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Abstract This work aims at a deeper understanding of the mathematical implica-
tions of the economically-sound condition of absence of arbitrages of the first kind
in a financial market. In the spirit of the Fundamental Theorem of Asset Pricing
(FTAP), it is shown here that the absence of arbitrages of the first kind in the market
is equivalent to the existence of a finitely additive probability, weakly equivalent to
the original and only locally countably additive, under which the discounted wealth
processes become “local martingales”. The aforementioned result is then used to
obtain an independent proof of the classical FTAP, as it appears in Delbaen and
Schachermayer (Math. Ann. 300:463–520, 1994). Finally, an elementary and short
treatment of the previous discussion is presented for the case of continuous-path
semimartingale asset-price processes.

1 Introduction

In the Quantitative Finance literature, the most common normative assumption
placed on financial market models in the literature is the existence of an Equiva-
lent Local Martingale Measure (ELMM), i.e., a probability, equivalent to the origi-
nal one, that makes discounted asset-price processes local martingales. There is, of
course, a very good reason for postulating the existence of an ELMM in the market:
the Fundamental Theorem of Asset Pricing (FTAP) establishes1 the equivalence be-
tween a precise market viability condition, coined “No Free Lunch with Vanishing
Risk” (NFLVR) with the existence of an ELMM (see [7] and [9]).
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The importance of condition NFLVR notwithstanding, there has lately been con-
siderable interest in researching models where an ELMM might fail to exist. Major
examples include the benchmark approach in financial modeling of [24], as well as
the emergence of stochastic portfolio theory [10], a descriptive theory of financial
markets. Even though the previous approaches allow for the existence of some form
of arbitrage, they still deal with viable models of financial markets. In fact, the mar-
kets there satisfy a weaker version of the NFLVR condition; more precisely, there
is absence of arbitrages of the first kind2 (see Definition 1 of the present paper),
which we abbreviate as condition NA1. In the recent work [19], it was shown that
condition NA1 is equivalent to the existence of a strictly positive local martingale
deflator, i.e., a strictly positive process with the property that every asset-price, when
deflated by it, becomes a local martingale. The previous mathematical counterpart
of the economic NA1 condition is rather elegant; however, and in order to provide
a closer comparison with the FTAP of [7], it is still natural to wish to equivalently
express the NA1 condition in terms of the existence of some measure that makes
discounted asset-prices have some kind of martingale property.

In an effort to connect, expand, and simplify previous research, the purpose of
this paper is threefold; in particular, we aim at:

1. presenting a weak version of the FTAP, stating the equivalence of the NA1 con-
dition with the existence of a “probability” that makes discounted nonnegative
wealth processes “local martingales”;

2. using the previous result as an intermediate step to obtain the FTAP as it appears
in [7];

3. providing an elementary proof of the above weak version of the FTAP discussed
in (1) above when the asset-prices are continuous-path semimartingales.

In order to tackle (1), we introduce the concept of a Weakly Equivalent Local
Martingale Measure (WELMM). A WELMM is a finitely additive probability3 that
is locally countably additive and makes discounted asset-price processes behave like
local martingales. Of course, the last local martingale property has to be carefully
and rigorously defined, as only finitely additive probabilities are involved—see Def-
inition 3 later on in the text. In Theorem 1, and in a general semimartingale market
model, we obtain the equivalence between condition NA1 and the existence of a
WELMM.

Theorem 1 can be also seen as an intermediate step in proving the FTAP of [7].
Under the validity of Theorem 1, and using the very important optional decompo-
sition theorem, this task becomes easier, as the proof of Theorem 2 of the present
paper shows.

2The terminology “arbitrage of the first kind” was introduced in [14], although our definition,
involving a limiting procedure, is closer in spirit to arbitrages of the first kind in the context of
large financial markets, as appears in [15]. Here, one should also mention [22], where arbitrages of
the first kind are called cheap thrills.
3Finitely additive measures have appeared quite often in economic theory in a financial equilibrium
setting in cases of infinite horizon (see [13]) or even finite-time horizon with credit constraints on
economic agents (see [22] and [23]).
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We now come to the issue raised at (3) above. In order to establish our weak
version of the FTAP, we need to invoke the main result from [19], which itself de-
pends heavily upon results of [16]. The immense level of technicality in the proofs
of the previous results render their presentation in graduate courses almost impos-
sible. The same is true for the FTAP of [7]. Given the importance of such type of
results, this is really discouraging. We provide here a partial resolution to this is-
sue in the special case where the asset-prices are continuous-path semimartingales.
As is shown in Theorem 4, proving of our main Theorem 1 becomes significantly
easier; in fact, the only non-trivial result that is used in the course of the proof is
the representation of a continuous-path local martingales as time-changed Brown-
ian motion. Furthermore, in Theorem 4, condition NA1 is shown to be equivalent
to the existence and square-integrability of a risk-premium process, which has nice
economic interpretation and can be easily checked once the model is specified.

