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ON THE DYBVIG-INGERSOLL-ROSS THEOREM
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The Dybvig-Ingersoll-Ross (DIR) theorem states that, in arbitrage-free term struc-
ture models, long-term yields and forward rates can never fall. We present a refined
version of the DIR theorem, where we identify the reciprocal of the maturity date as
the maximal order that long-term rates at earlier dates can dominate long-term rates
at later dates. The viability assumption imposed on the market model is weaker than
those appearing previously in the literature.
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1. INTRODUCTION

1.1. Background and Discussion of the Results

In interest-rate modeling, it is a well-known result that if the market is arbitrage-free,
then long-maturity yields, as well as forward rates, can never fall. The last statement
is commonly referred to as the Dybvig-Ingersoll-Ross (DIR) theorem, acknowledging
the fact that its first occurrence was in Dybvig, Ingersoll, and Ross (1996) and opened
this research direction. Since then, there has been substantial interest in the literature
regarding this result: McCulloch (2000) contained some clarifications on the original
proof. Later, Hubalek, Klein, and Teichmann (2002) presented an elegant mathematical
proof in a quite general context. Recently, Goldammer and Schmock (2010) discussed
further interesting generalizations, as well as an asymptotic minimality property, also
appearing in Schulze (2008).

In order to get a better feeling for what the DIR theorem states, let PT
t denote the

price at time t ∈ R+ of a zero-coupon bond with maturity T > t; then,

RT
t = − log

(
PT

t

)
T − t

(1.1)

is the prevailing yield from time t to maturity T . By “long-maturity yield at time t,”
one usually means the limit of RT

t as T → ∞, which, provided it can be defined in
some sense, we denote by R∞

t . The DIR theorem states that, under the assumption
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of absence of arbitrages in the market, R∞
s ≤ R∞

t holds whenever s ≤ t. A completely
similar statement is valid for forward rates; to refrain ourselves from being repetitive, we
shall focus on yields for the purposes of the introductory discussion here.

Originally, the DIR theorem is stated for term-structure models of interest rates. We
choose here to take the more comprehensive viewpoint of the term-structure of a market
for exchange over time of some underlying asset, which could be a currency, a commodity
with investment value, or a similar security. Within this framework, PT

t represents the
units of the underlying asset required by the market at time t ∈ R+ in return of one unit
of the underlying asset at time T > t. In other words, PT

t denotes the price, in units of the
asset, of a derivative contract that allows transferring the asset through time; as such, it
is therefore deeply linked to the term structure of yields and forward rates.

Having clarified the background and statement of the DIR theorem in this general
context, two natural questions come to mind.

1. What can we salvage if R∞
t cannot be defined for some t ∈ R+, that is, if limits of

yields as the maturity tends to infinity do not exist?
2. For long-term, but finite maturities T , the relation RT

s ≤ RT
t , for s ≤ t, might fail

to hold. How large can the discrepancy RT
s − RT

t be?

An approach to answering the first question is undertaken in Goldammer and Schmock
(2010). There, an appropriate superior limit definition is utilized in order to compensate
for the possible nonexistence of the actual limit. In fact, the authors give a reasonable
economic justification for considering the aforementioned superior limit. The approach
we take here is to consider the difference RT

s − RT
t for s ≤ t as T → ∞, and examine

when its superior limit (in probability) exists and is nonpositive. Though the previous two
approaches are similar in nature, focusing on the difference of the rates allows for more
detailed comparisons. An example of such instance would be the case where long-term
rates explode in the limit.

To the best of our knowledge, an attempt to answer the second question posed above
has not appeared in the literature. We show here that the highest possible order that RT

s
can be larger than RT

t is 1/T , that is, the reciprocal of the long-term maturity. In fact, we
shall show by example that this order is the best possible that can be achieved.

As mentioned earlier, and as easy counterexamples show, the DIR theorem is valid only
under an assumption regarding nonexistence of some sort of arbitrages in the market. In
the literature, there had been mainly two approaches in formalizing such an assumption.

• In the first approach, authors stipulate a “no limiting arbitrage” condition in the
market, reminiscent of the “No Free Lunch with Vanishing Risk” condition intro-
duced in Delbaen and Schachermayer (1994). This was for example the approach
initially taken in Dybvig, Ingersoll, and Ross (1996), as well as in McCulloch (2000)
shortly after. More recently, Schulze (2008) also takes the same path.

• The second approach is to assume the existence of a locally equivalent martingale
measure (EMM) in the market. Bond prices are defined as expectations under the
EMM of contingent claims giving unit payoff at maturity, discounted by the savings
account. This viewpoint on the statement of the DIR theorem was initiated in
Hubalek, Klein, and Teichmann (2002).

