
The Annals of Applied Probability
2021, Vol. 31, No. 4, 1787–1819
https://doi.org/10.1214/20-AAP1634
© Institute of Mathematical Statistics, 2021

ERGODIC ROBUST MAXIMIZATION OF ASYMPTOTIC GROWTH

BY CONSTANTINOS KARDARAS1 AND SCOTT ROBERTSON2

1Statistics Department, London School of Economics, k.kardaras@lse.ac.uk
2Questrom School of Business, Boston University, scottrob@bu.edu

We consider the problem of robustly maximizing the growth rate of in-
vestor wealth in the presence of model uncertainty. Possible models are all
those under which the assets’ region E and instantaneous covariation c are
known, and where the assets are stable with an exogenously given limiting
density p, in that their occupancy time measures converge to a law governed
by p. This latter assumption is motivated by the observed stability of ranked
relative market capitalizations for equity markets. We seek to identify the ro-
bust optimal growth rate, as well as a trading strategy which achieves this rate
in all models. Under minimal assumptions upon (E, c,p), which in particu-
lar allow for an arbitrary number of assets, we identify the robust growth rate
with the Donsker–Varadhan rate function from occupancy time large devia-
tions theory. We also explicitly obtain the optimal trading strategy. We apply
our results to the case of drift uncertainty for ranked relative market capital-
izations. Here, assuming regularity under symmetrization for the covariance
and limiting density of the ranked capitalizations, we explicitly identify the
robust optimal trading strategy.

Introduction. In this work, we identify portfolios which maximize long-term growth rate
of investor wealth in the presence of model uncertainty. Optimal portfolios are robust, as they
achieve the largest possible uniform growth across all models. In our earlier work [20], beliefs
ranged across models where assets have common state space and common instantaneous
covariance; hence, model uncertainty was tantamount to lack of knowledge regarding the
assets’ drift. Presently, we obtain optimal portfolios when, in addition to the state space and
covariance structure, assets are “stable” in that their occupancy time measures converge to a
known, exogenously given, probability density.

Our work is motivated by the remarkable temporal stability of the ranked relative market
capitalizations for equities in the United States. This stability was a primary factor behind
the development of stochastic portfolio theory in [14, 15] and, as numerous subsequent ar-
ticles have shown, it can be achieved by modelling market capitalizations via interacting
diffusions, where interactions occur though the ranks. For example, [21] considers Brownian
particle systems with rank-dependent drifts, and proves ergodicity with limiting exponen-
tial distribution, for the process of spacings between ranked particles. Extending the spacing
analysis, [18] proves stability of the ranked relative capitalizations, as well as long horizon
growth estimates for a large class of wealth processes. Additionally, [18] identifies the sta-
ble limiting density via its Laplace transform, with explicit results for a number of particular
models, including the Atlas model of [14].

It is natural to ask if an investor may use stability to her advantage when seeking portfolios
which maximize the growth of wealth. Furthermore, as it is notoriously difficult to estimate
asset drifts, can one essentially only use stability and covariance in order to derive optimal
policies? To this last point, it is worthwhile mentioning that, while accurate estimates of the
drift (at least for Markovian diffusive models) are possible given the covariance and limiting

Received November 2019; revised July 2020.
MSC2020 subject classifications. 60G44, 60G46, 60H05.
Key words and phrases. Model uncertainty, stochastic portfolio theory, robust growth, long horizon.

1787

https://imstat.org/journals-and-publications/annals-of-applied-probability/
https://doi.org/10.1214/20-AAP1634
http://www.imstat.org
mailto:k.kardaras@lse.ac.uk
mailto:scottrob@bu.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


1788 C. KARDARAS AND S. ROBERTSON

density in one dimension, this fails spectacularly as the dimension increases. Indeed, even
in two dimensions, there are uncountable families of Markovian diffusion models with com-
mon covariance and stable limiting distribution, and where by choosing particular models
(drifts) within the family, arbitrarily large growth rates are possible: see Example 2.2 below.
Therefore, should robust optimal policies be obtained using only stability and covariance,
they enforce efficient investment in the face of severe informational loss, when compared to
explicitly knowing the assets’ drift.

Broadly speaking, there are two approaches to obtaining growth optimal policies in the
face of model uncertainty. The first extends the notion of Cover’s “universal” portfolio in [1],
to construct portfolios which are growth optimal in a path-wise, model-free environment. The
second seeks to construct growth optimal portfolios that are “functionally generated” in the
sense of [14], producing optimal policies which are functions of the underlying price pro-
cess, and thus easily implemented using observations of the current state. Universal portfolio
constructions in relative capitalization models are given in the recent articles [5, 26] (in fact,
each of these treat functionally generated portfolios as well), while the functionally generated
approach, aside from being pioneered in [12–15], has been applied to long horizon problems
in [4, 18, 20].

In this work, we follow the functionally generated approach. As in [20], we assume the
“price” process X of the traded assets takes values in an arbitrary region E ⊆ R

d , and has both
instantaneous covariance rate c(X) and limiting density p. More precisely, fix the region E,
covariance function c : E → S

d++ (the set of positive definite matrices) and probability den-
sity p : E → (0,∞). On the canonical space of E-valued continuous functions, we consider
the class � of all probability measures P under which:

• X is a semi-martingale with covariation
∫ ·

0 c(Xt) dt .
• The laws of {Xt ; t ≥ 0} are tight.
• limT →∞(1/T )

∫ T
0 h(Xu)du = ∫

E h(y)p(y) dy almost surely for all h with h+ ∈ L1(E,p).

Wealth processes V ϑ = E(
∫ ·

0 ϑ ′
t dXt ) are defined for predictable strategies ϑ in the class

� ensuring X-integrability under every P ∈ �. For a given ϑ ∈ � and P ∈ � we denote by
G(V ϑ,P) the growth rate of V ϑ in P-probability

G
(
V ϑ,P

) := sup
{
γ ∈ R : lim

T ↑∞P

[
1

T
logV ϑ

T ≥ γ

]
= 1

}
,

and we seek to identify both the optimal robust growth rate

λ := sup
ϑ∈�

inf
P∈�

G
(
V ϑ,P

)
,

and a strategy ϑ̂ ∈ � which achieves λ robustly across all P ∈ �. Our main result, Theo-
rem 1.8 proves that

(0.1) λ = I (p),

where I is the Donsker–Varadhan rate function associated to the second-order linear oper-
ator Lc = (1/2)Tr(D2c) on E. Introduced in the series of papers [7–9] on ergodic Markov
processes, the rate function I governs large deviations for the occupancy time measures.
Presently, we do not assume Lc is ergodic (if Lc were ergodic, λ = 0 as shown in Exam-
ple 2.4), but rather use the explicit form

(0.2) I (p) = − inf
{∫

E

Lcu

u
(y)p(y) dy

∣∣∣ u ∈ C2(E),u > 0,
(Lcu)+

u
∈ L1(p)

}
.
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A heuristic argument in Section 1.2 leads one to expect λ = I (p), provided there exists a
function û such that the E-valued diffusion

(0.3) dX̂t = (c∇ log û)(X̂t ) dt + σ(X̂t ) dŴt

is ergodic with limiting density p (here σ is a square root of c). However, as innocuous as
this statement might seem, proving such a û exists for general (multi-dimensional) domains
E, covariation functions c and densities p is a challenging task which takes up the bulk of
the paper. Interestingly, essentially the only û (up to a multiplicative constant) which can
possibly lead to ergodicity is the optimizer of the right hand side of (0.2). Furthermore, û

cannot lead to ergodicity without a priori assuming that there exists at least one symmetric
diffusion XR whose law is in � for any starting point x ∈ E: see Remark 1.6 below. This
follows from the remarkable results in [23], Chapter 6, on necessary and sufficient conditions
for multi-dimensional diffusions to be transient or recurrent.

Provided XR is ergodic, Theorem 1.8 shows that, under mild integrability assumptions
(see Assumption 1.5), not only does (0.1) hold, but also there exists an optimizer to the right
hand side of (0.2) such that (0.3) is ergodic, and the functionally generated trading strategy
ϑ̂· = (∇ log û)(X̂·) is robust growth optimal, achieving growth rate λ under all models in �.

In Section 1.4 we reinforce the importance of the ergodicity of XR , by proving that with-
out it, the robust growth optimal problem is in effect ill-posed. More precisely, if XR is not
ergodic, then, at least in one dimension, either � = ∅ (there exist no measures in our robust
class) or λ = ∞ (infinite robust growth). Section 1.5 provides a general outline for estab-
lishing continuity (of the robust growth rate, optimal trading strategy and function û) with
respect to the model parameters. A special case concludes, motivated from stochastic port-
folio theory, where the covariance matrix and region are known, and one wants to study the
effects of a small deviation in the limiting density.

Section 2 contains important and clarifying examples. First, we show that, under a “gra-
dient” condition (which always holds in the one-dimensional case), û is a simple function of
c, p and the diffusion driven by û is simply XR . In the second example, we construct a fam-
ily of diffusions with common covariance and stable distribution, and show arbitrarily large
growth rates are possible if one specifies to particular drifts within the family, in contrast to
the (single) robust growth rate. The third example shows infinite robust growth is possible,
and the fourth connects robust growth with explosion and ergodicity of the drift-less process
dXt = σ(Xt) dWt . Indeed, strictly positive robust growth is possible for essentially all den-
sities p should this diffusion explode, but if the diffusion is ergodic then robust growth is not
possible.

Section 3 specifies to when X represents relative market capitalizations. Here there are
two subtleties. First, trading in the assets is equivalent to trading in both the market portfolio
and the relative capitalizations. Thus, by restricting trading to the relative capitalizations we
are both assuming portfolios are fully invested in the market, and obtaining a wealth pro-
cess which is not absolute, but rather relative to the market portfolio. As such, the robust
maximization problem is to find an investment strategy in the ranked capitalizations which
robustly maximizes the growth rate with respect to the market. Second, the observed phe-
nomena is stability of the ranked relative capitalizations, not of the relative capitalizations
themselves. However, trading does not happen in the ranked capitalizations, rather in the rel-
ative capitalizations and the market portfolio. Therefore, even though the natural inputs to
the problem are the triple (�d−1+,≤, κ, q), where �d−1+,≤ is the ordered unit simplex (the ranked
relative capitalizations’ state space), κ a covariation function, and q a density on �d−1+,≤; one
must work on the unit simplex �d−1+ (the relative capitalizations’ state space), and use a co-
variation function c and density p defined on this region. To obtain c and p on �d−1+ , we
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appropriately symmetrize (κ, q). In order to apply the abstract theory, we ask in Assump-
tion 3.3 that such symmetrization preserves regularity in (c,p). However, as reinforced in
Remark 3.4, we do not require that all models have limiting stable distribution p, where all
rankings are equally likely; our only stability assumption is on the ranked process.

Under Assumption 3.3, Proposition 3.6 identifies the robust growth rate, as well as optimal
strategy in the rank-based set-up. It also proves that optimal portfolios are functions solely
of the ranked relative capitalizations, as one would expect. The section then closes with a
useful result stating that one can start with an arbitrary pair (κ, q) on �d−1+,≤, which might
not satisfy Assumption 3.3 (cf. [18, 21]), and then create a related pair which satisfies As-
sumption 3.3 by only modifying (κ, q) arbitrarily close near the boundary ∂�d−1+,≤. Thus, our
results allow for general covariances and densities on an arbitrary open subsets of �d−1+,≤. The
price of the modification is that optimal policies are combinations of the equally weighted
and market portfolios near where relative capitalizations cross ranks. However, an advantage
of this modification is that it rules out sudden portfolio changes on capitalization crossings,
which in practice would be infeasible over a long horizon, due to transactions costs.

The paper is organized as follows: Section 1 outlines the model, heuristic arguments and
main result in the abstract setting. Section 2 contain examples, while Section 3 specifies to
the rank-based case. Appendix A contains the lengthy proof of the main abstract result, while
Appendix B deals with proofs related to the rank-based model.

1. Problem set-up and main result.

1.1. The problem. There are three inputs to the problem: a region E ⊆ R
d where the

underlying stochastic process X takes values; an instantaneous covariance function c : E �→
S

d++ for X; and a “limiting” probability density p for X. We make the following standing
assumptions on (E, c,p).

ASSUMPTION 1.1. For some fixed constant γ ∈ (0,1]:
(1) E = ⋃∞

n=1 En, where for each n, En is open, connected, bounded and has C2,γ bound-
ary. Furthermore, Ēn ⊂ En+1 and E1 is simply connected.