The structure of the paper is as follows. In Sect. 2, the market is introduced, ar-
bitrages of the first kind and the concept of a WELMM are defined, and Theorem 1,
the weak version of the FTAP, is stated. Section 3 deals with a proof of the FTAP
as it appears in [7]. Finally, Sect. 4 contains the statement and elementary proof of
Theorem 4, which is a special case of Theorem 1 when the asset-price processes are
continuous-path semimartingales.

2 Arbitrages of the First Kind and Weakly Equivalent Local
Martingale Measures

2.1 General Probabilistic Remarks

All stochastic processes in the sequel are defined on a filtered probability space
(Ω, F , (Ft )t∈R+ , P). Here, P is a probability on (Ω,F ), where F is a σ -algebra
that will make all involved random variables measurable. The filtration (Ft )t∈R+ is
assumed to satisfy the usual hypotheses of right-continuity and saturation by P-null
sets. A finite financial planning horizon T will be assumed. Here, T is a P-a.s. finite
stopping time and all processes will be assumed to be constant, and equal to their
value they have at T , after time T . It will be assumed throughout that F0 is trivial
modulo P and that FT = F .

2.2 The Market and Investing

Henceforth, S will be denoting the discounted, with respect to some baseline secu-
rity, price process of a financial asset, satisfying:

S is a nonnegative semimartingale. (1)
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Starting with capital x ∈ R+, and investing according to some predictable and S-
integrable strategy ϑ , an economic agent’s discounted wealth is given by the process

Xx,ϑ := x +
∫ ·

0
ϑt dSt . (2)

In frictionless, continuous-time trading, credit constraints have to be imposed on
investment in order to avoid doubling strategies. Define then X (x) to be the set
of all wealth processes Xx,ϑ in the notation of (2) such that Xx,ϑ ≥ 0. Also, let
X := ⋃

x∈R+ X (x) denote the set of all nonnegative wealth processes.

2.3 Arbitrages of the First Kind

The market viability notion that will be introduced now will be of central importance
in our discussion.

Definition 1 An FT -measurable random variable ξ will be called an arbitrage of
the first kind on [0, T ] if P[ξ ≥ 0] = 1, P[ξ > 0] > 0, and for all x > 0 there exists
X ∈ X (x), which may depend on x, such that P[XT ≥ ξ ] = 1.

If there are no arbitrages of the first kind in the market, we say that condition
NA1 holds.

In view of Proposition 3.6 from [7], condition NA1 is weaker than condition
NFLVR. In fact, condition NA1 is exactly the same as condition “No Unbounded
Profit with Bounded Risk” (NUPBR) of [16], as we now show.

Proposition 1 Condition NA1 is equivalent to the requirement that the set of termi-
nal outcomes starting from unit wealth {XT |X ∈ X (1)} is bounded in probability.

Proof Using the fact that X (x) = xX (1) for all x > 0, it is straightforward to
check that if an arbitrage of the first kind exists, then {XT |X ∈ X (1)} is not
bounded in probability. Conversely, assume that {XT |X ∈ X (1)} is not bounded
in probability. Since {XT |X ∈ X (1)} is further convex, Lemma 2.3 of [4] im-
plies the existence of Ωu ∈ FT with P[Ωu] > 0 such that, for all n ∈ N, there
exists X̃n ∈ X (1) with P[{X̃n

T ≤ n} ∩ Ωu] ≤ P[Ωu]/2n+1. For all n ∈ N, let
An = I{X̃n

T >n} ∩ Ωu ∈ FT . Then, set A := ⋂
n∈N

An ∈ FT and ξ := IA. It is clear
that ξ is FT -measurable and that P[ξ ≥ 0] = 1. Furthermore, since A ⊆ Ωu and

P
[
Ωu \ A

] = P

[⋃
n∈N

(
Ωu \ An

)] ≤
∑
n∈N

P
[
Ωu \ An

] =
∑
n∈N

P
[{X̃n

T ≤ n} ∩ Ωu

]

≤
∑
n∈N

P[Ωu]
2n+1

= P[Ωu]
2

,

we obtain P[A] > 0, i.e., P[ξ > 0] > 0. For all n ∈ N set Xn := (1/n)X̃n, and ob-
serve that Xn ∈ X (1/n) and ξ = IA ≤ IAn ≤ Xn

T hold for all n ∈ N. It follows that
ξ is and arbitrage of the first kind, which finishes the proof. �
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2.4 Weakly Equivalent Local Martingale Measures

The mathematical counterpart of the economical NA1 condition involves a weak-
ening of the concept of an ELMM. The appropriate notion turns out to involve
measures that behave like probabilities, but are finitely additive and only locally
countably additive.

In what follows, a localizing sequence will refer to a nondecreasing sequence
(τn)n∈N of stopping times such that ↑ limn→∞ P[τn ≥ T ] = 1.

2.4.1 Local Probabilities Weakly Equivalent to P

The concept that will be introduced below in Definition 2 is essentially a localization
of countably additive probabilities.

