji,Ni+1 is proposed from FJ and a jump time τi,Ni+1 is
proposed uniformly on [B, T]; then the new process is accepted with probability

min

{

1,
p(r|J′, τ′, ν, λ, γ)

p(r|J, τ, ν, λ, γ)

νiλi(T − B)

Ni + 1

}

.

In the Delete move, a jump is chosen uniformly in {1, 2, . . . , Ni} and it is proposed
to be deleted from the i-th process. The move is rejected if i = D and ND = 1.
Otherwise, this move is accepted with probability

min

{

1,
p(r|J′, τ′, ν, λ, γ)

p(r|J, τ, ν, λ, γ)

Ni

νiλi(T − B)

}

.

Updating λ. We update λ1, λ2, . . . , λm separately using the method of Roberts,

Papaspiliopoulos, and Dellaportas (2004). Suppose that λj is updated. A new value

λ′
j is proposed by perturbing λj, log λ′

j = log λj + ǫ where ǫ ∼ N(0, σ2
λ). If λ′

j > λj,

then K′ ∼ Pn(νi(λ
′
i − λi)(T − B)) new jumps are simulated where τ′

1, τ′
2, . . . .τ′

K′
j

are uniformly distributed on [B, T] and J′1, J′2, . . . , J′
K′

j

i.i.d.
∼ FJ . If λ′

j < λj, the Poisson
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process of jumps is thinned by deleting the i-th jumps with probability 1 − λ′

λ . In

both cases, the proposed value accepted with probability is

min

{

1,
p(r|J′, τ′, ν, λ′, γ)λ′

jhλ(λ
′
j)

p(r|J, τ, ν, λ, γ)λjhλ(λj)

}

.

The value of σ2
λ is chosen so that the acceptance rate is between 0.2 and 0.3.

Updating ν. We update ν1, ν2, . . . , νm separately. The parameter νj is updated in

the following way. If Nj = 0, then nu′
j = νj + ǫ where ǫ ∼ N(0, σ2

ν ). Let Kmin be

the index of the smallest value of ν1, . . . , νj−1, νj, νj+1, . . . , νD and K′
min the index

of the smallest value of ν1, . . . , νj−1, ν′j , νj+1, . . . , νD; if Nkmin
= 0, then the move is

rejected. Otherwise, the move is accepted with probability

min

{

1,
p(r|J, τ, ν′, λ, γ)

p(r|J, τ, ν, λ, γ)
exp{−(ν′j − νj)(1 + (T − B)λj)α

⋆}

}

where

α⋆ =











−Mλ I⋆(νKmin
, νK′

min
) − MλE1(νK′

min
) + MλE1(νKmin

) if νK′
min

> νKmin

0 if νK′
min

= νKmin

−Mλ I⋆(νK′
min

, νKmin
) − MλE1(νK′

min
) + MλE1(νKmin

) if νK′
min

< νKmin

and

I⋆(ν1, ν2) =
∫ ν2

ν1

(1 − φHλ
((T − B)y)y−1 exp{−y} dy

and E1(x) =
∫ ∞

x y−1 exp{−y} dy. The value of σ2
ν is chosen so that the acceptance

rate is between 0.2 and 0.3.
If Nj 6= 0, then ν′j is proposed from Ga(Nj, 1 + (T − B)λj) which is accepted

with probability

min

{

1,
p(r|J, τ, ν′, λ, γ)

p(r|J, τ, ν, λ, γ)
α⋆

}

.

Updating γ. The parameter γ can be updated using a Metropolis–
Hastings independence sampler where a new value γ′ is proposed where

γ′ ∼ Ga
(

γ0 + ∑
D
i=1 Ni, γ1 + ∑

D
i=1 ∑

Ni
j=1 Jij

)

. The proposed value is accepted with

probability

min

{

1,
p(r|J, τ, ν, λ, γ′) f J(J|γ′)

p(r|J, τ, ν, λ, γ′) f J(J|γ)

}
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GRIFFIN | Infinite Superpositions of Non-Gaussian OU Processes 17

Updating µ, β, and ρ. These parameters can be updated jointly by sampling
from the full conditional distribution