The Fundamental Theorem of Asset Pricing, established in Delbaen and Schachermayer
(1994) for the case of equity markets, indicates that the previous assumptions are very
closely connected. However, the fact that a continuum of assets is available to trade in



ON THE DYBVIG-INGERSOLL-ROSS THEOREM 731

bond markets forces different tools to be employed under the two approaches above. This
is true even in papers who treat both cases, like in Goldammer and Schmock (2010).

Here, we take a path that unifies the above two approaches, at the same time weakening
market viability assumptions that have previously appeared. This is done by assuming
existence of “strictly positive supermartingale deflators” in the market, an assumption
weaker than the existence of an EMM, and equivalent to absence of arbitrages of the
first kind in the bond market where only long positions are allowed, as is discussed in
Kardaras (2011).

After a few probabilistic definitions and later needed results will conclude this section,
the structure of the remaining paper is as follows: In Section 2 all the results are presented,
while Section 3 contains examples that illustrate our main findings.

1.2. Probabilistic Definitions and Notation

Let (�, F, P) be a probability space where all the random elements appearing below
will be based. All relationships between random variables (like equalities, inequalities,
etc.) should be understood to hold in the P-a.s. sense.

For A ∈ F and B ∈ F , we write A ⊆P B if and only if P[(� \ B) ∩ A] = 0—in other
words, A ⊆P B means that A is contained in B modulo P. Also, A =P B means A and B
are equal modulo P, that is, that both A ⊆P B and B ⊆P A hold.

For a collection (ξT)T∈R+ of random variables, P- lim supT→∞ ξT is defined to be the
essential infimum of all extended-valued random variables (i.e., random variables that can
potentially take infinite values, both positive and negative) ζ such that limT→∞ P[ξT ≤
ζ ] = 1. Observe that P- lim supT→∞ ξT is an extended-valued random variable. We also
define P- lim infT→∞ ξT := −P- lim supT→∞(−ξT). The limit in probability of (ξT)T∈R+
as T → ∞ exists if and only if P- lim infT→∞ ξT = P- lim supT→∞ ξT; in this case, this
limit is denoted by P- limT→∞ ξT. For these definitions and more discussion, we refer the
reader to He, Wang, and Yan (1992, chapter I).

Let again (ξT)T∈R+ be a collection of random variables. Whenever

lim
�→∞

(
lim sup

T→∞
P[ξT > �]

)
= 0

holds, we shall be writing ξT = O↑
P (1) as T → ∞. Also, if (αT)T∈R+ is a sequence of

strictly positive real numbers and A ∈ F , we write ξT = O↑
P (αT) on A as T → ∞ if and

only if IAξT/αT = O↑
P (1) as T → ∞, where IA denotes the indicator function of the event

A. Furthermore, we write ξT = O↓
P (αT) on A as T → ∞ if and only if −ξT = O↑

P (αT) on
A as T → ∞. Finally, ξT = OP(αT) on A as T → ∞ means |ξT| = O↑

P (αT) on A as T →
∞. If the set A ∈ F is not explicitly mentioned, it will be tacitly assumed that A = �.

As the reader might have already guessed, we are using throughout the upwards-
pointing arrow “↑” as a mnemonic device when dealing with boundedness from above;
similarly, the downwards-pointing arrow “↓” will be used in cases where boundedness
from below is involved.

We close this introductory discussion with two general results, which will be used in
the text.

PROPOSITION 1.1. In the statements below, (ξT)T∈R+ and (ζ T)T∈R+ are collections of
random variables and (αT)T∈R+ is a collection of strictly positive real numbers.

(1) P- lim supT→∞ ξT < ∞ implies that ξT = O↑
P (1) as T → ∞.
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(2) If ξT = O↑
P (αT) as T → ∞ and limT→∞αT = 0, then P- lim supT→∞ ξT ≤ 0.

(3) If P- lim supT→∞(ξT − ζ T) ≤ 0, then P- lim supT→∞ ξT ≤ P- lim supT→∞ ζ T.

Proof .

(1) Let ξ = P- lim supT→∞ ξT. Fix � ∈ R+. The set-inclusion {ξ ≤ � − 1}⋂
{ξT ≤ ξ + 1} ⊆ {ξT ≤ �}, valid for all T ∈ R+, gives

P[ξT > �] ≤ P[ξ > � − 1] + P[ξT > ξ + 1].(1.2)

As P[ξ < ∞] = 1, we get limT→∞ P[ξT > ξ + 1] = 0 from the definition of P-
lim supT→∞ ξT. Therefore, (1.2) gives lim supT→∞ P[ξT > �] ≤ P[ξ > � − 1].
Using again P[ξ < ∞] = 1 we get lim�→∞ P[ξ > � − 1] = 0; therefore, lim�→∞
(lim supT→∞ P[ξT > �]) = 0, which is what we needed to prove.