(2) c ∈ C2,γ (E,Sd++).
(3) p ∈ C2,γ (E, (0,∞)) and

∫
E p = 1.1

As in [20], we work on the canonical space of continuous functions � = C([0,∞),E)

equipped with its Borel sigma-algebra F , where the topology is the one consistent with uni-
form convergence on compact subsets of [0,∞). The coordinate mapping process is denoted
by X, and F is the right-continuous enlargement of the natural filtration generated by X.
Allowable models are probability measures on (�,F) in the set � as below.

DEFINITION 1.2. � is the class of probability measures P on (�,F) such that:

(1) X is a P-semimartingale with covariation process [X,X] = ∫ ·
0 c(Xt) dt , P-a.s.

(2) For all Borel measurable functions h on E with
∫
E h+p < ∞

lim
T ↑∞

1

T

∫ T

0
h(Xt) dt =

∫
E

hp; P-a.s.

(3) The laws of {Xt ; t ≥ 0} under P are tight.

1Throughout, all integrals over E or its subsets are with respect to Lebesgue measure.
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Although condition (2) of Definition 1.2 above can be interpreted as p being a limiting
density for X under P ∈ �, we stress that we do not ask for any Markovian or stationary
structure from the probabilities in �. In fact, while condition (1) of Definition 1.2 implies
that the instantaneous covariation is a function of the current state of X, the drift of X under
P ∈ � can be quite general, as long as the tenets of Definition 1.2 are satisfied. For example,
� may contain laws such where X is a semi-martingale with finite variation component
singular (in time) to Lebesgue measure.

We think of X as an underlying process related to tradeable entities. For example, X may
be the stochastic logarithm of the discounted stock price in a local stochastic volatility model
[10], where the drift is unknown and the local volatility a function of X. Here, it is natural
to take E = Rd , and identify a proportion of wealth trading strategy which, robustly, yields
the largest discounted growth rate. Alternatively, and this is the primary example we have in
mind, we can let X denote the relative market capitalizations for a group of stocks, in a model
with unknown drift, but stable ranked capitalization curve. Here, E = �d−1+ and Section 3
considers the robust growth optimization problem in detail.

In terms of trading, we use the following strategies.

DEFINITION 1.3. � is the class of predictable process that are X-integrable with respect
to every P ∈ �, where � is from Definition 1.2.

For a process ϑ ∈ � and measure P ∈ �, we set

(1.1) V ϑ := E
(∫ ·

0
ϑ ′

t dXt

)
,

where, for any continuous semi-martingale M , E(M)· = exp(M· − (1/2)[M,M]·) is the
stochastic exponential (cf. [24], Chapter II.8). Note that the version of V ϑ may also de-
pend on P ∈ �, but we do not explicitly mention this dependency above, as it will be clear
in each case which probability in � is considered. As discussed in detail in Section 3, the
interpretation is that V ϑ is the wealth process generated starting from unit initial capital, and
investing a proportion ϑi

t X
i
t of current wealth in Xi at time t ≥ 0, for all i = 1, . . . , d .

For ϑ ∈ � and P ∈ �, define

(1.2) G
(
V ϑ,P

) := sup
{
γ ∈ R : lim

T ↑∞P

[
1

T
logV ϑ

T ≥ γ

]
= 1

}
.

As such, G(V ϑ,P) is the long-run growth rate (in probability) of the wealth generated by
following the strategy ϑ , when security prices evolve according to the probability measure P.

REMARK 1.4. In [20] we defined G(V ϑ,P) by the formulas

P- lim inf
T →∞ ζT := ess sup

P

{
χ is F measurable : lim

T ↑∞P[ζT ≥ χ ] = 1
}
,

G
(
V ϑ,P

) := sup
{
γ ∈ R : P- lim inf

T →∞

(
1

T
logV ϑ

T

)
≥ γ,P-a.s.

}
.

However, as [20], Lemma 1.3, showed, the above definition coincides with the simpler (1.2),
and this is what we use here. It should be noted that we are looking for the supremum of those
γ for which the limit in (1.2) exists (and is equal to one), just as in the alternate definition
where we take the essential supremum over those χ where the limit exists.

Our goal is to compute

(1.3) λ := sup
ϑ∈�

inf
P∈�

G
(
V ϑ,P

)
,

and obtain a robust maximizing strategy ϑ̂ ∈ �.
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1.2. Heuristics. We first provide a heuristic argument for how the optimal strategy and
robust growth rate are obtained. To this end, set

(1.4) Lc := 1

2

∑
i,j

cij ∂ij = 1

2
Tr

(
cD2)

.

Note that Lc is the second order operator associated to the driftless diffusion with covariance
function c. Furthermore, while a solution to the generalized martingale problem (cf. [23],
Chapter 1) for Lc on E exists by Assumption 1.1, the solution may be exploding. Next,
consider the class of functions

D :=
{
u ∈ C2(E)

∣∣∣ u > 0,

∫
E

(
Lcu

u

)+
p < ∞

}
.

With this notation, and since p is fixed throughout, we define

I := − inf
u∈D

∫
E

Lcu

u
p,

which is essentially the Donsker–Varadhan rate function from occupancy time large devia-
tions (LDP) theory evaluated at p.2 Now, let u ∈ D, and set ϑu· = (∇ logu)(X·), which is a
process belonging in � due to its path-continuity. Itô’s formula implies for all P ∈ � that

(1.5)
1

T
log

(
V ϑu

T

) = 1

T
log

(
u(XT )

u(X0)

)
− 1

T

∫ T

0

Lcu

u
(Xt) dt.

Note that the function u “generates” the portfolio ϑu and wealth process V ϑu
, and hence

is closely related to the functionally generated portfolios from stochastic portfolio theory,
described in [14]. Thus, under Assumption 1.1, we conclude G(V ϑu

,P) = − ∫
E(Lcu/u)p.

As this holds for all u ∈ D and P ∈ �, by (1.3) we obtain

(1.6) λ ≥ sup
u∈D

inf
P∈�

G
(
V ϑu

,P
) = sup

u∈D

{
−

∫
E

Lcu

u
p

}
= I.

For the upper bound, let σ denote the unique positive definite symmetric square root of c,
and assume that for some û ∈ D and X̂0 ∈ E, the diffusion with dynamics

(1.7) dX̂t = (c∇ log û)(X̂t ) dt + σ(X̂t ) dŴt ,

is ergodic with invariant density p. This implies the probability measure P̂ induced by the
law of X̂ is in �. The wealth process V ϑ̂ obtained by ϑ̂· = (∇ log û)(X·) is in � and is
growth-optimal for the model P̂. Therefore, (1.3) gives

λ ≤ sup
ϑ∈�

G
(
V ϑ, P̂

) = G
(
V ϑ̂ , P̂

) = −
∫
E

Lcû

û
p ≤ sup

u∈D

{
−

∫
E

Lcu

u
p

}
= I.

Note that, if the discussion of this paragraph is valid, then a posteriori û has to be a minimizer
of D  u �→ ∫

E(Lcu/u)p. We also regard P̂ as a “worst-case” model, in the sense that the
maximal growth achievable under P̂ ∈ � is λ.

From the above discussion, we conjecture that λ = I . As I ≤ λ follows from (1.6),
the difficulty is in establishing existence of a minimizer û ∈ D of the mapping D  u �→∫
E(Lcu/u)p, and showing that the corresponding diffusion in (1.7) is ergodic with invariant

measure p.

2We say “essentially” because the domain D slightly differs from that used to prove occupancy time LDP in,
for example, [6], Chapter 4.
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1.3. The main result. In order to carry out the plan outlined in Section 1.2, we must make
additional assumptions on how (E, c,p) interact. To simplify the presentation, set

(1.8) � := ∇ logp + c−1 div(c) where div(c)i = ∑
j

∂j c
ij , i = 1, . . . , d.

ASSUMPTION 1.5. The following hold:

(i)
∫
E �′c�p < ∞.

(ii)
∫
E(∇ · (pc�)))+ < ∞.

(iii) For the symmetric second order linear operator

LR := 1

2
∇ · (c∇) + 1

2
(∇ logp)′c∇ = 1

2
Tr

(
cD2) + 1

2
�′c∇,

a (nonexplosive) solution to the Martingale problem for LR on E exists.

REMARK 1.6. Recall that σ denotes the unique positive definite symmetric square root
of c. The diffusion XR associated to LR has dynamics

(1.9) dXR
t = 1

2
(c�)

(
XR

t

)
dt + σ

(
XR

t

)
dWt .

For any Brownian motion W (on some probability space), Assumptions 1.1, 1.5(iii) imply
that there exists a unique strong solution for any initial condition XR

0 ∈ E. Furthermore, as
formally p is a candidate invariant density for XR , Assumption 1.5(iii) also implies the seem-
ingly stronger result that XR is ergodic with invariant density p: see [23], Corollary 4.9.4. As
for verification of Assumption 1.5(iii), the most common way to identify if a diffusion does
not explode is to use Lyapunov functions: see [25], Chapter 10, and [23], Chapter 6.7, for
sufficient conditions in the multi-dimensional case, and [23], Theorem 5.1.5, for necessary
and sufficient conditions in one dimension.

Therefore, given (1.7), under Assumption 1.5(iii) we see that (1.9) is a worst case model
if and only if c−1 div(c) is a gradient, in which case XR = X̂. Absent this, XR is not X̂.
However, there is still a very good reason why we enforce Assumption 1.5(iii). As shown
in [23], Theorem 6.6.2(ii), if Assumption 1.5(iii) fails, then there are no time-homogeneous
diffusions whose laws are in �. Therefore, a fortiori, the candidate for the “worst case” model
of (1.7) will not belong to �, making it impossible to prove Theorem 1.8 that follows. In fact,
if Assumption 1.5(iii) fails to hold, it is not clear whether the class � contains any elements
whatsoever, and even if it did, it is also not clear if the robust problem is well-posed. To
reinforce these points, Proposition 1.9 below will have more to reveal for the one-dimensional
case.

REMARK 1.7. Neither of conditions (i) and (iii) in Assumption 1.5 implies the other.
That (i) does not imply (iii) follows by letting E = (0,1), and p(x) = c(x) = 1. To show that
(iii) does not imply (i), let E = (0,∞), and p(x) = Be−Bx , c(x) = ξ2x for B, ξ > 0. Then,∫

E
�′c�p =

∫ ∞
0

Bξ2xe−Bx

(
1

x
− B

)2
= ∞,

but XR has dynamics dXR
t = (1/2)(ξ2 − BXR

t ) dt + ξ

√
XR

t dWt and hence is nonexplosive
from the well-known properties of the CIR process.

What follows is our main result, the proof of which is in Appendix A.
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THEOREM 1.8. Let Assumptions 1.1 and 1.5 hold. Then, there exists a unique (up to a
multiplicative constant) û ∈D such that

(1.10) û = argmin
u∈D

∫
E

Lcu

u
p.

Furthermore, it holds that

(1.11) λ = I = 1

2

∫
E
(∇ log û)′c(∇ log û)p,

and the trading strategy

(1.12) ϑ̂· = (∇ log û)(X·) ∈ �

is such that G(V ϑ̂ ,P) = λ, for all P ∈ �.

1.4. On Assumption 1.5(iii). We elaborate here on the importance of Assumption 1.5(iii),
already hinted in Remark 1.6, by investigating deeper the one-dimensional case.

PROPOSITION 1.9. Assume that d = 1 and E = (α,β) for −∞ ≤ α < β ≤ ∞. Let (c,p)

satisfy Assumption 1.1 and Assumptions 1.5(i) and (ii). Then, if Assumption 1.5(iii) fails, it
either holds that � =∅ or λ = ∞.

In words, the conclusion of Proposition 1.9 is that, absent Assumption 1.5(iii), either there
are no models in the robust class, or infinite robust growth is possible.

PROOF. Assume that � �= ∅. Let x0 ∈ (α,β). From [23], Theorem 5.1.1, Assump-
tion 1.5(iii) failing is equivalent to either

∫ x0
α 1/(pc) < ∞ or

∫ β
x0

1/(pc) < ∞. We shall only

consider the case where
∫ β
α 1/(pc) < ∞ as the other cases are similar. To this end, from (1.5)

with u = √
pc, it follows that

Lcu

u
p = 1

2
¨(pc) − 1

4

˙(pc)
2

4pc
,

and hence Assumption 1.5(ii) implies (Lcu/u)+ ∈ L1(E,p) so that u ∈ D. Next, from (1.6),
it is clear that if (Lcu/u)− /∈ L1(E,p) then λ = ∞. If (Lcu/u)− ∈ L1(E,p), which, along
with Assumption 1.5(ii), implies that (Lcu/u) ∈ L1(E,p), for ε > 0 consider the function

vε(x) :=
√

ε +
∫ x

α

1

pc
, x ∈ (α,β).