(µ, β, ρ)T ∼ N
(

(XTΣ−1X + Λ(0))−1XTΣ−1r, (XTΣ−1X + Λ(0))−1
)

where Σ is a T × T diagonal matrix with nonzero elements

Σii = σ2
i , i = 1, 2, . . . , T,

Λ(0) is a 3 × 3 diagonal matrix with nonzero elements

Λ
(0)
11 =

1

σ2
µ

, Λ
(0)
22 =

1

σ2
β

, Λ
(0)
33 =

1

σ2
ρ

and X is T × 3-dimensional matrix with elements

Xi1 = ∆, Xi2 = σ̃2
i , Xi3 =

D

∑
j=1

Nj

∑
k=1

JjkI((i − 1)∆ < τjk < i∆) −
D

∑
j=1

E[z(λj∆)]

Updating D. The parameter D is updated using a reversible jump Metropolis–
Hastings steep. We propose to Add a new component to the superposition
(D′ = D + 1) with probability 1/2 or to Delete the component in the superpo-

sition (D′ = D − 1). If we choose to Add, then we form ν′ by generating ν′ =
W−1 (W+(νD) + x) where x is simulated from an exponential distribution with
mean 1/Mλ and generate a value λ′ from Hλ. The proposed values will be N′, τ′,

J′, ν′, and λ′ which are formed as follows

N′
i = Ni, 1 ≤ i ≤ D − 1, N′

D = 0, N′
D+1 = ND

ν′i = νi, 1 ≤ i ≤ D, ν′D+1 = ν′

λ′
i = λi, 1 ≤ i ≤ D − 1, λ′

D = λ′, λ′
D+1 = λD

J′i = Ji, 1 ≤ i ≤ D − 1, J′D =, J′D+1 = JD

τ′
i = τi, 1 ≤ i ≤ D − 1, τ′

D =, τ′
D+1 = τD.

The proposed new cluster is accepted with probability

min

{

1,
p(r|J′, τ′, ν′, λ′, γ)

p(r|J, τ, ν, λ, γ)
exp{−c1(T − B)}

(

ν′λD

νDλ′

)ND

exp{I1}

}
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where

c1 = ν′λD + νDλ′ − νDλD

and

I1 = Mλ

∫ νD

ν′
φHλ

((T − B)x)x−1 exp{−x}dx.

If we choose to delete a component so that D′ = D − 1, the move is rejected if

ND−1 6= 0. Otherwise,

N′
i = Ni, 1 ≤ i ≤ D − 2, N′

D−1 = ND

ν′i = νi, 1 ≤ i ≤ D − 1

λ′
i = λi, 1 ≤ i ≤ D − 2, λ′

D−1 = λD

J′i = Ji, 1 ≤ i ≤ D − 2, J′D−1 = JD

τ′
i = τi, 1 ≤ i ≤ D − 2, τ′

D−1 = τD.

The proposal is accepted with probability

min

{

1, ,
p(r|J′, τ′, ν′, λ′, γ)

p(r|J, τ, ν, λ, γ)
exp{c2(T − B)}

(

νD−1λD−1

νDλD

)ND−1

exp{−I2}

}

where

c2 = νDλD + νD−1λD−1 − νD−1λD

and

I2 = Mλ

∫ νD−1

νD

φHλ
((T − B)x)x−1 exp{−x}dx

Updating m1, m2, . . . , mT . The full conditional distribution of mi is

p(mi = 0) = (1 − κJ)(σ
2
i )

−1/2 exp

{

−
(ri − µ − βσ2

i − ρ(zi − E[zi]))
2

2σ2
i

}
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GRIFFIN | Infinite Superpositions of Non-Gaussian OU Processes 19

and

p(mi = 1) = κJ(σ
2
i + σ2

J )
−1/2 exp

{

−
(ri − µ − βσ2

i − ρ(zi − E[zi]))
2

2(σ2
i + σ2

J )

}

.

Updating κJ . The full conditional distribution of κJ is Be(2 + ∑
T
i=1 mi, 40 + T −

∑
T
i=1 mi).

