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Abstract. This draft will develop in notes for the Minerva lectures given at Columbia University

by the author in October of 2015. At this point, the text is very incomplete and may contain

substantial mistakes and inconsistencies. Please do not distribute without permission of the author,

and contact via email at k.kardaras@lse.ac.uk to report and errors you may have discovered.

Introduction

Discussion. The microeconomic theory of consumer demand starts with the description of the set

of available consumption bundles for acting agents—see for example, [MCWG95]. Without taking

budget constraints into account for the time being, a natural candidate for consumption space is

RS+, consisting of all functions f : S 7→ R+, where S in an appropriate index set. The modelling

freedom in choosing S allows for consideration of rather general scenarios. In the possibly most basic

deterministic and static case, S is the index set J of a collection of a distinct commodities1 available

for consumption. By considering S as the product of the commodities index set J with a (discrete,

or continuous) time index set T , a dynamic time component may be appended, reflecting the fact

that consumption of goods in different times has different effect on consumer satisfaction.2 Given

an already-existing time component, future uncertainty may be also introduced by considering

S = Ω× T × J , where Ω is the index set consisting of all possible states-of-nature. This last index

set is a representative (but in no way general-encompassing) case that one should keep in mind

throughout this introductory discussion. However, for the most part we keep simply the notation

S for the index set, and sometimes call the elements s ∈ S states.

Assume initially that S is a finite set, implying the finite-dimensionality of the consumption cone

RS+. A linear price vector µ ∈ RS+ assigns price µ(s) ∈ R+ on a unit of consumption at state s ∈ S.

The price of a consumption bundle f ∈ RS+ under prices µ ∈ RS+ is given by the “inner product”

(IP) 〈µ, f〉 :=
∑
s∈S

f(s)µ(s).

For every µ ∈ RS+, the price functional 〈µ, ·〉 : RS+ 7→ R+ is continuous; therefore, the budget set

(B) B(µ) :=
{
f ∈ RS+ | 〈µ, f〉 ≤ 1

}
Date: October 21, 2015.
1Or, in the theory of financial economics, a set of currencies.
2The introduction of a time component is important as it allows, for example, for the inclusion of impatience in

the modelling of preferences.
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of an economic agent with (normalized) unit capital facing prices µ is closed. It is also straightfor-

ward that B(µ) is a convex set for all µ ∈ RS+. Let us assume that the aforementioned economic

agent has preferences over consumption that are numerically represented by a quasi-concave and

upper semi-continuous utility function u : RS+ 7→ [−∞,∞]. We wish to ensure that the the following

utility maximization problem:

(UM) find g ∈ B(µ) such that u(g) = sup
f∈B(µ)

u(f),

has a solution. Since RS+ is finite-dimensional and u is upper semi-continuous, an obvious sufficient3

condition is that B(µ) is compact. Given that B(µ) is already closed, only its boundedness has to

be ensured, which is the case if and only if µ(s) > 0 holds for all s ∈ S. The last condition can be

restated in terms of absence of arbitrage; indeed, µ(s) = 0 for s ∈ S would imply that the agent’s

budget set would include arbitrary quantities of bundle 1{s}, since the latter non-zero bundle would

have zero price. To recapitulate the previous discussion: continuity of 〈µ, ·〉 implies that the budget

set B(µ) is closed, and µ ∈ RS++ leads to boundedness of B(µ); therefore, compactness of B(µ) for

no-arbitrage prices µ ∈ RS++ implies that (UM) has a solution.

The assumption that S is a finite set that was underlying the above discussion may be justified on

the grounds of “limited human capability;” however, (mathematical, at the very least) need arises

to extend the theory for infinite-state sets. Start with the case where S has countably infinite

cardinality—for example, this could be the case in infinite-horizon discrete-time models. With the

same interpretation of linear price vectors as previously, the price of a consumption bundle f ∈ RS+
under prices µ ∈ RS+ is still given by (IP), where the sum is well defined in view of the nonnegativity

of the entries, but may take the value ∞. There are at least a couple of ways to deal with the last

issue of potential infinite prices, as we explain below.

Restricting the sets of possible consumption bundles and price vectors may result in finite prices.

For example, this can be achieved through weighted `p-`q duality, where p ∈ [1,∞] and q ∈
[1,∞] are such that 1/p + 1/q = 1; such restriction would also offer a natural induced pair of

topologies, under which the dual pairing 〈·, ·〉 would be continuous. Its convex-analytic usefulness

notwithstanding, as the tools needed to attack convex problems are already developed and available,

this first way of dealing with the potentiality of infinite prices is rather ad-hoc: there is typically

no natural way to choose the appropriate weights and power in forming the relevant restricted

weighted `p-`q spaces. Even more to the point, different such choices can change the structure and

topology of the space substantially, therefore lacking a reasonable robustness requirement.

An alternative way to go about is to keep RS+ as the space of consumption bundles and price

vectors, and simply accept the possibility 〈µ, f〉 = ∞, with the plain interpretation that the

consumption bundle f ∈ RS+ under prices µ ∈ RS+ is never attainable, irrespective of the level

of the capital-at-hand. Furthermore, in order to keep a “coordinate-free” structure, a natural

analytic structure on RS+ is the product topology. This choice of topology, while consistent with

3And, in this finite-dimensional case, also “morally” necessary.
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the finite-dimensional case, results in yet another peculiarity: the functional 〈µ, ·〉 : RS+ 7→ [0,∞]

is continuous only when µ(s) = 0 for all but a potentially finite number of s ∈ S. However, this

precludes the use of “no-arbitrage” pricing rules, which would require that µ(s) > 0 for all s ∈ S.

As the use of no-arbitrage pricing functionals in unavoidable4 in the theory of Financial Economics,

we are led to also give up on the continuity requirement for 〈·, ·〉. However, not all is lost: it is

rather straightforward to show that 〈µ, ·〉 : RS+ 7→ [0,∞] is always lower semicontinuous (for the

considered product topology), implying that the budget set of (B) is still closed. If µ ∈ RS++,

it is easily seen that (B) is actually compact (always, in the product topology). In turn, the

previous imply that the utility maximization problem (UM) has a solution whenever µ ∈ RS++ and

u : RS+ 7→ [−∞,∞] is quasi-concave and upper semi-continuous in the product topology.

When S is uncountably infinite, the cone RS+ is typically too large (and its product topology too

strong) to be useful. For example, while 〈µ, f〉 in (IP) for f ∈ RS+ and µ ∈ RS+ is still well defined5,

for no-arbitrage prices µ ∈ RS++, a necessary condition for 〈µ, f〉 < ∞ is that f(s) is non-zero for

an at most countable number of s ∈ S. This is rarely satisfactory in practice; for example, in

the single-commodity case S = Ω × R+, where the time index component R+ models continuous

time and there is a continuum of states-of-nature in Ω, elements f ∈ RS+ typically represent

consumption rates with respect to a Lebesgue clock, and a probabilistic structure on Ω identifies

random consumption-rate streams that agree in the almost sure sense. One is then led to consider a

measure space structure (S,S, σ), where σ is a sigma-finite measure on the measurable space (S,S)

and S is a sigma-algebra on S, and instead of RS+ one considers its quotient L0
+ of nonnegative

measurable functions modulo σ-a.e. equivalence. For f ∈ L0
+ and µ ∈ L0

+, the definition fo the

“inner product” becomes 〈µ, f〉 :=
∫
fµdσ. The whole set-up is is a proper generalization of

the case where S is at most countable, whereby S would be the powerset of S and σ the counting

measure on (S,S). By considering on L0
+ the topology of convergence in probability, the functionals

〈µ, ·〉 become lower semicontinuous for all µ ∈ L0
+. In general, when µ is a no-arbitrage pricing

functional, i.e., when µ > 0 holds σ-a.e., the convex and closed budget set B(µ) of (B) will fail

to be compact; however, it will be shown that it still has a “convex compactness” property in L0
+

which will result in solutions to utility maximization problems like (UM).

