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STABILITY OF THE UTILITY MAXIMIZATION PROBLEM WITH RANDOM
ENDOWMENT IN INCOMPLETE MARKETS
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We perform a stability analysis for the utility maximization problem in a general
semimartingale model where both liquid and illiquid assets (random endowments) are
present. Small misspecifications of preferences (as modeled via expected utility), as well
as views of the world or the market model (as modeled via subjective probabilities) are
considered. Simple sufficient conditions are given for the problem to be well posed, in
the sense that the optimal wealth and the marginal utility-based prices are continuous
functionals of preferences and probabilistic views.
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1. INTRODUCTION

1.1. Expected Utility Maximization

A mathematically sound, esthetically pleasing and computationally tractable descrip-
tion of optimal behavior of rational economic agents under uncertainty comes from the
expected utility theory: given a random outcome X (e.g., a terminal wealth, or a con-
sumption stream) an agent’s numerical assessment of the “satisfaction” that X provides
is given by E[U(X)], where U is a real-valued function, and E is the expectation corre-
sponding to either a physically estimated probability measure, or, in other circumstances,
the subjective agent’s view of the world.

Despite the criticism it received, expected utility theory has grown widely popular
and successful, mainly because it delivers quantitative results and, in some cases, even
closed-form solutions. Among the seminal contributions in this vein in the field of math-
ematical finance, we single out Samuelson (1969) (dealing with a simple discrete-time
Markovian model) and Merton (1969) (where the problem of optimal investment in a
continuous-time Markovian framework is explicitly solved). A more general approach
that avoids Markovian assumptions for the asset-price processes is the so-called mar-
tingale method. In complete financial markets, this methodology was introduced by
Pliska (1986) and later developed by Karatzas, Lehoczky, and Shreve (1987) and Cox
and Huang (1989, 1991). For incomplete financial models and continuous-time diffusion
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models important early progress was made by He and Pearson (1991) and Karatzas et
al. (1991). Kramkov and Schachermayer (1999, 2003) contain a very complete picture of
the solution of the problem of expected utility maximization from terminal wealth in a
general semimartingale incomplete model when the wealth process remains positive.

1.2. Stability Analysis

With problems of existence and uniqueness of optimal investment virtually settled
(at least for utilities defined on the positive real line), interest in the stability analysis
(for the solution of the problem of expected utility maximization under perturbations
of various initial conditions) has recently developed. The problem of convergence of
prices of illiquid assets, when the prices of the liquid assets converge, was tackled by
Hubalek and Schachermayer (1998). In Jouini and Napp (2004), the authors look at an
Itô process model and a convergent sequence of utility functions (i.e., misspecifications
of a “true” utility function). Convergence of utilities is also considered in Carasus and
Rasonyi (2007), but in a general discrete-time setting. Continuity (and smoothness)
properties with respect to perturbations in the initial wealth and the quantities of the
illiquid assets have been studied in Kramkov and Sirbu (2006). Larsen (2009) deals with
utility-function misspecifications in continuous-time models with general continuous-
path semimartingale price processes, and illustrates the theory with applications to certain
widely used models. A different viewpoint is taken in Larsen and Žitković (2007). Therein
model, rather than utility misspecifications are studied: the asset price process S λ—a
continuous-path semimartingale—is indexed by its market-price-of-risk λ (the parameter
which is the source of model misspecification).

In view of the previously listed works, one can argue that there has been no uni-
fied treatment of the problem of stability under simultaneous perturbations of both the
utility functions and the probability measures under which the expectations are taken.
The aim of this paper is to give insight into this problem in a general semimartingale
model, where the economic agent is, additionally, endowed with a random payoff (illiq-
uid assets). Moreover, rather than merely providing a common platform for most of the
existing results, we generalize them in several directions. A simple sufficient (and, in some
cases, “very close” to necessary) condition for stability is given, and several illuminating
examples dealing with various special cases are provided. We remark that in this paper
we deal with utility functions defined only on the positive real line, because the theory
of utility maximization with random endowments for this case has been thoroughly un-
derstood. It would be interesting to pursue whether a treatment of stability for utility
functions defined on the whole real line is possible, in the spirit of the recent develop-
ments of Biagini, Frittelli, and Grasselli (2008), but we are not dealing with this case in
the present work. We also note that the results appearing here have qualitative nature
and constitute a zeroth order approach to the problem. The next natural step would be
a first-order study, quantifying the infinitesimal change of value functions, the optimal
wealth, as well as utility indifference prices. This would be accomplished by a study of
the differentiability of the latter outputs with respect to smooth changes of the prefer-
ences and the agent’s subjective views. We leave this important task as a future research
project.

The structure of the paper is simple. After this Introduction, Section 2 describes the
problem and states the main result, while all the proofs are given in Section 3.
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2. PROBLEM FORMULATION AND STATEMENT OF THE MAIN RESULT

2.1. Description of the Modeling Framework

We start with a brief reproduction of the set-up and notation introduced in Hugonnier
and Kramkov (2004), where the authors are concerned with the problem of utility maxi-
mization with random endowment in incomplete semimartingale markets.

2.1.1. The Financial Market. Let (�,F, F, P) be filtered probability space, where
the filtration F = (Ft)t∈[0,T] satisfies the usual conditions of right continuity and P-
completeness. The time horizon T > 0 is fixed and constant. This assumption is in
place for simplicity only—T could be replaced by a finite stopping time, as is the case in
Hugonnier and Kramkov (2004) upon which we base our analysis.

We consider a financial market with d liquid assets, modeled by stochastic processes
S = (S i )i=1,...,d . There is also a “baseline” asset S 0 which plays the role of a numéraire—
this amounts to the standard assumption S 0 ≡ 1. The process S is assumed to be a
locally bounded Rd -valued semimartingale (see Delbaen and Schachermayer 1994, for
the economic justification of this essentially necessary assumption). Finally, in relation
to the notion of absence of arbitrage, we posit the existence of at least one equivalent
martingale measure, that is, a probability measure Q ∼ P that makes (each component of)
S a local martingale (see Delbaen and Schachermayer 1994, 1998, for more information).

2.1.2. Investment Opportunities. An initial capital x > 0 and a choice of an investment
strategy H (assumed to be d-dimensional, predictable, and S-integrable) result in a wealth
process X = Xx,H = x + H · S, where “·” denotes vector stochastic integration. To avoid
so-called doubling strategies, we restrict the class of investment strategies in a standard
way: the wealth process X = Xx,H is called admissible if

P[Xt ≥ 0, ∀ 0 ≤ t ≤ T] = 1.

An admissible wealth process X is called maximal if for each X ′ ∈ X with P[X ′
T ≥ XT] =

1 and X ′
0 = X0, we necessarily have X = X ′, a.s. The class of admissible wealth processes

(starting from the initial wealth X0 = x) is denoted by X (x). The union
⋃

x>0 X (x) is
denoted by X .