Definition 2 A mapping Q : F 
→ [0,1] is a local probability weakly equivalent to
P if:

1. Q[∅] = 0, Q[Ω] = 1, and Q is (finitely) additive: Q[A ∪ B] = Q[A] + Q[B]
whenever A ∈ F and B ∈ F satisfy A ∩ B = ∅;

2. for A ∈ F , P[A] = 0 implies Q[A] = 0;
3. there exists a localizing sequence (τn)n∈N such that, when restricted on Fτn , Q is

countably additive and equivalent to P, for all n ∈ N. (Such sequence of stopping
times will be called a localizing sequence for Q.)

Conditions (1) and (2) above imply that Q is a positive element of the dual of L
∞,

the space of (equivalence classes modulo P of) F -measurable random variable that
are bounded modulo P equipped with the essential-sup norm. The theory of finitely
additive measures is developed in great detail in [3]; for our purposes here, mostly
results from the Appendix of [6], as well as some material from [18], will be needed.

To facilitate the understanding, finitely additive positive measures that are not
necessarily countably additive will be denoted using sans-serif typeface (like “Q”),
while for countably additive probabilities the blackboard bold typeface (like “Q”)
will be used. As Q will be in the dual of L

∞, 〈Q, ξ 〉 will denote the action of Q
on ξ ∈ L

∞. The fact that Q is a positive functional enables to extend the defini-
tion of 〈Q, ξ 〉 for ξ ∈ L

0 with P[ξ ≥ 0] = 1, via 〈Q, ξ 〉 := limn→∞〈Q, ξI{ξ≤n}〉 ∈
[0,∞]. (L0 denotes the set of all P-a.s. finitely-valued random variables modulo
P-equivalence equipped with the topology of convergence in probability.)

Remark 1 In general, a finitely additive probability Q : F 
→ [0,1] is called weakly
absolutely continuous with respect to P if for each A ∈ F with P[A] = 0 we have
Q[A] = 0. Furthermore, Q is called strongly absolutely continuous with respect to
P if for any ε > 0 there exists δ = δ(ε) > 0 such that E ∈ F and P[E] < δ im-
plies Q[E] < ε. It is clear that strong absolute continuity of Q with respect to P

is a stronger requirement than weak absolutely continuity of Q with respect to P.
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Actually, the two notions coincide when Q is countable additive. Of course, sim-
ilar definitions can be made with the roles of P and Q reversed. Then, P and Q
are called weakly (respectively, strongly) equivalent if Q is weakly (respectively,
strongly) absolutely continuous with respect to P and P is weakly (respectively,
strongly) absolutely continuous with respect to Q.

In Definition 2, Q we called a local probability “weakly equivalent to P”; how-
ever, condition (2) only implies that Q is weakly absolutely continuous with re-
spect to P. We claim that P is also weakly absolutely continuous with respect
to Q. Indeed, let Q satisfy (1) and (3) of Definition 2. Pick any A ∈ F with
Q[A] = 0. Since A ∩ {τn ≥ T } ∈ Fτn for all n ∈ N, Q[A ∩ {τn ≥ T }] = 0 implies
that P[A ∩ {τn ≥ T }] = 0 by (3). Then, P[A] =↑ limn→∞ P[A ∩ {τn ≥ T }] = 0.

Let Q be a local probability weakly equivalent to P. When Q is only finitely, but
not countably, additive, P and Q are not strongly equivalent, as we now explain.
Write Q = Qr + Qs for the unique decomposition of Q in its regular and singu-
lar part. (The regular part Qr is countably additive, while the singular part Qs is
purely finitely additive, meaning that there is no nonzero countably additive mea-
sure that is dominated by Qs . One can check [3] for more information.) According
to Lemma A.1 in [6], for all ε > 0 one can find a set Aε ∈ F with P[Aε] < ε and
Qs[Aε] = Qs[Ω]; therefore Q[Aε] ≥ Qs[Ω]. In other words, if Qs is nontrivial, then
Q is not strongly absolutely continuous with respect to P. Note, however, that P is
strongly absolutely continuous with respect to Q in view of condition (3) of Defini-
tion 2.

We briefly digress from our main topic to give a simple criterion that connects
the countable additivity of Q, a local probability weakly equivalent to P, with the
strong equivalence between Q and P, as the latter notion was introduced in Remark 1
above.

Proposition 2 Let Q be a local probability weakly equivalent to P. The following
are equivalent:

1. Q is countably additive, i.e., a true probability.
2. Q is strongly absolutely continuous with respect to P.
3. ↑ limn→∞ Q[τn ≥ T ] = 1 holds for any localizing sequence (τn)n∈N for Q.
4. ↑ limn→∞ Q[τn ≥ T ] = 1 holds for some localizing sequence (τn)n∈N for Q.