The aforementioned topology on L0
+ lacks an essential feature (namely, local convexity) that al-

lows the use of traditional6 convex-analytic tools. Nevertheless, appropriate versions of such results

can be proved, typically by use of “bare-hands” approaches. One upside is that no prerequisites

from Functional Analysis are needed; basic knowledge of Measure theory and Real Analysis will be

enough in understanding the development of the theory. The purpose of these notes is to present

convex-analytic results pertaining to L0
+, especially with connections to the theory of Mathematical

Economics and Finance, and explore the strength and limitations of the methods involved.

4For example, when no-arbitrage pricing functionals are involved, problem (UM) fails to have a solution in general.
5The sum in (IP) is defined as the supremum over all sums for finite subsets of S.
6For example, the Hahn-Banach theorem requires local convexity from the space involved.
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Notation. Throughout these notes, we fix a measurable space (S,S), where S is a sigma-field over

S. On S we shall consider a sigma-finite “baseline” measure7 σ. We shall write “a.s.” to mean

σ-almost-surely. The whole development depends on σ only through its null sets; in other words,

only through the equivalence class (of measures) it generates. We use “�” and “∼” to denote

absolute continuity and equivalence of measures, respectively.

Two (Borel) measurable functions f : S 7→ R and g : S 7→ R are equivalent if f = g holds in

the a.s. sense. We then define L0 ≡ L0(S,S, σ) to consist of all equivalence classes of measurable

functions. We follow the usual practice of not distinguishing between a measurable function and

the equivalence classes in L0 that it generates. Consequently, all relationships involving measurable

functions will be understood in the σ-a.s. sense.

It is immediate that L0 is a vector space, as well as an algebra with the usual function multiplica-

tion. It also has a natural order structure given by the corresponding order in R. The nonnegative

orthant of L0 will be denoted by L0
+; in other words, L0

+ contains all f ∈ L0 such that f ≥ 0.

Furthermore, we shall be using L0
++ to denote the set of all f ∈ L0 such that f > 0; note that L0

++

contains all strictly positive measurable functions. Sometimes we shall just write f > 0 instead of

f ∈ L0
++; one should be careful not to confuse the statement f > 0 as meaning f ∈ L0

+ \ {0}.
The class of all probabilities on (S,S) that are equivalent to σ will be denoted by Π. We reserve

the symbols P, Q, etc., to denote elements (probabilities) in Π, and use the familiar notation EP[·],
EQ[·] to denote expectation on L0

+ (which is always defined, but may take the value ∞).

Exercise 0.1. Let P and Q be any probabilities on (S,S) with Q� P. Then, for every ε > 0 there

exists δ ≡ δ(ε) > 0 such that for all A ∈ S with P[A] < δ we have Q[A] < ε.

1. Topology

1.1. Metric. Fix a probability P ∈ Π, and consider the functional

(1.1) L0 × L0 3 (f, g) 7→ dP(f, g) := EP [1 ∧ |f − g|] .

Exercise 1.1. With the above notation, show the following:

(1) dP is a metric on L0.

(2) If (fn)n∈N is a sequence in L0 and f ∈ L0, limn→∞ dP(fn, f) = 0 holds if and only if

limn→∞ P[|fn − f | > ε] = 0 holds for every ε > 0.

(3) If Q ∈ Π is another probability, dQ (which is also a metric) induces the same topology on

L0. (Hint: use Exercise 0.1.)

We endow L0 with the topology induced by dP. The previous exercise implies that this topology

does not depend on the representative probability, and that convergence of sequences coincides with

the well-known convergence in probability. In particular, a.s.-convergent sequences are converging

in L0. Furthermore, any L0-convergent sequence has an a.s. converging subsequence.

7We shall only consider nonnegative measures.
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NB: Unless otherwise explicitly mentioned, limits involving elements of L0 throughout

the notes are (by convention) understood in the aforementioned topology.

Exercise 1.2. In what follows, (fn)n∈N is a sequence in L0.

(1) If limn→∞ EP [|fn − f |] = 0 holds for some f ∈ L0 and P ∈ Π, show that limn→∞ fn = f .

(2*) Construct a sequence (fn)n∈N such that limn→∞ fn = 0, but where limn→∞ EP [|fn|] = 0

fails for all P ∈ Π.

Proposition 1.3. L0 is a complete metric space.

Proof. Let (fn)n∈N be Cauchy in L0. Fix P ∈ Π and pick a subsequence (fnk)k∈N of (fn)n∈N such

that dP(fnk+1
, fnk) ≤ 2−k holds for all k ∈ N. Then,

EP

[∑
k∈N

1 ∧ |fnk+1
− fnk |

]
=
∑
k∈N

EP
[
1 ∧ |fnk+1

− fnk |
]

=
∑
k∈N

dP(fnk+1
, fnk) ≤ 1,

which implies that
∑

k∈N 1∧ |fnk+1
− fnk | <∞ (a.s.) and, a fortiori, that

∑
k∈N |fnk+1

− fnk | <∞.

It follows that the limit f := limk→∞ fnk exists in the a.s. sense; therefore, also in L0. Since

(fn)n∈N is Cauchy and has a convergent subsequence, the whole sequence is convergent. �

1.2. The “double subsequence” method. The following trick in showing L0-convergence is

often useful.

Proposition 1.4. Let (fn)n∈N be a sequence in L0, and f ∈ L0. The following are equivalent:

(1) limn→∞ fn = f .

(2) For any subsequence (fnk)k∈N of (fn)n∈N one may extract a further subsequence (fnkm )m∈N

of (fnk)k∈N such that limm→∞ fnkm = f .

Proof. Implication (1) ⇒ (2) is obvious because L0-convergence comes from a metric topology.

Assume (2) and let dP be the metric of (1.1). If limn→∞ fn = f were not true, one would be able to

find ε > 0 and a subsequence (fnk)k∈N of (fn)n∈N such that dP(fnk , f) > ε, for all k ∈ N. But then,

there would not exist any subsequence (fnkm )m∈N of (fnk)k∈N such that limm→∞ fnkm = f . �

Although checking condition (2) of Proposition 1.4 seems quite more involved than checking con-

dition (1), we can nevertheless obtain certain properties of L0-convergence from the corresponding

properties of a.s. convergence easily, using the fact that any L0-convergent sequence has an a.s.

converging subsequence. For practice, use Proposition 1.4 in the following exercise.

Exercise 1.5. For d ∈ N, and each i ∈ {1, . . . , d}, let (f in)n∈N be a sequence in L0 converging to

f i ∈ L0. If Φ : Rd 7→ R is continuous, show that limn→∞Φ(f1n, . . . f
d
n) = Φ(f1, . . . fd).