A straightforward calculation shows that

Lc(uvε)

uvε

= Lcu

u
+ LRvε

vε

= Lcu

u
− 1

8

c

(pc)2(ε + ∫ x
α (pc)−1)2 .

It thus follows that (Lc(uvε)/(uvε))
+ ∈ L1(E,p) so that uvε ∈ D. Furthermore,

−
∫ β

α

Lc(uvε)

uvε

p = −
∫ β

α

Lcu

u
p + 1

8

∫ β

α

1

pc(ε + ∫ x
α (pc)−1)2

= −
∫ β

α

Lcu

u
p + 1

8

(
− 1

ε + ∫ x
α (pc)−1

∣∣∣∣x=β

x=α

)

= −
∫ β

α

Lcu

u
p − 1

8

1

ε + ∫ β
α (pc)−1

+ 1

8ε
.
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Thus, we see from (1.6) and (Lcu/u) ∈ L1(E,p) that

λ ≥ lim
ε↓0

(
−

∫ β

α

Lcu

u
p − 1

8

1

ε + ∫ β
α (pc)−1

+ 1

8ε

)
= ∞,

concluding the proof. �

1.5. Sensitivity with respect to inputs. The proof of Theorem 1.8 shows û = exp(φ̂/2),
where φ̂ : E �→R is the unique (up to an additive constant) function satisfying

(1.13) φ̂ = argmin
C2(E)

∫
E
(∇φ − �)′c(∇φ − �)p.

The above quadratic variational problem is more convenient (in terms of theoretical properties
such as existence/uniqueness/regularity) to solve3 than identifying û via the right hand side
of (1.10). It also allows one to establish continuity with respect to the problem inputs, as we
now explain.

First (cf. Section 2.1 below), if c−1 div(c) is a gradient of some function H ∈ C1,γ (E,R)

then (1.8) trivially implies φ̂ = log(p) + H and continuity (with respect to (p,H)) of φ̂, ∇φ̂

and λ = (1/8)
∫
E ∇φ̂′c∇φ̂p can easily be checked.

Absent the gradient case, one may establish continuity using the following simple argu-
ment. Fix E and for i = 1,2 let (E, ci,pi) satisfy Assumptions 1.1, 1.5 and denote by φ̂i , the
corresponding optimizer of (1.13). Assume furthermore that

∫
E ∇φ̂′

j ci∇φ̂jpi < ∞.4 This, in

conjunction with the respective optimality of φ̂i implies (cf. Remark A.6 below)

0 =
∫
E
(∇φ̂i − �i)

′ci(∇φ̂j − ∇φ̂i)pi.

Using this, straightforward calculations yield the upper bound

(1.14)

∫
E
(∇φ̂1 − ∇φ̂2)

′c1(∇φ̂1 − ∇φ̂2)p1

≤
∫
E

(
�1 − �2 +

(
p2

p1
c−1

1 c2 − 1
)
(∇φ̂2 − �2)

)′

× c1

(
�1 − �2 +

(
p2

p1
c−1

1 c2 − 1
)
(∇φ̂2 − �2)

)
p1.

To see how (1.14) may be used to establish continuity, consider the following special case,
motivated from stochastic portfolio theory, where the covariance matrix is fixed, and one
wishes to account for deviations in the limiting density. Fix a triple (E, c,p) which satisfy
Assumptions 1.1, 1.5, and take a sequence of functions {υn} such that

lim
n→∞ sup

x∈E

∣∣υn(x)
∣∣ = 0; lim

n→∞

∫
E

∇υ ′
nc∇υnp = 0,

and such that, for each n, with pn = peυn the triple (E, c,pn) also satisfies Assumptions 1.1
and 1.5. Here, (1.14) and the optimality of φ̂n imply∫

E
(∇φ̂ − ∇φ̂n)

′c(∇φ̂ − ∇φ̂n)p

≤ 2
∫
E

∇υ ′
nc∇υnp + 4 sup

E

((
eυn − 1

)2
e2|υn|)(∫

E
�′c�p +

∫
E

∇υ ′
nc∇υnp

)
.

3In fact, one solves the variational problem over W
1,2
Loc(E) the set of weakly differentiable functions φ with φ,

∇φ locally square integrable, and then proves regularity of the minimizer.
4Throughout, {i, j} = {1,2} or {2,1}, and {i} = {1} or {2}.
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Therefore, limn→∞
∫
E(∇φ̂ − ∇φ̂n)

′c(∇φ̂ − ∇φ̂n)p = 0, which along with limn→∞
∫
E �′

nc ×
�npn = ∫

E �′c�p implies continuity in the worst case growth rate. Last, for more general
models, from (1.14) one sees the relevant quantities to control are

∫
E(� − �n)

′c(� − �n)p and
supE((pc)−1pncn − 1).

2. Examples.

2.1. One-dimensional and “gradient” cases. As mentioned above, assume c satisfies
the special condition c−1 div(c) = ∇H , for some function H ∈ C1,γ (E,R). Note this al-
ways holds in the one-dimensional case with H = log(c). Here, φ̂ = log(p) + H and hence

û =
√

peH . Furthermore, ergodicity under the candidate worst-case model holds directly by
Assumption 1.5(iii), since in this case the reversing diffusion of Assumption 1.5(iii) is in
fact the worst-case model. Expanding on the one dimensional case where E = (α,β) for
−∞ ≤ α < β ≤ ∞, we have û = √

pc, and using [23], Theorem 5.1.5, it follows that As-
sumptions 1.1 and 1.5 hold provided

• ∫ β
α (ṗc)2/pc < ∞;

• for some x0 ∈ E we have limx↓α

∫ x0
x (pc)−1 = ∞ = limx↑β

∫ x
x0

(pc)−1;

• ∫ β
α (p̈c)+ < ∞.

Therefore, the great difficultly in establishing Theorem 1.8 lies in treating the multi-
dimensional setting, absent the highly particular case when c−1 div(c) is a gradient.

2.2. A multi-dimensional example: Langevin diffusion. Consider the case where E = R
d ,

c ∈ S
d++ is constant and p = e−V for a smooth function V such that

∫
E e−V = 1. We assume

that |∇V | is of linear growth, parts (i), (ii) of Assumption 1.5 hold (part (iii) holds in view of
the assumed linear growth) and

(2.1) lim
n↑∞

∫
∂Bn

|V |e−V
∣∣∇V ′ν

∣∣dS = 0,

where Bn is the open ball of radius n, ν is an outward normal unit vector and dS denotes
surface measure. Here, XR is the Langevin diffusion dXR

t = −(1/2)c∇V (XR
t ) dt + σ dWt .

As this setting falls into the gradient case of Example 2.1, Theorem 1.8 implies û = e−V/2,
the robust strategy is ϑ̂· = −∇V (X·)/2 and

λ = 1

8

∫
Rd

∇V ′c∇V e−V .

Now, let B be any antisymmetric matrix (B + B ′ = 0) and consider the diffusion with dy-
namics dXt = (−(1/2)c + B)∇V (Xt) dt + σ dWt . Due to the linear growth assumption, X

is nonexplosive and simple calculation shows that, should X be ergodic, p is the invariant
density. Thus, as mentioned in Remark 1.6, X is in fact ergodic with invariant density p for
all antisymmetric B . This demonstrates that, for d ≥ 2, the class of time homogenous diffu-
sions whose law is in � is uncountably large. Next, for the nonrobust model with B fixed,
the growth optimal portfolio is ϑ̂B· = (−1/2 + c−1B)∇V (X·). Straightforward calculations
using (2.1) show the long run growth rate for this portfolio is

λB = λ + 1

2

∫
Rd

∇V ′B ′c−1B∇V e−V .

As V cannot be identically constant, this growth rate can be made arbitrarily large varying
over B . However, the robust growth rate of λ is achievable in every model, via the portfolio ϑ̂ .
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2.3. Cox–Ingersoll–Ross model under uncertainty: Infinite robust growth. Let E =
(0,∞) and c(x) = ξ2x, x ∈ (0,∞), where ξ > 0. For A > 1 and B > 0, set

p(x) = BA

�(A)
xA−1e−Bx; �(A) =

∫ ∞
0

yA−1e−y dy.

Assumptions 1.1 and 1.5 hold, and a straightforward calculation using û = √
pc (cf. Sec-

tion 2.1) shows that λ = λ(A,B) = ξ2AB/(8(A−1)). In [20] we considered a wider class of
models, where E and c are known, but no assumption is made regarding a limiting density p

(not even whether such a density exists). In this example, as limB↓0 λ(A,B) = 0, there is no
possibility to achieve strictly positive growth in the setting of [20]. However, once a density
p (i.e., a choice of A, B) is specified, strictly positive growth is possible.

In fact, we now show infinite robust growth is possible when A = 1, in which case p(x) =
Be−Bx , x > 0. From Remark 1.7, we know Assumption 1.5(i) does not hold. However, As-
sumption 1.5(iii) does hold, and this implies that � �= ∅ (cf. [22] for verification of item
(3) with unbounded functions). The candidate optimal trading strategy is ϑu = (∇u/u)(X·)
for u = √

pc which specifies here to u(x) = ξ
√

Bx exp(−Bx/2), x > 0. A calculation shows
that Lcu/u = −(1/8)ξ2(1/x+2B −B2x), implying (Lcu/u)+ ∈ L1(E,p) and hence u ∈ D.
But, it is clear (Lcu/u)− /∈ L1(E,p) and hence (1.5) implies that G(V ϑu

,P) = ∞ for all
P ∈ �, and hence λ = ∞.

2.4. Explosion, ergodicity and robust growth. If the diffusion with dynamics dXt =
σ(Xt) dWt , associated to Lc from (1.4), explodes in finite time, then robust growth is achiev-
able for all densities p such that Assumptions 1.1, 1.5 hold. Indeed, it follows from [19],
Lemma 3.5, and [17], Lemma 33, that for all such p

0 < − inf
u∈D̃

∫
E

Lcu

u
p ≤ − inf

u∈D

∫
E

Lcu

u
p = I = λ.

Here, D̃ ⊂ D contains those u ∈ C2(E), u > 0 such that Lcu/u is bounded from above.
Note also that, if the diffusion with dynamics dXt = σ(Xt) dWt is positive recurrent with

invariant density p then positive robust growth is not possible. Indeed, we may take û ≡ 1 in
(1.7), and as such, the trading strategy ϑ̂ = ∇û/û ≡ 0 achieves maximal growth under P̂ ∈ �.
No trading trivially leads to G(V ϑ̂ , P̂) = 0; hence, λ = 0. For example, this situation occurs
when E = R, c is any positive smooth function such that

∫
R
(1/c) = 1 and p = 1/c (cf. [23],

Chapter 5).

3. An application in ranked-based models.

3.1. Relative market capitalizations. To motivate the results of this section, start with a
collection S = (Si; i = 1, . . . , d) of processes representing market capitalizations of d stocks,
and set M = ∑d

i=1 Si as the total capitalization. With Xi := Si/M , i = 1, . . . , d , the process
X = (Xi; i = 1, . . . , d) denotes relative market capitalizations. We assume that no stock cap-
italization vanishes, so that X takes values in the open simplex

(3.1) �d−1+ :=
{
x ∈ R

d
∣∣∣ min
i=1,...,d

xi > 0,

d∑
i=1

xi = 1

}
.

As already noted in the Introduction, wealth from investment (as well as growth rates) will
not be absolute, but rather relative to market capitalization. In fact, investment is defined with
respect to the relative capitalizations X, and not with respect to the original prices S, through



1798 C. KARDARAS AND S. ROBERTSON

the usual change-of-numéraire technique. As direct calculations show, for any d-dimensional
predictable process π with

∑d
i=1 πi = 1,

dUt

Ut

=
d∑

i=1

πi
t

dSi
t

Si
t

⇐⇒ d(U/M)t

(U/M)t
=

d∑
i=1

πi
t

dXi
t

Xi
t

.

To wit, if a strategy of portfolio weights π = (πi; i = 1, . . . , d) is fully invested in stocks,
the same strategy applied to the relative capitalizations results in wealth relative to the total
market capitalization. Note also that, as the vector-valued process X is degenerate (the sum
of its components equals one), there is no loss of generality in assuming the strategies ϑ

resulting in (1.1) are such that
∑d

i=1 Xiϑi = 1, where to connect with the above, we have
set ϑi = πi/Xi . Indeed, for any predictable strategy ϑ , if one defines a strategy η via ηi =
ϑi + (1 − ∑d

j=1 Xjϑj ) for i = 1, . . . , d , then we have
∑d

i=1 Xiηi = 1, and

d∑
i=1

ηi
t dXi

t =
d∑

i=1

ϑi
t dXi

t +
(

1 −
d∑

j=1

Xjϑ
j
t

)
d∑

i=1

dXi
t =

d∑
i=1

ϑi
t dXi

t ,

implying that V ϑ = V η.