On the dual side, we define the class of separating measures by

Q := {Q | Q ∼ P, and X is Q-supermartingale for all X ∈ X }.
Thanks to the assumptions of no-arbitrage and local boundedness, Q coincides with the
set of all equivalent (local) martingale measures, and is, therefore, nonempty. For future
use, we restate the (already imposed) assumption of No Free Lunch with Vanishing Risk
as

Q 
= ∅.(NFLVR)

2.1.3. Illiquid Assets. Together with the liquid (traded) assets S, we assume the exis-
tence of N illiquid assets whose values at time T are represented by random variables
f 1, . . . , f N. We allow for the case N = 0, in which all assets are liquid. From the outset,
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the agents hold some positions in illiquid assets, but, due to their illiquidity, they are not
able to trade in them (until the time T , at which all N of them mature). The only regularity
assumption on the illiquid assets is that they can be super- and subreplicated using the
traded assets S; in other words, we assume (with the convention that

∑0
j=1 · = 0)

X ′ :=
{

X ∈ X | XT ≥
N∑

j=1

| f j |, P-a.s.
}


= ∅.(S-REP)

To avoid trivial technical complications, we assume that the illiquid assets f 1, . . . , f N

are nonredundant when N ≥ 1, in the sense that no linear combination
∑N

k=1 αk f k—
where not all of the αk’s are zero—is replicable in the sense that there exists a wealth
process X ∈ X such that both X and −X are maximal and XT = ∑N

k=1 αk f k. It is a
standard result (see, e.g., lemma 7 in Hugonnier and Kramkov 2004) that this is equivalent
to saying that the set of arbitrage-free prices for f defined as

P( f ) := {(EQ[ f 1], . . . , EQ[ f N]) | Q ∈ Q} is an open set when N > 0.(N-TRAD)

If (N-TRAD) did not hold, we could always retain a minimal set of (linear combinations)
of the illiquid claims, and regard all the others merely as outcomes of trading strategies
using the liquid assets only. It should become clear that (N-TRAD) is not needed for the
results of the paper to hold and this is why it is not assumed in our main Theorem 2.6.

Under the assumptions (NFLVR) and (S-REP), the class

Q′ := {Q ∈ Q | X is a Q-uniformly integrable martingale for some X ∈ X ′}

can be shown to be nonempty. This follows from the fact that X ′ contains at least one
maximal element X . The existence of a measure Q ∈ Q that makes this maximal wealth
process a uniformly integrable martingale was established in Delbaen and Schachermayer
(1997). Assumption (S-REP) implies that f j ∈ L1(Q) for all j = 1, . . . , N, Q ∈ Q′.

2.1.4. Acceptability Requirements. The notion of acceptability, related to that of max-
imality introduced above, plays a natural role when nonbounded random endowment is
present, as is thoroughly explained in Delbaen and Schachermayer (1997) and Hugonnier
and Kramkov (2004). We say that a process X = Xx,H = x + H · S, with H predictable
and S-integrable, is acceptable, if there exists a maximal wealth process X̆ ∈ X such that
X + X̆ ∈ X . Acceptability requires the shortfall of a trading strategy to be bounded by
a maximal wealth process, rather than a constant, as in the case of the admissibility
requirements.

2.1.5. The Utility-Maximization Problem. Starting with initial wealth x and q j units
of each of the nontraded assets f j in the portfolio, an economic agent can invest in the
market and achieve any of the wealths in the collection

X (x, q) := {X ≡ x + H · S | X is acceptable and XT + 〈q, f 〉 ≥ 0},

where q ≡ (q1, . . . , q N) and 〈·, ·〉 denotes inner product in the Euclidean space RN (if
N = 0, the variable q is absent). The agent’s goal is to choose X ∈ X (x, q) in such a way
as to maximize EP[U(XT + 〈q, f 〉)], where EP is used to denote expectation under P,
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and the utility U is a function mapping (0, ∞) into R, which is strictly increasing and
strictly concave, continuously differentiable and satisfies the Inada conditions: U ′(0 +) =
∞, U ′(∞) = 0. The above utility maximization problem is considered for all (x, q) ∈ K,
whereK is the interior of the convex cone {(x, q) |X (x, q) 
= ∅} ⊆ RN+1. In the liquid case
N = 0, (NFLVR) implies that K = (0, ∞) = Int[0, ∞). In the general case, its geometry
depends on the interplay of the liquid and illiquid assets. In lemma 1 of Hugonnier and
Kramkov (2004) it is shown that the assumption (S-REP) of sub- and super-replicability
of the illiquid assets is equivalent to (x, 0) ∈ K, for all x > 0 (and always, trivially, satisfied
when N = 0).

It is useful to consider the value function or indirect utility of this problem as a function
of both the initial wealth x that can be distributed in the liquid assets, and the positions
q ∈ RN held in the illiquid assets; thus, we define the indirect utility

u(x, q) := sup
X∈X (x,q)

EP[U(XT + 〈q, f 〉)](2.1)

for (x, q) ∈ K. The specification of the indirect utility as a function of both the initial
capital and the holdings in the illiquid assets is convenient if one wants to introduce
utility-based prices.

2.1.6. Marginal Utility-based Prices. For an agent with an initial wealth x and an
initial position q in N ≥ 1 illiquid assets, a marginal utility-based price for f = ( f 1, . . . ,
f N) is a vector p ≡ p( f ; x, q) ∈ RN such that if f were liquid and traded at prices p,
the utility-maximizing agent would be indifferent to changing his/her positions in f . In
more concrete terms, we must have u(x, q) ≥ u(x̃, q̃), for all (x̃, q̃) ∈ K with x + 〈q, p〉 =
x̃ + 〈q̃, p〉. In Hugonnier, Kramkov, and Schachermayer (2005), the authors have shown
that marginal utility-based prices always exist, but do not, surprisingly, have to be unique.
More precisely, the set of marginal utility-based prices for f (with initial positions x and
q) is

P( f ; x, q; U) := {y−1r | (y, r ) ∈ ∂u(x, q)},(2.2)

where ∂u(x, q) is the superdifferential of the concave function u at (x, q) ∈ K.

2.1.7. The Dual Problem. To solve the primal (utility maximization) problem, it is
useful to consider the related dual problem

v(y, r ) := inf
Y∈Y(y,r )

EP[V(YT)],(2.3)

where V(y) := supx>0{U(x) − xy} is the Legendre-Fenchel transform of U(·) and Y(y, r )
is defined to be the class of all nonnegative càdlàg processes Y such that Y0 = y,
YX is a supermartingale for all X ∈ X and such that E[YT(XT + 〈q, f 〉)] ≤ xy + 〈q, r〉
holds for all (x, q) ∈ K and X ∈ X (x, q). The obvious simplifications apply when
N = 0. The dual problem (2.3) is defined for all (y, r ) ∈ L, where we set L := ri(−K)◦,
with (−K)◦ = {(y, r ) ∈ RN+1 | xy + 〈q, r〉 ≥ 0, ∀ (x, q) ∈ K}. In words, L is the relative
interior of the polar cone (−K)◦ of −K. We have the set equality

P( f ) = {p ∈ RN | (1, p) ∈ L}(2.4)
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(see equation (9), p. 850 in Hugonnier and Kramkov 2004) with P( f ) defined in (N-
TRAD) to be the set of arbitrage-free prices for f . For future reference, for any p ∈ P( f )
we set

Q′(p) := {Q ∈ Q′ | EQ[ f ] = p},

where EQ[ f ] := (EQ[ f 1], . . . , EQ[ f N]) ∈ RN and Q′(p) = Q′ if N = 0. In Hugonnier and
Kramkov (2004), it is shown that Q′(p) 
= ∅ for all p ∈ P .

2.1.8. A Theorem of Hugonnier and Kramkov. We conclude this section by stating a
version of the main theorem of Hugonnier and Kramkov (2004), which will be referred
to throughout the sequel.

THEOREM 2.1 (Hugonnier and Kramkov 2004). Suppose that v(y, 0) < ∞ for all y >

0. Then, the functions u and v are finitely valued on K and L, respectively, and are conjugate
to each other:

v(y, r ) = sup
(x,q)∈K

{u(x, q) − xy − 〈q, r〉},

u(x, q) = inf
(y,r )∈L

{v(y, r ) + xy + 〈q, r〉}.