Updating σ2
J . Firstly, if mi > 0, simulate ηi ∼ N

(

(ri−µ−βσ2
i −ρ(zi−E[zi ]))

2/σ2
i

1/σ2
i +1/σ2

J

,

1
1/σ2

i +1/σ2
J

)

, then the full conditional distribution of σ2
J is IG(5 + 1

2 ∑
T
i=1 mi, 20 +

1
2 ∑{i|Ni=1} η2

i ).

Updating the weights in the Pólya tree. The value of p(ej(k)0) ∼ Be(aj +

n(B(ej(k)0)), aj + n(B(ej(k)1))) for 1 ≤ k ≤ 2j−1 and 1 ≤ j ≤ J. where n(A) is the
number of jumps Jm,l falling into set A for 1 ≤ m ≤ D and 1 ≤ l ≤ Nk. Once these

are generate, only π1, π2, . . . , π2J needs to be stored for which

πj =
J

∏
k=1

pǫ1 ...ǫk

where the ǫ1 . . . ǫJ is the J-fold binary representation of (j − 1).

4 ANALYSIS OF STOCK INDEX DATA

The models developed in this paper were applied to four stock indices. The Stan-
dard and Poors 500 (S&P 500) for the New York and NASDAQ stock exchanges
from April 28, 1989, to February 26, 2009, the NASDAQ 100 for the NASDAQ

stock exchange from April 28, 1989, to February 26, 2009, the FTSE 100 for the
London stock exchange from May 17, 1988, to February 26, 2009, and the Nikkei

225 for the Tokyo Stock Exchange from October 4, 1988, to February 26, 2009. This
represented a range of indices: two indices involved the American economy, one
involved the UK economy, and one referred to the Japanese economies. Each data

set contained 5000 observations which should have sufficient information for use-
ful nonparametric inference. Two specific models were considered. Firstly, an infi-
nite superposition of OU processes where σ2(t) had a Gamma distribution (which

will be referred to as the Inf-Sup OU Gamma model) and an infinite superposition
of OU processes where the shot distribution FJ was given a nonparametric prior
(which will be referred to as the Inf-Sup NP OU model). In the Inf-Sup NP OU

model, the number of levels in the Pólya tree, J, was set to be 7, which leads to a
J-th level partition with 128 bins and substantial flexibility. The parameter setting
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Figure 1 The S&P 500 index between April 28, 1989, and February 26, 2009: (a) the returns, (b) the
posterior median of volatility (solid line) with 95% credible interval (dashed line) using the Inf-
Sup Gamma OU model, and (c) the posterior median of volatility (solid line) with 95% credible
interval (dashed line) using the Inf-Sup NP OU model.

aj = 5/2j guarantees that FJ is an absolutely continuous distribution if the Pólya
tree were allowed an infinite number of levels. The MCMC algorithms were run

for 300,000 iterations with a thinning of 30.

4.1 Standard and Poors 500

The S&P 500 index has been well-studied using stochastic volatility models. Here,

the returns of the index from April 28, 1989, until February 26, 2009, were ana-
lyzed. The data are shown in Figure 1a and indicate periods of relatively high
volatility between 1997 and 2004 and from 2008 onwards. These were well-

captured by the posterior volatility estimates shown in panels (b) from the Inf-Sup
Gamma OU model and (c) from the Inf-Sup NP OU model. The volatility estimates
are virtually indistinguishable for the two models.

Posterior estimates for various parameters of the model are shown in Table 1.
The expectation of σ2(t) was estimated to be slightly smaller for Inf-Sup NP OU
and the standard deviation to be slightly larger. Other parameters were estimated

to be very similar for the two models. The leverage effect ρ was negative and the
95% credible interval was far from zero. The parameter Mλ had a posterior median

of 2.44 for Inf-Sup Gamma OU and 2.78 for Inf-Sup NP OU which suggests that
the measure Fλ is dominated by a small number of jumps with nonneglible mass.
Both models show that there are a small number of jumps in returns (the posterior

median of κJ is 0.0058 which implies that the average number of jumps in the series
is 29).