Proposition 1.3 and Exercise 1.5 combined imply that L0 is a complete metrizable topological

vector space, i.e., a vector space equipped with a topology coming from a complete metric such

that the operations R×L0 3 (a, f) 7→ af ∈ L0 and L0×L0 3 (f, g) 7→ (f +g) ∈ L0 are continuous.

Thus, the algebraic structure of L0 ties well together with its topological structure.
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1.3. Special subsets of L0. Open and closed sets are defined as usual in topological spaces; we

shall use K to denote the closure of K ⊆ L0.

A set K ⊆ L0 is convex if for all f ∈ K, g ∈ K and λ ∈ [0, 1], we have ((1− λ)f + λg) ∈ K.

The space L0 is itself convex, as is its nonnegative orthant L0
+. The intersection of an arbitrary

collection of convex sets is again convex. The closure of a convex set is convex. Since L0 is convex

itself, for K ⊆ L0 its convex hull convK is defined the smallest convex set containing K: convK

consists exactly of all elements of the form
∑n

i=1 αifi, where n ∈ N, (αi)i∈{1,...,n} ∈ Rn+ is such that∑n
i=1 αi = 1 and fi ∈ K for all i ∈ {1, . . . , n}.

Exercise* 1.6. Show by example that the convex hull of a closed set in L0 may fail to be closed.

We continue with another important notion. A set B ⊆ L0 will be called bounded if for some

(and then, for all8) P ∈ Π, lim`→∞ supf∈B P[|f | > `] = 0.

Exercise* 1.7. Show that a set B ⊆ L0 is bounded if and only if for every open O ⊆ L0 with 0 ∈ O
it holds that B ⊂ aO for some large enough a > 0 (that may depend on O).

The geometric picture revealed by the previous exercise is apparent: B is bounded if and only

if any open set around 0 ∈ L0 may be inflated enough so that it contains B.

Exercise 1.8. If B ⊆ L0 is bounded, show that B is also bounded.

Exercise 1.9. Find a bounded B ⊆ L0
+, with the property that convB fails to be bounded.

Exercise 1.10. Suppose that Bi, i ∈ {1, . . . , d} are bounded subsets of L0. Then, show that:

•
⋃
i∈{1,...,n}Bi is bounded.

• B1 + . . .+Bn := {f1 + . . .+ fn | fi ∈ Bi for all i ∈ {1, . . . , n}} is bounded.

Exercise 1.11. If (fn)n∈N is a convergent sequence, {fn | n ∈ N} is bounded.

Exercise* 1.12. If L0 is infinite-dimensional (as a vector space), show that no open and bounded

subsets of L0 exist.

1.4. Forward convex combinations and Komlos lemma. Let (fn)n∈N be a sequence in L0.

A sequence (gn)n∈N with the property that gn ∈ conv {fk | k ≥ n} for all n ∈ N will be called a

sequence of forward convex combinations of (fn)n∈N. A subsequence of (fn)n∈N is in particular

a sequence of forward convex combinations of (fn)n∈N, where the forward convex weights are of

“Dirac” type. Furthermore, a sequence of forward convex combinations of a sequence of forward

convex combinations of (fn)n∈N is itself a sequence of forward convex combinations of (fn)n∈N.

The following result, whose beautiful proof we borrow from [DS94, Lemma A1.1] will be ex-

tremely important in the sequel.

8Prove this “and then, for all” claim using Exercise 0.1.
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Lemma 1.13 (Baby Komlos). Let (fn)n∈N be a sequence in L0
+ such that conv {fn | n ∈ N} is

bounded. Then, there exists an a.s. convergent sequence of forward convex combinations of (fn)n∈N.

Proof. Fix P ∈ Π. Also, let R+ 3 x 7→ φ(x) := 1− exp(−x) ∈ [0, 1), as well as L0
+ 3 f 7→ u(f) :=

EP [φ(f)] ∈ [0, 1). For each n ∈ N, define Kn := conv ({fk | k ≥ n}) and vn = supg∈Kn u(g) ∈ [0, 1).

Clearly, (vn)n∈N is a nonincreasing sequence; define v := limn→∞ vn ∈ [0, 1).

For each n ∈ N, pick gn ∈ Kn with u(gn) ≥ vn − 1/n. We shall show that (gn)n∈N is Cauchy,

which will imply that it is convergent in view of Proposition 1.3. For every ε > 0, pick `ε > 0 so

that supn∈N P[gn > `ε] < ε/2, which is possible because K1 is bounded. Let

Dε =
{

(x, y) ∈ R2
+ | |x− y| > ε, x ≤ `ε, y ≤ `ε

}
.

Strict concavity of φ implies that there exists γε > 0 such that

(1.2) φ

(
x+ y

2

)
≥ φ(x) + φ(y)

2
+ γεIDε(x, y).

We then obtain, for all m ∈ N and n ∈ N,

γεP [(gn, gm) ∈ Dε] ≤ u
(
gn + gm

2

)
− u(gn) + u(gm)

2
.

When n ≤ m, we have u ((gn + gm)/2) ≤ vn, u(gn) ≥ vn−1/n ≥ v−1/n and u(gm) ≥ vm−1/m ≥
v − 1/n; therefore, for fixed n ∈ N,

(1.3) sup
m≥n

P [(gn, gm) ∈ Dε] ≤
1

γε

(
vn − v +

1

n

)
.

It follows that limn→∞ supm≥n P [(gn, gm) ∈ Dε] = 0. Recalling that supn∈N P[gn > `ε] < ε/2

and the definition of Dε, we obtain P[|gn − gm| > ε] ≤ P [(gn, gm) ∈ Dε] + ε holds for all m ∈
N and n ∈ N. It follows that lim supn→∞ supm≥n P [|gn − gm| > ε] ≤ ε, for all ε > 0. Since

dP(gn, gm) = EP [1 ∧ |gn − gm|] ≤ ε/2 + P [|gn − gm| > ε/2] holds for all ε ∈ (0, 1), it follows that

lim supn→∞ supm≥n dP(gn, gm) ≤ ε for all ε > 0, i.e., lim supn→∞ supm≥n dP(gn, gm) = 0.

We have constructed a sequence of forward convex combinations of (fn)n∈N that is L0-convergent;

by passing to a subsequence is necessary, we obtain an a.s. convergent sequence of forward convex

combinations of (fn)n∈N, concluding the proof. �

Remark 1.14. Let I be an index set of at most countable cardinality. Let K ⊆ L0
+ be a convex and

bounded set, and for each i ∈ I consider a K-valued sequence (f in)n∈N. By Lemma 1.13, for each

individual i ∈ I there exists an a.s. convergent sequence (gin)n∈N of forward convex combinations of

(f in)n∈N. In general, the forward convex weights used to pass from (f in)n∈N to (gin)n∈N will depend

on i ∈ I. We claim that, in fact, one can choose these forward convex weights to be the same

for all i ∈ I. Probably the easiest way to see this is the following: Let (I, I, ι) be the measure

space where I is the powerset of I and ι is the counting measure, and consider the product space

(S × I,S ⊗ I, σ ⊗ ι). The collection of sequences (f in)n∈N on L0
+(S,Σ, σ) for all i ∈ I may be seen

as a single sequence on L0
+(S× I,S ⊗I, σ⊗ ι), living on the bounded convex set K× I. The latter
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set is actually bounded on L0
+(S × I,S ⊗ I, σ ⊗ ι)—one may prove this9 either directly or by use

of Proposition 1.16. An application of Lemma 1.13 immediately implies our claim.