Furthermore, for each (x, q) ∈ K we have ∂u(x, q) ⊆ L; actually,

∂u(x, q) =
{ {y} × R, N ≥ 1,

{y}, N = 0,
(2.5)

for some y = y(x, q) ∈ (0, ∞) and some compact and convex set R = R(x, q) ⊆ RN.
The optimal solutions X̂(x, q) and Ŷ(y, r ) for the primal and dual problems exist for all
(x, q) ∈ K and (y, r ) ∈ L. Moreover, if (y, r ) ∈ ∂ u(x, q), we have the P-a.s. equality
ŶT(y, r ) = U ′(X̂T(x, q) + 〈q, f 〉).

REMARK 2.2. For all (x, q) ∈ K, the superdifferential ∂u(x, q) is a compact and convex
subset of L. Moreover, since y > 0 for (y, r ) ∈ ∂u(x, q), equation (2.2) and the set-equality
(2.4) imply that P( f ; x, q; U) is a convex and compact subset of P( f )—in other words,
marginal utility-based prices are arbitrage-free prices.

We note some further properties of the utility and value functions above. It follows from
the properties of convex conjugation that the function V is strictly convex, continuously
differentiable, and strictly decreasing on its natural domain. The value functions u and
v are conjugates of each other—u(·, q) is strictly concave, strictly increasing, whereas
v(·, q) is strictly convex and strictly decreasing. Both u(·, q) and v(·, q) are continuously
differentiable. Considered as functions of the second argument u(x, ·) and v(y, ·) are
continuous on the interiors of effective domains.

2.2. Stability Analysis

Having described the utility-maximization setting of Hugonnier and Kramkov (2004),
we turn to the central question of the present paper: what are the consequences of model
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and/or preference misspecification for the optimal investment problem (as described in the
previous section)?

2.2.1. Problem Formulation. In mathematical terms, we can ask whether the mapping
that takes as inputs a utility function U and a probability measure P and produces
the optimal wealth process and the set of utility-based prices for contingent claims
(the illiquid assets) is continuous. Of course, appropriate topologies on the sets of the
probability measures, utility functions, terminal wealth processes, and prices need to be
introduced.

Focusing on the special case of the logarithmic utility in a complete Itô-process market,
in Larsen and Žitković (2007) the authors determine certain conditions on topologies
governing the convergence of stock-price processes, which are necessary for convergence
in probability on the space of the terminal wealth processes in all models. A similar
approach in our case obviates the need for, at least, the following set of assumptions:

(i) the class of probability measures is endowed with the topology of convergence in
total variation, and

(ii) the space of utility functions is topologized by pointwise convergence.

REMARK 2.3. In general, the topology of pointwise convergence lacks the operational
property of metrizability. However, when restricted to a class of concave functions—
such as utility functions—it becomes equivalent to the metrizable topology of uniform
convergence on compact sets. From the economic point of view, such convergence is
natural because—despite its apparent coarseness—it implies pointwise (and locally uni-
form) convergence of derivatives (marginal utilities), and thus, convergence in the local
Sobolev space W1,∞

loc . It is implied, for example, by the convergence of (absolute or rela-
tive) risk aversions under the appropriate normalization. The pointwise convergence of
utility functions is the most used notion of convergence for utility functions in economic
literature (see Jouini and Napp 2004 or Carasus and Rasonyi 2007 in the financial frame-
work, or Back 1983 for a more general discussion and relation to other, less used notions
of convergence).

In the sequel, we consider two sequences (Pn)n∈N and (Un)n∈N of probability measures
and utilities, together with the “limiting” probability measure P and utility function U .
These will always be assumed to satisfy the following (equivalency and) convergence
condition:

∀ n ∈ N, Pn ∼ P, lim
n→∞ Pn = P in total variation and lim

n→∞ Un = U pointwise.(CONV)

REMARK 2.4. Some aspects of the approach of Larsen and Žitković (2007) can be
recovered in our setting when the utility function U is kept constant and there are no
illiquid assets (N = 0). To see that, recall that in Larsen and Žitković (2007), the authors
consider a general (right-continuous and complete) filtration F = (Ft)t∈[0,T], on which
a one-dimensional continuous local martingale M is defined. They vary the model by
considering a sequence (λn)n∈N of market-price-of-risk processes, giving rise to a sequence
of stock-price processes

dSλn (t) = λn(t) d〈M〉(t) + dM(t).
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They study the convergence of the outputs of the utility-maximization problems in the
sequence (Sλn )n∈N of models, while keeping the “physical” measure P fixed.

In our framework, we keep the functional representation of the models constant
(as the same functions mapping � into the appropriate co-domain), but the measure
P changes. To see the connection, let S be a continuous-path semimartingale. Then,
dS(t) = λ(t) d〈M〉(t) + dM(t), where M is a local P-martingale. For n ∈ N let Pn ∼ P;
then, Girsanov’s theorem enables us to write dS(t) = λn(t) d〈M〉(t) + dMn(t), where Mn is
a local Pn-martingale with 〈Mn〉 = 〈M〉. It is straightforward to check that limn→∞ Pn = P

in total variation implies limn→∞
∫ T

0 ‖λn(t) − λ(t)‖2d〈M〉(t) = 0 in L0. Conversely, the
latter convergence, coupled with requiring that M has the predictable representation
property with respect to the filtration F and some uniform integrability conditions, imply
that limn→∞ Pn = P in total variation.

REMARK 2.5. The equivalence of all probability measures (Pn)n∈N to P as required by
(CONV) is a rather strong condition—in particular, it pins down the quadratic variation
of S and this means that model misspecifications with respect to volatility in simple Itô-
process models cannot be dealt. Our choice to impose such a requirement nevertheless
is based on the following two observations:

(1) Stability in the general (nonequivalent) case can only be studied in the distribu-
tional sense; equivalence allows one to talk about convergence in probability. Such
problems do not arise when one only considers numerical objects, such as prices
of contingent claims, for example.

(2) The structure of the dual sets (the sets of equivalent martingale measures) in the
limit and that in the prelimit models differ greatly in typical nonequivalent cases.
This puts a severe limitation on the applicability of our method.

In special cases, however, there exists a simple way around the equivalence assumption,
based on the observation that the subject of importance is not the asset-price vector S
itself, but the collection of all wealth processes that are to be used in the utility maxi-
mization problem. This simple observation allows, for example, treatment of stochastic
volatility models. The example below illustrates the general principle of how the equiva-
lence requirement can be “avoided”:

Suppose that under P we have the dynamics dSi
t /Si

t =: dRi
t = μi

t dt + ∑d
j=1 σ

i j
t dWj

t
for i = 1, . . . , d, where W = (Wj )1≤j≤d is an F-Brownian motion, μ = (μi)1≤i≤d and σ =
(σ ij)1≤i≤d,1≤j≤d are F-predictable and σ is assumed to be non-singular-valued. It follows
that for the returns vector R = (Ri )1≤i≤d we can write dRt = σt(λt dt + dWt), where λ :=
σ−1μ is the Sharpe ratio. The nonsingularity of σ implies that the set of wealth processes
obtained by trading in S is the same as the one obtained by trading in assets with returns
given by R̃ = (R̃i )1≤i≤d satisfying dR̃t = λt dt + dWt. This trick allows to get rid of the
dependence on σ .