(2) Let ε > 0. Then,

lim sup
T→∞

P[ξT > ε] = lim sup
T→∞

P[ξT/αT > ε/αT] ≤ lim sup
T→∞

P[ξT/αT > �]

holds for all � > 0 in view of limT→∞αT = 0. Taking limits as � → ∞ in the extreme
sides of the previous inequality we obtain lim supT→∞ P[ξT > ε] = 0, which means
that P- lim supT→∞ ξT ≤ ε. As this holds for all ε > 0, we get P- lim supT→∞ ξT ≤ 0.

(3) Take any random variable η such that limT→∞[ζ T ≤ η] = 1. For any ε > 0, we have

lim sup
T→∞

P[ξT > ε + η] ≤ lim sup
T→∞

P[ζ T > η] + lim sup
T→∞

P[ξT − ζ T > ε] = 0.

This implies that P- lim supT→∞ ξT ≤ ε + P- lim supT→∞ ζ T for all ε > 0. Letting
now ε tend to zero, we get the result. �

PROPOSITION 1.2. Let (ξT)T∈R+ be a collection of random variables. Then, the following
statements are true.

(1) There exists 	↓ ∈ F such that: ξT = O↓
P (1) on A ∈ F as T → ∞ if and only if

A ⊆P 	↓.
(2) There exists 	↑ ∈ F such that: ξT = O↑

P (1) on A ∈ F as T → ∞ if and only if
A ⊆P 	↑.

(3) There exists 	 ∈ F such that: ξT = OP(1) on A ∈ F as T → ∞ if and only if
A ⊆P 	.

Furthermore, the sets 	↓, 	↑, and 	 are unique modulo P.

Proof . We only prove statement (1); the proofs of statement (2) and statement (3) are
entirely similar.

Consider the class G↓ := {
A ∈ F | ξT = O↓

P (1) holds on A as T → ∞} ⊆ F . Since
∅ ∈ G↓, the class G↓ is nonempty. Furthermore, it is relatively straightforward to see that
G↓ is closed under countable unions. Observe that ⊆P is a partial ordering on the subsets of
F . Let H ⊆ G↓ be a totally ordered set for the order ⊆P and let p := sup{P[A] | A ∈ H}.
For all n ∈ N, pick An ∈ H such that P[An ] ≥ p − 1/n. If A := ⋃

n∈N An , then A ∈ G↓

and it is straightforward that A is an upper bound of H. Zorn’s lemma then implies the
existence of a maximal element in G↓. Since G↓ is closed with respect to finite unions, we
conclude that the previous maximal element is unique, which we call 	↓. The uniqueness
modulo P of such set 	↓ follows immediately from statement (1) of the result. �
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2. RESULTS

2.1. Market Model and Yields

In all that follows, we shall be working on a filtered probability space
(�,F, (Ft)t∈R+ , P), where (Ft)t∈R+ is a right-continuous filtration. We consider a col-
lection (PT)T∈R+ of càdlàg (right continuous with left-hand limits) adapted stochastic
processes indexed by their maturity T ∈ R+. For each T ∈ R+, PT is defined in the finite
time interval [0, T ], that is, PT = (PT

t )t∈[0,T]. We assume that P[PT
t > 0] = 1 holds for all

t ∈ [0, T ] and T ∈ R+, as well as P[PT
T = 1] = 1. For a concrete interpretation, regard

PT
t as the price at time t of an instrument delivering a unit of account at time T ≥ t.

Observe however that we do not necessarily assume that PT ≤ 1, which is true in bond
markets. This is done for a number of reasons:

(1) From a theoretical viewpoint, PT ≤ 1 is not needed for the results we shall
present.

(2) From a model-building perspective, such assumption would immediately disqualify
all Gaussian short-rate models that are widely used in the industry.

(3) On a more practical side, and as mentioned in the Introduction, our results are
applicable in diverse situations, such as commodity markets. If the storage costs
that apply for the commodity involved, which could be for example oil, are more
than the convenience yield it carries, it is certainly possible that PT

t > 1 holds for
t < T .