3.2. Ranked capitalizations. As has been observed in [14], Chapter 5, empirical time-
series data suggest that the capital distribution curve (i.e., the log-log plot of ranked relative
capitalizations versus rank, in decreasing order) is stable for U.S. equities. This leads to the
introduction of so-called ranked based models for financial markets. Here, we shall not go
into the details of ranked based models; for a thorough treatment, see [14], Chapters 4, 5.
Rather, we introduce assumptions on the ranked capitalizations, as opposed to the actual
capitalizations, and consider questions of robust growth.

Define the ordered simplex

(3.2) �d−1+,≤ := {
x ∈ �d−1+ | x1 ≤ x2 ≤ · · · ≤ xd}

.

For x ∈ �d−1+ , we write x() = (x(1), . . . , x(d)) for the corresponding ordered point in �d−1+,≤;
also, for i = 1, . . . , d , let r(xi) denote the rank of xi among x1, . . . , xd , with ties resolved in
lexicographic order.

As aforementioned, it is natural to assume the vector X() = (X(i); i = 1, . . . , d) of ranked
relative capitalizations, which takes values in �d−1+,≤, is stable in the long run. Thus, we
shall take as inputs a pair (κ, q) where κ : �d−1+,≤ �→ S

d++ and q : �d−1+,≤ �→ (0,∞) with∫
�d−1+,≤

q = 1. Similar to Definition 1.2, we consider the class of measures �≤ on C([0,∞),

�d−1+ ), equipped with the Borel σ -algebra F , such that for P ∈ �≤:

(1) X is a P-semimartingale and, for i = 1, . . . , d and j = 1, . . . , d:

(3.3)
[
Xi,Xj ] =

∫ ·
0

κr(Xi
t )r(X

j
t )(X()

t

)
dt; P-a.s.

(2) For all Borel measurable functions h on �d−1+,≤ with
∫
�d−1+,≤

h+q < ∞, it holds that

lim
T ↑∞

1

T

∫ T

0
h
(
X

()
t

)
dt =

∫
�d−1+,≤

hq; P-a.s.

(3) The laws of {Xt ; t ≥ 0} under P are tight, where compact sets are those compactly
contained within �d−1+ .
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REMARK 3.1. We pause here to discuss two issues arising from the degeneracy of
�d−1+ . First, note that we can identify �d−1+ with a region E ⊆ R

d−1 which satisfies As-
sumption 1.1(1), by replacing xd with 1 − x1 − · · · − xd−1. However, since �d−1+ is a flat
(d − 1)-dimensional manifold, and for ease of notation, we will not work with E, preferring
to work directly with �d−1+ .

Second, in view of the (d − 1)-dimensionality of �d−1+ , one has to appropriately under-
stand our assumption that κ(x()) ∈ S

d++ for x() ∈ �d−1+,≤. In fact, z′κ(x())z ≥ �(x())z′z for
some Borel function � : �d−1+,≤ �→ (0,∞) need not hold on the whole of Rd , but rather on the
(d − 1)-dimensional subspace {

z ∈ R
d

∣∣∣ d∑
i=1

zi = 0

}
,

which (up to an affine translation) is tangent to every point x ∈ �d−1+ . Despite the clear abuse
of notation, we prefer to write κ(x) ∈ S

d++, understanding that it need only hold on the tangent
space to �d−1+ .

REMARK 3.2. Regarding (3.3) above, it may seem more natural to require

(3.4)
[
X(),X()]

· =
∫ ·

0
κ
(
X

()
t

)
dt.

Indeed, as can be deduced from [3], Theorem 2.3, (3.4) implies X has instantaneous covari-
ations

d[Xi,Xj ]t
dt

= κr(Xi
t )r(X

j
t )(X()

t

); i = 1, . . . , d, j = 1, . . . , d, t ≥ 0,

when X() is in the interior of �d−1+,≤. However, without additional assumptions (e.g., almost
surely zero Lebesgue measure for ranks coinciding), one cannot assume that κ is nonde-
generate, or even recover (d[X,X]t /dt; t ≥ 0) from κ on the boundary of �d−1+,≤. For this
reason, we define �≤ using (3.3) rather than (3.4). Morally, we regard the two definitions as
equivalent.

3.3. Growth in rank-based models. In accordance to Definition 1.3, let �≤ be the class
of predictable processes ϑ that are X-integrable with respect to every P ∈ �≤. The growth
rate G(V ϑ,P) for ϑ ∈ �≤ is defined as in (1.2), and we set

(3.5) λ≤ := sup
ϑ∈�≤

inf
P∈�≤

G
(
V ϑ,P

)
.

We wish to use the results of Section 1 in the current setting. Of course, one really invests
in the relative capitalizations X, and not in its ranked counterpart X(); therefore, a transfor-
mation of the inputs (κ, q) from �d−1+,≤ to (c,p) in �d−1+ is in order. Additionally, we must
ensure that (c,p) satisfy the regularity and integrability requirements of Assumptions 1.1 and
1.5.

In view of (3.3), we first naturally extend κ from �d−1+,≤ to �d−1+ by defining

(3.6) c(x) = {
cij (x)

}d
i,j=1; cij (x) := κr(xi)r(xj )(x()); x ∈ �d−1+ .

The extension of q from �d−1+,≤ to �d−1+ is performed in a “symmetric” way, by defining

(3.7) p(x) := 1

d!q
(
x()); x ∈ �d−1+ .

We make the following assumption (see Remark 3.1 regarding part (2) of Assumption 1.1).
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ASSUMPTION 3.3. The pair (κ, q) is such that, with E = �d−1+ , c as in (3.6) and p as in
(3.7), Assumptions 1.1 and 1.5 are satisfied.

REMARK 3.4. We stress that the passage from (κ, q) to (c,p) is made only in order to
use the results from Section 1 under the validity of Assumption 3.3. In particular, we do not
require that models have limiting stable distribution p for X, where all rankings are equally
likely, each with probability 1/d!. Note, however, that the worst-case model will have this
structure.

REMARK 3.5. Consider the model of [21] and [18], Section 3, where the market capital-
izations S = (S1, . . . , Sd) are given by Si = eY i

where dY i
t = ∑d

j=1 1
Y i

t =Y
(j)
t

(δj dt +σ dWi
t ).

In other words, the ith log capitalization is driven by its own Brownian motion, but the drift
depends upon its relative rank amongst all the log capitalizations. With Xi = Si/(S1 + · · · +
Sd) as the relative capitalization, Ito’s formula implies d[Xi,Xj ]t = c(Xt)

ij dt where

cij (x) = σ 2xixj (
δij − xi − xj + x′x

)
.

Calculation verifies (3.6) with

κpq(
x()) := σ 2x(p)x(q)(δpq − x(p) − x(q) + (

x())′x()).
Now, c is locally elliptic (it can only degenerate when

∑d
i=1 xi = 1—see Remark 3.1), and

smoothness is evident. Therefore, κ satisfies Assumption 3.3. However, the invariant mea-
sure q of [18] does not satisfy Assumption 3.3 as the associated p is not smooth on the
rank-switching boundaries. Indeed, in the two-dimensional case, one may identify �d−1+,≤
with (0,1/2), and in this region q is the distribution of 1/(1 + eY ) where Y is exponen-
tially distributed with some parameter λ > 0. This implies q(x) = λxλ−1(1 − x)−λ−1, and
since q̇(1/2) = 16λ2 �= 0 it follows that p is not differentiable at x = 1/2. However, as 1/2
is the only problematic point, we may smooth p at 1/2 (cf. Proposition 3.8 below) to apply
our results.

Under the force of Assumption 3.3 on (κ, q), build (c,p) as in (3.6) and (3.7), respectively,
as well as �, � according to Definitions 1.2 and 1.3. It is immediate that

� ⊆ �≤; �≤ ⊆ �.

Thus, we always have

(3.8) λ≤ = sup
ϑ∈�≤

inf
P∈�≤

G
(
V ϑ,P

) ≤ sup
ϑ∈�

inf
P∈�

G
(
V ϑ,P

) = λ.

From Theorem 1.8, we know that for û solving (1.10) and ϑ̂ defined in (1.12), we have (1.11)
holding for all P ∈ �. The following result, the proof of which can be found in Appendix B,
implies that the portfolio generating function û is permutation invariant, giving also that
λ≤ = λ.

PROPOSITION 3.6. For the pair (κ, q), let Assumption 3.3 hold. For the associated (c,p)

constructed above, let û be as in (1.10), from Theorem 1.8. Then, û(x) = û(x()) for all x ∈
�d−1+ . Furthermore,

(3.9) λ≤ = 1

2

∫
�d−1+,≤

q(∇ log û)′κ(∇ log û) = 1

2

∫
�d−1+

p(∇ log û)′c(∇ log û) = λ,

and the trading strategy ϑ̂· = (∇ log û)(X·) ∈ �≤ is such that

(3.10) G
(
V ϑ̂ ,P

) = λ≤ ∀P ∈ �≤.
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REMARK 3.7. The importance of û being a function of the ranked weights is that it
implies the optimal strategy is rank-generated, in the sense of [14], Section 4.2. Because û

is permutation-invariant and twice continuously differentiable, the local time terms in [14],
Theorem 4.2.1, vanish. In effect, we have {Xi = Xj } ⊆ {ϑ̂ i = ϑ̂j } for all i = 1, . . . , d and
j = 1, . . . , d in our result, which is a desirable feature. Indeed, if optimal positions were
different when the ranks of two stocks are the same, then, upon collisions of ranked market
capitalizations, one would need to change large positions with very high frequency. Not only
is this practically infeasible, it also would lead to unsustainable transaction costs (which,
admittedly, we do not model here).

We close this section with an important observation. It is not hard to see that Assump-
tion 3.3 only concerns (κ, q) near ∂�d−1+,≤. However, and especially in view of XR being
nonexplosive in Assumption 1.5(iii), it is natural to wonder if there is ever a way to mod-
ify an arbitrary (κ, q) near ∂�d−1+,≤ so that Assumption 3.3 holds. To this end we have the
following result.

PROPOSITION 3.8. Let κ : �d−1+,≤ �→ S
d++ and q : �d−1+,≤ �→ (0,∞) be such that for all

open subsets V ⊂ �d−1+,≤ we have κ ∈ C2,γ (V̄ ,Sd++) and q ∈ C1,γ (V̄ , (0,∞)). Then, for any

open subset V ⊂ �d−1+,≤ there are (κV , qV ) such that:

(i) qV is strictly positive in �d−1+,≤ with
∫
�d−1+,≤

qV (x) dx = 1;

(ii) κ = κV , q = qV on V ;
(iii) (κV , qV ) satisfy Assumption 3.3.

In fact, (κV , qV ) in Proposition 3.8 admit explicit formulas in (B.13). Upon inspection of
Lemma B.1, the modified pair (κV , qV ) is such that, for some constant K > 0, the optimizer
û(x) = (

∏d
i=1 xi)K for x() lying near ∂�d−1+,≤. This leads to an optimal strategy ϑ̂ such that

ϑ̂ i = K/Xi + (1 − Kd), i = 1, . . . , d , when X() is near ∂�d−1+,≤. Qualitatively, the investor
holds a combination of the market and equally weighted portfolios. This, of course, is entirely
consistent with the set inclusion {Xi = Xj } ⊆ {ϑ̂ i = ϑ̂j } for i, j = 1, . . . , d of Remark 3.7.

APPENDIX A: PROOF OF THEOREM 1.8

We first provide a brief road-map on how Theorem 1.8 is proved, starting with the varia-
tional problem (1.10). Consider when u = e(1/2)φ for φ ∈ C∞

c (E). Clearly, u ∈ D, and from
(1.5) we deduce that for all P ∈ �

G
(
V ϑu

,P
) = −1

8

∫
E

(∇φ′c∇φ + 2 Tr
(
cD2φ

))
p.