Suppose now we want to check the effect of changing both σ and μ—for example,
we want to see what will happen if (μ(n), σ (n)) converge to (μ, σ ) in some sense. Define
λ(n) = (σ (n))−1μ(n) (assume that each σ (n) is non-singular-valued) and Pn via the density
(assuming that the exponential local martingale below is uniformly integrable):

dPn

dP

∣∣∣∣
FT

= exp
(∫ T

0

(
λ

(n)
t − λt

)
dWt − 1

2

∫ T

0

∥∥λ
(n)
t − λt

∥∥2
dt

)
.
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As long as limn→∞
∫ T

0 ‖λ(n)
t − λt‖2 dt = 0 (in probability), we have limn→∞ Pn = P in total

variation. Define new return processes R(n) via dR(n)
t = σ

(n)
t (λ(n)

t dt + dW(n)
t ) = μ(n)dt +

σ
(n)
t dW(n)

t , where W(n) := W − ∫ ·
0(λ(n)

t − λt) dt is Pn-Brownian motion. The induced set
of wealth processes by investing in asset-prices with returns R(n) is the same as the one
obtained if the asset-prices had returns R̃(n) that satisfied dR̃(n)

t = λ
(n)
t dt + dW(n)

t = dR̃t,
which in turn is the same as the original set of wealth processes obtained by investing in
S. In this indirect way, we can study changes of both drift and volatility in the model,
while keeping our framework of only changing the probability measure and not the asset
prices.

2.2.2. A Uniform-integrability Condition. Unfortunately, the modes of convergence
in (CONV) are not strong enough for stability: Larsen and Žitković (2007) contains a
simple example. In the setting of their example, T = 1 and there exists one liquid asset
S whose P-dynamics (P being the “limiting measure”) is given by dSt = St dWt. W is a
P-Brownian motion, and the filtration is the (augmentation of the) one generated by W .
The sequence (Pn)n∈N, of measures is defined via dPn/dP = ϕn(W1), where (ϕn)n∈N is a
sequence of positive real functions with limn→∞ ϕn = 1, pointwise. The utility function
involved—in their treatment only the model changes and the utility is fixed—is unbounded
from above (and is, in fact, a simple power function). What Larsen and Žitković (2007)
show is that convergence of the optimal wealth processes in probability might fail—
convergence of (Pn)n∈N to P in total variation is simply not enough. Moreover, their
choice of the functions ϕn is such that dPn/dP → 1 in L2, and a simple variation of their
argument may be used to show that, in fact, the Lp convergence will not be universally
sufficient, no matter how large p ∈ (1, ∞) is chosen. The appropriate strengthening of
the requirement (CONV), as shown by Larsen and Žitković (2007), is the replacement
of the classical Lp spaces by the Orlicz spaces related to the utility function U . In the
present setting, where the variation in the model, as well as in the utility function, has to
be taken into account, such a replacement leads to the following condition (in which V+

n
(x) := max {Vn(x), 0}):

∀ p ∈ P, ∃ Q ∈ Q′(p), ∀ y > 0,

(
dPn

dP
V+

n

(
y

dQ

dPn

))
n∈N

is P-uniformly integrable.

(UI)

2.2.3. On Condition (UI). The following special cases illustrate the meaning and
restrictiveness of the condition (UI). The convergence requirement (CONV) is assumed
throughout.

(1) It has been shown in Larsen and Žitković (2007) that (the appropriate version of)
the condition (UI) is both sufficient and necessary in complete financial markets.
In the incomplete case, and still in the setting of Larsen and Žitković (2007),
it is “close to” being necessary—the gap arising because of the technical issues
stemming from the fact that the dual minimizers do not have to be countably
additive measures.

(2) When there are no illiquid assets (N = 0), the set P has no meaning and any
martingale measure Q can be used in (UI). Also, in the case when the market is
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complete, the set P is a singleton and the unique equivalent martingale measure
Q has to be used in (UI).

(3) The (UI) condition is immediately satisfied if the sequence (Un)n∈N is uniformly
bounded from above. Indeed, in that case we have supn∈N V+

n ≤ C for some C
> 0 (the uniform upper bound on the utilities) and the sequence (dPn/dP)n∈N is
P-uniformly integrable in view of its L1(P) convergence.

(4) If the previous example corresponds to the duality between L∞ and L1, the present
one deals with the case of L p̂ and Lq̂ , p̂−1 + q̂−1 = 1. Indeed, assume the following
conditions:
(a) there exist constants c > 0, d ∈ R and 0 < α < 1 (the case α = 0 corresponds

to the logarithmic function, and can be treated in a similar fashion) such that
Un(x) ≤ cxα + d, for all n ∈ N,

(b) the sequence (dPn/dP)n∈N is bounded in L p̂, for some p̂ > (1 − α)−1, and
(c) for each p ∈ P there exists Qp ∈ Q′(p) such that (dQp/dP)−1 ∈ Lq̂ , where we

set q̂ := p̂α

p̂(1−α)−1 . Note that this requirement is not as strong as it seems, as it
is closely related to the finiteness in the dual problem.

Then, for all y > 0,

Vn(y) = sup
x>0

{Un(x) − xy} ≤ sup
x>0

[cxα + d − xy] ≤ Cy− α
1−α + D,(2.6)

where C, D ∈ R are positive constants. For arbitrary but fixed p ∈ P and y > 0
define γ := q̂ p̂(1 − α)(q̂ + p̂α)−1 so that 1 < γ < p̂, where q̂ > 0 has been defined
earlier. Hölder’s inequality (applied in the last inequality below) and the estimate
(2.6) imply that

E

[(
dPn

dP
V+

n

(
y

dQp

dPn

))γ ]

≤ E

[(
C

dPn

dP

(
y

dQp

dPn

)− α
1−α

+ D
dPn

dP

)γ ]

≤ 2γ−1Cγ y− α
1−α E

[(
dPn

dP

) γ

1−α
(

dQp

dP

)− γα

1−α
]

+ 2γ−1 Dγ E

[(
dPn

dP

)γ ]

≤ 2γ−1Cγ y− α
1−α E

[(
dPn

dP

) p̂] γ

p̂(1−α)

E

[(
dQp

dP

)−q̂]1− γ

p̂(1−α)

+ 2γ−1 Dγ E

[(
dPn

dP

)γ ]
,

which implies (UI).

(5) A family (Un)n∈N of utility functions is said to have a uniform reasonable asymp-
totic elasticity, if there exist constants x0 > 0 and δ < 1 such that xUn

′(x) ≤
δUn(x) for all x > x0 and n ∈ N. Then, one can show (see proposition 6.3 in
Kramkov and Schachermayer 1999) that for each fixed y > 0, there exist k, l > 0
such that V+

n (yz) ≤ kV+
n (z) + l for all z > 0, n ∈ N. In other words, under uniform

reasonable asymptotic elasticity the “annoying” universal quantification over all
y > 0 in (UI) can be left out—considering only the case y = 1 is enough.

(6) Several other sufficient conditions for (UI) in the case when Vn = V for all n ∈ N

and N = 0 are given in Larsen and Žitković (2007).
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2.2.4. The Main Result. The statement of our main result, whose proof will be the
given in Section 3, follows. To keep the unified notation for the cases N = 0 and N > 0, we
introduce the following conventions (holding throughout the remainder of the paper): all
the statements in the sequel will notationally correspond to the case N > 0, and should
be construed literally in that case. When N = 0, the arguments r should be understood to
take values in the one-element set R0, which we identify with {0}. Similarly, the variables
p and q will take the value 0, and Q(0) = Q′. In this case, a pair such as (x, 0) will be
identified with the constant x ∈ R.

THEOREM 2.6. Assume that (NFLVR) and (S-REP) are in force, and consider a
sequence (Pn)n∈N of probability measures and a sequence (Un)n∈N of utility functions
such that (CONV) and (UI) hold. Furthermore, let (xn, qn)n∈N be a K-valued se-
quence with limn→∞(xn, qn) =: (x, q) ∈ K and (yn, rn)n∈N an L-valued sequence with
limn→∞(yn, rn) =: (y, r ) ∈ L.