For 0 ≤ t < T , the yield RT
t from time t to maturity T is defined in (1.1). Events where

long-term yields are essentially bounded will turn out to be crucial in our discussion.
In all that follows, for t ∈ R+, we use 	

↓
t , 	

↑
t , and 	t to be the events appearing in the

statement of Proposition 1.2 corresponding to the case where ξT = RT
t for T > t. It is

apparent that 	
↓
t is the maximal (modulo P) event such that long-term yields at time t

are bounded in probability from below. Exactly similar characterizations are true for 	
↑
t

and 	t in terms of boundedness in probability from above and two-sided boundedness
in probability, respectively. Obviously, 	t =P 	

↓
t ∩ 	

↑
t holds for all t ∈ R+.

REMARK 2.1. In bond markets, we have PT ≤ 1 for all T ∈ R+, or equivalently that
RT ≥ 0 for all T ∈ R+. Therefore, 	

↓
t =P � for all t ∈ R+; in other words, long-term

yields trivially are essentially bounded from below at every time t ∈ R+.

REMARK 2.2. It has been empirically observed that yield curves flatten out for very
long maturities; a discussion on this appears for example in Malkiel (1966). There also
exist theoretical justifications of this phenomenon, as is described in El Karoui, Frachot,
and Geman (1998) and Yao (1999). To rigorously describe such behavior in a weak sense,
assume that P- limT→∞ RT

t exists and is a P-a.s. finite random variable for a fixed t ∈ R+.
Then, statement (1) of Proposition 1.1 implies that 	t =P �.

REMARK 2.3. In this paper, we treat continuous-time models—for this reason, we use
the definition (1.1) for yields. We note, however, that all our results still hold in discrete-
time (infinite horizon) settings, with the appropriate changes in the definition of yields
and forward rates (see, e.g., equations (2.1) and (2.3) of Goldammer and Schmock 2010).
The details have been extensively discussed in Hubalek, Klein, and Teichmann (2002)
and Goldammer and Schmock (2010), where we refer the interested reader.
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2.2. Strictly Positive Supermartingale Deflators

The notion introduced below is central in our discussion.

DEFINITION 2.4. A strictly positive supermartingale deflator in the market is a càdlàg
process Y with inf t∈[0,T] Yt > 0, P-a.s., for all T ∈ R+, such that (Yt PT

t )t∈[0,T] is a super-
martingale for all T ∈ R+.

Existence of a strictly positive supermartingale deflator is equivalent to absence of
arbitrages of the first kind in the market with acting investors that may only take
long positions on the instruments with prices (PT)T∈R+ . For such “abstract” mar-
kets with infinite number of assets, the last fact is explained in detail in Kardaras
(2011).

REMARK 2.5. Even if the processes (PT )t∈[0,T ] for T ∈ R+ are not initially assumed
to have càdlàg paths, but are only right-continuous in probability, the existence of a
strictly positive supermartingale deflator, as in Definition 2.4, coupled with the standard
supermartingale modification theorem (which can be applied here because the underlying
filtration is right-continuous), implies that there exist càdlàg modifications of (PT )t∈[0,T ],
T ∈ R+. As every model encountered in practice consists of càdlàg price-processes, we
plainly enforce this requirement from the outset.

We shall now discuss the traditional way of constructing markets possessing a strictly
positive supermartingale deflator, via the existence of an EMM. We include this discus-
sion for completeness since we shall be using it in the examples below. It is important
to note that markets where a strictly positive supermartingale deflator exists form a
wide-encompassing class, substantially larger than the concrete situation described in
the example below. A concrete realistic example where an EMM fails to exist, but a
strictly positive supermartingale deflator does exist, is presented in subsection 3.2 of
Bruti-Liberati, Nikitopoulos-Sklibosios, and Platen (2010); in this respect, see also Sub-
section 3.3 of this paper.

EXAMPLE 2.6. Let Q be a probability on (�,F) such that Q is equivalent to P on Ft for
all t ∈ R+. Consider also a càdlàg nonnegative process B, representing the savings account,
such that P[inf t∈[0,T] Bt > 0] = 1 as well as EQ[1/BT] < ∞, for all T ∈ R+. Define PT to
be a càdlàg modification (which exists in view of the fact that the underlying filtration is
right-continuous) of the process [0, T]  t �→ Bt EQ[1/BT | Ft]. For this market, a strictly
positive supermartingale deflator exists and is given by

Y := 1
B

d(Q |F· )
d(P |F· )

.

(In fact, one should consider a càdlàg version of the process above.) Indeed, it is straight-
forward to check that (Yt PT

t )t∈[0,T] is actually a P-martingale for all T ∈ R+.