As φ ∈ C∞
c (E), integration-by-parts yields

G
(
V ϑu

,P
) = −1

8

∫
E

(
∇φ′c∇φ − 2∇φ′c

(∇p

p
+ c−1 div(c)

))
p

= 1

8

∫
E

�′c�p − 1

8

∫
E
(∇φ − �)′c(∇φ − �)p,

where � is from (1.8). Thus, we conjecture that û in (1.10) is found by solving

(A.1) inf
φ

∫
E
(∇φ − �)′c(∇φ − �)p,

and setting û = e(1/2)φ̂ if a minimizer exists. Of course, since we actually need the minimizer,
we cannot take the infimum over C∞

c (E). Instead we use W
1,2
Loc(E), the space of weakly
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differentiable functions φ so that φ2, |∇φ|2 are locally integrable. The first result we shall
provide, Lemma A.1 in Section A.1, identifies a unique (up to an additive constant) minimizer
φ̂ ∈ W

1,2
Loc(E), which is in fact twice continuously differentiable with Hölder second-order

derivative.
Given a minimizer φ̂, the first order condition for optimality in the minimization problem

of (A.1) suggests that

(A.2) ∇ · (
pc(∇φ̂ − �)

) = 0.

This is indeed shown to hold in Lemma A.1. Therefore, [23], Corollary 4.9.4, implies that, if
X̂ from (1.7) does not explode, it cannot be transient. Thus, [23], Theorem 2.8.1, implies X̂ is
recurrent, hence ergodic with invariant measure p in light of (A.2) and

∫
E p < ∞. Therefore,

the second result, Lemma A.2 in Section A.2, will establish the fact that X̂ from (1.7) does
not explode.

Given the previous two auxiliary results, Section A.3 will conclude the proof of Theo-
rem 1.8.

A.1. The variational problem. We first consider the minimization problem in (A.1) and
obtain the following result.

LEMMA A.1. Let Assumption 1.1 and Assumption 1.5(i) hold, and recall � from (1.8).
Then, there exists a unique (up to an additive constant) φ̂ ∈ W

1,2
Loc(E) which solves

(A.3) inf
φ∈W

1,2
Loc(E)

∫
E
(∇φ − �)′c(∇φ − �)p.

Furthermore, φ̂ ∈ C2,γ ′
(E) for some 0 < γ ′ ≤ γ and satisfies the second order linear elliptic

equation

(A.4) ∇ · (
pc(∇φ̂ − �)

) = 0; x ∈ E.

PROOF. To make the notation cleaner set

J (φ) :=
∫
E
(∇φ − �)′c(∇φ − �)p,(A.5)

so that (A.3) becomes Ĵ := inf
φ∈W

1,2
Loc(E)

J (φ). Note that Assumption 1.5(i) gives Ĵ < ∞. In

what follows K will be a constant which changes from line to line. Also, where appropriate,
Kn will be a constant which depends only upon En and the model coefficients on En.

Let {φm}m∈N ⊂ W
1,2
Loc(E) be such that limm↑∞ J (φm) = Ĵ . Assumption 1.5(i) and the

Cauchy–Schwarz inequality then imply

sup
m

∫
E

∇φ′
mc∇φmp ≤ K,

and hence for all n

sup
m

∫
En

∇φ′
mc∇φmp ≤ K.

Next, since p ≥ cn > 0 and c ≥ λn > 0 on En we have that

(A.6) sup
m

∫
En

∇φ′
m∇φm ≤ Kn.

Denote by

ψn
m := φm −

∮
En

φm,
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as φm less its average over En. From the classical Poincaré inequality [11], Chapter 5.8, and
(A.6) it follows that

sup
m

∫
En

((
ψn

m

)2 + (∇ψn
m

)′∇ψn
m

) ≤ Kn.

The Rellich–Kondrachov theorem [11], Chapter 5.7, and the fact that ∇ψn
m is norm bounded

in L2(En,R
d) imply the existence of ηn ∈ W 1,2(En) such that for some subsequence m(n):

ψn
m(n) → ηn strongly in L2(En),

∇ψn
m(n) → ∇ηn weakly in L2(

En,R
d)

.

Thus, by [2], Theorem 13.1.1, which shows that

(A.7) L2(
En,R

d)  v �→
∫
En

(v − �)′c(v − �)p,

is weakly lower-semicontinuous it follows that

(A.8)
∫
En

(∇ηn − �
)′
c
(∇ηn − �

)
p ≤ lim inf

m(n)→∞

∫
En

(∇φm − �)′c(∇φm − �)p.

Now, fix n < n′. There exists a common subsequence m(n,n′) such that

φm(n,n′) −
∮
En

φm(n,n′) → ηn; s-L2(En),w-W 1,2(En),

φm(n,n′) −
∮
En′

φm(n,n′) → ηn′ ; s-L2(En′),w-W 1,2(En′)

(we have used “s” and “w” to denote strong and weak convergence). We now claim that
∇ηn = ∇ηn′

a.e. in En. Indeed, we have for all v ∈ L2(En;Rd) that∫
En

(∇ηn − ∇ηn′)′
v = lim

m(n,n′)→∞

∫
En

(∇φm(n,n′) − ∇φm(n,n′))
′v = 0,

upon which the result follows by taking v = ∇ηn − ∇ηn′
. Thus, since En is connected we

know [11], Chapter 5, that for some constant C(n,n′)

(A.9)
ηn′ = ηn + C

(
n,n′); a.e. in En,

∇ηn′ = ∇ηn; a.e. in En.

Now, using the double-subsequence trick we can find a single subsequence (which we will
label m) such that the above convergences holds for all n ∈ N. For this subsequence (and the
resultant ηn) define (for a.e. x ∈ E) v by

(A.10) v(x) := ∇ηn(x); x ∈ En;n = 1,2, . . . .

Note that v is well defined: indeed we have

v(x) = ∇η1(x) = ∇η2(x) = · · · ; x ∈ E1,

v(x) = ∇η2(x) = ∇η3(x) = · · · ; x ∈ E2,

....

Next, define (for a.e. x ∈ E) η by

(A.11) η(x) := ηn(x) −
n−1∑
k=1

C(k, k + 1); x ∈ En;n = 1,2, . . . .
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Again, η is well defined. This follows because for any n = 1,2, . . . and q = 0,1,2, . . . we
have on En that

ηn+q(x) −
n+q−1∑

k=1

C(k, k + 1) = ηn+q−1(x) + C(n + q − 1, n + q) −
n+q−1∑

k=1

C(k, k + 1),

= ηn+1−q(x) −
n+q−2∑

k=1

C(k, k + 1),

...

= ηn(x) −
n−1∑
k=1

C(k, k + 1).

We now claim that η ∈ W
1,2
Loc(E). First ∇η = v. To see this, let θ ∈ C∞

c (E) and choose n so
that θ ∈ C∞

c (En). For i ∈ 1, . . . , d write Di as the derivative with respect to xi . We have

∫
E

ηDiθ =
∫
En

ηDiθ =
∫
En

(
ηn −

n−1∑
k=1

C(k, k + 1)

)
Diθ

= −
∫
En

Diηnθ = −
∫
En

viθ.

Given that ∇η = v the fact that η ∈ W
1,2
Loc(E) is immediate. From (A.8) we thus have for each

n that ∫
En

(∇η − �)′c(∇η − �)p ≤ lim inf
m→∞

∫
En

(∇φm − �)′c(∇φm − �)p,

≤ lim inf
m→∞

∫
E
(∇φm − �)′c(∇φm − �)p = Ĵ .

Taking n ↑ ∞ and using the monotone convergence theorem we see that∫
E
(∇η − �)′c(∇η − �)p ≤ Ĵ ,

and hence φ̂ := η minimizes J over W
1,2
Loc(E). The uniqueness up to an additive constant

follows by the strict convexity of (∇φ − �)′c(∇φ − �)p in ∇φ.
We now turn to the regularity for φ̂ which essentially is a standard argument and hence just

a broad overview is given. Let θ ∈ C1
c (En) ⊂ W

1,2
Loc(E). By varying J at φ̂ ± εθ and taking

ε ↓ 0 we see that

(A.12) 0 =
∫
En

∇θ ′c(∇φ̂ − �)p.

It thus follows [16], Chapter 8, page 178, that u = φ̂ is a weak solution of the PDE

(A.13)
∇ · (pc∇u − pc�) = 0; x ∈ En,

u = φ̂; x ∈ ∂En.

Here, the boundary condition is interpreted to mean that u − φ̂ ∈ W
1,2
0 (En). Under the given

regularity and ellipticity assumptions in En it follows by [16], Theorem 8.22, that u = φ̂ is



ERGODIC ROBUST GROWTH 1805

locally Holder continuous in En for some exponent 0 < γ ′ ≤ γ . Next, consider the problem
of finding classical solutions to the same PDE but in En−1: that is,

∇ · (pc∇u − pc�) = 0; x ∈ En−1;
u = φ̂; x ∈ ∂En−1.

Since φ̂ is Holder continuous in Ēn−1 it follows from [16], Theorem 6.13, that there is a
unique solution u ∈ C2,γ ′

(En−1) ∩ C(Ēn−1) to the above PDE. But, this means that u is a
weak solution to the above PDE as well. By the uniqueness of weak solutions (which also
holds in the current set—see [16], Theorem 8.3, and the fact that φ̂ is also a weak solution in
En−1) it follows that φ̂ = u a.e. in En−1. Since we already know φ̂ is Holder continuous, this
in fact proves that φ̂ ∈ C2,γ (En−1) and solves the differential expression in (A.4) in En−1.
Since this works for any n the result follows. �

A.2. An ergodic diffusion. Having established existence of minimizer φ̂ we now con-
sider the diffusion as in (1.7) with û = e(1/2)φ̂ : that is,

(A.14) dX̂t = c
∇û

û
(X̂t ) dt + σ(X̂t ) dŴt = 1

2
c∇φ̂(X̂t ) dt + σ(X̂t ) dWt .

Our goal is to show X̂ is ergodic with invariant measure p. More precisely, we let P̂ =
(P̂x)x∈E denote the solution to the generalized martingale problem for the second order linear
operator L̂ associated to X̂ on E: that is,

(A.15) L̂ := 1

2
Tr

(
cD2) + 1

2
∇φ̂′c∇.

We then have the following which proves P̂x ∈ � for all x ∈ E.

LEMMA A.2. Let Assumption 1.1 and Assumptions 1.5(i) and (iii) hold. Let φ̂ be as in
Lemma A.1. Set P̂ as the solution to the generalized martingale problem for the operator L̂

in (A.15). Then P̂ solves the martingale problem for L̂ and in fact, P̂x ∈ � for all x ∈ E.

The rest of this subsection is devoted to the proof of Lemma A.2. We retain the notation
of (1.8), (A.5). Since φ̂ ∈ C2,γ ′

(E) and solves (A.4) it follows that

∇ ·
(
p

(
1

2
c∇φ̂

))
= 1

2
∇ · (

c∇p + p div(c)
)
,

and hence p is an invariant density for X̂. Since
∫
E p = 1 it will follow that Px ∈ � for all

x ∈ E if it can be shown that X is recurrent in E; see [23], Theorem 4.9.5. To this end, we
use the results of [23], Section 6.6, which provide necessary and sufficient conditions for X̂

to be recurrent in the current setup.
We first state a consequence of Assumption 1.5(iii). Denote by En − E1 := En \ Ēc

1 and
LR the second order linear elliptic operator associated to the diffusion XR from Assump-
tion 1.5(iii): that is, in divergence form

(A.16) LR = 1

2
∇ · (c∇) + 1

2

∇p

p

′
c∇.

Since XR is assumed ergodic with invariant density p and reversing by construction, it fol-
lows from [23], Theorem 6.4.1, that

(A.17) lim
n↑∞

1

2

∫
En−E1

(∇un)
′c∇unp = 0,
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where un ∈ C2,γ (En − E1) is the unique (strictly positive in En − E1) solution to

(A.18) LRu = 0, x ∈ En − E1; u = 1, x ∈ ∂E1; u = 0, x ∈ ∂En.

In fact, one has

(A.19) un(x) = P
R
x [τE1 < τEn],

where {PR
x }x∈E is the solution to the Martingale problem for LR on E and τEi

is the first
hitting time to ∂Ei . Note that this implies 0 ≤ uR ≤ 1. To show that X is recurrent we use the
following result, as can be found in [23], Theorem 6.6.1.

THEOREM A.3. Let Assumptions 1.1—1.5(i) hold and let φ̂ be as in Lemma A.1. Let L̂

be operator associated to X̂ in (A.14). For each n define the convex sets

An := {
g ∈ W 1,2(En − E1) : g = √

p on ∂E1, g = 0 on ∂En,

dist(x, ∂En)
−1g(x) ∈ L∞(En − E1)

};
Bn :=

{
h ∈ W 1,2(

En − E1, g
2) : h = 1

2
log(p) on ∂E1

}
.