Set un = u(xn, qn ; Un, Pn), u∞ = u(x, q; U, P), vn = v(yn, rn ; Un, Pn), v∞ = v(y, r ;
U, P), and let ∂

∂x un,
∂
∂x u∞, ∂

∂y vn,
∂
∂y v∞, be the corresponding derivatives with respect

to the first variable. Similarly, set X̂n = X̂T(xn, qn ; Un, Pn), X̂∞ = X̂T(x, q; U, P), Ŷn =
ŶT(yn, rn ; Vn, Pn), and Ŷ∞ = ŶT(y, r ; V, P). Finally, set Pn = P( f ; xn, qn ; Un, Pn) and
P∞ = P( f ; x, q; U, P).

Then, we have the following limiting relationships for the value functions and the optimal
solutions in the primal and dual problems:

(1) limn→∞ un = u∞, limn→∞ vn = v∞, limn→∞ ∂
∂x un = ∂

∂x u∞, and limn→∞ ∂
∂y vn =

∂
∂y v∞.

(2) limn→∞ X̂n = X̂∞ and limn→∞ Ŷn = Ŷ∞ in L0, where, as usual, L0 is the family of
all random variables endowed with the topology of convergence in probability.

(3) for all ε > 0, there exists n0 ∈ N such that

Pn ⊆ P∞ + εBN, for n ≥ n0,

where BN is the open ball of unit radius in RN.

REMARK 2.7. The set-inclusion Pn ⊆ P∞ + εBN for all n large enough is an upper
hemicontinuity-type property of the correspondence of marginal utility-based prices. It
says that all possible limit points of all possible sequences of marginal utility-based prices
will belong to the limiting price-set. It does not imply that this last set will be equal to
the set of all these possible limit points—indeed, it might be strictly larger.

3. PROOFS

This section concentrates on the proof of our main Theorem 2.6. First, we prove a
lower semicontinuity-type result for of the dual value function, which, interestingly,
does not depend on the assumption (UI) from Section 3.2. Then, in Section 3.3, we
use both (CONV) and (UI) to establish a complementary upper semicontinuity-type
property for the dual value function. Continuity of the primal value function and upper
hemicontinuity of the correspondence of marginal utility-based prices are proved in
Section 3.4. Finally, Section 3.5 deals with convergence in L0 of the dual optimal element.
Convergence in L0 of the optimal terminal wealths is then established using the continuity
of the value functions.
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3.1. Preliminary Remarks

We start by making some remarks and conventions that will be in force throughout the
proof. Because there are many different probability measures floating around, we choose
P to serve as the baseline: all expectations E in the sequel will be taken with respect to
the probability P—we then consider the Radon–Nikodym densities Zn := dPn/dP and
use them whenever we want to take expectation with respect to some Pn . The space L0

of all a.s.-finite random variables is the same for all (equivalent) probabilities and thus
requires no identifier. The notation L1 is reserved for L1(P). Observe that the convergence
limn→∞ Pn = P in total variation is equivalent to the convergence limn→∞ Zn = 1, in L1.
By Scheffe’s lemma (see Williams 1991, p. 55) this is equivalent to the (seemingly weaker)
statement limn→∞ Zn = 1 in L0.

Let us move on to the discussion of utility functions. Note that pointwise (and thus, by
concavity, uniform on compacts) convergence of the sequence (Un)n∈N to a utility U will
imply pointwise convergence of the sequence of Legendre–Fenchel transforms (Vn)n∈N to
the corresponding Legendre–Fenchel transform V of the limiting utility U . We actually
get a lot more: the sequences (Un)n∈N, (Vn)n∈N as well as their derivatives (U ′

n)n∈N, (V′
n)n∈N

converge uniformly on compact subsets of (0, ∞) to their respective limits U, V, U ′, and
V ′ (see, e.g., Rockafellar and Wets 1998 for a general statement or Larsen and Žitković
2007 for a simple self-contained proof of this result). A multidimensional version of this
result will be used later on in Section 3.5.

Also, without loss of generality we assume that each of the utility functions involved
here is normalized in such a way as to have Un(1) = 0 and U ′

n (1) = 1—this will mean that
Vn(1) = V ′

n (1) = −1. One can check that nothing changes in the validity of our Theorem
2.6 if we make this simple affine transformation in the utilities, but the proofs below will
be much cleaner. Indeed, we can define a new sequence (Ûn)n∈N via

Ûn(x) = Un(x) − Un(1)
U ′

n(1)
;

pointwise convergence of the original sequence (Un)n∈N implies pointwise convergence
of both (Ûn)n∈N and (V̂n)n∈N.

3.2. A Lower Semicontinuity-type Property of the Dual Value Function

We assume that (NFLVR), (S-REP), and (CONV) hold throughout this section. The
assumption (UI) is not yet needed.

3.2.1. Preparatory Work. Notice that (Zn)n∈N is P-uniformly integrable, and, more
generally, that the convex hull conv(Zn ; n ∈ N) is P-uniformly integrable, as well. Observe
that

vn(y, r ) ≡ v(y, r ; Un, Pn) = inf
g∈D(y,r )

E[Zn V(g/Zn)] = E[Zn V(gn/Zn)],(3.1)

where

D(y, r ) := {g ∈ L0 | 0 ≤ g ≤ YT for some Y ∈ Y(y, r )},(3.2)
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Y(y, r ) is the class of supermartingale deflators corresponding to the limiting probability
measure P, and gn ∈ D(y, r ) attains the infimum in (3.1). We wish to show that

v(y, r ) ≤ lim inf
n→∞ vn(y, r ).(3.3)

The “liminf” in (3.3) can be safely regarded as an actual limit, passing to an attaining
subsequence if necessary. By the same token, we can also assume that the convergence
limn→∞ Zn = 1 holds almost surely, and not only in L0.

Lemma A1.1 from Delbaen and Schachermayer (1994) provides us with a finite random
variable h ≥ 0, and a sequence (hn)n∈N such that

∀ n ∈ N, hn ∈ conv(gn, gn+1, . . .) and lim
n→∞ hn = h, a.s.(3.4)

In Hugonnier and Kramkov (2004), the authors show that for all (y, r ) ∈ L the convex
set D(y, r ) is closed in L0, thus we have h ∈ D(y, r ). For concreteness, let us write
hn = ∑mn

k=n αn
k gk for some mn ≥ n and 0 ≤ αn

k ≤ 1 such that
∑mn

k=n αn
k = 1. We then also set

ζn := ∑mn
k=n αn

k Zk and observe that limn→∞ ζ n = 1 holds almost surely; here, it is crucial
that we have limn→∞ Zn = 1 almost surely and not only in L0—R is a locally convex
space, while L0 is not.

3.2.2. On the Sequence (Vn)n∈N. For n ∈ N and ε ∈ (0, 1), define the function Vε
n as

follows: set Vε
n (x) = Vn(x) for x ≥ ε, and extend Vε

n to [0, ε) in an affine and continuously
differentiable way, that is match the zeroth and first derivatives at x = ε. This recipe
uniquely determines a decreasing and convex function Vε

n. Of course, limε↓0 ↑ Vε
n (x) =

Vn(x), for all x > 0. In the same manner as above, and using the function V , define Vε

for all ε ∈ (0, 1).
Because limn→∞ Vn(x) = V(x) and limn→∞ V ′

n (x) = V′(x) uniformly for x ∈ [ε, 1],
we have that limn→∞ Vε

n(x) = Vε(x), uniformly for x ∈ [0, 1]. Notice that this uniform
convergence fails in general for ε = 0, unless (Un)n∈N is uniformly bounded from above
(equivalently, if (Vn)n∈N is uniformly bounded from above). It follows that

∀ ε ∈ (0, 1) ∃ n1(ε) ∈ N, ∀ x ∈ [0, 1], ∀ n ≥ n1(ε), Vε
n (x) ≥ Vε(x) − ε.(3.5)

Let Ṽn denote the convex minor of the family {Vn, Vn+1, . . .}; that is, Ṽn is the largest
convex function that is dominated by all Vk for k ≥ n. Each Ṽn is clearly convex and
decreasing. Observe also that Ṽn(x) ≥ −x. Indeed, remembering that Vn(1) = V ′

n (1) =
−1, for all n ∈ N, one concludes that Vn(x) ≥ −x for all n ∈ N. In fact,

−1 +
∫ x

1

(
inf
k≥n

V′
k(u)

)
du ≤ Ṽn(x) ≤ V(x).