Contrary to the construction in Example 2.6 above, we do not explicitly define a savings
account here, as it is not needed. At any rate, given a market with prices (PT)T∈R+ , if a
savings account B is able to generate the market in the sense of Example 2.6, that is, if
PT

t = Bt EQ[1/BT | Ft] holds for all t ≤ T where Q is equivalent to P on Ft for all t ∈ R+,
then B is essentially unique; see Döberlein, Schweizer, and Stricker (2000).
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2.3. Long-term Yields

We are ready to state the main result of the paper, which can be regarded as a ramifi-
cation of the DIR theorem.

THEOREM 2.7. Suppose that a strictly positive supermartingale deflator exists in the
market. Let s ≤ t. Then:

(1) 	
↓
s ⊆P 	

↓
t .

(2) RT
s − RT

t = O↑
P (1/T) holds on 	

↓
t as T → ∞.

Proof . For all T ∈ R+, define LT = (LT
t )t∈[0,T] via LT := YPT , where Y is a strictly

positive supermartingale deflator as in Definition 2.4. Then, (LT
t )t∈[0,T] is a nonnegative

supermartingale and (T − u)RT
u = − log(LT

u ) + log(Yu) holds whenever u < T . Write

(T − t)
(
RT

s − RT
t

) = −(t − s)RT
s + log

(
LT

t

LT
s

)
− log

(
Yt

Ys

)
.(2.1)

Let � > 0; then, we have

P
[

log
(
LT

t

/
LT

s

)
> �

] = P
[
LT

t

/
LT

s > e�
] ≤ e−�,

following from Markov’s inequality, since LT is a nonnegative supermartingale. This
implies that log(LT

t /LT
s ) = O↑

P (1) as T → ∞. Since log (Yt/Ys) is an R-valued random
variable and −(t − s)RT

s = O↑
P (1) holds on 	

↓
s as T → ∞, (2.1) gives that (T − t)(RT

s −
RT

t ) = O↑
P (1) on 	

↓
s as T → ∞. As this obviously implies that RT

s − RT
t = O↑

P (1) on 	
↓
s

as T → ∞, we obtain that

T
(
RT

s − RT
t

) = (T − t)
(
RT

s − RT
t

) + t
(
RT

s − RT
t

) = O↑
P (1) holds on 	↓

s as T → ∞,

which is the same as saying that RT
s − RT

t = O↑
P (1/T) on 	

↓
s as T → ∞. This immediately

implies that 	
↓
s ⊆P 	

↓
t .

Up to now we have proved that RT
s − RT

t = O↑
P (1/T) on 	

↓
s as T → ∞; we would like

to extend the last relationship to hold on 	
↓
t . Provided that we replace (2.1) with

(T − s)
(
RT

s − RT
t

) = −(t − s)RT
t + log

(
LT

t

LT
s

)
− log

(
Yt

Ys

)
,

one can follow essentially the same steps as above to finish the proof. �

2.4. The DIR Theorem Revisited

Let s ≤ t. Theorem 2.7 coupled with statement (2) of Proposition 1.1 immediately gives
that P- lim supT→∞(RT

s − RT
t ) ≤ 0 holds on 	

↓
t . In particular, and using statement (3) of

Proposition 1.1, we obtain that

P- lim sup
T→∞

RT
s ≤ P- lim sup

T→∞
RT

t holds on 	
↓
t .(2.2)

The last equation (2.2) should be compared with the result obtained in Goldammer
and Schmock (2010). Of course, in Goldammer and Schmock (2010) the superior limit is
taken in a stronger sense and the assumption that we are working on 	

↓
t is not present. It is
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indeed true that (2.2) can be still valid outside of 	
↓
t , even though P- lim supT→∞(RT

s −
RT

t ) > 0. Such a situation is described in Subsection 3.1.2; there, both sides of (2.2)
are equal to infinity, and are, therefore, equal in a trivial sense. Theorem 2.7 refines
the asymptotic relationship (2.2) by precisely examining the behavior of the relative
differences of long-term yields through different points in time.

2.5. Forward Rates

The next aim is to obtain an equivalent of Theorem 2.7 for forward rates, which we
now introduce. For 0 < t < t′ ≤ T , the forward rate, set at time t for investment from
time t′ up to maturity T , is defined via

F T
t,t′ := 1

T − t′ log

(
Pt′

t

PT
t

)
= T − t

T − t′ RT
t − t′ − t

T − t′ Rt′
t .(2.3)

Roughly speaking, the next result we shall present states that yields are essentially
bounded exactly on the set where forward rates and yields are asymptotically, as T → ∞,
equivalent of order 1/T . Similar statements hold for boundedness from below and above.
Observe that there is no market viability assumption in the statement of Proposition 2.8.