As an application of Lemma 1.13, we have the following result on maximization for quasi-concave

and upper-semicontinuous functionals on L0
+.

Proposition 1.15. Let K ⊆ L0
+ be nonempty, convex, closed and bounded, and u : K 7→ [−∞,∞]

be quasi-concave10 and upper-semicontinuous. Then, there exists g ∈ K with u(g) = supf∈K u(f).

Proof. Let v := supf∈K u(f). If v = −∞ there is nothing to show, so assume v > −∞. Let (fn)n∈N

be a sequence in K such that limn→∞ u(fn) = v. Since K is convex and bounded, conv {fn | n ∈ N}
is bounded. Lemma 1.13 provides a sequence (gn)n∈N of forward convex combinations of (fn)n∈N

such that g := limn→∞ gn exists. Since K is convex, gn ∈ K for all n ∈ N; then, since K is closed,

g ∈ K follows. Let in := infk≥n u(fk) for all n ∈ N, so that fk ∈ {u ≥ in} for all n ≤ k. Since

u is quasi-concave and gn ∈ conv {fk | k ≥ n}, gn ∈ {u ≥ in} for all n ∈ N follows; in particular,

lim supn→∞ u(gn) ≥ lim supn→∞ in = v. Finally, u(g) ≥ lim supn→∞ u(gn) = v follows from the

upper semi-continuity of u. �

For convex and closed sets of L0
+, boundedness appears as the proper relaxation of compactness

that enables a satisfactory theory to be developed. In fact, [Žit10] calls convex, closed and bounded

sets of L0
+ “convexly compact.”

The following result is folklore, albeit usually (for example, in [HWY92]) proved using functional-

analytic arguments.

Proposition 1.16. Let K ⊆ L0
+. Then, convK is bounded if and only if there exists P ∈ Π such

that supf∈K EP [f ] <∞.

Proof. Assuming that supf∈K EP [f ] <∞, it follows that supf∈convK EP [f ] <∞; therefore,

lim
`→∞

sup
f∈convK

P [f > `] ≤ lim
`→∞

supf∈convK EP [f ]

`
= 0.

Conversely, assume that convK is bounded. Then, the closure convK of convK is still convex

and bounded. Fix Q ∈ Π, and let R+ 3 x 7→ φ(x) := 1 − exp(−x) ∈ [0, 1), as well as L0
+ 3 f 7→

u(f) := EQ [φ(f)] ∈ [0, 1) as in the proof of Lemma 1.13. Note that u is concave and continuous;

therefore, from Proposition 1.15, there exists g ∈ convK such that u(f) ≤ u(g) for all f ∈ convK.

Using first-order conditions for this concave maximization problem, and noting that φ has bounded

derivative on [0,∞), it follows that EQ [exp(−g)(f − g)] ≤ 0 holds for all f ∈ convK; in particular,

for all f ∈ K. Defining P ∈ Π via dP/dQ = exp(−g)/EQ [exp(−g)], it follows that

sup
f∈K

EP [f ] = sup
f∈K

EQ [exp(−g)f ]

EQ [exp(−g)]
≤ EQ [exp(−g)g]

EQ [exp(−g)]
<∞,

completing the argument. �

9Please try it!
10Meaning that {u ≥ a} is a convex subset of K for all a ∈ R.
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1.5. The “inner product” of L0
+. The convex cone L0

+ will act as “dual” to itself. Define

〈g, f〉 :=

∫
S
fg dσ ∈ [0,∞], f ∈ L0

+, g ∈ L0
+.

It is clear that 〈·, ·〉 : L0
+ × L0

+ 7→ [0,∞] is11 bilinear.

There is a natural identification of L0
+ with the space M0

+ of sigma-finite measures that are

absolutely continuous with respect to σ. To wit, for any g ∈ L0
+ we define µg ∈ M0

+ via the

recipe dµg = gdσ; conversely, for any µ ∈ M0
+ we define gµ ∈ L0

+ via gµ := dµ/dσ. The previous

operations are inverse to each other, and preserve linearity12, making the convex cones M0
+ and

L0
+ copies of each other.13 With this understanding, the “formal dual” of L0

+ becomes M0
+, and we

shall indulge ourselves in mostly using notation “µ” (or “ν”) in the first argument of 〈·, ·〉, although

µ and ν are still considered elements of L0
+, using its identification with L0

+ via the Radon-Nikodym

theorem, as explained previously.

Lemma 1.17 (Fatou). The mapping 〈·, ·〉 : L0
+ × L0

+ 7→ [0,∞] is (jointly) lower semicontinuous.

Proof. Let (µn, fn)n∈N be a sequence in L0
+ × L0

+ that converges to (µ, f). Extract a subsequence

(µnk , fnk)k∈N of (µn, fn)n∈N such that lim infn→∞ 〈µn, fn〉 = limk→∞ 〈µnk , fnk〉, and then extract a

further subsequence of (µnk , fnk)k∈N that converges to (µ, f) in the a.s. sense. By Fatou’s lemma,

〈µ, f〉 ≤ limk→∞ 〈µnk , fnk〉 = lim infn→∞ 〈µn, fn〉, completing the argument. �

For µ ∈ L0
+, define B(µ) :=

{
f ∈ L0

+ | 〈µ, f〉 ≤ 1
}

to be the budget set associated with linear

prices µ and unit capital. The next result, combined with Proposition 1.15, implies that utility

maximization problems over budget sets have solutions.

Proposition 1.18. For µ ∈ L0
+, B(µ) is convex and closed. If µ ∈ L0

++, B(µ) is further bounded.

Proof. B(µ) is clearly convex, and closedness follows from Lemma 1.17. Assume that µ > 0, let

0 < ν ≤ µ be such that14 〈ν, 1〉 ≡
∫
S νdσ <∞, and define a probability P ∈ Π via dP = 〈ν, 1〉−1 νdσ.

For any f ∈ B(µ), it follows that EP [f ] ≤ 〈ν, f〉 / 〈ν, 1〉 ≤ 〈µ, f〉 / 〈ν, 1〉 ≤ 1/ 〈ν, 1〉, which implies

supf∈B(µ) EP [f ] <∞, and thus that B(µ) is bounded by Proposition 1.16. �

2. Separation of Monotone Convex Subsets of L0
+

2.1. Strong separation. A set C ⊆ L0
+ is called solid if g ∈ C and 0 ≤ f ≤ g implies f ∈ C.

11Since we are working in the positive cone L0
+, “linearity” has to be defined by multiplication with nonnegative

real numbers only, but it is clear what is meant. Note also that the convention 0×∞ = 0 is used.
12They even preserve the lattice structure, i.e., µf∧g = µf ∧µg and µf∨g = µf ∨µg, where for µ ∈ M0

+ and µ ∈ M0
+

one defines (µ∧ν)[A] = infB∈S,B⊆A (µ[B] + ν[A \B]) and (µ∨ν)[A] = supB∈S,B⊆A (µ[B] + ν[A \B]), where A ∈ S.
13It should be noted that the identification itself depends (in an obvious way) on the choice of the baseline measure

σ. The situation is similar to the identification of the dual of a Hilbert space with the Hilbert space itself via the

Riesz representation theorem, which depends on the inner product.
14Make sure you understand why we can pick such ν.
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Theorem 2.1. Let C and K be nonempty convex and closed subsets of L0
+. Additionally, suppose

that one of the following two conditions is satisfied:

(A) C is solid and K is bounded.