Figure 2 shows inference about the two main components of the models: the

measure Fλ and the jump distribution FJ . Panel (b) shows the posterior mean of FJ

which indicates that there is only a small difference between the Inf-Sup Gamma
OU and Inf-Sup NP OU models. Panel (a) shows the posterior mean of Fλ, the dis-

tribution derived by normalizing Fλ shown on the log scale. The estimate for the
Inf-Sup Gamma OU model has a clear trimodal shape with the modes occurring
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Table 1 The S&P 500 index between 28/4/89 and 26/2/09: posterior median
of the parameters with 95% credible interval shown in brackets.

Inf-Sup Gamma OU Inf-Sup NP OU

E[σ2
n ] 1.37 (0.81, 2.75) 1.26 (0.77, 2.43)

SD[σ2
n ] 0.86 (0.44, 2.15) 1.02 (0.46, 2.53)

E[J] 0.63 (0.47, 0.92) 0.53 (0.32, 0.79)

E[λ] 0.023 (0.011, 0.044) 0.026 (0.012, 0.048)

µ 0.041 (0.0093, 0.0725) 0.044 (0.0111, 0.0782)

β −0.022 (−0.061, 0.0189) −0.022 (−0.062, 0.0154)

ρ −1.46 (−2.02, −1.03) −1.44 (−1.94, −0.93)

Mλ 2.44 (0.85, 5.04) 2.78 (0.84, 6.18)

λJ 0.0058 (0.0007, 0.0253) 0.0065 (0.0009, 0.0277)

σ2
J 2.65 (1.36, 6.54) 2.66 (1.36, 6.25)

at roughly −7.5, −5, and −2.5 or 0.00053, 0.0067, and 0.082 for λ. One way to in-

terpret these values is the half-life of the effect of a jump in volatility. The effect of
the j-th jump in the i-th component is Jij exp{−λi(t − τij)} for t > τij. This effect

is halved at time t = τij +
log 2

λi
and so the half-life is

log 2
λi

. The half-lives for three

modes are 1253.2, 102.9, and 8.4. The Inf-Sup NP OU model showed a similar dis-
tribution but the low-frequency mode was less distinct (although the mass around
−7.5 was similar for the two models).

The three modes found in these fits suggested decomposing the volatility
into three components that represent the mass around the three modal values.
Figure 3 shows the decomposition of the volatility according to the value of λ

for each component in the infinite superposition. The “low”-frequency category
uses components with λ < 0.0025, the “medium”-frequency category uses com-
ponents with 0.0025 < λ < 0.050, and the “high”-frequency category uses compo-

nents with λ > 0.050. The low- and high-frequency processes represent long-term

(a) (b)
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Figure 2 The S&P 500 index between April 28, 1989, and February 26, 2009: (a) the posterior mean
of Fλ and (b) posterior mean of FJ using the Inf-Sup Gamma OU (solid line) and the Inf-Sup NP
OU (dashed line).

 by guest on January 18, 2011
jfec.oxfordjournals.org

D
ow

nloaded from
 

http://jfec.oxfordjournals.org/


22 Journal of Financial Econometrics

Low Medium High(a)

1990 1994 1998 2002 2006
0

1

2

3

1990 1994 1998 2002 2006
0

1

2

3

a b cd

e

f

1990 1994 1998 2002 2006
0

1

2

3

(b)

1990 1994 1998 2002 2006
0

1

2

3

1990 1994 1998 2002 2006
0

1

2

3

a b cd

e

f

1990 1994 1998 2002 2006
0

1

2

3

Figure 3 The S&P 500 index between April 28, 1989, and February 26, 2009: posterior mean
volatility in the three frequency categories using (a) the Inf-Sup Gamma OU model and (b) the
Inf-Sup NP OU model.

and short-term changes in the economy. The medium category contains the main

large movements due to economic factors. The large jumps in volatility are marked
on graphs for the medium category in Figure 3 and are linked to large movements

in the index. Jump a is a 3% drop on August 28, 1990, due to fear of instability
in the Middle East following Iraq’s invasion of Kuwait, jump b is a 7% drop on
August 31, 1998, due to the economic fear following the Russian default, jump c

is a 4% drop on January 4, 2000, due to fear of a long-term rises in interest rises,
jump d is on October 13, 2000, due to fears of oil price rises in the run-up to the
Iraq war, jump e is 4% drop on July 18, 2002, due to market nervousness at the time

of the collapse of WorldCom, and jump f is due to 9% drop following the rejection
of bailout plan by the U.S. senate.