PROPOSITION 2.8. Let t ∈ R+ and A ∈ F . The following conditions are equivalent

(1) RT
t = O↓

P (1) on A as T → ∞.
(2) For all t′ > t, F T

t,t′ − RT
t = O↓

P (1/T) holds on A as T → ∞.
(3) For some t′ > t, F T

t,t′ − RT
t = O↓

P (1/T) holds on A as T → ∞.

The same equivalences hold if we replace “O↓
P” with “O↑

P” in all conditions (1), (2), and
(3), and similarly if we replace “O↓

P” with “OP” in all conditions (1), (2), and (3).

Proof . We shall only prove the equivalence of (1), (2), and (3) as explicitly stated in
Proposition 2.8. The treatment in the cases where we replace “O↑

P” with “O↓
P” or “OP”

in all conditions (1), (2), and (3) is entirely similar. In what follows, t ∈ R+ and A ∈ F
are fixed.

Start by assuming (1) and fix t′ > t. First of all, observe that F T
t,t′ = O↓

P (1) on A as
T → ∞, as follows from the fact that RT

t = O↓
P (1) on A as T → ∞ and the definition of

the forward rates at (2.3). Now, (T − t′)
(
F T

t,t′ − RT
t

) = (t′ − t)
(
RT

t − Rt′
t

)
as follows again

from (2.3), immediately gives that (T − t′)(F T
t,t′ − RT

t ) = O↓
P (1) on A as T → ∞, since

RT
t = O↓

P (1) on A as T → ∞. Using also the fact that F T
t,t′ − RT

t = O↓
P (1) on A as T →

∞, we get that T(F T
t,t′ − RT

t ) = O↓
P (1) on A as T → ∞, which is what we needed to show.

Of course, condition (2) implies condition (3).
Now, assume (3). Observe first that

(T − t′)
(
F T

t,t′ − RT
t

) =
(

T − t′

T

)
T

(
F T

t,t′ − RT
t

) = O↓
P (1) holds on A as T → ∞.

Then,

RT
t =

(
T − t′

t′ − t

) (
F T

t,t′ − RT
t

) + Rt′
t = O↓

P (1) holds on A as T → ∞,

which is exactly condition (1) and concludes the proof. �
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According to Proposition 2.8 and Proposition 1.2, 	↓
t can be regarded as the largest set

where F T
t,t′ − RT

t = O↓
P (1/T) holds for some, and then for all, t′ > t. Similar interpretations

are valid for the events 	
↑
t and 	t, where t ∈ R+.

We are now ready to state the version of Theorem 2.7 for forward rates. The situation
is only slightly more complicated, since we have to control the boundedness of yields
from both sides at different points in time.

THEOREM 2.9. Suppose that a strictly positive supermartingale deflator exists in the
market. Let s ≤ t, as well as s < s′ and t < t′. Then, F T

s,s ′ − F T
t,t′ = O↑

P (1/T) holds on
	

↑
s ∩ 	

↓
t as T → ∞.

Proof . Write

F T
s,s ′ − F T

t,t′ = (
F T

s,s ′ − RT
s

) − (
F T

t,t′ − RT
t

) + (
RT

s − RT
t

)
.

Now, F T
s,s ′ − RT

s = O↑
P (1/T) and Rt − F T

t,t′ = O↑
P (1/T) and both hold on 	

↑
s ∩ 	

↓
t as

T → ∞ in view of Proposition 2.8. Furthermore, RT
s − RT

t = O↑
P (1/T) holds on 	

↓
t by

Theorem 2.7. Putting everything together, we obtain the claim of Theorem 2.9. �
REMARK 2.10. Let s ≤ t. If a strictly positive supermartingale deflator exists in the

market, statement (1) of Theorem 2.7 gives 	s =P 	
↑
s ∩ 	

↓
s ⊆P 	

↑
s ∩ 	

↓
t . In particular,

Theorem 2.9 implies that F T
s,s ′ − F T

t,t′ = O↑
P (1/T) holds on 	s as T → ∞, whenever s <

s′ and t < t′, which is a more pleasant statement.

3. REMARKS AND EXAMPLES

We proceed with several remarks and (counter)examples regarding our main results. The
most important ones are given in Subsection 3.2, where it is shown that the reciprocal of
the maturity is indeed the best order of domination that can be obtained, and Subsec-
tion 3.3, where we demonstrate that our market viability assumption is strictly weaker
than the ones that previously appeared in the literature.