Proof The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are straightforward, so we only
focus on the implication (4) ⇒ (1). Let (Ek)k∈N be a decreasing sequence of F -
measurable sets such that

⋂
k∈N

Ek = ∅. We need show that ↓ limk→∞ Q[Ek] = 0.
Consider the Q-localizing sequence (τn)n∈N of statement (4). For each n ∈ N and
k ∈ N we have Ek ∩ {τn ≥ T } ∈ Fτn . (Here, remember that F = FT .) This means
that lim supk→∞ Q[Ek] ≤ Q[τn < T ] + lim supk→∞ Q[Ek ∩ {τn ≥ T }] = Q[τn <

T ], the last equality holding because Q is countably additive on Fτn , for all n ∈ N.
Sending n to infinity and using (4) we get the result. �
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2.4.2 Density Processes

For a local probability weakly equivalent to P as in Definition 2, one can associate
a strictly positive local P-martingale Y Q, as will be now described. For all n ∈ N,
consider the P-martingale Y Q, n defined by setting

Y Q, n∞ ≡ Y
Q, n
T := d(Q|Fτn

)

d(P|Fτn
)
.

It is clear that, P-a.s., Y
Q, n
0 = 1 and Y

Q, n
T > 0. Furthermore, for all n ∈ N \ {0},

Y Q, n = Y Q, n−1 on the stochastic interval [[0, τn−1]]. Therefore, patching the pro-
cesses (Y Q, n)n∈N together, one can define a local P-martingale Y Q such that, P-a.s.,
Y Q

0 = 1 and Y Q
T > 0.

Remark 2 A general result in [18] shows that a supermartingale Y Q can be asso-
ciated to a finitely additive measure Q that satisfies (1) and (2) of Definition 2, but
not necessarily (3). The construction of Y Q in [18] is messier than the one provided
above, exactly because condition (3) of Definition 2 is not assumed to hold. In the
special case described here, the two constructions coincide.

A partial converse of the above construction is also possible. To wit, start with
some local P-martingale Y such that, P-a.s., Y0 = 1 and YT > 0. If (τn)n∈N is a
localizing sequence for Y , one can define for each n ∈ N a probability Q

n, equivalent
to P on F , via the recipe dQ

n := Yτn dP. By Alaoglu’s Theorem (see, for example,
Theorem 6.25, page 250 of [1]), the sequence (Qn)n∈N has some cluster point Q for
the weak* topology on the dual of L

∞, which will be a finitely-additive probability.
Proposition A.1 of [6] gives that dQr/dP = YT . It is easy to see that Q is a local
probability weakly equivalent to P, as well as that Y Q = Y . (Note that, again by
Proposition A.1 of [6], the sequence (Qn)n∈N might have several cluster points, but
all will have the same regular part. Therefore, Q is not uniquely defined, but it is
always the case that Y Q = Y .)

2.4.3 Local Martingales

When Q is a local probability weakly equivalent to P and fails to be countably ad-
ditive, the concept of a Q-martingale, and therefore also of a local Q-martingale,
is tricky to state. The reason is that existence of conditional expectations requires
Q to be countably additive in order to invoke the Radon-Nikodým Theorem. To
overcome this difficulty, we follow an alternative route. Let Q be a probability mea-
sure, equivalent to P. According to the optional sampling theorem (see, for example,
Sect. 1.3.C in [17]), a càdlàg process X is a local Q-martingale if and only if there
exists a localizing sequence (τn)n∈N such that 〈Q, Xτn∧τ 〉 = X0 for all n ∈ N and all
stopping times τ . This characterization makes the following Definition 3 plausible.
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Definition 3 Let Q be a local probability weakly equivalent to P. A nonnegative
càdlàg process X will be called a local Q-martingale if there exists a localizing
sequence (τn)n∈N such that 〈Q, Xτn∧τ 〉 = X0 for all n ∈ N and all stopping times τ .

Now, a characterization of local Q-martingales in terms of density processes will
be given. This extends the analogous result in the case where Q is countably additive.

Proposition 3 Let Q be a local probability weakly equivalent to P and let Y Q be
defined as in Sect. 2.4.2. A nonnegative process X is a local Q-martingale if and
only if Y QX is a local P-martingale.

Proof Start by assuming that X is a local Q-martingale. Since 〈Q, Xτn∧τ 〉 = X0
for all n ∈ N and all stopping times τ , where (τn)n∈N is a localizing sequence,
(τn)n∈N can be assumed to also localize Q. Then, since Xτn∧τ ∈ Fτn for all
n ∈ N and all stopping times τ , and since Q

n := Q|Fτn is countably additive with
dQ

n/(dP|Fτn ) = Y Q
τn , it follows that

Y Q
0 X0 = X0 = 〈Q, Xτn∧τ 〉 = E[Y Q

τnXτn∧τ ] = E[E[Y Q
τn |Fτn∧τ ]Xτn∧τ ]

= E[Y Q
τn∧τXτn∧τ ]

for all n ∈ N and all stopping times τ . This means that Y QX is a local P-martingale.
Conversely, suppose that Y QX is a local P-martingale. Let (τn)n∈N be a lo-

calizing sequence for both Y QX and Q. Then, for all n ∈ N and all stopping
times τ ,

X0 = Y Q
0 X0 = E[Y Q

τn∧τXτn∧τ ] = E[E[Y Q
τn |Fτn∧τ ]Xτn∧τ ] = E[Y Q

τnXτn∧τ ]
= 〈Q, Xτn∧τ 〉 .

Therefore, X is a local Q-martingale. �

2.4.4 Weakly Equivalent Local Martingale Measures

As will be shown in Theorem 1, the following definition gives the mathematical
counterpart of the market viability condition NA1.