This last expression, and the fact that limn→∞ V ′
n = V′ uniformly on compact subsets of

(0, ∞) imply that limn→∞ ↑ Ṽn = V uniformly on compact subsets of (0, ∞).
Define now the “average” functions Vn(x) := Ṽn(x)/x, x > 0 for all n ∈ N, as well as

V(x) := V(x)/x, x > 0. Observe that limn→∞ ↑ Vn = V (increasing limit). The following,
stronger, statement holds as well.

LEMMA 3.1. limn→∞ Vn = V, uniformly on [1, ∞).
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Proof . We base the proof on Dini’s theorem. To be able to use it we have to ensure that
the sequence Vn(∞) increases and converges to V(∞), where Vn(∞) := limx→∞ Vn(x)
and V(∞) := limx→∞ V(x) = limx→∞ V′(x) = 0 (since V is the convex conjugate of
−U(− ·)).

The normalization Vn(1) = V ′
n (1) = −1 implies that Ṽn(1) = Ṽ′

n(1) = −1 and V(1) =
V′(1) = −1, and that V and all Vn are increasing for x ∈ [1, ∞).

Then, for an arbitrary δ > 0, pick M > 1 so that V(M) > −δ/2 and n2 ≡ n2(δ, M) ∈ N

so that Vn(M) > V(M) − δ/2 > −δ for all n ≥ n2. It follows that Vn(∞) ≥ Vn(M) > −δ

for all n ≥ n2 and thus that limn→∞ Vn(∞) = V(∞) = 0. As proclaimed, Dini’s theorem
will imply that limn→∞ Vn = V uniformly on [1, ∞). �

LEMMA 3.2. The mapping (z, y) �→ zVε (y/z) is convex in (z, y) ∈ (0, ∞)2. Furthermore,
for each ε > 0, there exists n0(ε) ∈ N such that for all n ≥ n0(ε) we have

zVε
n (y/z) ≥ zVε(y/z) − ε(y + z)

for all pairs (z, y) ∈ (0, ∞)2.

Proof . The fact that (z, y) �→ zVε (y/z) is convex in (z, y) ∈ (0, ∞)2 is a consequence
of the convexity of Vε and is quite standard. A detailed proof can be found, for example,
in Hiriart-Urruty and Lemaréchal (2001), p. 90.

For the second claim, pick ε > 0, and use Lemma 3.1 to find a natural number n3(ε)
such that V

ε

n(x) ≥ V
ε
(x) − ε for all x ≥ 1 and n ≥ n3(ε). Then, pick n1(ε) as in (3.5).

Finally, choose n0(ε) := max {n1(ε), n3(ε)}. For all n ≥ n0(ε), we now have

zVε
n (y/z) ≥ z(Vε(y/z) − ε)I{y≤z} + y(V(y/z) − ε)I{y>z} ≥ zVε(y/z) − ε(y + z).

�

3.2.3. The Conclusion of the Proof of (3.3). Let ε ∈ (0, 1) be fixed, but arbitrary.
According to Lemma 3.2, for all n ≥ n0(ε) we have ZnVε

n (gn/Zn) ≥ ZnVε (gn/Zn) −
ε (Zn + gn); applying expectation with respect to P and taking limits (remember that we
have passed in a subsequence so that limn→∞ vn(y, r ) exists) we get

lim
n→∞ vn(y, r ) ≥ lim sup

n→∞
E

[
Zn Vε

n (gn/Zn)
] ≥ lim sup

n→∞
E

[
Zn Vε(gn/Zn)

] − (y + 1)ε.(3.6)

Apply Lemma 3.2 again to get ζn Vε(hn/ζn) ≤ ∑mn
k=n αn

k ZkVε(gk/Zk), where the sequence
(hn)n∈N is the one of (3.4); this implies that

lim sup
n→∞

E
[
Zn Vε(gn/Zn)

] ≥ lim sup
n→∞

mn∑
k=n

αn
kE

[
ZkVε(gk/Zk)

] ≥ lim sup
n→∞

E
[
ζn Vε(hn/ζn)

]
.

A combination of this inequality with the estimate (3.6) yields that

lim
n→∞ vn(y, r ) ≥ lim sup

n→∞
E

[
ζn Vε(hn/ζn)

] − (y + 1)ε.(3.7)

Because V
ε

is increasing on [1, ∞) and satisfies V
ε
(1) = −1 and V

ε
(∞) = 0, one can

choose M > 1 such that V
ε
(M) = −ε and define V

ε,M
by requiring V

ε,M
(x) = V

ε
(x)

for 0 < x ≤ M, V
ε,M

(x) = 0 for all x ≥ M + 1, and interpolating in a continuous way
between M and M + 1 so that V

ε ≤ V
ε,M

. Then V
ε,M − ε ≤ V

ε ≤ V
ε,M

and
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ζn Vε(hn/ζn) = hn V
ε
(hn/ζn) ≥ hn V

ε,M
(hn/ζn) − εhn .(3.8)

Observe that hn V
ε,M

(hn/ζn) ≤ Vε(0)ζn ; also, because V
ε,M

(x) ≥ −1 for all x > 0 and
V

ε,M
(x) = 0 for x > M + 1, we have

hn V
ε,M

(hn/ζn) = hn V
ε,M

(hn/ζn)I{hn≤(M+1)ζn} ≥ −(M + 1)ζn .

It follows that |hn V
ε,M

(hn/ζn)| ≤ κε,Mζn , where κε,M := max{Vε(0), M + 1}. The se-
quence (ζn)n∈N is P-uniformly integrable with limn→∞ ζ n = 1 a.s., and limn→∞ hn = h,
a.s. So, by (3.8), we have

lim sup
n→∞

E
[
ζn Vε(hn/ζn)

] ≥ E[hV
ε,M

(h)] − εy ≥ E[hV
ε
(h)] − εy = E[Vε(h)] − εy.

Combining this last estimate with (3.7) we get

lim
n→∞ vn(y, r ) ≥ lim sup

n→∞
E

[
ζn Vε(hn/ζn)

] − (y + 1)ε ≥ E[Vε(h)] − (2y + 1)ε.

Now, because Vε (h) ≥ − h and h ∈ L1, one can use the monotone convergence theorem
in the last inequality and the fact that h ∈ D(y, r ) to get (as ε ↓ 0) that

lim
n→∞ vn(y, r ) ≥ EP[V(h)] ≥ v(y, r ),

which finishes the proof.

3.3. Limiting Behavior of the Sequence of Dual Value Functions

From now on, we assume that all four conditions (NFLVR), (S-REP), (CONV), and
(UI) hold. The first order of business is to study the behavior of the limit superior of the
sequence of the dual value functions. Then, we combine the obtained result with that of
Section 3.2.

3.3.1. Auxiliary Results. For future reference, for any p ∈ P, Q ∈ Q′(p) and (y, r ) ∈ L
such that yp = r we define

B(y, r , Q) :=
{

g ∈ D(y, r )

∣∣∣∣ 1
g

dQ/dP ∈ L∞.

}
.(3.9)

Since D(y, r ) is convex and ydQ/dP ∈ D(y, r ), we have that for all g ∈ D(y, r ) and
k ∈ N, k−1(ydQ/dP) + (1 − k−1)g ∈ B(y, r , Q); in particular, B(y, r , Q) 
= ∅.