4.2 Other Indices

Three more indices were analyzed over the same period: the NASDAQ 100 (April

28, 1989, until February 26, 2009), FTSE 100 (from May 17, 1989, until February 26,
2009), and the Nikkei 225 (November 4, 1988, until February 26, 2009). All time se-
ries contained 5000 observations (the same length as the S&P 500 index analyzed in

the previous subsection). Some additional results are presented in the Appendix A.
Plots of the log returns for each index is shown in Figure 4.

 by guest on January 18, 2011
jfec.oxfordjournals.org

D
ow

nloaded from
 

http://jfec.oxfordjournals.org/


GRIFFIN | Infinite Superpositions of Non-Gaussian OU Processes 23

NASDAQ 100 FTSE 100 Nikkei 225

1990 1994 1998 2002 2006

0

0.1

-0.1

0.2

-0.2
1990 1994 1998 2002 2006

0

0.05

-0.05

0.1

-0.1
1990 1994 1998 2002 2006

0

0.05

0.1

-0.1

0.15

-0.15

Figure 4 The returns for the NASDAQ 100, FTSE 100, and Nikkei 225 indices.
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Figure 5 The posterior mean of FJ for the NASDAQ 100, FTSE 100, and Nikkei 225 indices using
the Inf-Sup Gamma OU (solid line) and the Inf-Sup NP OU (dashed line).
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Figure 6 The posterior mean of Fλ for the NASDAQ 100, FTSE 100, and Nikkei 225 indices using
the Inf-Sup Gamma OU (solid line) and the Inf-Sup NP OU (dashed line).

Figure 5 shows the posterior mean of FJ using the parametric and nonpara-
metric mean for the three indices. The inference from the NASDAQ 100 for the
distribution was similar using the parametric and nonparametric model. How-

ever, inference with the FTSE 100 index showed a difference between the estimate
using the nonparametric model and the parametric model. The results showed a
lot more mass close to zero and much less mass above 2. The inference about FJ

with the Nikkei 225 also showed more mass close to zero and less mass for larger
values of J.
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Figure 7 Posterior median of the volatility (solid line) with 95% credible interval (dashed line)
for the NASDAQ 100, FTSE 100, and Nikkei 225 indices using the Inf-Sup NP OU.

Figure 6 shows the posterior mean of Fλ for the three indices under the para-
metric and nonparametric models. The results were very close under the two mod-

els with each data set and had a multimodal shape (like the results for the S&P 500
index). The distribution for the NASDAQ 100 was again trimodal but the mass
around each mode was rather different. The NASDAQ 100 has a much smaller

mode around the values of −7.5 and −2.5 and a much larger mass around −5.
The estimates for the FTSE 100 index again showed a trimodal shape with modes
around −7.5, −5, and −2.5 which fell in similar proportion to the estimates for

the S&P 500 index under the parametric model. However, in contrast to the re-
sults for the S&P 500 index, there are clear differences between the parametric and
nonparametric estimates. The nonparametric estimate placed more mass around

−5. The results for the Nikkei 225 index showed a substantial mode around 2.5
and a smaller mode around −7.5 which was closer to the results for the FTSE 100
than the S&P 500 and NASDAQ 100. This suggested that a lot of the dynamics in

these indices were caused by relatively short-lived effects which last on the order
of 2 weeks.

Figure 7 shows point-wise posterior estimates of σn for the three indices. The

results for the FTSE 100 were similar to results for the S&P 500 index. However, the
results for NASDAQ 100 were rather different to the S&P 500, with the period 1998

particularly different with volatility growing to about 5% in 2001. Interestingly,
jumps in volatility tended to occur at similar times but the effects seem to decay at
a slower rate. This was consistent with the larger mass around −5 and the smaller

mass around −2.5 in the posterior mean of Fλ compared with the S&P 500 index.
Table 2 shows the posterior mean of the mass placed on the different frequency

categories in the posterior mean of Fλ with the four stock indices. The NASDAQ

100 and Nikkei 225 placed much more mass in the medium category and much
less mass in the low-frequency category than the FTSE 100 and S&P 500 indices.