Definition 4 A weakly equivalent local martingale measure (WELMM) Q is a local
probability weakly equivalent to P such that S is a local Q-martingale.

Remark 3 (On the semimartingale property of S) Under the assumption that S is
nonnegative, the existence of a WELMM enforces the semimartingale property on
S. Indeed, write S = (1/Y Q)(Y QS), where Q is a WELMM and Y Q is the density
defined in Sect. 2.4.2. Since Y Q is a local P-martingale with Y Q

T > 0, P-a.s., and
Y QS is also a local P-martingale, both 1/Y Q and Y QS are semimartingales, which
gives that S is a semimartingale.
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Semimartingales are essential in frictionless financial modeling. This has been
made clear in Theorem 7.1 of [7], where it was shown that if S is locally bounded
and not a semimartingale, condition NFLVR using only simple trading strategies
fails. Furthermore, from the treatment in [20] it follows that, if S is nonnegative and
not a semimartingale, one can construct an arbitrage of the first kind, even if one
uses only no-short-sale and simple strategies.

If S satisfies (1), it is straightforward to check that a probability Q equivalent to
P is an ELMM if and only if each X ∈ X is a local Q-martingale. The following
result extends the last equivalence in the case of a WELMM.

Proposition 4 Let Q be a local probability weakly equivalent to P. If S satisfies
(1), then S is a local Q-martingale if and only if every process X ∈ X is a local
Q-martingale.

Proof Start by assuming that S is a local Q-martingale. For x ∈ R+, let Xx,ϑ in
the notation of (2) be a wealth process in X (x). A use of the integration-by-parts
formula gives

Y QXx,ϑ = x +
∫ ·

0

(
X

x,ϑ
t− − ϑtSt−

)
dY Q

t +
∫ ·

0
ϑt d(Y QS)t .

It follows that Y QXx,ϑ is a positive martingale transform under P, and therefore a
local P-martingale by the Ansel-Stricker Theorem (see [2]).

Now, assume that every process in X is a local Q-martingale. Since S ∈ X , S

is a local Q-martingale. �

Remark 4 Let Q be a local probability weakly equivalent to P. Proposition 3 com-
bined with Proposition 4 imply that Q is a WELMM if and only if Y QX is a local
P-martingale for all X ∈ X . In other words, the process Y Q is a strict martingale
density in the terminology of [25].

2.5 The Main Result

After the preparation of the previous sections, it is possible to state Theorem 1 be-
low, which can be seen as a weak version of the FTAP in [7].

Theorem 1 Suppose that S satisfies (1). Then, there are no arbitrages of the first
kind in the market if and only if a weakly equivalent local martingale measure exists.

Proof By Theorem 1.1 in [19], condition NA1 is equivalent to the existence of a
nonnegative càdlàg process Y with Y0 = 1, YT > 0, and such that YX is a local
P-martingale for all X ∈ X . Then, using also the discussion in Sect. 2.4.2 and
Proposition 3, NA1 holds if and only if there exists a local probability Q, weakly
equivalent to P, such that X is a local Q-martingale for all X ∈ X . Proposition 4
gives that Q is a WELMM, which completes the proof. �
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Remark 5 If the statement of the FTAP of [9] is assumed, one can provide a proof
of Theorem 1 using the “change of numéraire” technique of [8]; a similar approach
has been taken up in [5]. We opt here to prove Theorem 1 directly, using the result
of [19] that is not relying on previous heavy results. Then, the classical FTAP itself
becomes a corollary, as we shall see in Sect. 3 below. There is no claim that the path
followed here is shorter or less arduous than the one taken up in [9], but certainly it
has different focus.

Remark 6 As can be seen from its proof, Theorem 1 still holds if the nonnegativity
assumption on S is removed, as long as we agree to reformulate the notion of a
WELMM Q, asking that each X ∈ X is a local Q-martingale.

Furthermore, Theorem 1 holds without the assumption that S is one-dimensional.
Indeed, in Remark 5 above it was discussed that Theorem 1 can be seen as a con-
sequence of the FTAP in [9], which does not require S to be one-dimensional. Un-
fortunately, in [19] the assumption that S is one-dimensional is being made, mostly
in order to avoid immense technical difficulties in the proof of Theorem 1.1 there,
which is used to prove Theorem 1 above.

Remark 7 Undoubtedly, the notion of a WELMM is more complicated than that of
an ELMM. However, checking the existence of a WELMM is fundamentally easier
than checking whether an ELMM exists for the market. Indeed, in view of Theo-
rem 1, existence of a WELMM is equivalent to the existence of the numéraire port-
folio in the market. For checking the existence of the latter, there exists a necessary
and sufficient criterion in terms of the predictable characteristics of the discounted
asset-price process, as was shown in [16]. The details are rather technical, but if
the asset-price process has continuous paths the situation is very simple, as will be
discussed in Sect. 4 later.