(B) C is bounded and K = K + L0
+.

Then, the following statements are equivalent:

(1) C ∩K = ∅.
(2) There exists µ ∈ L0

+ such that

sup
f∈C
〈µ, f〉 < inf

g∈K
〈µ, g〉 <∞.

Furthermore, under condition (B), one may choose µ ∈ L0
++.

Proof. Fix f0 ∈ C and g0 ∈ K. By Proposition 1.16, there exists a probability Q ∈ Π such that:

• Under condition (A), EQ [f0] <∞ and supg∈K EQ [g] <∞.

• Under condition (B), EQ [g0] <∞ and supf∈C EQ [f ] <∞.

Let φ : R 7→ R+ be defined via φ(y) = (y + exp(−y)− 1)+ for all y ∈ R. Note that φ is nonde-

creasing and convex and continuously differentiable function with φ′(y) = (1− exp(−y))+ ∈ [0, 1)

for y ∈ R, with φ(y) = 0 for y ≤ 0. Define r : C × K 7→ [0,∞] via r (f, g) := EQ [φ(g − f)] for

f ∈ C and g ∈ K, and set ρ := inf(f,g)∈C×K e(f, g). Since r (f0, g0) < ∞, it follows that ρ < ∞.

We shall show below that the infimum is actually attained on C ×K.

Let (fn)n∈N and (gn)n∈N be C-valued andK-valued (respectively) sequences such that r (fn, gn) ≤
ρ + n−1 for all n ∈ N. It may, and will, be assumed that fn ≤ gn. Indeed, under condition (A),

gn ∈ K implies (fn ∨ gn) ∈ K, and it is immediate that r (fn, fn ∨ gn) ≤ r (fn, gn); similarly, under

condition (B), fn ∈ C implies (fn ∧ gn) ∈ C, and r (fn ∧ gn, gn) ≤ r (fn, gn).

Continuing, ρ < ∞, implies supn EQ [gn − fn] < ∞, which implies that the convex hull of the

sequence (gn − fn)n∈N is bounded. Under condition (A), the convex hull of (gn)n∈N is bounded;

since fn ≤ gn holds for all n ∈ N, the convex hull of (fn)n∈N is bounded. Under condition (B), the

convex hull of (fn)n∈N is bounded, which also implies that the convex hull of (gn)n∈N is bounded. It

follows that, under the force of either condition (A) or condition (B), the convex hull of both (fn)n∈N

and (gn)n∈N is bounded. Therefore, Komlos’ Lemma 1.13 allows to extract a sequence (f ′n)n∈N of

forward convex combinations of (fn)n∈N, as well as f∞ ∈ L0
+, such that limn→∞ f

′
n = f∞ holds in

the a.s. sense. Let (g′n)n∈N denote the sequence of forward convex combinations of (gn)n∈N that is

constructed by using the same convex weights that were used for (f ′n)n∈N; then, note that f ′n ≤ g′n
holds for all n ∈ N. Using Komlos’ Lemma again, one may extract a sequence (g′′n)n∈N of forward

convex combinations of (g′n)n∈N, as well as g∞ ∈ L0
+, such that limn→∞ g

′′
n = g∞ holds in the a.s.

sense. Letting (f ′′n)n∈N denote the sequence of forward convex combinations of (f ′n)n∈N that is

constructed by using the same convex weights that were used for (g′′n)n∈N, it follows that f ′′n ≤ g′′n

for all n ∈ N, and limn→∞ f
′′
n = f∞ in the a.s. sense. Since C and K are convex and closed, we

obtain that f∞ ∈ C and g∞ ∈ K. Fatou’s lemma gives EQ [g∞ − f∞] <∞. Furthermore, convexity
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of r implies that the sequence (f ′′n , g
′′
n)n∈N is also minimising. Since limn→∞ r (f ′′n , g

′′
n) = ρ, Fatou’s

lemma implies that r (f∞, g∞) = ρ holds for some (f∞, g∞) ∈ C × K with f∞ ≤ g∞. Define

ζ := (g∞ − f∞) ∈ L0
+. Since C ∩K = ∅, note that ζ 6= 0.

Let (f, g) ∈ C ×K be such that EQ [f ] <∞ and EQ [g] <∞. (Such pairs certainly exist; recall

the beginning of the proof.) Note that

EQ [φ ((1− ε)ζ + ε(g − f))]− EQ [φ(ζ)]

ε
≥ 0, ∀ε ∈ (0, 1),

and |φ ((1− ε)ζ + ε(g − f))−φ(ζ)| ≤ ε|g−f | holds in view of the fact that φ′ is [0, 1)-valued. There-

fore, using the dominated convergence theorem as ε ↓ 0, we obtain that EQ [φ′(ζ)(g − f − ζ)] ≥ 0.

In other words, defining ν := φ′(ζ)(dQ/dP) and γ := 〈ν, ζ〉 > 0, and noting that 〈ν, f〉 < ∞ and

〈ν, g〉 <∞, it follows that 〈ν, f〉+ γ ≤ 〈ν, g〉 holds for all (f, g) ∈ C ×K such that EQ[f ] <∞ and

EQ[g] <∞.

Assume condition (A). For arbitrary (f, g) ∈ C ×K, it holds that (f ∧ n) ∈ C for all n ∈ N and

EQ [g] <∞. Since EQ [f ∧ n] <∞ holds for all n ∈ N, the monotone convergence theorem gives

〈ν, f〉+ γ = lim
n→∞

(〈ν, f ∧ n〉+ γ) ≤ 〈ν, g〉 ,

which is exactly what was required with µ = ν.

Assume now condition (B). Recall that supf∈C EQ[f ] <∞, and define µ ∈ L0
++ via

µ = ν +
γ

2(1 + supf∈C EQ[f ])

dQ
dP

.

Then, for any (f, g) ∈ C ×K such that EQ[g] <∞,

〈µ, f〉+ γ/2 ≤ 〈ν, f〉+ γ ≤ 〈ν, g〉 ≤ 〈µ, g〉 .

If g ∈ K is such that EQ[g] = ∞, then 〈µ, g〉 = ∞ and the above inequality trivially holds. This

concludes the proof. �

For later applications, we shall need a strengthening of Theorem 2.1 for subsets of L0
+×R, which

is stated below. The proof is similar to (but more notationally involved than) Theorem 2.1, so it

will be skipped. Boundedness on L0
+ × R is defined in the obvious way (in the product topology),

and C ⊆ L0
+ × R is solid if whenever (g, b) ∈ C and 0 ≤ f ≤ g, a ≤ b, then (f, a) ∈ C.

Theorem 2.2. Let C and K be nonempty convex and closed subsets of L0
+ × R. Additionally,

suppose that one of the following two conditions is satisfied:

(A) C is solid and K is bounded.

(B) C is bounded and K = K + L0
+ × R+.

Then, the following statements are equivalent:

(1) C ∩K = ∅.
(2) there exists (µ, β) ∈M0

+ × {0, 1} such that

sup
(f,a)∈C

(〈µ, f〉+ βa) < inf
(g,b)∈K

(〈µ, g〉+ βb) <∞.
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Furthermore, under condition (B), one may choose µ ∈ L0
++.