The posterior mean volatilities assigned to the medium-frequency category

are shown in Figure 8 with the same posterior mean for the S&P 500 index
plotted as a dotted line for comparison (the posterior means for three indices for
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Table 2 The posterior mean mass that Fλ places on the different categories for
the four indices.

Index Low Medium High

S&P 500 0.47 0.32 0.21

NASDAQ 100 0.27 0.55 0.18

FTSE 100 0.41 0.42 0.17

Nikkei 225 0.29 0.54 0.16

all categories are shown in the Appendix A). Comparing the estimates from the
NASDAQ 100 and the S&P 500 indices shows that jumps in volatility occurred at
the same times (in response to the same economic factors). However, the NAS-

DAQ 100 had a much higher overall volatility and different estimated jump sizes.
Comparing the six large jumps identified for the S&P 500 index (which are shown
as events (a)–(f)) leads to the following observations. The total effect on volatility

around event (a) was to double volatility (from 0.5 to 1.0 for the S&P 500 index and
from 0.7 to 1.3 for the NASDAQ 100) over a period of a month (which includes sev-
eral smaller jumps). Around event (b), volatility jumps from 0.4 to 1.1 for the S&P

500 from 1.1 to 2.3 for the NASDAQ 100. The absolute effect of the Russian default
and the Asian crisis was larger for the NASDAQ 100 but the relative effect was

smaller (with the volatility of the S&P 500 almost trebling whereas the volatility
of the NASDAQ 100 only doubled). The effects of events (c) and (d) were much
larger for the NASDAQ 100 than the S&P 500. The volatility of the NASDAQ 100

jumped from 1.5 to 3.4 whereas the volatility of the S&P 500 jumped from 0.5 to
0.9 around event (c). The volatility jumped from 2.6 to 4.0 whereas the volatility
of the S&P 500 jumped from 0.6 to 1.1 around event (d). Conversely, the change
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Figure 8 The posterior mean volatility in the medium-frequency category for the NASDAQ 100,
FTSE 100, and Nikkei 225 (solid line) with the posterior mean volatility in the medium-frequency
category for the S&P 500 index (dashed line).
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in volatility around event (e) showed a change in the volatility of S&P 500 from
0.6 to 2.0 whereas the volatility of the NASDAQ 100 jumped from 2.1 to 2.9.

Finally, around event (f), the volatility of the NASDAQ 100 jumped from 1.2 to
3.7 and the volatility of the S&P 500 jumped from 0.7 to 3.0.

In contrast to the NASDAQ 100, the volatility of the FTSE 100 followed the

volatility of the S&P 500 much more closely with a similar overall level of volatility.
However, there were some noticeable differences in the period 1992 to 1996 where
the volatility of the S&P 500 consistently fell, unlike the FTSE 100 which showed

two periods of increased volatility (which are discounted to similar levels as the
S&P 500). In particular, there is an extra large jump which is marked g and is
associated with “Black Wednesday” when Britain withdrew from the European

Exchange Rate Mechanism. Clearly, this event would affect the British economy
but not the American economy.

5 DISCUSSION

This paper proposes a Bayesian nonparametric approach to estimating a general
OU-type stochastic volatility model and develops computational methods neces-

sary to fit it. The volatility process is assumed to be a superposition of an infinite
number of OU processes. This provides a flexible specification for the dynamics
of the volatility process and avoids the need to prespecify the number of compo-

nents included in the finite superposition model. The introduction of a nonpara-
metric jump distribution allows flexible inference about the marginal distribution
of the volatility. A novel MCMC approach is used to draw inference about the

volatility process with a minimum of truncation. The analysis of four stock in-
dices show that the mixing distribution of the superposition, Fλ, is multimodal
(and often trimodal) if drawn on the log scale. This suggests decomposing volatil-

ity into subprocesses which are associated with each mode and so characterized
by their dynamic behavior. These subprocesses work on very different timescales.