LEMMA 3.3. Fix y > 0 and p ∈ P , and let Q ∈ Q′(p) be such that V+(y dQ/dP) ∈ L1(P).
Then, with r := yp and B(y, r , Q) defined in (3.9), we have

v(y, r ) = inf
g∈B(y,r ,Q)

E[V(g)].

Proof . Let g∗ ∈ D(y, r ) satisfy v(y, r ) = E[V(g∗)]. For all k ∈ N define g∗,k := (1 −
k−1)g∗ + k−1(ydQ/dP). Then, g∗,k ∈ B(y, r , Q) and E[V(g∗,k)] ≤ (1 − k−1)E[V(g∗)] +
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k−1E[V(y dQ/dP)]. Finally, because V(y dQ/dP) ∈ L1, we get that limk→∞ E[V(g∗,k)] =
v(y, r ). �

LEMMA 3.4. Suppose that for some f ∈ L0
+ the collection (Zn V+

n ( f /Zn))n∈N of random
variables is P-uniformly integrable. Let also g ∈ L1(P) be such that g ≥ f almost surely.
Then, limn→∞ ZnVn(g/Zn) = V (g) in L1(P).

Proof . Because we have limn→∞ ZnVn(g/Zn) = V(g) in L0, we only have to show that
the collection (Zn Vn(g/Zn))n∈N of random variables is P-uniformly integrable.

Each Vn is decreasing, thus ZnV+
n (g/Zn) ≤ ZnV+

n ( f /Zn), and (Zn V+
n ( f /Zn))n∈N is

P-uniformly integrable by assumption.
On the other hand, because Vn(x) ≥ −x for all n ∈ N we get ZnV−

n (g/Zn) ≤
g. The uniform integrability of (Zn V−

n (g/Zn))n∈N now follows from the fact that g
∈ L1(P). �

3.3.2. An Upper Semicontinuity-property of the Sequence of the Dual Value Functions.
We proceed here to show that for fixed (y, r ) ∈ L we have

lim sup
n→∞

vn(y, r ) ≤ v(y, r ).(3.10)

With p := y−1 r , pick some Q ∈ Q′(p) such that (Zn V+
n (y dQ/dPn))n∈N is P-uniformly

integrable (observe that this is where we use our (UI) assumption). Then, V+(y dQ/dP) ∈
L1(P), and, according to Lemma 3.3, v(y, r ) = infg∈B(y,r ,Q) E[V(g)].

For any g ∈ B(y, r , Q) ⊆ D(y, r ), Lemma 3.4 implies that limn→∞ E[Zn Vn(g/Zn)] =
E[V(g)]; it follows that lim supn→∞ vn(yn, rn) ≤ lim supn→∞ E[Zn Vn(g/Zn)] = E[V(g)].
Taking the infimum over all g ∈ B(y, r , Q) in the right-hand side of the last inequality
we arrive at (3.10).

3.4. Limits of Sequences of Primal Value Functions and Marginal
Utility-based Prices

In Section 3.3, we established that (vn)n∈N converges pointwise to v on L. Because
all the functions involved are convex, the convergence is uniform on compact subsets
of L. Thanks to the strong stability properties of the family of convex functions on
finite-dimensional spaces, this fact (and this fact only) yields convergence of the con-
cave primal value functions, as well as the related sub- and super-differentials to the
corresponding limits. Indeed, by theorem 7.17, p. 252 in Rockafellar and Wets (1998),
pointwise convergence on the interior of the effective domain of the limiting function is
equivalent to the weaker notion of epi-convergence. In our case, primal value functions
are all defined on K and the dual value functions on L, both of which are, in fact, open
thanks to the assumption (N-TRAD). For reader’s convenience, we repeat the definition
of epi-convergence.

DEFINITION 3.5 (Definition 7.1., p. 240, Rockafellar and Wets 1998). Let ( fn)n∈N

be a sequence of lower semicontinuous and proper convex functions defined on some
Euclidean space R d . We say that fn epi-converges to f —and write fn

e→ f if
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(1) ∀ x ∈ R d , ∀ xn → x, lim inf fn(xn) ≥ f (x);
(2) ∀ x ∈ R d , ∃ xn → x, lim sup fn(xn) ≤ f (x).

Epi-convergence seems to be tailor-made to interact well with conjugation. Denoting
the convex conjugation by (·)∗, theorem 11.34., p. 500, in Rockafellar and Wets (1998)
states that

fn
e→ f ⇔ f ∗

n
e→ f ∗,

as long as the functions ( fn)n∈N are proper and lower-semicontinuous. An immediate
consequence of the above fact is that

u(x, q) = lim
n

un(x, q), for all (x, q) ∈ K.

Moreover, the functions un as well as the limiting function u are know to be convex,
so the stated pointwise convergence is, in fact, uniform on compacts. Therefore, the
following, stronger, conclusion holds

u(xn, qn) = lim
n

un(xn, qn), for all (xn, qn) → (x, q) ∈ K.

The list of pleasant properties of epi-convergence is not exhausted yet. By theorem
12.35, p. 551 in Rockafellar and Wets (1998), epi-convergence of convex functions implies
the convergence of their sub-differentials, in the sense of graphical convergence, as defined
later (the dimension d ≥ 1 of the underlying space is general, but will be applied as d =
N + 1).

DEFINITION 3.6 (Definition 5.32, p. 166, Proposition 5.33, p. 167). Let T, (Tn)n∈N :
R d ⇒ R d be a sequence of correspondences. We say that Tn graphically converges to T ,
and write Tn

g→ T, if for all x ∈ R d ,⋃
{xn→x}

lim sup
n

Tn(xn) ⊆ T(x) ⊆
⋃

{xn→x}
lim inf

n
Tn(xn),

where lim in f and lim sup should be interpreted in the usual set-theoretical sense, and
the unions are taken over all sequences (xn)n∈N in R d , converging to x.

To combine the results mentioned earlier and illustrate the notion of graphical con-
vergence in more familiar terms, we state and prove the following simple observation.

PROPOSITION 3.7. Suppose that fn
e→ f , and let (xn)n∈N be a sequence in R d converging

towards some x ∈ R d . Then

lim sup
n

∂ fn(xn) ⊆ ∂ f (x).(3.11)

Further, let sup{‖y‖ | y ∈ ∂ fn(xn), n ∈ N} < ∞. Then, for each ε > 0 there exists n(ε) ∈ N

such that for n ≥ n(ε), ∂ fn(xn) ⊆ ∂ f (x) + εB, with B denoting the unit ball of R d .

Proof . The first statement follows from the definition of graphical convergence, and its
relationship to epi-convergence. For the second, suppose, to the contrary, that we can find
an ε > 0 and an increasing sequence nk ∈ N such that there exist points x∗

k ∈ ∂ fnk(xnk)
such that d(x∗

k , ∂ f (x)) > ε. If (x∗
k )k∈N has a convergent subsequence, then its limit x∗

0
has to satisfy d(x∗

0 , ∂ f (x)) ≥ ε—a contradiction with (3.11). Therefore, there exists a
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subsequence of (x∗
k )k∈N, converging to +∞ in norm. This, however, contradicts assumed

uniform boundedness of subdifferentials. �
The sequences (vn)n∈N and (un)n∈N converge in a pointwise fashion, uniformly on com-

pacts. It follows now directly from Definition 3.5 that (un)n∈N and (vn)n∈N converge in the
epi sense towards u and v . As we have already mentioned earlier, epi-convergence implies
graphical convergence of the subdifferentials. To be able to use the additional conclusion
of Proposition 3.7, we need to establish uniform boundedness of the superdifferentials of
the functions u(xn, qn ; Un, Pn), when (xn, qn) live in a compact subset of K. By Theorem
2.1, these are all of the form

∂u(xn, qn ; Un, Pn) = {yn} × ∂qu(xn, qn ; Un, Pn), where yn = ∂

∂x
u(xn, qn ; Un, Pn).