Now, define

μn := inf
g∈An

sup
h∈Bn

1

2

∫
En−E1

g2
(∇g

g
− 1

2

(∇φ̂ − c−1 div(c)
))′

c

(∇g

g
− 1

2

(∇φ̂ − c−1 div(c)
))

− 1

2

∫
En−E1

g2
(
∇h − 1

2

(∇φ̂ − c−1 div(c)
))′

c

(
∇h − 1

2

(∇φ̂ − c−1 div(c)
))

.

Then, L̂ is recurrent if and only if limn↑∞ μn = 0.

REMARK A.4. Above, W 1,2(En−E1, g
2) is the space of weakly differentiable functions

h satisfying ∫
En−E1

g2(
h2 + ∇h′∇h

)
< ∞.

Also, the boundary conditions are interpreted to hold in the trace sense. Lastly, as shown right
above [23], Theorem 6.6.1, μn takes the simpler form

(A.20) μn = 1

2

∫
En−E1

ṽn

vn

∇v′
nc∇vn,

where vn solves L̂v = 0 in En − Ē1 with v = 0 on ∂En and v = 1 on ∂E1; and, with L̃

denoting the formal adjoint to L̂, where ṽn solves L̃ṽ = 0 on En − Ē1 with ṽ = 0 on ∂En and
1 on ∂E1. Thus, if {P̂x}x∈E denotes the solution to the generalized Martingale problem for L̂

on E then vn(x) = P̂
x[τE1 < τEn] where τEi

is the first hitting time of ∂Ei . As solutions to the
generalized martingale problem remain in a cemetery state upon explosion, vn(x) ↑ v∞(x) =
P̂

x[τE1 < ∞]. Furthermore, since one can show ṽn is locally uniformly bounded from below,
the convergence of vn to v∞ is such that if μn → 0 then v∞ ≡ 1, and [23], Theorems 2.8.1,
2.8.2, imply L̂ is recurrent, hence positive recurrent because p is an invariant probability
density. If μn � 0 then we cannot conclude v∞ ≡ 1, and in fact (this is the difficult part in
proving Theorem A.3) L̂ is transient.
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PROOF OF LEMMA A.2. (A.20) implies μn ≥ 0 and hence lim infn↑∞ μn ≥ 0. Assume
by way of contradiction that lim supn↑∞ μn > 0. Thus, for some sub-sequence (still labelled
n) and for some δ > 0 we have μn ≥ δ for all n. Taking g := un

√
p (which by the global

Schauder estimates for un is in An: see [23], Theorem 3.2.8) one obtains

δ ≤ 1

8

∫
En−E1

u2
n

(
∇φ̂ −

(∇p

p
+ c−1 div(c)

)
− 2

∇un

un

)′

× c

(
∇φ̂ −

(∇p

p
+ c−1 div(c)

)
− 2

∇un

un

)
p

− 1

2
inf

h∈Bn

∫
En−E1

u2
n

(
∇h − 1

2

(∇φ̂ − c−1 div(c)
))′

c

(
∇h − 1

2

(∇φ̂ − c−1 div(c)
))

p

= 1

8

∫
En−E1

u2
n

(
∇φ̂ − � − 2

∇un

un

)′
c

(
∇φ̂ − � − 2

∇un

un

)
p

− 1

2
inf

h∈Bn

∫
En−E1

u2
n

(
∇h − 1

2

(∇φ̂ − c−1 div(c)
))′

c

(
∇h − 1

2

(∇φ̂ − c−1 div(c)
))

p,

where we have used the definition of � in (A.5). Next, for h ∈ Bn define φ := log(p)+ φ̂−2h.
Under the given regularity assumptions on p, φ̂ we have by the linearity of the trace operator
that

h ∈ Bn ⇔ φ ∈ B ′
n := {

φ ∈ W 1,2(
En − E1,pu2

n

) : φ = φ̂ on ∂E1
}
.

The change of variables h = (1/2)(log(p) + φ̂ − φ) and simple algebra in the previous in-
equality gives

inf
φ∈B ′

n

∫
En−E1

u2
n(∇φ − �)′c(∇φ − �)p

≤
∫
En−E1

u2
n

(
∇φ̂ − � − 2

∇un

un

)′
c

(
∇φ̂ − � − 2

∇un

un

)
p − 8δ.

Since φ̂ ∈ W
1,2
Loc(E) and, according to Lemma A.1 satisfies

∫
E p∇φ̂′c∇φ̂ < ∞, by (A.17) we

know that

lim
n↑∞

∫
En−E1

u2
n

(
∇φ̂ − � − 2

∇un

un

)′
c

(
∇φ̂ − � − 2

∇un

un

)
p =

∫
E−E1

(∇φ̂ − �)′c(∇φ̂ − �)p.

Thus, for n large enough we have

inf
φ∈B ′

n

∫
En−E1

u2
n(∇φ − �)′c(∇φ − �)p ≤

∫
E−E1

(∇φ̂ − �)′c(∇φ̂ − �)p − 4δ.

Now, by Assumption 1.5(i) it follows that
∫
En−E1

�′c�p < ∞. Thus, as shown in [23],
Theorem 6.5.1, page 264, there exists an a.e. unique (up to an additive constant) solution
φn ∈ W 1,2(En − E1,pu2

n) to the minimization problem above. Indeed, to connect with the
proof therein take g = un

√
p, f = φ̂, φ = 1 on ∂E1 and φ = 0 on ∂En and lastly a = c,

b = �. Therefore, we have∫
En−E1

u2
n(∇φn − �)′c(∇φn − �)p ≤

∫
E−E1

(∇φ̂ − �)′c(∇φ̂ − �)p − 4δ.

Next, extend un to all of En by setting un = 1 on E1. It is well known (see [2], Proposi-
tion 5.1.1) that since un = 1 on ∂E1 that this extension is in W 1,2(En) (in fact, it is con-
tinuous, though not continuously differentiable because of the Hopf maximum principle).
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Similarly, for φ ∈ B ′
n we have φ = φ̂ on ∂E1 and hence we may extend φ to En by setting

φ = φ̂ in E1 and it still holds that � ∈ W 1,2(En,pu2
n). This gives for n large enough, say

n ≥ N0(δ) that

(A.21)
∫
En

u2
n(∇φn − �)′c(∇φn − �)p ≤

∫
E
(∇φ̂ − �)′c(∇φ̂ − �)p − 4δ = J (φ̂) − 4δ,

where we recall the definition of J in (A.5). We now use (A.21) to derive a contradiction to
Lemma A.1. To do this, fix an integer m. Since Lun = 0, Harnack’s inequality, un ≤ 1 (which
follows by the probabilistic representation for un in (A.19)) and un(x) = 1 on E1 yields the
existence of a constant cm > 0 so that un(x)2 ≥ cm on Em for all n ≥ m + 1.5 We thus have
for n ≥ N0(δ) ∨ (m + 1) that

(A.22)

J (φ̂) − 4δ ≥
∫
En

u2
n(∇φn − �)′c(∇φn − �)p

≥
∫
Em

u2
n(∇φn − �)′c(∇φn − �)p

≥ cm

∫
Em

(∇φn − �)′c(∇φn − �)p

≥ cm

∫
Em

(∇φn − �)′(∇φn − �),

where cm has changed to the last line, taking into account that p, c ≥ cm > 0 on Em. Thus,
from the Cauchy–Schwarz inequality we have

sup
n≥N0(δ)∨(m+1)

∫
Em

∇φ′
n∇φn ≤ Km.

Copying the argument below (A.6) in Lemma A.1 (note the roles of m and n have reversed)
there exists a function ηm ∈ W 1,2(Em) so that, for some subsequence n(m)

φn −
∮
Em

φn → ηm; s-L2(Em);

∇φn → ∇ηm; w-L2(
Em;Rd)

.

Furthermore, if m < m′ then by taking a common subsequence ηm′ = ηm + C(m,m′) and
∇ηm′ = ∇ηm almost everywhere in Em. In fact, there exists a single subsequence labelled n

such that the convergence holds for all m on this subsequence and we can construct a function
η ∈ W

1,2
Loc(E), exactly as in Lemma A.1, so that ∇η = ∇ηm on Em for each m.

Now, come back to (A.21). For the common subsequence {φn}n∈N where all the conver-
gences take place, for each m we have for n ≥ m that (similar to (A.22))

(A.23) J (φ̂) − 4δ ≥
∫
Em

u2
n(∇φn − �)′c(∇φn − �)p ≥ inf

Em

u2
n

∫
Em

(∇φn − �)′c(∇φn − �)p.

We now claim that for each m

(A.24) lim
n↑∞ inf

Em

u2
n = 1.

First of all, for x ∈ Ē1 we have un(x) = 1 by construction. Second, in Em −E1 we have, since
LRun = 0, un = 1 on ∂E1, and un ≤ 1 on ¯En − E1, from the global Schauder estimates [23],

5Technically, Harnack’s inequality holds in Em − E2 where un is smooth. The extension to all of Em follows
since by the extension, un = 1 on Ē1 and since un is larger in E2 − E1 than in Em − E2, as the probabilistic
representation shows.
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Theorem 3.2.8, there is a constant Km so that supn≥m ‖un‖2,γ,Em ≤ Km, where ‖ · ‖2,γ,Em

is the C2,γ Hölder norm on En. Now, assume there is some subsequence (still labelled n)
so that limn↑∞ infEm u2

n = 1 − ε for some ε > 0. By the Schauder estimates, {un}n∈N is pre-
compact in the ‖ · ‖2,γ,Em norm and there is a further subsequence (still labelled n) and a
function u∞ ∈ C2,γ (Em) so that ‖un − u∞‖2,γ,Em → 0. But, from Assumption 1.5(iii) and
[23], Theorem 6.4.1, we a priori know that un(x) → 1 so that u∞(x) = 1. But this gives

0 = lim
n↑∞ sup

Em

∣∣un(x) − 1
∣∣ = 0,

which contradicts the fact that limn↑∞ infEm un(x) = 1 − ε. Thus, (A.24) holds.
Now, come back to (A.23). In view of (A.24) and the lower-semicontinuity of the operator

in (A.7) (with n there-in equal to m here) it follows that

J (φ̂) − 4δ ≥ lim inf
n↑∞ inf

Em

u2
n

∫
Em

(∇φn − �)′c(∇φn − �)p

≥
∫
Em

(∇ηm − �
)′
c
(∇ηm − �

)
p

=
∫
Em

(∇η − �)′c(∇η − �)p.

Taking m ↑ ∞ yields

J (φ̂) − 4δ ≥
∫
E
(∇η − �)′c(∇η − �)p,

contradicting Lemma A.1. Thus, it cannot be that lim supn↑∞ μn > 0 and hence limn↑∞ μn =
0, proving the recurrence of X̂. �

A.3. Proof of Theorem 1.8. Before proving Theorem 1.8 we state one equality and
prove one technical fact. For the equality, let φ̂ be from Lemma A.1. In light of (A.4) we
obtain

(A.25)

Lcû

û
= 1

4
Tr

(
cD2φ̂

) + 1

8
∇φ̂′c∇φ̂

= 1

4p
∇ · (pc�) − 1

4
∇φ̂′c� + 1

8
∇φ̂′c∇φ̂

= 1

4p
∇ · (pc�) + 1

8
(∇φ̂ − �)′c(∇φ̂ − �) − 1

8
�′c�.

As for the technical fact, we have

LEMMA A.5. Let Assumptions 1.1–1.5(iii) hold. Then
∫
E ∇ · (pc�) = 0.

PROOF OF LEMMA A.5. If ∇ · (pc�) = 0 for all x ∈ E then clearly the result holds.
Else, let φ̂ be from Lemmas A.1, A.2 and note that (A.2) and

∫
E ∇ · (pc�) �= 0 imply φ̂ is not

identically constant, and hence
∫
E p∇φ̂′c∇φ̂ > 0. Recalling XR from Assumption 1.5(iii)

and using (A.25):

1

T
φ̂

(
XR

T

) = 1

T
φ̂

(
XR

0
) + 1

2T

∫ T

0
∇φ̂′c�

(
XR

t

)
dt

+ 1

T

∫ T

0
∇φ̂′σ

(
XR

t

)
dWt + 1

2T

∫ T

0
Tr

(
cD2φ̂

)(
XR

t

)
dt
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= 1

T
φ̂

(
XR

0
) + 1

2T

∫ T

0

1

p
∇ · (pc�)

(
XR

t

)
dt + 1

T

∫ T

0
∇φ̂′σ

(
XR

t

)
dWt

= 1

T
φ̂

(
XR

0
) + 1

2T

∫ T

0

1

p
∇ · (pc�)

(
XR

t

)
dt

+ 1

T

∫ T

0
∇φ̂′c∇φ̂

(
XR

t

)
dt

( ∫ T
0 ∇φ̂′σ(XR

t ) dWt∫ T
0 ∇φ̂′c∇φ̂(XR

t ) dt

)
.