One subprocess shows long-range dependence which represents a slow-moving
volatility process, and a second subprocess shows a quickly decaying dependence
which has a half-life of about 2 weeks. A third process, which has a medium-range

dependence, is the most interesting and has jumps which can be associated with
economic events.

The model could be developed by allowing other aspects of the model such

as the risk-premium or leverage effect to differ between components. The extra
flexibility would come at the cost of specifying an informative prior which makes
the extension nontrivial. The model could also be applied to other financial time

series. It would be particularly interesting to apply the model to high-frequency
data.
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A. ADDITIONAL RESULTS

Table 3 Posterior estimate of parameters for the NASDAQ 100 index.

Inf-Sup Gamma OU Inf-Sup NP OU

E[σ2
n ] 2.9 (2.0, 5.7) 4.9 (2.6, 9.4)

SD[σ2
n ] 3.7 (1.9, 9.5) 9.5 (3.2, 26.2)

E[J] 1.2 (0.9, 1.9) 2.0 (1.2, 2.9)

E[λ] 0.024 (0.011, 0.046) 0.028 (0.012, 0.049)

µ 0.086 (0.032, 0.139) 0.094 (0.042, 0.147)

β −0.015 (−0.037, 0.001) −0.017 (−0.039, 0.004)

ρ −0.82 (−1.28, −0.48) −0.64 (−1.08, −0.29)

Mλ 2.0 (0.7, 4.3) 2.4 (0.7, 5.1)

λJ 0.010 (0.002, 0.037) 0.012 (0.002, 0.043)

σ2
J 3.0 (1.6, 6.9) 3.0 (1.5, 6.9)

Table 4 Posterior estimate of parameters for the FTSE 100 index.

Inf-Sup Gamma OU Inf-Sup NP OU

E[σ2
n ] 1.6 (0.8, 4.0) 2.1 (1.2, 4.6)

SD[σ2
n ] 1.5 (0.6, 6.1) 2.1 (0.9, 6.7)

E[J] 1.0 (0.6, 1.7) 1.0 (0.6, 1.8)

E[λ] 0.021 (0.006, 0.050) 0.024 (0.009, 0.050)

µ 0.047 (0.001, 0.085) 0.048 (0.012, 0.085)

β −0.031 (−0.072, 0.009) −0.031 (−0.073, 0.009)

ρ −0.78 (−1.26, −0.39) −0.84 (−1.40, −0.46)

Mλ 2.0 (0.7, 4.6) 2.4 (0.8, 5.4)

λJ 0.0047 (0.0009, 0.0164) 0.0045 (0.0009, 0.0146)

σ2
J 3.7 (1.9, 8.9) 3.8 (1.9, 9.2)
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Table 5 Posterior estimate of parameters for the Nikkei 225 index.

Inf-Sup Gamma OU Inf-Sup NP OU

E[σ2
n ] 2.6 (1.8, 5.4) 3.9 (2.3, 7.8)

SD[σ2
n ] 3.6 (1.8, 9.6) 7.0 (2.4, 19.4)

E[J] 1.3 (0.9, 2.1) 1.8 (1.0, 2.8)

E[λ] 0.023 (0.011, 0.041) 0.024 (0.013, 0.038)

µ 0.052 (0.001, 0.101) 0.053 (0.002, 0.103)

β −0.039 (−0.071, −0.008) −0.040 (−0.071, −0.008)

ρ −0.48 (−0.92, −0.30) −0.55 (−0.88, −0.26)

Mλ 2.15 (0.42, 5.32) 2.72 (1.10, 5.33)

λJ 0.018 (0.006, 0.043) 0.018 (0.007, 0.041)

σ2
J 4.6 (2.3, 10.4) 4.6 (2.3, 10.1)
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Figure 9 The posterior mean volatility in the three frequency categories for the NASDAQ 100,
FTSE 100, and Nikkei 225 using the Inf-Sup NP OU model.
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