3 The FTAP of Delbaen and Schachermayer

In this subsection, a proof of the FTAP as appears in [7] is given using the already-
developed tools. Also, the Q-supermartingale property of wealth processes in X
when Q is a WELMM is examined, and it is shown that the latter property holds
only under the existence of an ELMM.

3.1 Proving the FTAP

In the notation of the present paper, the main technical difficulty for proving the
FTAP in [7] is showing that the set {g ∈ L

0 |0 ≤ g ≤ XT for some X ∈ X (1)} is
closed in probability under the NFLVR condition. This implies the weak* closed-
ness of the set of bounded superhedgeable claims starting from zero capital and
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therefore allows for the use of the Kreps-Yan separation theorem (see [21] and [26])
in order to conclude the existence of a separating measure.

There is a way to establish the aforementioned closedness in probability using
Theorem 1 and some additional well-known results. In fact, a seemingly stronger
statement than the one in [7] will now be stated and proved.

Theorem 2 If no arbitrages of the first kind are present in the market, the set {g ∈
L

0 |0 ≤ g ≤ XT for some X ∈ X (1)} is closed in probability.

Proof Define V ↓(1) to be the class of nonnegative, adapted, càdlàg, nonincreasing
processes with V0 ≤ 1. Then, set4

X ××(1) := X (1)V ↓(1) = {XV |X ∈ X (1) and V ∈ V ↓(1)}.
The statement of the Theorem can be reformulated to say that the convex set
{ξT | ξ ∈ X ××(1)} is closed in L

0. Consider therefore a sequence (ξn)n∈N such
that L

0- limn→∞ ξn
T = ζ . It will be shown below that there exists ξ∞ ∈ X ××(1)

such that ξ∞
T = ζ .

In what follows in the proof, the concept of Fatou-convergence is used, which
will now be recalled. Define D := {k/2m |k ∈ N, m ∈ N} to be the set of dyadic ra-
tional numbers in R+. A sequence (Zn)n∈N of nonnegative càdlàg processes Fatou-
converges to Z∞ if

Z∞
t = lim sup

D�s↓t

(
lim sup
n→∞

Zn
s

)
= lim inf

D�s↓t

(
lim inf
n→∞ Zn

s

)

holds P-a.s. for all t ∈ R+. Note that, since all processes are assumed to be constant
after time T , for any t ≥ T the above relationship simply reads Z∞

T = limn→∞ Zn
T ,

P-a.s.
From Theorem 1 and Proposition 3, under absence of arbitrages of the first

kind in the market, there exists some nonnegative process Y with Y 0 = 1 and
YT > 0, P-a.s., such that YX is a local P-martingale for all X ∈ X (1). Then, Yξ

is a nonnegative P-supermartingale for all ξ ∈ X ××(1). Since (Y ξn)n∈N is a se-
quence of nonnegative P-supermartingales with Y 0ξ

n
0 ≤ 1, Lemma 5.2(1) of [12]

gives the existence of a sequence (ξ
n
)n∈N such that ξ

n
is a convex combination

of ξn, ξn+1, . . ., for each n ∈ N (and, therefore, ξ
n ∈ X ××(1) for all n ∈ N, since

X ××(1) is convex), and such that (Y ξ
n
)n∈N Fatou-converges to some nonnegative

P-supermartingale Z. Obviously, Z0 ≤ 1. Also, since L
0- limn→∞(Y T ξn

T ) = YT ζ ,
one gets ZT = YT ζ . Define ξ∞ := Z/Y . Then, (ξ

n
)n∈N Fatou-converges to ξ∞ and

ξ∞
T = ζ . The last line of business is to show that ξ∞ ∈ X ××(1).

First of all, ξ∞
0 ≤ 1 and ξ∞ is nonnegative. Let Y (1) be the class of all non-

negative process Y with Y0 = 1, P-a.s., such that YX is a P-supermartingale for

4The notation “X ××(1)” is borrowed from [27] since it is suggestive of the fact that X ××(1) is
the process-bipolar of X (1), as is defined in [27]. Note, however, that it actually remains to show
that X (1) is closed in probability to actually have that bipolar relationship.
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all X ∈ X (1). Of course, for all Y ∈ Y (1) and all ξ ∈ X ××(1), Yξ is a P-
supermartingale. It follows that Yξ

n
is a nonnegative P-supermartingale for all

n ∈ N. Since, for any Y ∈ Y (1), (Y ξ
n
)n∈N Fatou-converges to Yξ∞, using Fatou’s

lemma one gets that Yξ∞ is also a P-supermartingale for all Y ∈ Y (1). Since there
exists a local P-martingale in Y ∈ Y (1) with YT > 0, P-a.s., the optional decompo-
sition theorem as appears in [11] implies that ξ∞ ∈ X ××(1). �

3.2 NFLVR and the Supermartingale Property of Wealth
Processes Under a WELMM

We now move to another characterization of the NFLVR condition using the con-
cept of WELMMs. We start with a simple observation. If Q is a probability measure
equivalent to P, it is straightforward to check that all X ∈ X are Q-supermartingales
if and only if 〈Q, XT 〉 ≤ X0 for all X ∈ X . Consider now an ELMM Q. Since
nonnegative local Q-martingales are Q-supermartingales, every X ∈ X is a Q-
supermartingale; therefore, 〈Q, XT 〉 ≤ X0 for all X ∈ X . One wonders, does the
last property hold when Q is replaced by a WELMM Q?