3.1. Counterexamples on the Main Results

3.1.1. The inclusion 	
↓
s ⊆P 	

↓
t in Theorem 2.7 might fail when a strictly positive

supermartingale deflator does not exist. Consider, for example, the deterministic market
with PT

t = 1 for 0 ≤ t < 1 and t ≤ T , while PT
t = exp(T2 − t2) for 1 ≤ t ≤ T . Then,

RT
0 = 0 and RT

1 = −T − 1 holds for T ≥ 1. Therefore, 	
↓
0 =P � �P ∅ =P 	

↓
1 .

3.1.2. Even when a strictly positive supermartingale deflator exists, the asymptotic
behavior of yield differences mentioned in statement (2) of Theorem 2.7 can fail to hold
outside 	

↓
t . With Q = P and B defined via Bt = exp ( − t2) for t ∈ R+, define a market

according to Example 2.6. In this case, 	
↓
t =P ∅ for all t ∈ R+. Further, RT

t = −T − t
for t ≤ T , which implies that RT

s − RT
t = t − s > 0 for s < t, and statement (2) of

Theorem 2.7 fails to hold. Observe also in this example that the asymptotic relationship
lim supT→∞ RT

s = −∞ = lim supT→∞ RT
t trivially holds identically; however, one cannot

honestly claim that long-term yields are nonincreasing, as limT→∞(RT
s − RT

t ) = t − s > 0
whenever s < t.
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3.1.3. With Q = P and B defined via Bt = exp (t2) for t ∈ R+, define a bond market
according to Example 2.6. By construction, there exists a strictly positive supermartingale
deflator. Furthermore, 	

↓
t =P � holds for all t ∈ R+, and we have RT

t = T + t for t ≤ T .
In the setting of Theorem 2.7, this example shows that P- limT→∞(RT

s − RT
t ) exists

and is strictly negative on 	
↓
t for s < t. Indeed, this follows by observing that RT

s − RT
t =

−(t − s) < 0 for s < t.
We move on to the setting of Theorem 2.9. A straightforward use of (2.3) gives that, for

0 ≤ t < t′ < T , F T
t,t′ = T + t′. Pick s ≤ t, s < s′, t < t′; then, limT→∞(F T

s,s ′ − F T
t,t′ ) = s ′ − t′,

which can take any value in R for appropriate choices of s′ and t′. Therefore, this example
shows that we can have P- limT→∞(F T

s,s ′ − F T
t,t′ ) < 0 on 	

↓
t , if we are not working on 	

↑
s ,

which shows the sharpness of the result in Theorem 2.9.

3.2. Optimal Rate

The rate O↑
P (1/T) obtained in statement (2) of Theorem 2.7 cannot be improved. We

shall now present an example where P- limT→∞(T(RT
s − RT

t )) exists for all s < t, and is a
nonzero random variable. We shall use again the construction of Example 2.6.

Consider the filtered probability space (�,F, (Ft)t∈R+ , P), and let Q = P. Let also W
be a standard one-dimensional Brownian motion on the latter filtered probability space.
The filtration (Ft)t∈R+ is assumed to be the one generated by W . Let b ∈ R. Define a
short-rate process r starting at some r0 ∈ R, satisfying

rt = e−tr0 + (1 − e−t)b −
√

2e−t
∫ t

0
Wueu du +

√
2Wt

for all t ∈ R+. In differential terms it is easy to see that drt = (b − rt) dt + √
2 dWt; this is

a special case of the Vasicek model for the short rate—see Vasicek (1977). The parameters
are chosen to simplify the formula (3.1) below for the yield. Let B := exp(

∫ ·
0 rt dt) and

define a market according to Example 2.6. In this case, it is well known (see Brigo and
Mercurio 2006) that

RT
t = 1 − e−(T−t)

T − t
rt + (1 − e−(T−t))2

2(T − t)
+ (b − 1)

(
1 − 1 − e−(T−t)

T − t

)
.(3.1)

In particular, P- limT→∞ RT
t = b − 1 holds for all t ∈ R+, which implies that 	

↓
t =P � for

all t ∈ R+. Using (3.1) once again we get P- limT→∞(TRT
t − T(b − 1)) = rt − b + 3/2.

Therefore, for s < t, P- limT→∞(T(RT
s − RT

t )) = rs − rt, which is a nontrivial Gaussian
random variable.

3.3. Market Viability

As already discussed, asking for the existence of a strictly positive supermartingale
deflator is a market viability condition that is weaker than the ones that have appeared
previously in the literature. Here, we shall present an example of a market with deter-
ministic bond prices which admits a strictly positive supermartingale deflator, but where
more classical viability assumptions fail.