2.2. Polars; the Bipolar Theorem. For K ⊆ L0
+, we define its polar to be

K◦ :=
{
µ ∈ L0

+ | 〈µ, f〉 ≤ 1, for all f ∈ K
}
.

The following exercise provides practice with polars.

Exercise 2.3. Show the following:

(1) (L0
+)◦ = {0} and {0}◦ = L0

+.

(2) If A ⊆ B ⊆ L0
+, then B◦ ⊆ A◦.

(3) For every K ⊆ L0
+, K◦ is convex, solid and closed.

(4) K ⊆ L0
+ is bounded if and only if K◦ ∩ L0

++ 6= ∅.

For K ⊆ L0
+, consider now the bipolar K◦◦ ≡ (K◦)◦ of K:

K◦◦ :=
{
f ∈ L0

+ | 〈µ, f〉 ≤ 1, for all µ ∈ K◦
}
.

Exercise 2.4. For K ⊆ L0, K◦◦ is convex, solid and closed. Furthermore, K ⊆ K◦◦.

It is clear from Exercise 2.4 that, if K = K◦◦ is to hold, it is necessary that K is convex, solid

and closed. In fact, the following result shows the sufficiency of this structural conditions. Its

statement first appeared in [BS99], via a functional-analytic proof.

Theorem 2.5 (Bipolar). A set K ⊆ L0
+ is convex, solid and closed if and only if K = K◦◦.

Proof. Only one direction has to be shown. Let K ⊆ L0
+ be convex, solid and closed. Suppose there

exists g ∈ K◦◦ \K. From Theorem 2.1, there exists ν ∈ L0
+ such that supf∈K 〈µ, f〉 < 〈µ, g〉. By

multiplying µ with a strictly positive constant if necessary, we may assume that supf∈K 〈µ, f〉 ≤
1 < 〈µ, g〉. The last inequality implies that µ ∈ K◦; but then 〈µ, g〉 > 1 would imply that g /∈ K◦◦,
which is a contradiction. �

2.3. Strict separation. The next result complements Theorem 2.1, where now one of the non-

intersecting convex sets is open and monotone above.

Theorem 2.6. Let f ∈ L0
++, and O ⊆ L0

++ be nonempty, convex, open (in the relative topology of

L0
++), and such that O = O + L0

+. Then, the following statements are equivalent.

(1) f /∈ O.

(2) There exists µ ∈ L0
+ such that 〈µ, f〉 < 〈µ, g〉 holds for all g ∈ O.

Proof. Implication (2)⇒ (1) is trivial. We focus below on proving the reverse implication (1)⇒ (2).

Without loss of generality, we may assume in the sequel that f = 1; indeed, note that (1/f)O :=

{g/f | g ∈ O} satisfies all the corresponding properties that O has. Suppose one can find ν ∈ L0
+

such that 〈ν, 1〉 < 〈ν, g〉 holds for all g ∈ (1/f)O. Then, with µ = (1/f)ν, it holds that 〈µ, f〉 <
〈µ, g〉 for all g ∈ O. To recapitulate, we shall additionally assume that f = 1 ∈ C from now on.
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Let x := sup {y ∈ (0,∞) | y /∈ O}. Clearly x ≥ 1. Furthermore, we claim that x < ∞; to wit,

pick g ∈ O, and note that g ∧ y0 ∈ O for large enough y0 > 0 follows from the fact that O is open,

which since g∧y0 ≤ y0 implies y0 ∈ O. The fact that O is open also implies that x /∈ O. Of course,

(x+ 1/n) ∈ O holds for all n ∈ N.

Define O∞ := O ∩ L∞, and note that x /∈ O∞. Furthermore, if g ∈ O, then g ∧ n ∈ O∞

for large enough n ∈ N, since O is open. In particular, O∞ is a nonempty convex subset of L∞.

Furthermore, O∞, when seen as a subset of L∞, has an internal point : indeed, fix any g ∈ O∞, and

note that (g + 1) ∈ O∞ is such that for any h ∈ L∞ with ‖h− (g + 1)‖L∞ ≤ 1 we have h ∈ O∞.

According to the “plain vanilla” algebraic separation theorem [AB06, Theorem 5.61], there exists a

nonzero linear functional π : L∞ 7→ R, such that π(x) ≤ π(g) holds for all g ∈ O∞. Fixing g ∈ O∞,

for any h ∈ L∞+ and n ∈ N, (g + nh) ∈ O∞; therefore, π(x) − π(g) ≤ nπ(h) holds for all n ∈ N,

which gives π(h) ≥ 0. We therefore obtain that π is a positive linear functional.

Note that π(1) > 0 has to hold; otherwise, if π(1) = 0, π(h) = 0 would holds for all h ∈ L∞+ , which

would give π = 0. Upon normalisation, we may assume that π is a finitely additive probability.

Now, let (hn)n∈N be any nonincreasing [0, 1]-valued sequence in L0
+ that converges to zero in L0.

Note that (x+ 1/k − hn) ∈ L∞++ for all k ∈ N and n ∈ N, and (x + 1/k) ∈ O∞ for all k ∈ N;

therefore, for every k ∈ N there exists nk ∈ N such that (x+ 1/k − hnk) ∈ O∞. It follows

that π(x) ≤ π(x + 1/k − hnk), which gives π(hnk) ≤ 1/k. We deduce that limn→∞ π(hn) = 0.

Since the sequence (hn)n∈N with the aforementioned properties is arbitrary, we obtain that π

is actually countably additive; therefore, it can be extended to a countably additive probability

measure; in other words, there exists µ ∈ L0
+ \ {0} such that 〈µ, f〉 = π(f) holds for all f ∈ L∞+ .

Therefore, we have 〈µ, 1〉 ≤ 〈µ, x〉 ≤ 〈µ, g〉 holding for all g ∈ O∞. For arbitrary g ∈ O, and

since (g ∧ n) ∈ O∞ holds for all large enough n ∈ N, the monotone convergence theorem gives

〈µ, 1〉 ≤ 〈µ, g〉. Finally, for arbitrary g ∈ O, pick large enough n ∈ N so that (1− 1/n)g ∈ O, and

note that 〈µ, 1〉 ≤ 〈µ, (1− 1/n)g〉 < 〈µ, g〉, with the last strict inequality following due to the fact

that µ ∈ L0
+ \ {0} and g ∈ L0

++. This concludes the proof. �

Remark 2.7. Let O satisfy the requirements of Theorem 2.6. Let f ∈ L0
++ be such that f /∈ O,

but (f + h) ∈ O holds for all h ∈ L0
+ \ {0}. By Theorem 2.6, there exists µ ∈ L0

+ such that

〈µ, f〉 < 〈µ, g〉 holds for all g ∈ O. Then, 〈µ, h〉 > 0 for all h ∈ L0
+ \ {0}, which gives µ ∈ L0

++.

As was the case for strong separation, there is a more general version than Theorem 2.6 that

involves subsets of L0
++ × R which is going to be useful later on. Its proof is very similar to the

one of Theorem 2.8; therefore, it is skipped.

Theorem 2.8. Let (f, a) ∈ L0
++ × R, and O ⊆ L0

++ × R be nonempty, convex, open, and such

that O = O + L0
+ ×R+. Furthermore, assume that (f, b) ∈ O for some b ∈ R. Then, the following

statements are equivalent.

(1) (f, a) /∈ O.