Before we state and prove a result along the lines of the above discussion, some
terminology will be introduced. A mapping Q : F 
→ [0,1] will be called a weakly
equivalent finitely additive probability if (1) and (2) of Definition 2 hold, as well
as, P-a.s., dQr/dP > 0. Obviously, a local probability weakly equivalent to P is
a weakly equivalent finitely additive probability. A separating weakly equivalent
finitely additive probability is a weakly equivalent finitely additive probability Q
such that 〈Q, XT 〉 ≤ X0 for all X ∈ X . We can then think of the processes X ∈ X
as being Q-supermartingales. In accordance to the discussion above, the natural
question that comes into mind is: when can we find a separating WELMM sepa-
rating? In loose terms: can we find a WELMM Q such that all elements of X Q-
supermartingales? The answer, given in Theorem 3 below, is that this only happens
under the NFLVR condition.

Theorem 3 The following are equivalent:

1. The market satisfies the NFLVR condition.
2. There exists an ELMM Q.
3. There exists a separating weakly equivalent finitely additive probability.

Proof We prove (1) ⇒ (3), (3) ⇒ (2), and (2) ⇒ (1) below.

(1) ⇒ (2). This is a consequence of [9] and the fact that nonnegative σ -martingales
are local martingales—see [2].

(2) ⇒ (3). An ELMM is a separating weakly equivalent finitely additive probability.

(3) ⇒ (1). In view of Proposition 3.6 of [7] and Proposition 1.3 proved previously
in the present paper, condition NFLVR is equivalent to showing that (a) {XT |X ∈
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X (1)} is bounded in probability, and (b) If P[XT ≥ X0] = 1 for some X ∈ X , then
P[XT > X0] = 0. For (a), observe that

sup
X∈X (1)

E

[(
dQr

dP

)
XT

]
= sup

X∈X (1)

〈
Qr , XT

〉 ≤ sup
X∈X (1)

〈Q, XT 〉 ≤ 1;

in particular, {(dQr/dP)XT |X ∈ X (1)} is bounded in probability. In view of
the fact that P[(dQr/dP) > 0] = 1, we obtain that {XT |X ∈ X (1)} is bounded
in probability as well. To show (b), note that, for any ε > 0 and X ∈ X with
P[XT ≥ X0] = 1, we have

X0 ≥ 〈Q, XT 〉 ≥ 〈
Q, X0IΩ + εI{XT >X0+ε}

〉 = X0 + εQ[XT > X0 + ε]
≥ X0 + εQr [XT > 1 + ε].

It follows that Qr [XT > X0 +ε] = 0; since P[(dQr/dP) > 0] = 1, this is equivalent
to P[XT > X0 + ε] = 0. The latter holds for all ε > 0, so we get P[XT > X0] = 0,
which completes the argument. �

4 The Case of Continuous-Path Semimartingales

In this section, we shall state and prove a result that implies Theorem 1 in the case
where S is a d-dimensional continuous-path semimartingale. Note that Assump-
tion (1) will not be in force here; in particular, there can be more than one traded se-
curity and the prices of securities do not have to be nonnegative. In fact, Theorem 4
that is presented below actually sharpens the conclusion of Theorem 1 by providing
a further equivalence in terms of the local rates of return and local covariances of
the discounted prices S = (Si)i=1,...,d .

We first introduce some notation. Since S is a continuous-path semimartingale,
one has the decomposition S = A + M , where A = (A1, . . . ,Ad) has continuous
paths and is of finite variation, and M = (M1, . . . ,Md) is a continuous-path local
martingale. Denote by [Mi,Mk] the quadratic (co)variation of Mi and Mk . Also, let
[M,M] be the d × d nonnegative-definite symmetric matrix-valued process whose
(i, k)-component is [Mi,Mk]. Call now G := trace[M,M], where trace is the op-
erator returning the trace of a matrix. Observe that G is an increasing, adapted,
continuous process and that there exists a d × d nonnegative-definite symmetric
matrix-valued process c such that [Mi,Mk] = ∫ ·

0 c
i,k
t dGt ; [M,M] = ∫ ·

0 ct dGt in
short.

Theorem 4 In the continuous-semimartingale market described above, the follow-
ing statements are equivalent:

1. There are no arbitrages of the first kind in the market.
2. There exists a strictly positive local P-martingale Y with Y0 = 1 such that YSi

is a local P-martingale for all i ∈ {1, . . . , d}.
3. There exists a d-dimensional, predictable process ρ such that A = ∫ ·

0(ctρt )dGt ,

as well as
∫ T

0 〈ρt , ctρt 〉dGt < ∞.
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Proof We prove (1) ⇒ (3), (3) ⇒ (2), and (2) ⇒ (1) below.