The probability space we are working on is left intentionally unspecified, since it
plays absolutely no role. For 0 ≤ t ≤ T , define PT

t = min{1, exp(1 − (T − t))}. Since
RT

t = 1 − 1/(T − t) holds for T > t + 1, we obtain limT→∞ RT
t = 1 for all t ∈ R+.
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Therefore, 	t =P � for all t ∈ R+, and the results of Theorem 2.7 and Theorem 2.9 hold
trivially.

Let Y be defined via Yt = exp (−t) for t ∈ R+. Then, Yt PT
t = min{exp(−t), exp(1 − T)}

for 0 ≤ t ≤ T , which means that (Yt PT
t )t∈[0,T] is a nonincreasing process, that is, a

supermartingale. It follows that a strictly positive supermartingale deflator exists in this
market. Therefore, there cannot exist any arbitrage of the first kind in the market if we only
consider long positions in the bonds, as follows from the existence of a strictly positive
supermartingale deflator in view of the general results in Kardaras (2011). However,
we shall shortly see that if we allow for short positions on short-term bonds, arbitrages
appear.

Let t ∈ R+. For any T ≥ t + 2, note that

PT
t = exp(−T + t + 1) < Pt+1

t PT
t+1 = exp(−T + t + 2).

Consequently, there cannot exist a probability Qt,t+1 such that

PT
t ≥ Pt+1

t EQt,t+1 [PT
t+1 | Ft+1].

Therefore, condition 2.4 in Goldammer and Schmock (2010), which already is a weaker
version of existence of an EMM, is not satisfied. Furthermore, consider the follow-
ing investment strategy at time t: take a long position of exp (T − t − 1) units of
a bond maturing at time T ≥ t + 2 and a short position in a single unit of a
bond maturing at time t + 1. The capital required for this position at time t is −
exp(T − t − 1)PT

t + Pt+1
t = −1 + 1 = 0. At time t + 1, the value of this position will be

exp(T − t − 1)PT
t+1 − Pt+1

t+1 = exp(1) − 1 > 0.

Therefore, there exists an arbitrage in the market according to Definition 2.16 in
Goldammer and Schmock (2010) once we allow for short positions on short-term bonds.
Observe that one does not even need the “limiting” procedure mentioned in Goldammer
and Schmock (2010) in the definition of arbitrage.
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DÖBERLEIN, F., M. SCHWEIZER, and C. STRICKER (2000): Implied Savings Accounts Are Unique,
Finance Stoch. 4(4), 431–442.

DYBVIG, P. H., J. E. INGERSOLL JR, and S. A. ROSS (1996): Long Forward and Zero-coupon
Rates Can Never Fall, J. Business 69(1), 1–25.

EL KAROUI, N., A. FRACHOT, and H. GEMAN (1998): On the Behavior of Long Zero Coupon
Rates in a No Arbitrage Framework, Rev. Derivatives Res. 1(4), 351–369.

GOLDAMMER, V., and U. SCHMOCK (2010): Generalization of the Dybvig Ingersoll-Ross Theorem
and Asymptotic Minimality, Math. Finance Nov 22 [Epub ahead of print].



740 C. KARDARAS AND E. PLATEN

HE, S. W., J. G. WANG, and J. A. YAN (1992): Semimartingale Theory and Stochastic Calculus.
Beijing: Kexue Chubanshe (Science Press).

HUBALEK, F., I. KLEIN, and J. TEICHMANN (2002): A General Proof of the Dybvig-Ingersoll-Ross
Theorem: Long Forward Rates Can Never Fall, Math. Finance 12(4), 447–451.

KARDARAS, C. (2011): Generalized Supermartingale Deflators under Limited Information,
Math. Finance. http://arxiv.org/abs/0904.2913.

MALKIEL, B. G. (1966): The Term Structure of Interest Rates: Expectations and Behavior Patterns.
Princeton, NJ: Princeton University Press.

MCCULLOCH, J. H. (2000): Long Forward and Zero-coupon Rates Indeed Can Never Fall, but
Are Indeterminate: A Comment on Dybvig, Ingersoll and Ross, Working Paper 00-12, Ohio
State University, Department of Economics.

SCHULZE, K. (2008): Asymptotic Maturity Behavior of the Term Structure, Bonn Econ Discus-
sion Papers, University of Bonn, Germany.

VASICEK, O. (1977): An Equilibrium Characterization of the Term Structure, J. Finan. Econ.
5(2), 177–188.

YAO, Y. (1999): Term Structure Modeling and Asymptotic Long Rate, Insurance: Math. Econ.
25(3), 327–336.