(2) There exists µ ∈ L0
+ such that 〈µ, f〉+ a < 〈µ, g〉+ b holds for all (g, b) ∈ O.
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3. Monotone Convex Functionals

3.1. First definitions. Define C as the class of all functions c : L0
+ 7→ [0,∞] that are nonde-

creasing, convex, and satisfy c(0) = 0. Elements in C should be though of as cost functional, with

c(f) the cost associated to the consumption bundle f ∈ L0
+. A primary example is the linear cost

functional L0
+ 3 f 7→ 〈µ, f〉 ∈ [0,∞] for µ ∈ L0

+. Clearly, 〈µ, ·〉 ∈ C has the extra property that

〈µ, af〉 = a 〈µ, f〉 holds for f ∈ L0
+ and a ∈ R+; furthermore, 〈µ, ·〉 is continuous from below, in

view of the monotone convergence theorem. We isolate the last properties in definitions. Define C↑

as the class of all functions c ∈ C that are furthermore continuous from below: for all nondecreasing

(fn)n∈N such that f := limn→∞ fn ∈ L0
+, it holds that limn→∞ c(fn) = c(f). A functional c ∈ C

will be called positively homogeneous if c(af) = ac(f) holds for all a ∈ R+ and f ∈ L0
+.

Exercise 3.1. Every c ∈ C↑ is lower semicontinuous.

Both set C and C↑ are convex cones, and are closed under arbitrary suprema and sums.

Exercise 3.2. Let c ∈ C (but not necessarily c ∈ C↑.) Define c : L0
+ 7→ [0,∞] via

c(f) = inf
{

lim
n→∞

c(fn) | (fn)n∈N is nondecreasing, and lim
n→∞

fn = f
}
, f ∈ L0

+.

Show that c ∈ C↑. In fact, show that c is the largest function in C↑ that is dominated by c. If c is

positively homogeneous, then so is c.

3.2. Conjugacy. Define the convex conjugate of c ∈ C via

c∗(µ) := sup
f∈{c<∞}

(〈µ, f〉 − c(f)) , µ ∈ L0
+.

Since 〈·, f〉−c(f) is a monotone, convex and continuous from below functional for all f ∈ {c <∞},
and c∗(0) = − inff∈{c<∞} c(f) = −c(0) = 0, it follows that c∗ ∈ C↑.

Example 3.3. Let K ⊆ L0
+ be convex and solid, and let δK be the convex indicator of K, defined

via δK(f) = 0 if f ∈ K and δK(f) = ∞ if f /∈ K. It is straightforward to check that δK ∈ C;
furthermore, δK ∈ C↑ if and only if K is further closed. For µ ∈ L0

+, δ∗K(µ) = supf∈K 〈µ, f〉, which

is a positively homogeneous functional in C↑.

Set c∗∗ = (c∗)∗. Since 〈µ, f〉 − c∗(µ) ≤ c(f) holds for all f ∈ L0
+ and µ ∈ {c∗ <∞}, it follows

that c∗∗ ≤ c. The next result shows that c∗∗ and c are, in fact, equal, when c ∈ C↑.

Theorem 3.4. Let c ∈ C↑. Then, c∗∗ = c.

Proof. We already know that c∗∗ ≤ c. By way of contradiction, fix g ∈ L0
+ and assume that

c∗∗(g) < c(g) holds; in this case, pick x ∈ R such that c∗∗(g) < x < c(g).

Define C :=
{

(f, a) ∈ L0
+ × R | c(f) ≤ −a

}
, which is a convex, closed and solid subset of L0

+×R.

Furthermore, define K := {(g,−x)}, which is a closed, convex and bounded subset of L0
+×R. Since

C∩K = ∅, Theorem 2.2, with condition (A) in its statement valid, implies the existence of µ ∈ L0
+,

β ∈ {0, 1} and γ > 0, such that 〈µ, f〉 − βc(f) + γ ≤ 〈µ, g〉 − βx <∞ holds for all f ∈ {c <∞}.
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Assume first that β = 0. In this case, 〈µ, f〉 + γ ≤ 〈µ, g〉 would hold for all f ∈ {c <∞}. In

particular, c∗(nµ) ≤ 〈nµ, g〉 − nγ − c(0) < ∞ would hold for all n ∈ N, which would imply that

c∗∗(g) ≥ 〈nµ, g〉 − c∗(nµ) ≥ c(0) + nγ, for all n ∈ N, in turn implying that c∗∗(g) = ∞. However,

the last equality would contradict the fact that x < c∗∗(g).

Now, assume that β = 1. Then, 〈µ, f〉 − c(f) ≤ 〈µ, g〉 − x holds for all f ∈ {c <∞}; in other

words, c∗(µ) ≤ 〈µ, g〉 − x, which gives c∗∗(g) ≥ 〈µ, g〉 − c∗(µ) ≥ x, which is again a contradiction

to c∗∗(g) < x. We conclude that c∗∗ = c holds. �

Exercise 3.5. Let c ∈ C. Recalling the definition of c ∈ C from Exercise 3.2, show that c = c∗∗.

Use the previous exercise to establish the following.

Exercise 3.6. Let K ⊆ L0
+ be convex and solid. Recalling the convex indication δK ∈ C of Example

3.3, show that δ∗∗K = δK .

Example 3.7 that follows builds further on Example 3.3.

Example 3.7. Suppose that c ∈ C↑ is positively homogeneous. In this case, it is straightforward

to check that c∗ is {0,∞}-valued; in fact, c∗(µ) = 0 if 〈µ, ·〉 ≤ c (meaning 〈µ, f〉 ≤ c(f) for all

f ∈ L0
+), and c∗(µ) =∞ otherwise. Because both 〈µ, ·〉 and c are positively homogeneous, 〈µ, ·〉 ≤ c

is equivalent to the statement that {c ≤ 1} ⊆ {〈µ, ·〉 ≤ 1}; in other words, with K := {c ≤ 1} ∈ L0
+

being convex, closed and solid, 〈µ, f〉 ≤ 1 holds for all f ∈ K, which is equivalent to that µ ∈ K◦.
In the notation of Example 3.3, c∗ = δK◦ . A combination of Example 3.3 and Theorem 3.4 gives

c(f) = c∗∗(f) = δ∗K◦(f) = sup
µ∈K◦

〈µ, f〉 , f ∈ L0
+,

which implies that the positively homogeneous functionals in C↑ are exactly the ones of the form

supµ∈D 〈µ, ·〉, where D ⊆ L0
+ is a convex, closed, and solid set.

Here is another interesting example.

Example 3.8. Let I be a finite set, and consider a collection (ci)i∈I with ci ∈ C for all i ∈ I. Define

(3.1) AI(f) :=

{
(f i)i∈I ∈

(
L0
+

)I ∣∣∣ ∑
i∈I

f i = f

}
, f ∈ L0

+,

as the class of all allocations of f in I. The inf-convolution of (ci)i∈I is the functional �i∈Ici :

L0
+ 7→ [0,∞] defined via

(�i∈Ici) (f) = inf

{∑
i∈I

ci(f
i)
∣∣∣ (fi)i∈I ∈ AI(f)

}
, f ∈ L0

+.

It is straightforward to check that �i∈Ici ∈ C, as well as that (�i∈Ici)
∗ =

∑
i∈I c

∗
i .