(1) ⇒ (3). We shall show that if statement (3) of Theorem 4 is not valid, then
{XT |X ∈ X (1)} is not bounded in probability. In view of Proposition 1, (1) ⇒ (3)

will be established.
Suppose that one cannot find a predictable d-dimensional process ρ such that

A = ∫ ·
0(ctρt )dGt . In that case, linear algebra combined with a simple measur-

able selection argument gives the existence of some bounded predictable process
θ such that (a)

∫ T

0 θt dGt = 0, (b)
∫ ·

0〈θt , dAt 〉 is a nondecreasing process, and (c)

P[∫ T

0 〈θt , dAt 〉 > 0] > 0. This means that X1,θ ∈ X (1), in the notation of (2), sat-

isfies X1,θ ≥ 1, P[X1,θ
T > 1] > 0. Then, X1,kθ ∈ X (1) for all k ∈ N and (X1,kθ )k∈N

is not bounded in probability.
Now, suppose that A = ∫ ·

0(ctρt )dGt for some predictable d-dimensional process

ρ, but that P[∫ T

0 〈ρt , ctρt 〉dGt = ∞] > 0. Consider the sequence πk := ρI{|ρ|≤k}
and let Xk be defined via Xk

0 = 1 and satisfying dXk
t = Xk

t π
k
t dSt . Then, Itô’s for-

mula implies that

logXk
T = −Ek

T

2
+

∫ T

0

(
ρt I{|ρt |≤k}

)
dMt,

holds for all k ∈ N, where Ek
T := ∫ T

0 〈ρt , ctρt 〉I{|ρt |≤k} dGt coincides with the total
quadratic variation of the local martingale

∫ ·
0(ρt I{|ρt |≤k})dMt . It follows that, for

every k ∈ N, one can find a one-dimensional standard Brownian motion βk such
that

logXk
T = −Ek

T

2
+ βk

Ek
T

.

The strong law of large numbers for Brownian motion will imply that

lim
k→∞ P

⎡
⎣

∣∣∣∣∣∣
βk

Ek
T

Ek
T

∣∣∣∣∣∣ > ε,

∫ T

0
〈ρt , ctρt 〉 dGt = ∞

⎤
⎦ = 0, for all ε > 0,

so that

lim
k→∞ P

[
logXk

T

Ek
T

>
1

2
− ε

∣∣∣
∫ T

0
〈ρt , ctρt 〉 dGt = ∞

]
= 1, for all ε > 0.

Choosing ε = 1/4, it follows that if P[∫ T

0 〈ρt , ctρt 〉dGt = ∞] > 0, the sequence
(Xk

T )k∈N is not bounded in probability.

(3) ⇒ (2). With the data of condition (3) there, define the process

Y := exp

(
−

∫ ·

0
〈ρt , dSt 〉 + 1

2

∫ ·

0
〈ρt , ctρt 〉 dGt

)
.

Condition (3) ensures that Y is well-defined (meaning that the two integrals above
make sense). Itô’s formula easily shows that Y is a local P-martingale. Then, a
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simple use of integration-by-parts gives that YSi is a local martingale for all i ∈
{1, . . . , d}.
(2) ⇒ (1). The proof of this implication is somewhat classic, but will be pre-
sented anyhow for completeness. Start with a sequence (Xk)k∈N of wealth pro-
cesses such that limk→∞ Xk

0 = 0 as well as Xk
T ≥ ξ for some R+-valued random

variable ξ . Since YSi is a local P-martingale for all i ∈ {1, . . . , d}, a straightfor-
ward multidimensional generalization of the proof of Proposition 3 shows that, for
all k ∈ N, YXk is a local P-martingale. As nonnegative local P-martingales are P-
supermartingales, we have E[YT ξ ] ≤ E[YT Xk

T ] ≤ Xk
0 holding for all k ∈ N. There-

fore, since limk→∞ Xk
0 = 0, we obtain E[YT ξ ] = 0. Since YT > 0 and ξ ≥ 0, P-a.s,

the last inequality holds if only if P[ξ = 0] = 1. Therefore, (Xk)k∈N is not an arbi-
trage of the first kind. �

Remark 8 (Market price of risk and the numéraire portfolio) Condition (3) of The-
orem 4 has some economic consequences. Assume for simplicity that G is ab-
solutely continuous with respect to Lebesgue measure, i.e., that G := ∫ ·

0 gt dt for
some predictable process g. Under condition NA1, we also have A := ∫ ·

0 at dt for
some predictable process g, and that there exists a predictable process ρ such that
cρ = a. (In fact, the latter process ρ can be taken to be equal to c†a, where c†

is the Moore-Penrose pseudo-inverse of c.) Now, take c1/2 to be any root of the
nonnegative-definite matrix c (that can be chosen in a predictable way) and define
σ := c1/2√g. Then, we can write dSt = σt (λt dt + dWt), where W is a standard
d-dimensional Brownian motion5 and λ := σ�ρ is a risk premium process (in the
one-dimensional case also commonly known as the Sharpe ratio), that has to satisfy∫ T

0 |λt |2 dt < ∞ for all T ∈ R+. We conclude that condition NA1 is valid if and
only if a risk-premium process exists and is locally square-integrable in a pathwise
sense.
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