Since (∇ · (pc�))+ ∈ L1(E, leb),
∫
E p∇φ̂′c∇φ̂ > 0, the Dambis–Dubins–Schwarz theorem

and strong law for Brownian motion imply almost surely:

lim
T ↑∞

1

T
φ̂

(
XR

T

) = 1

2

∫
E

∇ · (pc�).

If the right hand side above were not zero, it would contradict the positive recurrence of XR .
�

PROOF OF THEOREM 1.8. From (1.6) we see that

(A.26) λ ≥ I = − inf
u∈D

∫
E

Lcu

u
p ≥ −

∫
E

Lcû

û
p.

For now, assume û = e(1/2)φ̂ ∈ D. By Lemma A.2, the diffusion X̂ from (1.7) is ergodic, and
hence the associated P̂ ∈ �. As V ϑ̂ enjoys the numéraire property under P̂, we know

λ ≤ −
∫
E

Lcû

û
p ≤ − inf

u∈D

∫
E

Lcu

u
p = I,

which in conjunction with (A.26) establishes the first equality in (1.11), provided that û ∈ D.
To show this latter fact, recall (A.25). Since (∇ · (pc�))+ ∈ L1(E, leb), Lemma A.1 implies
(Lcû/û)+ ∈ L1(E,p), and hence û ∈ D.

It remains to prove the second equality in (1.11) as well as that G(V ϑ̂ ,P) = λ for all
P ∈ �. From (A.25) and Lemma A.5 we see that

(A.27)
∫
E

Lcû

û
p = 1

8

∫
E
(∇φ̂ − �)′c(∇φ̂ − �)p − 1

8

∫
E

�′c�p.

Next, if ∇ · (pc�) = 0 for x ∈ E then φ̂ is constant and clearly, (A.27) implies the second
equality in (1.11). Else, ∇φ̂ is not identically 0, and

∫
E ∇φ̂′c∇φ̂p > 0. Continuing, note that

for X̂ as in (A.14) we have, using (A.25)

φ̂(X̂T ) = φ̂(X̂0) + 1

2

∫ T

0
∇φ̂′c∇φ̂(X̂t ) dt +

∫ T

0
∇φ̂′σ(X̂u) dWu

+ 1

2

∫ T

0
Tr

(
cD2φ̂

)
(X̂t ) dt

= φ̂(X̂0) + 1

2

∫ T

0
∇φ̂′c∇φ̂(X̂t ) dt +

∫ T

0
∇φ̂′σ(X̂u) dWu

+ 1

2

∫ T

0

(
1

p
∇ · (pc�) − ∇φ̂′c�

)
(X̂t ) dt

= φ̂(X̂0)
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+
∫ T

0

(
1

4
∇φ̂′c∇φ̂ − 1

4
�′c� + 1

4
(∇φ̂ − �)′c(∇φ̂ − �) + 1

2p
∇ · (pc�)

)
(X̂u) du

+
∫ T

0
∇φ̂′σ(X̂t ) dWt .

So, we see by the Strong law for Brownian motion, the Dambis–Dubins–Schwarz theorem
and the given assumptions, we have almost surely

lim
T ↑∞

1

T
φ̂(X̂T ) = 1

4

∫
E

(∇φ̂′c∇φ̂ − �′c� + (∇φ̂ − �)′c(∇φ̂ − �)
)
p + 1

2

∫
E

∇ · (pc�)

= 1

4

∫
E

(∇φ̂′c∇φ̂ − �′c� + (∇φ̂ − �)′c(∇φ̂ − �)
)
p,

where the last inequality follows by Lemma A.5. Now, if the right hand side above was not
zero it would violate the positive recurrence of X̂. This gives

(A.28)
∫
E

∇φ̂′c∇φ̂p =
∫
E

�′c�p −
∫
E
(∇φ̂ − �)′c(∇φ̂ − �)p

which, in view of (A.27), establishes the second equality in (1.11).

REMARK A.6. Note that (A.28) implies
∫
E ∇φ̂′c∇φ̂p = ∫

E ∇φ̂′c�p.

The last thing to show is G(V ϑ̂ ,P) = λ for all P ∈ �. To this end, by Itô’s formula and
(A.25) we know

(A.29)

1

T
logV

φ̂
T = 1

T
logV0 + 1

2T
φ̂(XT ) − 1

2T
φ̂(X0)

− 1

8T

∫ T

0

(
2 Tr

(
CD2φ̂

) + ∇φ̂′c∇φ̂
)
(Xt) dt

= 1

T
logV0 + 1

2T
φ̂(XT ) − 1

2T
φ̂(X0) − 1

4T

∫ T

0

1

p
∇ · (pc�)(Xt ) dt

+ 1

8T

∫ T

0
�′c�(Xt) dt − 1

8T

∫ T

0
(∇φ̂ − �)′c(∇φ̂ − �)(Xt) dt.

Taking T ↑ ∞ gives

G
(
V φ̂,P

) = −1

4

∫
E

∇ · (pc�) + 1

8

∫
E

�′c�p − 1

8

∫
E
(∇φ̂ − �)′c(∇φ̂ − �)p

= 1

8

∫
E

�′c�p − 1

8

∫
E
(∇φ̂ − �)′c(∇φ̂ − �)p

= λ,

where the second equality came from Lemma A.5, and the third from (1.11), (A.28). This
finishes the proof. �

APPENDIX B: PROOFS FROM SECTION 3

We keep all notation from Section 3. Additionally, we denote T as the set of all per-
mutations τ of {1, . . . , d}. For τ ∈ T , and x ∈ �d−1+ , we define xτ ∈ �d−1+ by xi

τ = x(τ i),
i = 1, . . . , d .
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B.1. Proof of Proposition 3.6. In the course of the proof, we shall use the sets

Rτ := {
x ∈ �d−1+ | xτ ∈ �d−1+,≤

}
, τ ∈ T .

Note that the {Rτ | τ ∈ T } may not be disjoint, but their topological interiors are.
We first show that û from (1.10) is permutation invariant. To this end, recall that û =

exp(φ̂/2), where φ̂ solves the variational problem in Lemma A.1, and recall the functional
J (φ) from (A.5). For a given τ ∈ T and function φ, write φτ (x) := φ(xτ ), x ∈ �d−1+ . We
claim that

(B.1) J (φ) = J (φτ ) ∀τ ∈ T .

Admitting (B.1), that φ̂(x) = φ̂(xτ ) (and hence û(x) = û(xτ )) for all τ ∈ T is easy to show.
Indeed, as the functional J (φ) is evidently convex, we see that

J

(
1

d!
∑
τ

φτ

)
≤ 1

d!
∑
τ

J (φτ ) = J (φ),

where the last equality follows by (B.1). Thus, if φ̂ is a minimizer then so is (1/d!)∑
τ φ̂τ

and by Lemma A.1 we can write

φ̂ = 1

d!
∑
τ

φ̂τ + c,

for some constant c. But, as the right hand side above is permutation invariant, so is the left
hand side. It remains to prove (B.1), which will follow by straight-forward computations, and
which uses the following identities for τ ∈ T :

(B.2)
f (x) = g(xτ ) =⇒ ∂if (x) = ∂τ−1(i)g(xτ );
p(x) = p(xτ ),

and

(B.3)
cij (x) = cτ−1(i)τ−1(j)(xτ );

∂j c
ij (x) = ∂τ−1(j)c

τ−1(i)τ−1(j)(xτ ).

Showing (B.2) is straight-forward. As for the first equality in (B.3), we have

cτ−1(i)τ−1(j)(xτ ) = κr(x(τ(τ−1(i))))r(x(τ (τ−1(j))))(x())
= κr(xi)r(xj )(x())
= cij (x).

The second equality in (B.3) follows from the first as well as (B.2). Now, plugging in for �

from (1.8) we have

J (φ) −
∫
�d−1+

p�′c� =
∫
�d−1+

p∇φ′c∇φ − 2
∫
�d−1+

∇p′c∇φ − 2
∫
�d−1+

p∇φ′ div(c)

:= A(φ) + B(φ) + C(φ).

We handle the three terms separately and repeatedly use (B.2), (B.3). Also, we will omit the
summation symbols. As for A, assume x ∈ Rτ so that x() = xτ . Then

(B.4)

∫
�d−1+

p(x)∂i(φτ )(x)cij (x)∂j (φτ )(x) dx

=
∫
�d−1+

p(xτ )∂τ−1(i)φ(xτ )c
τ−1(i)τ−1(j)(xτ )∂τ−1(j)φ(xτ ) dx

=
∫
�d−1+

p(y)∂aφ(y)cab(y)∂bφ(y) dy,
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where to get the last equality we let y = xτ and noted that dy = dx; and set a = τ−1(i),
b = τ−1(j). This shows A(φτ ) = A(φ). As for B:

(B.5)

∫
�d−1+

∂i(p)(x)cij (x)∂j (φτ )(x) dx

=
∫
�d−1+

∂τ−1(i)p(xτ )c
τ−1(i)τ−1(j)(xτ )∂τ−1(j)φ(xτ ) dx

=
∫
�d−1+

∂ap(y)cab(y)∂bφ(y) dy.

Thus, B(φτ ) = B(φ). Lastly, for C:

(B.6)

∫
�d−1+

p(x)∂i(φτ )(x)∂j c
ij (x) dx

=
∫
�d−1+

p(xτ )∂τ−1(i)φ(xτ )∂τ−1(j)c
τ−1(i)τ−1(j)(xτ ) dx

=
∫
�d−1+

p(y)∂aφ(y)∂bc
ab(y) dy.

Thus, C(φτ ) = C(φ) and hence (B.1) holds.
The third (last) equality in (3.9) holds in view of Theorem 1.8. Next, we show the second

equality in (3.9). To do so, we will prove three equalities, analogous to (B.4), (B.5) and (B.6),
which all follow by construction of p, c, since φ(x) = φ(xτ ), and (B.2), (B.3). Proceeding,
let τ ∈ T and x ∈ Rτ . We first have

(B.7)

∂iφ(x)cij (x)∂jφ(x) = ∂τ−1(i)φ(xτ )c
τ−1(i)τ−1(j)(xτ )∂τ−1(j)φ(xτ )

= ∂aφ(xτ )κ
ab(xτ )∂bφ(xτ )

= ∂aφ
(
x())κab(

x())∂bφ
(
x()).

Next, we have

(B.8)

∂iφ(x)

(
cij (x)

∂jp(x)

p(x)
+ ∂j c

ij (x)

)

= ∂τ−1(i)φ(xτ )

(
cτ−1(i)τ−1(j)(xτ )

∂τ−1(j)p(xτ )

p(xτ )
+ ∂τ−1(j)c

τ−1(i)τ−1(j)(xτ )

)

= ∂aφ(xτ )

(
cab(xτ )

∂bp(xτ )

p(xτ )
+ ∂bc

ab(xτ )

)

= ∂aφ
(
x())(κab(

x())∂bq(x())

q(x())
+ ∂bκ

ab(
x())),

where the last equality holds because c(xτ ) = κ(xτ ) = κ(x()) and p(xτ ) = (1/d!)q(xτ ) =
(1/d!)q(x()) in Rτ . Last, define

(B.9) �≤
(
x()) :=

(∇q

q
+ κ−1 div(κ)

)(
x()); x() ∈ �d−1+,≤.
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We then have

(B.10)

1

p(x)
∂i(pc�)i(x) = cij (x)

∂ijp(x)

p(x)
+ 2

∂ip(x)

p(x)
∂j c

ij
j (x) + ∂ij c

ij (x)

= cτ−1(i)τ−1(j)(xτ )
∂τ−1(i)τ−1(j)p(xτ )

p(xτ )

+ 2
∂τ−1(i)p(xτ )

p(xτ )
∂τ−1(j)c

τ−1(i)τ−1(j)(xτ )

+ ∂τ−1(i)τ−1(j)c
τ−1(i)τ−1(j)(xτ )

= cab(xτ )
∂abp(xτ )

p(xτ )
+ 2

∂ap(xτ )

p(xτ )
∂bc

ab(xτ ) + ∂abc
ab(xτ )

= κab(
x())∂abq(x())

p(x())
+ 2

∂aq(x())

q(x())
∂bκ

ab(
x()) + ∂abκ

ab(
x())

= 1

q(x())
∂a(qκ�≤)a

(
x()).