It is an easy consequence of the second inclusion in the definition of the graphical
convergence, and the differentiability in the x-direction of all functions u, (un)n∈N that
yn → y = ∂

∂x u(x, q; U, P). In particular, the sequence (yn)n∈N is bounded away from zero,
so, in order to use Proposition 3.7, it is enough to show that the sets P(xn, qn ; Un, Pn)
of utility-based prices are uniformly bounded. This fact follows immediately, once we
recall that those are always contained in the sets of arbitrage-free prices, which are
uniformly bounded by (S-REP). It remains to use Proposition 3.7 and remember the
characterization (2.2), to complete the proof of parts (1) and (3) of our main Theorem
2.6.

3.5. Continuity of the Optimal Dual Element and Optimal Wealth Processes

We conclude the proof of Theorem 2.6, tackling item (2) on convergence of the optimal
terminal wealth and the optimal dual elements. Let (xn, qn)n∈N with limn→∞(xn, qn) =:
(x, q) ∈ K and (yn, rn)n∈N with limn→∞(yn, rn) =: (y, r ) ∈ L be, respectively, a K-valued
and an L-valued sequence.

3.5.1. Preparation. Remember from Theorem 2.1 that the optimal dual and optimal
primal elements are connected via

X̂T(xn, qn ; Un, Pn) + 〈qn, f 〉 = −V′
n(ŶT(yn, rn ; Vn, Pn)), where (yn, rn) ∈ ∂u(xn, qn).

If we show that limn→∞ ŶT(yn, rn ; Vn, Pn) = ŶT(y, r ; V, P) in L0 for all sequences
(yn, rn)n∈N that are L-valued with limn→∞(yn, rn) =: (y, r ) ∈ L, then the convergence
of the random variables X̂T(xn, qn ; Un, Pn) to X̂T(x, q; U, P) in L0 will follow as well.
Indeed, fix a K-valued sequence (xn, qn)n∈N with limn→∞(xn, qn) =: (x, q) ∈ K; from the
upper hemicontinuity property proved in Section 3.4, we can choose for each n ∈ N some
(yn, rn) ∈ ∂u(xn, qn) in such a way as to have limn→∞(yn, rn) =: (y, r ) ∈ ∂u(x, q) ⊆ L.
The claim now follows easily; indeed, limn→∞ ŶT(yn, rn ; Vn, Pn) = ŶT(y, r ; V, P) in
L0, ŶT(y, r ; V, P) > 0, a.s., and (V′

n)n∈N converges uniformly to V ′ on compact subsets
of (0, ∞).

To ease notation, we write gn := ZnŶT(yn, rn ; Vn, Pn) and g := ŶT(y, r ; V, P). Then
gn ∈ D(yn, rn) satisfies vn(yn, rn) = E[Zn Vn(gn/Zn)] for each n ∈ N and g ∈ D(y, r ) satis-
fies v(y, r ) = E[V(g)]. The condition limn→∞ ŶT(yn, rn ; Vn, Pn) = ŶT(y, r ; V, P) in L0

that we need to prove translates to limn→∞(gn/Zn) = g in L0. Assume that an
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arbitrary subsequence (whose indices are not relabeled) has already been extracted from
(gn/Zn)n∈N. It suffices to show that limk→∞(gnk/Znk) = g in L0 along some further sub-
sequence (gnk/Znk)k∈N.

We now make a further step that—although seemingly confusing—will prove useful
in the sequel of our proof. With p := y−1 r , we pick some Q ∈ Q(p) such that f :=
y dQ/dP satisfies V+( f ) ∈ L1(P). For each n ∈ N, let fn := n−1 f + (1 − n−1)g. Note that
fn ∈ B(y, r , Q) for all n ∈ N, with B(y, r , Q) as in (3.9), and that limn→∞ fn = g in L0.

For any m ∈ N define

Cm := {(a, b) ∈ R2 | 1/m ≤ a ≤ m, 1/m ≤ b ≤ m, and |a − b| > 1/m}.(3.12)

Combining the discussion above with the facts that limn→∞ Zn = 1 in L0 and that
both sequences (gn)n∈N and ( fn)n∈N are bounded in L0, we conclude that to prove that
limn→∞(gn/Zn) = g in L0, we need to establish the following claim:

CLAIM 3.8. There exists a strictly increasing sequence {nk}k∈N so that the subsequences
(gnm )m∈N and ( fnm )m∈N of (gn)n∈N and ( fn)n∈N, respectively, satisfy

lim
m→∞ Pnm [(gnm/Znm , fnm/Znm ) ∈ Cm] = 0.(3.13)

The above clarifies the reason why the sets Cm, m ∈ N of (3.12) were introduced; in
fact, this trick is a more elaborate version of the method used in the proof of lemma A1.1
of Delbaen and Schachermayer (1994).

REMARK 3.9. For a sequence (An)n∈N of F-measurable sets, limn→∞ Pn [An ] = 0 is
equivalent to limn→∞ ZnIAn = 0 in L0 (combining the L1(P)-convergence of the last
sequence with P-uniform integrability of (Pn)n∈N) which, in view of the fact limn→∞ Zn =
1 in L0, is equivalent to limn→∞ IAn = 0 in L0, or in other words that limn→∞ P[An ] = 0.
This justifies the use of “Pnm ” instead of “P” in (3.13).

3.5.2. Proof of Claim 3.8. For any m ∈ N, the strict convexity of V implies the existence
of some βm > 0 such that for all (a, b) ∈ (0, ∞)2 we have

V
(

a + b
2

)
≤ V(a) + V(b)

2
− βmICm (a, b), for the set Cm of (3.12).

Uniform convergence of (Vn)n∈N to V on compact subsets of (0, ∞) implies that (with a
possible lower, but still strictly positive, choice of βm) we still have

Vn

(
a + b

2

)
≤ Vn(a) + Vn(b)

2
− βmICm (a, b),

for all n ∈ N and (a, b) ∈ (0, ∞)2. Setting a = gn/Zn, b = fk/Zn, multiplying both sides
of the previous inequality with Zn, and taking expectation with respect to P, one gets

βmPn

[(
gn

Zn
,

fk

Zn

)
∈ Cm

]
≤ 1

2
E

[
Zn Vn

(
gn

Zn

)]
+ 1

2
E

[
Zn Vn

(
fk

Zn

)]
− E

[
Zn Vn

(
gn + fk

2Zn

)]
≤ 1

2
vn(yn, rn) + 1

2
E

[
Zn Vn

(
fk

Zn

)]
− vn

(
yn + y

2
,

rn + r
2

)
,
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where for the third term of the last inequality we have used that fact that

gn + fk

2Zn
∈ D

(
yn + y

2
,

rn + r
2

)
.

Invoking Lemma 3.4, we know that limn→∞ E[Zn Vn( fk/Zn)] = E[V( fk)] for all fixed
k ∈ N. Furthermore, the proof of Lemma 3.3 shows that limk→∞ E[V( fk)] = E[V(g)] =
v(y, r ). Using also the uniform convergence (on compact subsets of L) of (vn)n∈N to v , we
see that we can choose km and nm large enough so that Pnm [Z−1

nm
(gnm , fkm ) ∈ Cm] ≤ 1/m. It

is a matter of subsequence manipulation to show that one can, in fact, choose a universal
strictly increasing sequence nm = km, m ∈ N with all the desired properties. This proves
(3.13), and concludes the proof of our main Theorem 3.6. �
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