Assume now that ci ∈ C↑ holds for all i ∈ I. We claim that �i∈Ici is further continuous from

below, which will imply that (�i∈Ici) ∈ C↑. To wit, let f ∈ L0
+ and a nondecreasing sequence

(fn)n∈N such that limn→∞ fn = f . Let ` := limn→∞�i∈Ici(fn); we shall show that �i∈Ici(f) ≤ `;
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coupled with the reverse inequality ` ≤ �i∈Ici(f) coming from monotonicity, the claim will be

proved. For each n ∈ N, let (f in)i∈I ∈ AI(f) be such that
∑

i∈I ci(f
i
n) ≤ �i∈Ici(fn)+1/n ≤ `+1/n.

Noting that the sequences (f in)n∈N are [0, f ]-valued for all i ∈ I, Remark 1.14 implies the existence

of convex weights (αn,k)k≥n for each fixed n ∈ N, such that the sequences (gin)n∈N of forward convex

combinations of (f in)n∈N defined via gin :=
∑

k≥n αn,kf
i
k are a.s. convergent to, say, gi ∈ L0

+ for all

i ∈ I. Since (gin)i∈I ∈ AI(f) for all n ∈ N, (gi)i∈I ∈ AI(f) follows. Now, note that convexity of

ci for all i ∈ I and the fact that
∑

i∈I ci(f
i
n) ≤ ` + 1/n imply that

∑
i∈I ci(g

i
n) ≤ ` + 1/n. Lower

semi-continuity of ci for all i ∈ I will them imply that
∑

i∈I ci(g
i) ≤ `; by definition of �i∈Ici,

�i∈Ici(f) ≤ `.
Suppose that ci = c for all i ∈ I. If #I = n, we set �nc ≡ �i∈Ici; by convexity and symmetry,

it follows that �nc(f) = nc(f/n) holds for f ∈ L0
+. In a limiting sense, one may define �∞c(f) =

limn→∞ nc(f/n), which is an element of C, but may fail to be continuous from below (even if c

itself is). Since c(0) = 0, �∞c(f) actually coincides with the directional derivative at zero of c in

the direction f ∈ L0
+.

3.3. No arbitrage. The following result can be seen as providing an equivalent formulation of a

“no arbitrage” requirement on a cost functional.

Theorem 3.9. For c ∈ C↑, the following statements are equivalent:

(1) For all f ∈ L0
+ \ {0}, there exists a ≡ af > 0 such that c(af) > 0.

(2) There exist x ∈ R+ and ν ∈ L0
++ such that c(f) ≥ −x+ 〈ν, f〉 holds for all f ∈ L0

+.

Remark 3.10. Statement (2) of Theorem 3.9 equivalently reads {c∗ <∞} ∩ L0
++ 6= ∅.

Proof. Assume statement (2), and fix f ∈ L0
+ \ {0}. Since ν ∈ L0

++, it holds that 〈ν, f〉 > 0;

therefore, with a = (x+ 1)/ 〈ν, f〉, it follows that c(af) ≥ −x+ a 〈ν, f〉 = 1 > 0.

In the sequel of the proof, assume statement (1). As a first step towards showing statement (2),

we treat the special case where c ∈ C↑ is further assumed to be positively homogeneous. In this case,

Example 3.7 implies that there exists a convex and closed D ⊆ L0
+ such that c(f) = supµ∈D 〈µ, f〉

holds for all f ∈ L0
+. Let p := sup {P [µ > 0] | µ ∈ D} ∈ [0, 1]. Since D is closed and convex, it is

straightforward to show15 that there exists ν ∈ D such that P [ν > 0] = p. Note that µ = 0 holds

on {ν = 0} for all µ ∈ D; therefore, if p < 1, then f := I{ν=0} is such that f 6= 0 and c(f) = 0,

which contradicts statement (1). We conclude that p = 1, which means that there exists ν ∈ L0
++

such that c(f) ≥ 〈ν, f〉 holds for all f ∈ L0
+, which concludes the proof of implication (1)⇒ (2), in

fact with x = 0.

We proceed in treating the general case c ∈ C↑. For each n ∈ N, define cn ∈ C↑ via cn(f) =

c(nf)/n for all f ∈ L0
+. Note that (cn)n∈N is a nondecreasing sequence, and define the positively

homogeneous c∞ ∈ C↑ via c∞ = limn→∞ cn. Statement (1) amounts to c∞(f) > 0 whenever

f ∈ L0
+ \ {0}, which, according to the first step of the proof above, is equivalent to the existence

15Have this as an exercise!
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of ν ∈ L0
++ such that c∗∞(ν) = 0. Noting that c∗n = (1/n)c∗ holds for all n ∈ N, and recalling

the notation of convex indicators for Example 3.3, it follows that limn→∞ c
∗
n = δ{c∗<∞}. Since

δ{c∗<∞} ≤ c∗n implies cn = c∗∗n ≤ δ∗{c∗<∞} from Theorem 3.4, it follows that c∞ ≤ δ∗{c∗<∞}, which

in view of Exercise 3.6 gives δ{c∗<∞} = δ∗∗{c∗<∞} ≤ c∗∞. It follows that ν ∈ {c∗ <∞}, which shows

that {c∗ <∞} ∩ L0
++ 6= ∅.

We finally show that {c∗ <∞} ∩ L0
++ 6= ∅ implies {c∗ <∞} ∩ L0

++ 6= ∅. For each n ∈ N,

pick µn ∈ L0
+ with P [µn = 0] < 2−n and c∗(µn) < ∞. Upon substituting µn with µn ∧ 1 if

necessary, we may assume that µn ≤ 1. Define αn = 2−n (1 + c∗(µn))−1 for each n ∈ N, as well as

µ :=
∑

n∈N αnµn, which is a well defined element of L0
+, since µn ≤ 1 for all n ∈ N and

∑
n∈N αn ≤ 1.

Note that µ ∈ L0
++, since P [µ = 0] ≤ P [µn = 0] ≤ 2−n holds for all n ∈ N. Furthermore, for each

m ∈ N, and since c∗(0) = 0, it holds that c∗(
∑m

n=1 αnµn) ≤
∑m

n=1 αnc
∗(µn) ≤ 1; since c∗ ∈ C↑, it

follows that c∗(µ) ≤ 1 <∞, which shows that {c∗ <∞}∩L0
++ 6= ∅, completing the argument. �

The next exercise shows that the requirement c ∈ C↑ in Theorem 3.9 may be weakened to c ∈ C.

Exercise 3.11. For c ∈ C, suppose that condition (1) in the statement of Theorem 3.9 holds. Show

then that the same condition holds for c ∈ C↑ (with potentially different constants af for f ∈ L0
+.)

Conclude that the equivalences of Theorem 3.9 are true under the weaker assumption c ∈ C.
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+(Ω,F ,P). In Séminaire de Probabilités,

XXXIII, volume 1709 of Lecture Notes in Math., pages 349–354. Springer, Berlin, 1999.

[DS94] Freddy Delbaen and Walter Schachermayer. A general version of the fundamental theorem of asset

pricing. Math. Ann., 300(3):463–520, 1994.

[HWY92] Sheng Wu He, Jia Gang Wang, and Jia An Yan. Semimartingale theory and stochastic calculus. Kexue

Chubanshe (Science Press), Beijing; CRC Press, Boca Raton, FL, 1992.

[MCWG95] Andreu Mas-Colell, Michael Dennis Whinston, and Jerry R. Green. Microeconomic theory. Oxford Uni-

versity press, New York, 1995.
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