Since (B.7), (B.8), (B.10) hold for x ∈ Rτ for any τ ∈ T , they in fact hold for all x ∈ �d−1+ .
Thus, from (B.7) we obtain∫

�d−1+

(
p∇φ′c∇φ

)
(x) = 1

d!
∫
�d−1+

(
q∇φ′κ∇φ

)(
x()) =

∫
�d−1+,≤

(
q∇φ′κ∇φ

)(
x()),

which is the second equality in (3.9).
Continuing, we show (3.10). Let P ∈ �≤. Itô’s formula, (3.3) and (3.6) give

1

T
log

(
V ϑ̂

T

) = 1

T
log

(
û(XT )

û(X0)

)
− 1

2T

∫ T

0

1

û(Xt )

d∑
i,j=1

∂2
ij û(Xt)κ

r(Xi
t )r(X

j
t )(X()

t

)
dt

= 1

T
log

(
û(XT )

û(X0)

)
− 1

T

∫ T

0

Lcû

û
(Xt) dt.

From (A.25) and û = e(1/2)φ̂ we obtain

1

T
log

(
V ϑ̂

T

) = 1

2T
φ̂(XT ) − 1

2T
φ̂(X0) − 1

4T

∫ T

0

1

p
∇ · (pc�)(Xt ) dt

− 1

8T

∫ T

0
∇φ̂′c∇φ̂(Xt ) dt + 1

4T

∫ T

0
∇φ̂′

(
c
∇p

p
+ div(c)

)
(Xt) dt

= 1

2T
φ̂(XT ) − 1

2T
φ̂(X0) − 1

4T

∫ T

0

1

q
∇ · (qκ�≤)

(
X

()
t

)
dt

− 1

8T

∫ T

0
∇φ̂′κ∇φ̂

(
X

()
t

)
dt + 1

4T

∫ T

0
∇φ̂′

(
κ

∇q

q
+ div(κ)

)(
X

()
t

)
dt

= 1

2T
φ̂(XT ) − 1

2T
φ̂(X0) − 1

4T

∫ T

0

1

q
∇ · (qκ�≤)

(
X

()
t

)
dt

− 1

8T

∫ T

0
(∇φ̂ − �≤)′κ(∇φ̂ − �≤)

(
X

()
t

)
dt + 1

8T

∫ T

0
�′≤κ�≤

(
X

()
t

)
dt,
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where the second to last equality follows from (B.4), (B.5), (B.6). These equalities, in con-
junction with the integrability assumptions of Assumption 1.5, and P ∈ �≤ allow us to de-
duce

G
(
V ϑ̂ ,P

) = 1

4

∫
�d−1+,≤

∇ · (qκ�≤)
(
x()) − 1

8

∫
�d−1+,≤

(
(∇φ̂ − �≤)′κ(∇φ̂ − �≤)q

)(
x())

+ 1

8

∫
�d−1+,≤

(
�′≤κ�≤q

)(
x())

= 1

4

∫
�d−1+,≤

∇ · (qκ�≤)
(
x()) − 1

8

∫
�d−1+,≤

(∇φ̂′κ∇φ̂q
)(

x())

+ 1

4

∫
�d−1+,≤

(∇φ̂′(κ∇q + q div(κ)
))(

x())

= 1

4

∫
�d−1+

∇ · (pc�)(x) − 1

8

∫
�d−1+

(∇φ̂′c∇φ̂p
)
(x)

+ 1

4

∫
�d−1+

(∇φ̂′(c∇p + p div(c)
))

(x)

= 1

4

∫
�d−1+

∇ · (pc�)(x) − 1

8

∫
�d−1+

(
(∇φ̂ − �)′c(∇φ̂ − �)p

)
(x)

+ 1

8

∫
�d−1+

(
�′c�p

)
(x)

= 1

8

∫
�d−1+

(∇φ̂′c∇φ̂p
)
(x).

Above, the third equality holds again because of (B.7), (B.8), (B.10). The fifth inequality
follows because of Lemma A.5 and (A.28) in the proof of Theorem 1.8. This, and the fact we
have already proved the second and third equalities in (3.9), yields (3.10) since û = e(1/2)φ̂ .

It remains to prove that λ≤ = λ, which will establish all the equalities in (3.9). Recall that
λ≤ ≤ λ holds from (3.8). Furthermore, using (3.10) and the last equality in (3.9),

λ≤ ≥ inf
P∈�≤

G
(
V ϑ̂ ,P

) = 1

2

∫
�d−1+

(∇û

û

)′
c

(∇û

û

)
p = λ.

Thus, λ = λ≤ and the proof is finished.

B.2. Proof of Proposition 3.8. We start with the construction of a particular matrix val-
ued function which works well with Assumption 3.3. To state the following auxiliary result,
define

(B.11) x := max
{
x1, . . . , xd}

, x := min
{
x1, . . . , xd}; x ∈ �d−1+ .

LEMMA B.1. Let A,B,C ∈ R be such that (1) C ≥ 0, (2) B ≤ A < 2B and (3) A +
C ≥ 2. For x ∈ �d−1+ define the matrix θ via

(B.12)

θij (x) := 1i=j

((
xi)A d∏

l=1

(
xl)C)

+ 1i �=j

((
xi)B(

xj )B d∏
l=1

(
xl)A+C−B

)
; i, j = 1, . . . , d.
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Then:

(1) For any τ ∈ T , we have θτ−1(i)τ−1(j)(xτ ) = θij (x).
(2) For every ξ ∈ R

d we have

ξ ′θ(x)ξ ≥ k(x)ξ ′ξ ; k(x) :=
(

d∏
l=1

(
xl)C)(

1 − x2B−A)
min

{
1, xA}

.

(3) θ is smooth in �d−1+ and the diffusion

dXt = 1

2
div(θ)(Xt) dt + √

θ(Xt) dWt,

does not explode to ∂�+.
(4)

∫
�+ |∇ · (div(θ))| < ∞.

(5)
∫
�+ div(θ)′θ−1 div(θ) < ∞.

(6) θ−1 div(θ) = ∇H where H(x) = (A + C) log(
∏d

l=1 xl).

PROOF. We tackle each point below.
(1) We have

θτ−1(i)τ−1(j)(xτ ) = 1i=j

(
xτ

(
τ−1(i)

)A d∏
l=1

xτ (l)
C

)

+ 1i �=j

(
xτ

(
τ−1(i)

)B
xτ

(
τ−1(j)

)B d∏
l=1

xτ (l)
A+C−B

)

= 1i=j

((
xi)A d∏

l=1

(
xl)C)

+ 1i �=j

((
xi)B(

xj )B d∏
l=1

(
xl)A+C−B

)

= θij (x).

(2) We have

ξ ′θ(x)ξ =
d∑

i=1

ξ(i)2(
xi)A d∏

l=1

(
xl)C +

d∑
i,j=1,i �=j

ξ(i)ξ(j)
(
xi)B(

xj )B d∏
l=1

(
xl)A+C−B

=
d∑

i=1

ξ(i)2

((
xi)A d∏

l=1

(
xl)C − (

xi)2B
d∏

l=1

(
xl)A+C−B

)

+
(

d∏
l=1

(
xl)A+C−B

)(
d∑

i=1

ξ(i)
(
xi)B)2

≥
d∑

i=1

ξ(i)2

((
xi)A d∏

l=1

(
xl)C − (

xi)2B
d∏

l=1

(
xl)A+C−B

)

=
(

d∏
l=1

(
xl)C)

d∑
i=1

ξ(i)2(
xi)A(

1 − (
xi)2B−A

d∏
l=1

(
xl)A−B

)
.

Since A ≥ B we have
∏d

l=1(x
l)A−B ≤ 1. Since 2B −A > 0 we have (xi)2B−A ≤ x2B−A < 1.

Last, we have (xi)A ≥ min{1, xA}. Putting these together gives the claim.
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(3) We have

θ
ij
j = 1i=j

(
(A + C)

(
xi)A+C−1 ∏

l �=i

(
xl)C)

+ 1i �=j

((
xi)A+C

(A + C)
(
xj )A+C−1 ∏

l �=i,j

(
xl)A+C−B

)
.

Thus, we see that

div(θ)i = ∑
j

θ
ij
j

= (A + C)

((
xi)A+C−1 ∏

l �=i

(
xl)C + (

xi)A+C
∑
j �=i

(
xj )A+C−1 ∏

l �=i,j

(
xl)A+C−B

)

= xiYi,

where

Yi := (A + C)
(
xi)A+C−2

(∏
l �=i

(
xl)C + xi

∑
j �=i

(
xj )A+C−1 ∏

l �=i,j

(
xl)A+C−B

)
.

Since C ≥ 0 and A + C ≥ 2 we see that

0 ≤ Yi ≤ d(A + C).

In a similar manner we have

θii(x) = (
xi)2

Z2
i ; Zi := (

xi)(A+C−2)/2 ∏
l �=i

(
xl)C/2

.

Again, the given hypotheses yield that 0 ≤ Zi ≤ 1. Now, let X(t) be a local solution (i.e., up
to first exit time τ of some set compactly contained within �d−1+ ) to the above SDE. We have
that for t ≤ τ that

dXt(i) = 1

2
Xt(i)Yi(Xt) dt + Xt(i)Zi(Xt) dB̃t ,

for a Brownian motion B̃ . Now, since Yi and Zi are bounded on �+ it is clear that X(i) does
not hit zero for any i. This gives the result.

(4) We have from (3) above that

∂i

(∑
j

θ
ij
j

)
= (A + C)

(
(A + C − 1)

(
xi)A+C−2 ∏

l �=i

(
xl)C

+ (A + C)
(
xi)A+C−1 ∑

j �=i

(
xj )A+C−1 ∏

l �=i,j

(
xl)A+C−B

)
.

Since A + C ≥ 2, C ≥ 0 and A ≥ B we see that∣∣∇ · (
div(θ)

)∣∣ =
∣∣∣∣∑
i,j

θ
ij
ij

∣∣∣∣ ≤ (A + C)
(
d(A + C − 1) + (d − 1)(A + C)

)
,

from which the result follows.
(5) Write τ = θ−1 div(θ) so that div(θ) = θτ . Plugging in for θ , div(θ) we see that

div(θ)i = (A + C)

((
xi)A+C−1 ∏

l �=i

(
xl)C + (

xi)A+C
∑
j �=i

(
xj )A+C−1 ∏

l �=i,j

(
xl)A+C−B

)
;

(θτ )i = (
xi)A+C

∏
l �=i

(
xl)C�i + (

xi)A+C
∑
j �=i

(
xj )A+C

∏
l �=i,j

(
xl)A+C−B

�j .



1818 C. KARDARAS AND S. ROBERTSON

From here, it is clear that τ i = (A + C)/xi . Therefore, we have

div(θ)′θ−1 div(θ)

= τ ′cτ

= (A + C)2
(∑

i

(
xi)A+C−2 ∏

l �=i

(
xl)C + ∑

i �=j

(
xi)A+C−1(

xj )A+C−1 ∏
l �=i,j

(
xl)A+C−B

)

≤ d2(A + C)2,

and hence the result holds.
(6) We just showed that (θ−1 div(θ))i = τ i = (A+C)/xi for i = 1, . . . , d . Thus, the result

follows since ∇(
∏

l x
l)i = 1/xi . �

We are now in position to give the proof of Proposition 3.8.

PROOF OF PROPOSITION 3.8. Assume that V is an open subset of �d−1+ such that V̄ ⊂
W with W open and W̄ ⊆ �d−1+,≤. As such dist(V , ∂�d−1+,≤) > δ > 0 and we may find a C∞
function χ on �d−1+,≤ with 0 ≤ χ ≤ 1, χ = 1 on V and χ(x) = 0 if dist(x, ∂�d−1+,≤) ≤ δ/3, for
example. For θ as in Lemma B.1 we then set

(B.13)

κV (x) := χ(x)κ(x) + (
1 − χ(x)

)
θ(x);

qV (x) := χ(x)q(x) + (
1 − χ(x)

)1 − ∫
�d−1+,≤

χq∫
�d−1+,≤

(1 − χ)
.

Now, create cV , pV as in (3.6), (3.7) respectively. By construction of θ in Lemma B.1, we
see that for any x ∈ �d−1+ such that χ(x()) = 1, with the τ such that x() = xτ :

c
ij
V (x) = θr(xi)r(xj )(x()) = θτ−1(i)τ−1(j)(xτ ) = θij (x),

where the last equality follows from Lemma B.1. Thus, we see that c is smooth in �d−1+ .
The rest of the conditions in Assumptions 1.1, 1.5 readily follow from Lemma B.1 as qv is
constant near the boundary of ∂�d−1+,≤. �
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